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Nonlinear diffusions in topology optimization

M.Y. Wang, S. Zhou, and H. Ding

Abstract Filtering has been a major technique used
in homogenization-based methods for topology optimiza-
tion of structures. It plays a key role in regularizing the
basic problem into a well-behaved setting, but it has the
drawback of a smoothing effect around the boundary of
the material domain. In this paper, a diffusion technique
is presented as a variational approach to the regular-
ization of the topology optimization problem. A non-
linear or anisotropic diffusion process not only leads to
a suitable problem regularization but also exhibits strong
“edge”-preserving characteristics. Thus, we show that the
use of nonlinear diffusions brings the desirable effects of
boundary preservation and even enhancement of lower-
dimensional features such as flow-like structures. The
proposed diffusion techniques have a close relationship
with the diffusion methods and the phase-field methods
from the fields of materials and digital image process-
ing. The proposed method is described and illustrated
with 2D examples of minimum compliance that have
been extensively studied in recent literature of topology
optimization.

Keywords diffusion method, nonlinear diffusions, regu-
larization method, topology optimization

1
Introduction

The field of topology optimization of continuum struc-
tures has been thriving in the past decades with a wide
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range of techniques having been developed by Bendsoe
and Nikuchi (1988), Bendsoe (1999), Bendsoe and Sig-
mund (1999, 2003). In the basic problem of variable-
topology optimization (Bendsoe and Nikuchi 1988) one
seeks an optimal distribution of a fixed amount of ma-
terial over a larger reference domain Ω⊆Rd (d= 2 or 3)
through specified objective and constraint functions. The
optimal design A is a part of the reference domain A⊂ Ω
and it can be represented by its characteristic function
χ(x) : Ω→{0, 1} such that χ(x) = 1 if x ∈A and χ(x) = 0
otherwise (Bendsoe and Nikuchi 1988; Bendsoe 2003).
Unfortunately, the basic topology optimization problem
is often an ill-posed problem if without further restriction
(Allaire 2001; Cheng and Olhoff 1981; Haber et al. 1996).
Particularly for the problem of minimizing the structural
compliance of an elastic body for a specified set of loads
and supports, it is known that, except for some special
choices of linear or anisotropic tensor corresponding to
a material model, a non-convergent design sequence can
be constructed such that the compliance reduces mono-
tonically (cf. Allaire 2001; Bendsoe and Sigmund 2003).
The resulting design has a configuration with an un-
bounded number of microscopic holes, rather than a finite
number of macroscopic holes.
Well-posed problems can be generated by a relaxation

procedure by allowing homogenization of the properties
of the material (Bendsoe and Kikuchi 1988). Relaxation
usually yields continuous design variables over the ref-
erence domain, similar to the greyscale rendering of an
image, and it circumvents the numerical difficulties asso-
ciated with the discrete “0–1” formulation. However, it
is no longer possible to define unambiguously a point of
either solid or void from the homogenized solution. Per-
forated microstructures are also difficult to manufacture.
Thus, the “relaxed” optimal solutions may not lead di-
rectly to useful and practical designs.
Another class of methods is the explicit penalization

of intermediate values of the material density. This is the
type of problem formulation studied here. In this method
one defines a variable of material density ρ (x) at each
point within the design domain x ∈ Ω such that the char-
acteristic function of the structure being designed is de-
fined by χ(x) : Ω→ [0, 1]. The model of material prop-
erties is expressed in terms of the design variable ρ(x)



263

using a simple “power-law” interpolation as an explicit
means to suppress intermediate values of the bulk density
(Bendsoe and Sigmund 2003, 1999). This technique be-
comes quite popular, especially with the “solid isotropic
material with penalization” (SIMP) approach for its con-
ceptual and practical simplicity (Rozvany 1989; Rozvany
and Zhou 1991; Rozvany et al. 1992; Bendsoe and Sig-
mund 2003). In order to ensure existence of solutions for
this approach, one may also introduce a priori restric-
tions on the admissible design configurations. It has been
pointed out that certain configuration restrictions are
equivalent to explicit penalties on intermediate densities
(Bendsoe and Sigmund 1999), thus yielding similar de-
signs. Various methods based on the concepts of homoge-
nization and material interpolation have been extensively
developed over the past decade. We shall refer the reader
to the excellent books by Rozvany (1989), Allaire (2001)
and Bendsoe and Sigmund (2003) for comprehensive dis-
cussions and literature coverage.
Another difficulty in topology optimization is the oc-

currence of checkerboard patterns in the final solutions.
This is a matter of numerical instabilities, like those for
the Stokes equations when two coupled fields are dis-
cretized by a discrete method (Allaire 2001; Petersson
1999). Various possibilities have been suggested, includ-
ing adding perimeter controls, slope constraints and em-
ploying filters for suppressing the chattering solutions
(Bendsoe 1999; Diaz and Sigmund 1995; Sigmund and Pe-
tersson 1998; Petersson 1999), and they have been widely
applied to problems with multiple physics and multiple
materials (Bendsoe and Sigmund 2003).
Among these approaches a filtering technique seems

to be the most widely used method (Bendsoe and Sig-
mund 2003). A filter approach was first suggested by Sig-
mund by modifying the design sensitivity of a specific
element and making it dependent on a weighted average
over its neighbouring elements. This usually gives rise to
mesh-independent and checker-pattern-free optimization
results with moderate computational cost. The concept
is further developed into a local gradient constraint (Sig-
mund and Petersson 1998), for which the existence and
convergence of solutions is proven. This constraint would
substantially increase the computation cost. Recently,
Bourdin (2001) presented a more general filtering theory
applied with a non-local relationship between the dens-
ity and the material properties, for example, stiffness for
minimum compliance problems. Solution existence and
numerical convergence of the technique is proven, while
reasonable numerical results are also provided.
As a widely observed phenomenon, the obvious dis-

advantage of a filtering approach is a smoothing effect
around the boundary of the solid regions in the final op-
timal design, especially when the filtering range takes
a relatively large value. This means that the material
density variable ρ(x) cannot take the value 1 at the edges
of the material region. This behaviour may cause difficul-
ties for boundary identification in a postprocessing step
which is necessary for shape recovery from the optimiza-

tion solution. An averaging effect is introduced into the
numerical solution process by the use of filters. This is
a well-known technique to ensure regularity or existence
of solutions to a problem and has been used in vari-
ous domains of application. The basic idea is to replace
a non-regular function by its regularization of a smooth
function.
A more general class of regularization techniques is

diffusion. It is a powerful and well-founded tool in vari-
ous applications, especially in multi-scale image analysis
and processing (cf. Aubert and Kornprobst 2000; Sapiro
2001). Diffusion models allow the inclusion of a priori
knowledge to ensure regularity while they can also lead
simultaneously to preservation or even enhancement of
important features such as edges, lines or flow-like struc-
tures, particularly with nonlinear diffusion. The concept
seems to be applied to regularization of structural opti-
mization problems first in the use of the total variation
(Haber et al. 1996; Petersson 1999).
Nonlinear diffusion techniques are the subject of the

present study. Here we present models of regularization
based on diffusion theories to address the problem of
shape and topology optimization of structures. The basic
setting of the problem is the same with the material dis-
tribution approach (Bendsoe 1999) of a continuous vari-
able ρ(x) ∈ [0, 1] within a fixed reference domain x ∈ Ω.
However, in contrast to the existing methods discussed
above, no filter models are applied on the interpolation
of the material properties; neither constraints on the mi-
crostructures of material are necessary. The ill-posed ba-
sic problem is to be regularized by introducing a diffusion
in the dynamic process of optimization. This is a poste-
riori process as a feedback in adapting a diffusivity to
the gradient of density variable ρ(x). Therefore, this is
a variational method. Furthermore, a diffusion may be
chosen to induce a smooth solution or a solution preserv-
ing sharp transitions of the variable ρ(x) across x (known
as an “edge-preserving” solution), as it is often so used
in image processing (Aubert and Kornprobst 2000; Char-
bonnier et al . 1997). The proposed approach is applicable
to a range of problems, but the scope of this paper is
to be limited to a simple 2D minimum-compliance opti-
mization problem for a full description of the diffusion
technique in this setting.
In the following, we first define the basic problem

of topology optimization for minimum compliance. The
conventional filtering techniques are discussed. We then
describe the concept of diffusion processes and it is shown
that the linear heat diffusion is equivalent to the Gaus-
sian filtering technique. Properties of nonlinear diffusions
for edge-preserving regularization are then presented. We
show how a nonlinear diffusion can be incorporated in
a variational framework for regularization in the problem
of topology optimization. Numerical schemes are then
discussed with an introduction of five different diffusivity
functions commonly used in various applications. Finally,
the proposed diffusion method is illustrated with 2D ex-
amples, showing its effectiveness and the effect of the
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diffusivity parameter on the final solutions. Some further
extensions of the method are discussed in the conclusions
section.
Our research work presented here is partly inspired by

a recent overview of the field by Bendsoe (1999), where
the current approaches of material distribution are in-
cisively analysed and their beneficial features and some
intrinsic features that are less desirable are pointed out.
These fundamental issues are often the subject of argu-
ment in the literature (Ruiter and Keulen 2000; Sigmund
and Petersson 1998) from investigations into alternative
approaches such as the evolutionary approaches (Bend-
soe and Sigmund 2003), material interpolation (Bendsoe
and Sigmund 2003, 1999), and the level-set and phase-
field methods being developed more recently (Osher and
Santosa 2001; Sethian and Wiegmann 2000; Wang et al.
2003, 2004; Allaire et al. 2004; Bourdin and Chambolle
2003; Wang and Zhou 2003, 2004).

2
Statement of the problem

Let us consider the minimum compliance optimization
problem of a statically loaded linear elastic structure
under a single loading case (Bendsoe and Kikuchi 1988;
Rozvany 1989). Let Ω ⊆ Rd (d = 2 or 3) be an open and
bounded set occupied by the linear isotropic elastic struc-
ture. The boundary of Ω consists of three parts: Γ = ∂Ω=
Γ0 ∪Γ1 ∪Γ2, with Dirichlet boundary conditions on Γ1
and Neumann boundary conditions on Γ2. It is assumed
that the boundary segment Γ0 is traction free. The dis-
placement field u in Ω is the unique solution of the linear
elastic system

−div σ(u) = f in χΩ(x) = 1

u= u0 on Γ1

σ(u) ·n= h on Γ2 (1)

where the strain tensor ε and the stress tensor σ at any
point x ∈ Ω are given in the usual form as

ε(u) =
1

2

(
∇u+∇uT

)
σ(u) =Eε(u) (2)

withE as the elasticity tensor, u0 the prescribed displace-
ment on Γ1, f the applied body force known for all pos-
sible configurations of Ω, h the boundary traction force
applied on Γ2 such as an external pressure load exerted by
a fluid, and n the outward normal to the boundary.
The topology optimization problem of minimizing

mean compliance is formulated as:

inf
ρ
l(u) =

∫
Ω

fTudΩ+

∫
Γ2

hTudS

Subject to (u, ρ) ∈ S(Ω) (3)

The admissible space S(Ω) of the pair (u, ρ) for the prob-
lem is defined as S(Ω) = {(u, ρ) ∈ U ×H}, with u and ρ
satisfying

a (u, ρ) :=

∫
Ω

E (ρ) ε(u) : ε (v) dΩ =

∫
Ω

fTvdΩ +

∫
Γ2

hT vdΓ, ∀v ∈ U (4)

with ‘:’ representing the second-order tensor operator.
This is the weak form of the equilibrium equation of the
elastic system, where the set of kinematically admissible
displacements U is specified as

U :=
{
v ∈W 1,2(Ω); v = 0 on Γ1

}
(5)

and the space of feasible designsH is

H = {ρ ∈ L∞(Ω); 0≤ ρ≤ 1 a.e. in Ω} and

∫
Ω

ρ(x)dΩ≤ V (6)

with a limit on the amount of material in terms of the
maximum admissible volume V of the design.
A fundamental question regarding this class of struc-

tural optimization problems (3) is the existence and
smoothness of the solutions. This basic problem is an
ill-posed problem as explained above (cf. Cea and
Malanowski 1970; Murat 1972, 1977). The conventional
filtering technique replaces the dependence of the elastic
properties on the density of material with a dependence
on a filtered version of the density function. As explained
above, this would limit the rapid variations in the ma-
terial properties and thus ensure existence of solutions
(Bourdin 2001).
A filter operation is achieved by means of a convolu-

tion operator on the density (Bourdin 2001)

(F∗ρ) (x) =

∫
Ω

F (x−y)ρ(y)dy (7)

This definition requires the extension of the density field
ρ to the whole space Ω. Different implementation of this
extension yield different versions of the filter with dif-
ferent smoothing effects. These filtering techniques are
thoroughly examined in (Bourdin 2001). In the conven-
tional SIMP approach for topology optimization with the
so-called power-law method, it is often assumed that the
Young’s modulus of a material point can be written as
a function of its material density as E(ρ) = E0ρ

p, where
E0 is the Young’s modulus of a given solid material and p
is a factor of penalizing intermediate densities with p > 1.
Thus, the equilibrium condition (4) for the filtered dens-
ity field (7) becomes (Bourdin 2001)∫
Ω

(F∗ρ)p Eε(u) : ε (v) dΩ =

∫
Ω

fTvdΩ +

∫
Γ2

hT vdΓ, ∀v ∈ U (8)
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Such a filtering technique is known to have a strong
smoothing effect around the boundary of the material do-
main. Another recent scheme is to define a new stiffness-
density interpolation function as (Guo and Gu 2004)

E(ρ(x)) =E0ρ(x)(F∗ρ(x))
p (9)

This scheme is justified mathematically to reduce the
non-local effect of a material point and thus to alleviate
the undesirable boundary diffusion effect.

3
Diffusion techniques

The issue of regularization for well-posed problems has
been a subject of extensive studies in a class of more
general problems of domain identification with regular-
ization (cf. Aubert and Kornprobst 2000; Sapiro 2001).
Diffusions are known to be a powerful tool for the pur-
pose (Aubert and Kornprobst 2000; Weickert 1997). In
this section we introduce linear and nonlinear diffusion
processes for the purpose of regularizing and solving the
structural topology optimization problem (3).

3.1
Diffusion processes

Diffusion intuitively is a physical process of mass trans-
port. Diffusion processes derive from Fick’s law and the
continuity condition. Fick’s law expresses that a gradient
concentration leads to a flow which compensates for it. If
mass is only transported but can be neither created nor
destroyed, the diffusion equation is obtained as

∂tρ= div (D ·∇ρ) (10)

where D is a diffusion tensor, ρ corresponds to the mass
concentration or the material density in our problem set-
ting (Weickert 1997), and t denotes the scale parameter
or time. The diffusion tensor defines the diffusion process.
For example, if the tensor is chosen as the identity matrix,
then we have a well-known case of the diffusion process,
the heat equation. If the diffusion tensor is a function of
the differential structure of the mass density itself, the
feedback process leads to nonlinear diffusions generally
described by

∂tρ= div
(
g
(
|∇ρ|2

)
∇ρ
)

(11)

with the diffusivity function g
(
|∇ρ|2

)
.

In the classical variational method this nonlinear dif-
fusion can be expressed as energy minimization. Let us
consider a potential function ϕ (|∇ρ|) whose gradient is
given by

∇ϕ (|∇ρ|) = g
(
|∇ρ|2

)
∇ρ (12)

Then minimization of the energy functional

min
ρ

∫
Ω

ϕ (|∇ρ|)dx (13)

leads to the nonlinear diffusion equation (11) (Sapiro
2001). It is easy to show that g(s) := ϕ′(s)/s.

3.2
Linear diffusion filter

The oldest andmost investigated diffusion equation is the
linear heat equation

∂tρ= div (∇ρ) = ∆ρ (14)

corresponding to g
(
|∇ρ|2

)
= 1 and ϕ (|∇ρ|) = 1

2 |∇ρ|
2
.

Its solution is well known as the following convolution in-
tegral

ρ (x, t) =K√2t∗ρ(x)

whereKσ is the Gaussian kernel

Kσ =
1

2πσ2
exp

(
−
|x|2

2σ2

)

This in fact is equivalent to the linear filter models pre-
viously developed in topology optimization (Bourdin
2001). It is a low-pass filter and is isotropic. It diffuses
the information equally in all directions, thus blurs im-
portant features such as edges and boundaries. In the field
of variational approaches, the corresponding energy func-
tional term

∫
Ω |∇ρ|

2
dx is called the Thikonov regular-

ization (Charbonnier et al. 1997; Tikhonov and Arsenin
1997). In our topology optimization problem, “edges”
would represent the boundary of the structure. Bound-
aries are the most important features in our problem, and
they are defined as sharp transitions of the density level.
Thus, a more preferable regularization method should
be able to yield sharp material transitions, or be “edge
preserving”.

3.3
Nonlinear diffusions with edge preservation

In order to achieve an “edge”-preserving effect, a nonlin-
ear diffusion model must be used such that the following
two conditions are achieved:

1. Inside a material region where |∇ρ| is weak, the diffu-
sion equation acts like the heat equation, resulting in
isotropic filtering.

2. Near the boundary of a material region, where |∇ρ|
is large, the smoothing effect is substantially reduced
and the boundary’s edges are preserved.
These conditions require that the diffusivity func-

tion g(s) or energy functional ϕ(s) have certain unique
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properties in addition to being regular and continuously
differentiable. Indeed, we may interpret the diffusion pro-
cess as a sum of a diffusion in the tangential direction T
plus a diffusion in the normal direction N . On the edges,
it is preferable to diffuse the density along the tangential
direction T of the boundary and not across it. It is easy
to show from a simple analysis that the energy functional
ϕ should be chosen to have at least the three following
properties (Aubert and Kornprobst 2000; Samson et al.
2000):

1. ϕ′(s)/s is strictly decreasing on s ∈ [0,∞} .
2. ϕ′(0) = 0, lim

s→0
ϕ′(s)/s= ϕ′′(0) = β, and 0< β <∞.

3. lim
s→∞

ϕ′(s)/s= lim
s→∞

ϕ′′(s) = 0.

The first property is to avoid numerical instabilities.
The second condition requires ϕ(s) to be quadratic or
nearly quadratic for s→ 0, and its role is the regulariza-
tion effect of smoothing where variations of the density
are weak. The third condition requires ϕ(s) to be lin-
ear or sub-linear for s→∞. This corresponds to the
edge-preserving effect, where in a neighbourhood of the
boundary the density presents a strong gradient. Such
a typical function is ϕ(s) = s2/

(
1+ s2

)
and its behaviour

is illustrated in Fig. 1, together with some other com-
monly used functions.
The function ϕ(s) may be convex or non-convex.

When ϕ is convex, a theoretical study of the minimiz-
ers of its energy functional can be established, such as
for their existence and uniqueness. On the other hand,
such a theoretical study for a non-convex function ϕ is
often difficult. Nevertheless, in the field of image process-
ing, non-convex functions are found to work well or even
to provide better results (Guo and Gu 2004; Haber et al.
1996). Some widely used edge-preserving functions in-
clude ϕ(s) = |s| (total variation), ϕ(s) = s2/

(
1+ s2

)
, and

ϕ(s) = log
(
1+ s2

)
, to name a few.

Fig. 1 Behaviour of some regularization functions

3.4
Topology optimization with edge-preserving diffusion

Following the above analysis of nonlinear diffusion, we
can introduce a variational model for the continuous
mean compliance minimization problem of (3), formu-
lated with a new objective functional:

inf
ρ
J(u) =

∫
Ω

fTudx+

∫
Γ2

hTudx +

µ

∫
Ω

ϕ (|∇ρ|) dx (µ > 0)

Subject to (u, ρ) ∈ S(Ω) (15)

with u and ρ satisfying (4).
The inclusion of the energy functional term ϕ is for

regularization. Naturally, it is not sufficient to ensure that
the transitional density 0 < ρ < 1 in the optimal design
will be suppressed. As pointed out in (Haber et al. 1996),
the elasticity tensor in the final optimal design Ω is spec-
ified by E(Ω) = χΩE0. This constitutive model must be
replaced by a continuous model consistent with the in-
terpolation parameter ρ such that the new model defines
a smooth interpolation between the elastic properties of
the solid material and void. The simplest model is the
“power law” used in the SIMP method (Bendsoe and Sig-
mund 2003),

E(ρ) =E0ρ
p (16)

It should be emphasized that in our variational model of
(15) interpolationmodels such as (16) are introduced here
solely as continuous approximations to the basic integer
problem of χΩ (x) : Ω→{0, 1}, similar to the case of prob-
lem formulation in (Haber et al. 1996). Another approach
is to employ a phase-field model based on the theory of
phase transitions frommechanics andmaterial sciences as
reported in (Cahn and Hilliard 1958; Eyre 1993; Leo et al.
1998; Warren 1995). In that case, the energy functional is
a generalized free energy in the following form

ε

∫
Ω

ϕ (|∇ρ (x)|) dx+
1

ε

∫
Ω

W (ρ(x))dx (17)

with an additional potential term W . The first term re-
mains the same as in (15) and depends only on the gra-
dient of ρ(x). W is taken to be a double-welled potential
such that W (1) =W (0) = 0 and is non-zero only in the
transition region where 0 < ρ < 1. The thickness of the
intermediate density region is proportional to ε. As fully
developed in (Bourdin and Chambolle 2003; Wang and
Zhou 2003, 2004), this variational model will result in
a partition of the reference domain into distinct regions,
each region being characterized by the feature of being ei-
ther solid (ρ (x) = 1) or void (ρ(x) = 0). Hence, the final
solution will be made of homogeneous solid or void re-
gions separated by regularized boundaries. Since our goal
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in this paper is to examine the role of nonlinear diffusions
in topology optimization in lieu of the conventional lin-
ear filtering, we shall use the power-law model (16) for
simplicity.

3.5
Non-convex diffusion functions

Strictly speaking, our continuous regularization model
with diffusion of (15) may still be ill-posed, if the func-
tion ϕ(s) is sub-linear with the edge-preservation prop-
erties required in Sect. 3.3. Clearly, the best regulariza-
tion results are obtained for a diffusion operator which
saturates when the gradient is large. This corresponds
to a non-convex function ϕ(s). When the potential ϕ(s)
is convex, then g

(
s2
)
s, called the flux, is known to in-

crease monotonously. Convex energy functional have ex-
actly one minimum, thus a theoretical study about the
minimizer can be established, such as for their existence
and uniqueness. The minimizer can be found by the clas-
sical method of gradient descent (Aubert and Kornprobst
2000; Samson et al. 2000). Standard finite-element ap-
proximations are stable and computationally expensive
methods from non-convex optimization are not necessary.
On the other hand, it is often difficult to find a discrete
solution for a non-convex function ϕ. There is no math-
ematical theory available which guarantees a unique or
stable solution.
However, non-convex potentials are found to work

well or even to provide better results in the field of image
processing (Aubert and Kornprobst 2000; Samson et al.
2000; Sigmund and Petersson 1998). Initially reported
by Perona and Malik in 1987, some non-convex poten-
tial functions have been widely employed for stronger be-
haviours such as edge enhancement. The non-convex ef-
fect can also be balanced by a selective smoothing scheme

Table 1 Diffusion potentials and diffusivities

Method Diffusivity g(s) Potential ϕ(s) Convexity

Tikhonov 1
s2

2
all s

Lorentzian
1

1+ s2

2σ2

σ2 log

[
1+
1

2

(
s2

σ2

)]
|s| ≤

√
2σ

Perona–Malik e−
s2

2σ2 −σ2 e−
1
2 (
s
σ )
2

|s| ≤ σ

Huber




1

σ
s≤ σ

sign(s)

s
s > σ



s2

2σ
+
σ

2
s≤ σ

s s > σ

no

Tukey



1

2

[
1−
s2

σ2

]2
s≤ σ

0 s > σ




s2

σ2
−
s4

σ4
+
s6

3σ6
s≤ σ

1

3
s > σ

no

Fig. 2 Aligned and scaled flux functions (adapted from
Sapiro (2001))

which acts as a tool for convexification of monotonously
increasing flux (Samson et al. 2000). The reader is re-
ferred to the literature, for example, on image processing
(Aubert and Kornprobst 2000), for the details of numeri-
cal schemes and their analyses.
In this paper we use five different potential functions

to examine their regularization and diffusion properties
for the minimum compliance optimization of structures.
They include convex and non-convex edge-preserving
nonlinear functions and the conventional linear diffusion
filtering (i.e. Tikhonov function) for comparison. Table 1
lists these potential functions and their diffusivities.
These five diffusion functions can be further compared

in the context of robust estimation in connection to ro-
bust statistics as presented in (Sapiro 2001). With re-
spect to a robust scale factor and range normalization,
the flux functions, g

(
s2
)
s, of the diffusions are plotted
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in Fig. 2. From the shape of the flux functions, one can
conclude that diffusing with the Tukey function produces
sharper boundaries than diffusing with the Lorentzian
and the Perona–Malik functions, which both in turn pro-
duce shaper boundaries than the Huber function. The lin-
ear diffusion of Tikhonov is clearly shown to be isotropic
without any edge-preserving effect.

4
Numerical implementations

Based on the previous discussions, we now describe the
numerical aspects of our diffusion schemes. Our varia-
tional system is defined by (15), (16) and (4) together.
The necessary condition required for a minimizer is the
Kuhn–Tucker condition, which is derived from the Euler–
Lagrange equation to compute the derivative of the func-
tional J with respect to ρ. Then the optimal solutionmust
satisfy the following Euler–Lagrange equation:

a′ (u, ρ)−µ div

[
g
(
|∇ρ|2

)
∇ρ
]
= 0 for x ∈Ω

∂ρ(x)

∂n+
=∇ρ ·n+ = 0 on ∂Ω

(18)

where n+ is the outward normal to the boundary of the
reference domain Ω and a′ (u, ρ) denotes the Euler deriva-
tive of the mean compliance of the structure with respect
to the density variable ρ. With the interpolation model of
(4) and (16) for the elasticity tensor this derivative is well
established (Bendsoe and Sigmund 1999, 2003). In the
common case of a discrete solution with the finite element
method, it is expressed by, for an element e,

a′e (ρ) = pρ
p−1Keue : ue (19)

The optimal solution represented by the Euler–Lagrange
equation (18) is in fact difficult to solve. There are
two major factors behind this difficulty. First, like the
homogenization-based methods in topology optimiza-
tion, the number of design variables of a discrete scheme
is typically very large. Thus efficiency of the numerical
procedure is a strong consideration factor. This difficulty
is further compounded by the complexity of the diffusion
process which introduces numerical instability and non-
linearity (in the case of a nonlinear diffusion). Generally
speaking, an efficient and accurate numerical solution to
(18) requires a sophisticated numerical scheme (Weickert
1997). In the following we present two solution schemes
based on more direct and simple ideas, followed with
a discussion of other refined algorithms that appear more
complex but have more appealing numerical properties.

4.1
Optimality criteria scheme with diffusion filter

Our first scheme follows the standard optimality crite-
ria methods widely used in structural optimization, espe-
cially for the mean compliance minimization with many

variables and one constraint (3). These methods are well
known for their efficiency as the design variables at one
point in the discrete approximation are updated indepen-
dently from the updates at other points, based on the
necessary conditions for an optimal solution. This updat-
ing scheme was used by many authors (cf. Bendsoe and
Kikuchi 1988; Bendsoe and Sigmund 2003).
For the mean compliance problem defined by (3)–(6)

with the material interpolation model of (16), the com-
mon updating formula based on the optimality condition
is

ρk+1 =−ρk
(
pρ(p−1)E0ε(u) : ε(u)

λ

)q
(20)

where λ is the Lagrange multiplier for the volume ratio
constraint and q is a tuning parameter to obtain a stable
convergence of the scheme and is usually set to q = 1/2
(cf. Bendsoe and Sigmund 2003).
With this updating formula in mind, we then take

a direct approach to add the diffusion process as a feed-
back in the iteration procedure of optimization. Since the
diffusion is a function of the differential structure of the
mass density itself, we may treat it as a filter on the dens-
ity itself. This means that the density variables will be
modified as follows

ρ̂k = ρk+µ div
(
g
(∣∣∇ρk∣∣2)∇ρk) (21)

In the case of the Tikhonov diffusion function, this is in
fact the linear (Gaussian) filtering on the density given as

ρ̂k = ρk+µ∆ρk (22)

Here, the Laplacian is discretized in space as a sum of the
second-order derivatives ∆ρi,j . In two-dimensional space,
the finite difference scheme is described as

∆ρi,j =
1

h2
(ρi+1,j+ρi−1,j+ρi,j+1+ρi,j−1−4ρi,j) (23)

if we suppose that the point is not located on the edge
of the object and the grid width is uniform in h. Alter-
natively, one may use the complete 3×3 neighbourhood
to obtain the following approximation that has good
rotation-invariance properties (cf. Aubert and Korn-
probst 2000):

∆ρi,j ≈
1

3h2
((ρi+1,j+ρi−1,j+ρi,j+1+ρi,j−1−4ρi,j)+

(ρi+1,j+1+ρi−1,j+1+ρi+1,j+1+ρi−1,j−1−4ρi,j)) (24)

Of course, this is equivalent to the linear filter models
previously developed in topology optimization (6). It is
a low-pass filter and is isotropic. It diffuses the informa-
tion equally in all directions, thus blurs important fea-
tures such as edges and boundaries.
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For any nonlinear diffusion potential function ϕ(s),
it is easy to show that the diffusion operator can be ex-
pressed as

div
(
g
(
|∇ρ|2

)
∇ρ
)
i,j
=
1

h2

(
α1ρi+1,j+α2ρi−1,j +

α3ρi,j+1+α4ρi,j−1−

(
4∑
l=1

αl

)
ρi,j

)
(25)

where the coefficients αl are the weights of the Laplacian
given by the diffusivity function ϕ′(s)/s as (Charbonnier
et al. 1997)




α1 =
ϕ′ (ρi+1,j−ρi,j)

2 (ρi+1,j−ρi,j)

α2 =
ϕ′ (ρi−1,j−ρi,j)

2 (ρi−1,j−ρi,j)

α3 =
ϕ′ (ρi,j+1−ρi,j)

2 (ρi,j+1−ρi,j)

α4 =
ϕ′ (ρi,j−1−ρi,j)

2 (ρi,j−1−ρi,j)

(26)

When comparing with (22), it is clear that a nonlin-
ear diffusion process can also be regarded as a filtering
process on the density ρ (x) by the position-dependent
weighted filter of (24). The edge-preserving properties of
the nonlinear diffusion are specified by the required con-
ditions listed in Sect. 3.3. When the diffusivity function is
such that

lim
s→0
ϕ′(s)/s= ϕ′′(0) = β , and 0< β <∞

then all weights αl around the point are approximately
equal to β and the nonlinear diffusion process behaves as
the usual linear filter with diffusion (i.e. smoothing) all
around the point. On the other hand, when the following
condition is met

lim
s→∞

ϕ′(s)/s= lim
s→∞

ϕ′′(s) = 0

then the corresponding weight of the Laplacian vanishes
and there is no smoothing in the direction of s→∞.
This would correspond to a discontinuity of density in
the neighbourhood of the point (i.e. an edge). Therefore,
the nonlinear diffusion behaves in an edge-preserving
manner.

4.2
Methods of gradient flow

Instead of directly solving the Euler–Lagrange equa-
tion (18) associated with the minimization problem (15),
a more general technique of looking for a possible solution

is to solve numerically the following partial differential
equations (PDEs)



∂tρ+a

′ (u, ρ)−µ div
[
g
(
|∇ρ|2

)
∇ρ
]
= 0 for x ∈ Ω

∂ρ(x)

∂n+
=∇ρ ·n+ = 0 on ∂Ω

(27)

with given initial condition ρ (0, x) = ρ0 (x). When the
steady state of this equation is obtained, a solution to
the Euler–Lagrange equation is achieved. This approach
is also called the gradient-descent flow (Aubert and Korn-
probst 2000; Sapiro 2001). Here, the auxiliary variable t is
denoted as the scale variable.
PDE-based methods have been extensively studied in

the fields of digital image processing. In most applications

Fig. 3 The MBB structure with fixed-simple supports

Fig. 4 The solution sequence of the MBB beam (right-half)
with m being the iteration number
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Fig. 5 The mean compliance and diffusion potential during
the convergence process

of nonlinear diffusions, finite difference methods are used
for numerical solutions, since they are easy to handle and
our fixed design domain provides a natural discretization
on a fixed rectilinear grid. An explicit scheme is simple to
implement and thus is used in the paper. The rotation-
invariant difference scheme of (24) is also used in the
implementation. However, it should be noted that con-
ditions for numerical stability typically limit the explicit
schemes to using fairly small time-step sizes. Thus, such
a scheme is typically inefficient.
In the literature of digital image processing, a num-

ber of more efficient numerical methods are developed
for nonlinear diffusions, including semi-implicit scheme
and multi-grid techniques (cf. Aubert and Kornprobst
2000). These schemes possess much better stability and
efficiency properties. Furthermore, a concept of discrete
nonlinear scale space has been developed, which has led
to the development of fast schemes based on adaptive
operator splitting (Weickert 1997). These new schemes
are found to be a few orders of magnitude more efficient
under typical accuracy requirements. Moreover, another
advantage of the use of PDEs is that special numerical

Fig. 6 Solutions for the MBB example with different diffu-
sion functions and the linear filter

Fig. 7 A bridge-type structure with multiple loads

schemes can be devised to preserve discontinuities (such
as edges) in the solution, if the PDEs are modelled to
describe a level-set flow as in the level-set-based mod-
elling of topology optimization (Osher and Santosa 2001;
Sapiro 2001).

5
Numerical experiments

Here we illustrate the use of the diffusion processes for
mean compliance optimization problems that have been
widely studied in the relevant literature (cf. Bendsoe and
Sigmund 2003; Allaire 2001). For clarity in presentation,
the examples are in 2D under a plane stress condition.
For the first two examples, we use the optimality crite-

ria method with diffusion filter described in Sect. 4.1. The
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Fig. 8 A bridge structure (top) and its optimal designs with
different diffusion functions and the linear filter

first example is known as MBB beams related to a prob-
lem of designing a floor panel of a passenger aeroplane in
Germany. The floor panel is loaded with a unit concen-
trated vertical force P = 1 N at the centre of the top edge.
It has a fixed support and a simple support at its bottom

Fig. 9 Optimal designs with Lorentzian diffusion function

corners respectively. The design domain has a length-to-
height ratio of 12 : 2 (Fig. 3). The volume ratio is spec-
ified to be 0.3. We use 100× 50 quadrilateral elements
to model one half of the structure due to the geometric
symmetry.
Using the Perona–Malik diffusivity function and set-

ting σ = 0.5 and µ= 0.1, we obtain a converged optimiza-
tion sequence as shown in Fig. 4. Changes in the mean
compliance and the potential energy during the conver-
gence are shown in Fig. 5. Here, we deliberately kept the
iteration to a high number to illustrate the convergence
process of the direct numerical scheme.
For this example, other diffusivity functions are also

employed. Figure 6 shows the optimal designs obtained
with all of the five diffusion functions listed in Table 1. For
these convex or non-convex diffusions, they all produce
satisfactory results. These optimal designs are also com-
pared with that obtained from using the SIMP method
with the conventional filtering technique, also shown in
the figure. It should be noted that the different diffusion
process may produce different final designs with different
topological configurations. It is clear that the diffusion
process, just like a conventional linear filter, has a strong
regularization effect that restricts the permissible space
of the design.
A bridge-type structure is considered next. A rectan-

gular design domain, L long and H high, with a ratio of
L :H =12 : 6 is loaded vertically at its bottomwith multi-
ple loads P1 = 40 N and P2 = 20 N as shown in Fig. 7. The
bottom left corner of the beam is fixed, while it is simply
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Fig. 10 Optimal designs with Perona–Malik diffusion function

Fig. 11 Optimal designs with Tukey diffusion function

supported at the bottom right corner. The volume ratio of
0.30 is considered. A mesh of 100×50 quadrilateral elem-
ents is used for the discrete analysis and optimization,

and we set σ = 0.5 and µ = 0.1. Figure 8 shows the op-
timal designs obtained with the diffusion functions and
with the SIMP method.
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Fig. 12 Optimal designs with Huber diffusion function

From these two examples we note that our direct im-
plementation of the diffusion process by incorporating it
into the optimality-criteria-based updating of variables
works as efficiently as the conventional SIMP method
with a linear filter. However, the edge-preserving effects
of diffusion near the edges are not well pronounced as ex-
pected for the nonlinear diffusion functions. Apparently,
the direct step of (19) for variable updating has a compro-
mising effect on the density modification for diffusion in
(20). However, a detailed analysis for this effect in the use
of the heuristic method is not available yet.
Note that our diffusion process did not converge for

the Lorentzian diffusion process in this example. Conver-
gence of our optimization process is determined by many
factors. A key element is the scale parameter σ in the
nonlinear diffusivity functions. Large values of the scale
parameter will dilate the diffusivity function, and reduce
its influence on the edge-preserving effect. We have exam-
ined this effect for the example of the bridge-like structure
for each of the four nonlinear diffusion processes, with re-
sults given in Figs. 9–12 respectively, for σ varying from
σ = 0.1 to σ = 0.9. The heuristic nature of the quick up-
date method may also contribute to the non-convergence.
These results are not meant to be comprehensive but to
provide an intuitive experience for the diffusion processes
proposed in the paper.
The last example is a cantilever beam with a concen-

trated vertical force P = 10N at the bottom of its free
vertical edge. The design domain has a length-to-height
ratio of 2 : 1. The volume ratio is specified to be 0.3, and
we use 100×50 quadrilateral.

For this example we use the method of steepest gra-
dient flow of (26) with a fairly small time step. Since

Fig. 13 The cantilever beam (top) and optimal designs with
different diffusion functions and the linear filter
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Table 2 Edge-preserving diffusion functions

Method Potential ϕ(s) Edge-preserving Convexity

Tikhonov
s2

2
no yes

Hyper surface
1

2
√
1+ s2

yes yes

Green
tanh(s)

2s
yes yes

Huber & Leahy
2

1+ s2
yes no

German & McClure
2

(1+ s2)2
yes no

Tikhonov function does not satisfy the conditions for edge
preserving specified in Sect. 3.3, we used four additional
potential functions to examine their regularization and
diffusion properties for the minimum compliance opti-
mization of structures. They include convex and non-
convex edge-preserving nonlinear functions and are listed
in Table 2.
Figure 13 shows the optimal designs obtained with

all of the five diffusion functions listed in Table 2. These
optimal designs are also compared with that obtained
from using the SIMP method with the conventional fil-
tering technique, also shown in the figure. It is clearly
shown that the PDE-based numerical implementation
yields much crisper edges and the edge-preserving effects
are highly pronounced, when comparing to the linear fil-
ter method. Smoothing across edge is virtually eliminated
by the diffusions. The objective function of mean compli-
ance is plotted in Fig. 14 for all of these cases. It should
be pointed out that the PDE-based implementation has
a much higher level of computational cost, by two orders
of magnitude over that of the optimality criteria method
of Sect. 4.1.

Fig. 14 The mean compliance during gradient flow for the
cantilever beam example

6
Conclusions

In this paper we have presented a variational approach to
using a nonlinear diffusion technique for the regulariza-
tion of the topology optimization problem. The problem
is formulated as a continuous problem with the density
variable 0≤ ρ(x) ≤ 1 as in the widely used material dis-
tribution approach based on homogenization. However,
instead of using linear filtering in the interpolation of ma-
terial properties, a potential functional is employed to in-
duce a nonlinear diffusion process.Within this variational
framework, we can incorporate an “edge”-preserving ef-
fect to lead to a well-regularized problem formulation.
We show that the diffusion model has a close relationship
with the phase-field methods in the fields of mechanics
and materials and the variational methods used in digital
image de-noising segmentation. Two different numerical
implementations of the proposed approach are discussed.
The proposed diffusion method is illustrated with 2D
examples. While the optimality-criteria-based updating
scheme is simple and easy to implement, it yields less sig-
nificant edge-preserving effect. On the other hand, a gen-
eral scheme based on the gradient flow concept is more
accurate and virtually eliminates smoothing across edges;
it is however inefficient due to severe numerical stability
requirements.
All the nonlinear diffusion processes that we have

investigated so far utilize a scalar-valued diffusivity func-
tion g (∇ρ(x)). They are isotropic and sub-linear. In
a discrete setting, our diffusion model of (15) exhibits
considerable effects of regularization and edge preserving.
Strictly speaking, the effects would be weaker in the con-
tinuous domain of (15). These diffusion techniques can be
further generalized to take into account possible informa-
tion contained in the variations of the orientation of gra-
dient ∇ρ(x). If we wish to smooth preferentially within
each material region and to preserve or even enhance
lower-dimensional features such as line-like structures, we
need to use more sophisticated structure descriptors than
just ∇ρ(x) to define the diffusion tensor in (10). These
requirements cannot be satisfied by a scalar diffusivity
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anymore. A general theory of anisotropic structure has
been introduced by Weickert (1997) and it has been well
developed for edge-enhancing diffusion and coherence-
enhancing diffusion in image processing (Aubert and
Kornprobst 2000; Sapiro 2001). It would be a promising
extension to employ such a feature-enhancing diffusion
model to the variable-topology optimization problem,
even though it is not variational and requires efficient
well-founded algorithms for solving the problem.
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Murat, F. 1972: Théorèmes de non-existence pour des
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