
Research paper
DOI 10.1007/s00158-004-0412-1
Struct Multidisc Optim 28, 340–348 (2004)

Design optimization of discrete structural systems using
MPI-enabled genetic algorithm

S.D. Rajan and D.T. Nguyen

Abstract The focus of this paper is on the development
and implementation of a genetic algorithm (GA)-based
software system using message passing interface (MPI)
protocol and library. A customized and improved form of
simple GA used in previous research (Chen et al. 1997;
Chen and Rajan 1998, 2000; Rajan et al. 1999) is paral-
lelized. This MPI-enabled version is used to find the solu-
tion to finite element-based design optimization problems
in a network of workstations. Results show that an al-
most linear speedup is obtained on homogenous hardware
cluster and, with a proper load-balancing strategy, on
heterogeneous hardware cluster.

Keywords genetic algorithm, load balancing,MPI, par-
allel processing, structural optimization

1
Introduction

Genetic algorithms (GA) have evolved over the last three
decades to be recognized as a very powerful tool in ob-
taining solutions to nonengineering and engineering de-
sign optimization problems. The simple GA, while pow-
erful, is perhaps too general to be efficient and robust
for structural design problems. First, function (or fit-
ness) evaluations are computationally expensive because
they typically involve finite element analysis. Second, the
(feasible) design space is at times disjointed with multiple
local minima. Third, the design space can be a function
of boolean, discrete and continuous design variables. The

Received: 29 May 2003
Revised manuscript received: 10 February 2004
Published online: 8 July 2004
 Springer-Verlag 2004

S.D. Rajan1,� and D.T. Nguyen2

1Department of Civil Engineering, Arizona State University,
Tempe, AZ 85287, USA
e-mail: s.rajan@asu.edu
2Department of Civil Engineering, Old Dominion University,
Norfolk, VA 23539, USA

use of GA to find the optimal solution(s) of engineering
design problems is still an open research area. Experience
with GA has indicated that more often than not, tuning
the GA strategy and parameters can lead to a more effi-
cient solution process for a class of problems.
One of the most interesting aspects of GA is the ex-

plosive growth in the number of strategies explored by
researchers in a multitude of disciplines. There are two
popular approaches to configuring the system when par-
allel processing is combined with GA.

(1) Master–slave model: This is the most popular ap-
proach. The master process controls the programflow
by assigning tasks to the slave processes. In the con-
text of GA, typically the slave processes compute the
fitness values, while the master process uses this in-
formation to create the next generation.

(2) Island-migration model: In this model, the entire
population is divided into subpopulations (or islands)
that are associated with different processors. As the
disparate populations evolve, periodically, the best
individuals are exchanged between the subpopula-
tions (migration).

Both these approaches have been used successfully
in solving a variety of problems. In a recent report
developed by a NASA–Langley committee chaired by
Biedron et al. (1999), coarse-grained parallelism is touted
as a cost-effective and efficient method for search tech-
niques such as GA, response surfaces and neural nets.
Next, we present a review of a fraction of the number of
GA variations used in advancing the applicability of GAs,
especially when parallel computing is available.
Eby et al. (1997) present an approach to optimal de-

sign of elastic flywheels using an injection island ge-
netic algorithm (iiGA) that is a variation of the island-
migration model. An iiGA in combination with a finite-
element code is used to search for shape variations to opti-
mize the specific energy density (SED) of elastic flywheels
that is defined as the amount of rotational energy stored
per unit mass. iiGAs seek solutions simultaneously at dif-
ferent levels of refinement of the problem representation
(and correspondingly different definitions of the fitness
function) in separate subpopulations (islands). Solutions
are sought first at low levels of refinement with an ax-

341

isymmetric plane stress finite element code for high-speed
exploration of the coarse design space. Next, individuals
are injected into populations with a higher level of reso-
lution that uses an axisymmetric three-dimensional finite
element model to fine-tune the flywheel designs. In true
multiobjective optimization, various subfitness functions
can be defined that represent good aspects of the overall
fitness function. Allowing subpopulations to explore dif-
ferent regions of the fitness space simultaneously allows
relatively robust and efficient exploration in problems for
which fitness evaluations are costly.
Miki et al. (1999) present another variation of the

island-migration model. A migration scheme that moves
some individuals in one island to another island is
adopted to create new population mixes. In the numeri-
cal examples, different values of the mutation rate and the
crossover rate are assigned to different islands, thereby
creating different GA environments in each of these is-
lands. The optimization problem that is solved is the
minimization of the volume of truss structures under ten-
sile, buckling and displacement constraints. Other similar
approaches can be found in Chipperfield and Fleming
(1996).
Sarma and Adeli (2001) use a variation of the master–

slave model. They employ a bilevel strategy in finding the
solution to the design problem. First, parallel fuzzy GAs
are used to obtain a continuous-variable minimum weight
design. In this stage, the objective function and the con-
straints are considered to be fuzzy and a genetic search is
performed with a preemptive constraint-violation strat-
egy. Small constraint violations are allowed. This solution
is then used as a preliminary startup design for the subse-
quent fuzzy discrete multicriteria cost optimization. Both
OpenMP directives and message passing interface (MPI)
calls are used in a shared memory data parallel comput-
ing and message passing distributed computing to take
advantage of the best of both approaches.
Finally, an interesting approach is presented by Scott

et al. (1995), where a hardware-based GA solution meth-
odology is used. Speedups of 1–3 orders of magnitude are
observed when frequently used software routines were im-
plemented in hardware by way of reprogrammable field-
programmable gate arrays (FPGAs). The prototype sys-
tem uses VHDL to allow for easy scalability. It is designed
to act as a coprocessor with the CPU of a PC. The user
programs the FPGAs, which implement the function to
be optimized. In simple tests, the prototype took about
6% as many clock cycles to run as the software-basedGA.
The authors suggest improvements that could realisti-
cally make the hardware system 2–3 orders of magnitude
faster than the software-based GA.
We have two major foci or objectives in this paper.

First, very briefly, the proposed improvements to the sim-
ple GA are discussed. These improvements are aimed at
improving the reliability and efficiency of the overall pro-
cess. Second, the major focus is on the development and
implementation of a load-balancing methodology. The
load-balancing issue is tackled so that the overall method-

ologyworks efficiently on both homogenous and heteroge-
neous computer clusters. A homogenous cluster is defined
as one having identical computers connected by a switch,
whereas a heterogeneous cluster is one where the com-
puter hardware is not identical.

2
Genetic algorithm

The design problem can be stated as follows:

Find x=
⌊
bx1, . . . ,

bxnb ;
ix1, . . . ,

ixnd ;
sx1, . . . ,

sxns
⌋

to minimize f(x)

subject to gi(x) ≤ 0 i= 1, . . . , ni

hj(x) = 0 j = 1, . . . , ne

bxp ∈ {0, 1} p= 1, . . . , nb

ixq ∈
{
x1q , x

2
q, . . . , x

nq
q

}
q = 1, . . . , nd

sxLr ≤
sxr ≤

sxUr r = 1, . . . , ns , (1)

where x is the design variable vector, f(x) is the objec-
tive function, ni is the number of inequality constraints,
ne is the number of equality constraints, nb is the number
of boolean design variables, nd is the number of discrete
design variables selected from a list of nq values, and ns
is the number of continuous design variables. The genetic
algorithm used in this research has evolved and been re-
fined over time. In this section, we discuss some of the
improvements that have been made to a simple GA in
order to improve its overall performance. Further details
can be found in prior publications (Chen et al. 1997; Chen
and Rajan 1998, 2000; Rajan et al. 1999).

(1) Adaptive penalty function: GAs were developed to
solve unconstrained optimization problems. How-
ever, engineering design problems are usually con-
strained. They are solved by transforming the prob-
lem to an unconstrained problem. The transform-
ation is not unique and one possibility is to use the
following strategy:

minimize: f(x)+
∑
i

ci×max(0, gi)+
∑
j

cj×|hj| ,

(2)

where ci and cj are penalty parameters used with
inequality and equality constraints. Determining the
appropriate penalty weights ci and cj is always prob-
lematic. We use an algorithm here, where the penalty
weight is computed automatically based on the traits
of the current population and adjusted in an adaptive
manner.

(2) Improving crossover operators using the association
string: As discussed by some researchers, the one-
point crossover is preferred for continuous domains

342

and the uniform crossover for discrete domains. How-
ever, schema representation still plays a pivotal role
in the efficiency of the GA. If one uses a one-point
crossover, then it is obvious that the ordering of
the design variables is an important issue. Because
the characteristic of one-point crossover is that the
shorter schema has a better chance of surviving, if
two variables that have less of an interdependency
are placed adjacent to each other or two variables
with a strong relationship are placed far away from
each other, the crossover operation will make it more
difficult for the GA to search the design space effi-
ciently. To implement this strategy, we introduce an
additional string called the association string. Re-
sults show that the association string improves the
robustness of the solution process (Chen and Rajan
1998). To summarize, design variable ordering is im-
portant if the crossover point is static. If one-point
crossover is used and the crossing point is randomly
chosen along the string, then, theoretically, all de-
sign variables have equal probability of including the
crossover point.

(3) Mating pool selection: The selection scheme (for gen-
erating the mating pool) together with the penalty
function dictate the probability of survival of each
string. While it is very important to preserve the
diversity in each generation, researchers have also
found that sometimes it may be profitable to bias
certain schema. However, results from most of the
selection rules, like roulette wheel, depend heavily
on the mapping of the fitness function. In this pa-
per, the tournament selection is used. There are at
least two reasons for this choice. First, tournament
selection increases the probability of survival of bet-
ter strings. Second, only the relative fitness values are
relevant when comparing two strings. In other words,
the selection depends on individual fitness rather
than the ratio of fitness values. This is attractive be-
cause, in this research, the fitness value contains the
penalty term and does not represent the true objec-
tive function.

(4) Elitist approach: Research has shown that the GA
with the incorporation of the elitist approach can
be more reliable and efficient than the ones without.
This approach is used in the current research.

(5) Population size and stopping criteria: Generally
speaking, the initial population should contain uni-
formly distributed alleles. By this it is meant that, if
possible, no chromosome pattern should be missed.
Each chromosome is represented by n bits, with each
bit being either 1 or 0. If the distribution of 1’s (or
0’s) in each bit location is to be uniform, the ini-
tial population size should be at least n. During the
evolution, it is expected that the chromosome con-
verges to some special pattern with the 0–1 choice
decided for n locations. Assume that the choice of
each bit is independent of all the other bits. Because
the population size is n in each generation, after every

generation, from a statistical viewpoint, we can ex-
pect to learn about at least one bit. Ideally, then,
after n generations, one can expect to learn about
all the n bits forming the chromosome. However,
because each bit is not independent of the others,
more than n generations are perhaps necessary to
obtain a good solution. This suggests that the popu-
lation size and the number of generations should be
at least n. Numerical experience in our previous work
suggests that using population and generation size of
2n leads to acceptable results efficiently.

3
Parallel GA

The overall algorithm used in a GA-based design op-
timization problem is quite simple. The overall flow is
shown in Fig. 1. For engineering design problems, from
a computational viewpoint, the fitness evaluation is the
most expensive step. Hence, it would be prudent to par-
allelize the fitness evaluation step.
There are different ways one could devise the algo-

rithm for evaluating the fitness function in parallel. We
will show an evolutionary process in the development of
the algorithm.

Fig. 1 Flow in a simple genetic algorithm (SGA)

343

Send all–then receive (SATR) Approach: We
will assume that the number of available processes, np, is
less than the population size, npop. In this approach, the
master process divides the number of fitness evaluations
equally amongst all the slave processes. It first sends the
values of all the design variables associated with each in-
dividual (of the population) to the slave processes. After
the information associated with the entire population is
sent to the slave processes, the master process then waits
to receive the values of the objective function and the
maximum violation from all the slave processes. The de-
tailed algorithm is presented below.

Master process

1. Set next available process as process j = 1.
2. Loop through all members of the population,

i= 1, 2, . . . , npop.
3. Generate the vector of design variables, x.
4. Pass this vector to process j.
5. Increment j. If j = np, set j = 1.
6. End loop.

7. Set next process as process j = 1.
8. Loop through all members of the population, i.
9. Receive the objective function value and the

maximum constraint violation from process j.
10. Increment j. If j = np, set j = 1.
11. End loop.

Slave process

1. Set next available process as processor j = 1.
2. Loop through all members of the population, i=
1, 2, . . . , npop.

3. If j is equal to the slave process number, re-
ceive the vector of design variables, compute

and send the objective function value and the

maximum constraint violation to the master

process.

4. Increment j. If j = np, set j = 1.
5. End loop.

While this approach is straightforward, the problem
with the above algorithm is that (a) for the master pro-
cess, receives do not start until all the sends are com-
pleted, (b) for the slave process, sends do not start until
all the receives are completed, and (c) load imbalance will
take place in a heterogeneous computing environment.
Under the SATR scenario, buffer overflows are likely to
occur, and therefore, it is not used in the present study.
Load-balanced (LB) approach: Next, we present

a modified approach where send and receive take place
one after the other literally on demand. Initially, the mas-
ter process instructs each slave process to evaluate the
fitness associated with one member of the population by
sending the values of the design variables for that mem-
ber. Then it waits to receive the values of the objective
function and the maximum violation from any of the slave
processes (until the fitness evaluations of all the mem-
bers of the population are completed). If there are more
evaluations to be done, it passes the values of the design

variables to that process. If all the evaluations are com-
pleted, it sends a message to that process that no more
fitness evaluations are necessary.

Master process

1. Set number of evaluations completed, neval = 0.
2. Loop through j = 1, . . . ,min(npop, np).
3. Generate the vector of design variables, x.

Pass this vector to process j. Increment neval.
4. End loop.

5. Loop through all members of the population, i=
1, 2, . . . , npop.

6. Receive the objective function value and the

maximum constraint violation from process j.
7. If neval < npop, generate the vector of design

variables, x for member i. Pass this vector to
process j. Increment neval. Else send no-more-
evaluation message to process j.

8. End loop.

Slave process (valid only for process j < npop)

1. Loop until no-more-evaluation message is

received.

2. Receive the vector of design variables,

compute and send the objective function value

and the maximum constraint violation to the

master process.

3. End loop.

It should be noted that, in both the abovementioned
approaches, only the master process executes the GA.
Assuming that one integer word is 4 bytes, one double
precision word is 8 bytes and the objective function and
maximum constraint violation are designated as double
precision, we can compute the total number of send and
receive bytes as follows for every generation:

nsend = nreceive= 4npop (nb+nd+2ns)+8 (2npop) . (3)

Do-all load-balanced (DLB) approach: In the
previous approaches, the GA is implemented and exe-
cuted in the master process with only the fitness evalua-
tions taking place in the slave processes. This approach
requires that the values of the design variables be sent
from the master process to the slaves. It should be noted
that, as a fraction of the total program time, the time
taken to execute the GA steps is a very tiny fraction. In
this DLB approach, all the processes execute exactly the
same program statements except for the part where the
entire population is evaluated. As a byproduct, program
maintenance is much easier because there is a single block
of the program where process-related logic needs to be
used.

Master process

1. Set number of evaluations completed, neval = 0.
2. Loop through j = 1, . . . ,min(npop, np).
3. Increment neval. Ask process j to evaluate

member neval of the population.

344

4. End loop.

5. Loop through all members of the population, i=
1, 2, . . . , npop.

6. Receive the objective function value and the

maximum constraint violation from process j.
7. If neval < npop, increment neval, ask process j

to evaluate member neval of the population.
Else send no-more-evaluation message to

process j.
8. End loop.

9. Broadcast the objective function and maximum

constraint violation values for all the members

of the population.

Slave process (valid only for process j < npop)

1. Loop until no-more-evaluation message is

received.

2. Receive index of the member of the population

whose objective function and constraints must

be evaluated. Compute and send the objective

function value and the maximum constraint

violation to the master process.

3. End loop.

4. Receive the objective function and maximum

constraint violation values for all the members

of the population.

With this approach, the number of point-to-point send
and receive bytes per generation is as follows:

nsend = nreceive = 20npop , (4a)

and the number of broadcast bytes is

nbroadcast = 16npop . (4b)

With this approach, the communication traffic is inde-
pendent of the number and type of design variables.

4
Numerical examples

The focus of the current research is to develop and test
a parallel, MPI-enabled GA for engineering problems.
Hence, only a sizing optimal design problem is solved
using an academic problem that has the desired charac-
teristics (number of degrees of freedom and design vari-
ables) to test the parallel implementation. The results
and conclusions, as we will discuss later, can be easily
extended to other types of structural design problems, in-
cluding solutions of more practical problems.
The sizing optimization problem is as follows:

Find xk×1 (5)

to min f(x) =
n∑
i=1

AiLiρi (6)

subject to gi ≡ σi ≤ σa i= 1, 2, . . . , n (7)

xLj ≤ xj ≤ x
U
j j = 1, 2, . . . , k , (8)

where xk×1 represents the cross-sectional areas of the
truss members (design variables), f(x) represents the
mass of the truss (objective function) and gi the stress
constraints. To evaluate the fitness evaluation, one must
compute the objective function and all the constraints.
Without resorting to any approximation technique, a full
finite-element analysis is required to evaluate the fitness
as shown in (1).
Hardware: The numerical examples were generated

on two different clusters. The first is labeled as high-
cost cluster and is made up of more expensive computers
and a high-performance switch. The second is labeled as
a low-cost cluster and common off-the-shelf (COTS) com-
puters and switch are used.

High-cost homogenous cluster information:
(a) Number of machines in the cluster = 7, (b) typ-
ical machine: Intel P4 1.7GHz Dual Xeon, 512MB
RDRAM, Ultra 7200 rpm IDE Drive, Intel PRO/1000
T NIC, (c) Windows 2000 (SP 2), MPI-Softtech 1.6.3
(MPI Software Technology 2002), Cisco Catalyst
3550-12T switch.
Low-cost heterogeneous cluster information:
(a) Number of machines in the cluster = 2; (b) com-
puter 1: Intel Dual P3-866MHz, 768MB RDRAM,
Ultra 7200 rpm IDE Drive, 3COM 3C920 NIC; com-
puter 2: AMD 1.2 GHz Athlon, 512MB SDRAM,
Ultra 7200 rpm IDE Drive, 3COM 3C920 NIC; (c)
Windows 2000 (SP 2), MPI-Softtech 1.6.3, Linksys
BEFSR41 10/100 Router.

A note about the terminology used in the numerical
results. MPI allows multiple processes to be launched on
a single computer system (or node). In the computer runs
discussed below, an additional process is launched on the
first machine and acts as the master process. When the
number of processes is greater than 7, both the proces-
sors (CPU) on every computer were used in the high-cost
cluster. In this case, we have distributed as well as shared
memory scenarios. Similarly, when the number of pro-
cesses is less than or equal to 7, only one processor of the
dual-processor machine was used in the high-cost clus-
ter. When the numerical examples were executed, both
these clusters were converted to stand-alone clusters. By
disconnecting the switch from the outside network, net-
work traffic was restricted to just the machines connected
to the switches. In addition, services not required for the
MPI runs were stopped.
Cluster performance analysis: To better understand

the performance issues with the two clusters, a special
program was developed and executed on the two clus-
ters. A vector containing floating point values was used
to send messages of lengths varying between 4000 bytes
(1000 words) and 4000000 bytes (1 000000words). These
messages were

345

(a) broadcast from the master process to all the slave
processes using MPI_BCAST, and

(b) sent from the master process to the slave processes
one at a time using MPI_SEND and received using
MPI_RECV.

The transmission rates from the two schemes are iden-
tified in Tables 1 and 2 as broadcast rates (BR) and point-
to-point communication rates (PPCR), respectively.
High-cost homogenous cluster performance: The re-

sults are shown in Table 1.

Table 1 High-cost cluster performance

Number of Broadcast Point-to-point
processes rates (MB/s) communication
(machines) rates (MB/s)

2 (2) 16.8 to 49.2 17.4 to 49.2
3 (3) 9.8 to 24.6 8.0 to 23.0
4 (4) 2.6 to 24.5 2.5 to 15.7
5 (5) 0.95 to 17.6 1.4 to 11.9
6 (6) 0.84 to 17.3 1.1 to 9.8
7 (7) 0.66 to 15.3 0.56 to 9.0
10 (5) 0.4 to 15.9 0.41 to 9.6
14 (7) 0.012 to 14.2 0.012 to 3.8

Low-cost cluster performance: The results are shown
in Table 2.

Table 2 Low-cost cluster performance

Number of Broadcast Point-to-point
processes rates (MB/s) communication
(machines) rates (MB/s)

2 (2) 1.44 to 9.5 1.53 to 8.9

The results not only show a wide variation within
a column but also show a wide variation within a cell in
the table. The latter variation is due to varying message
lengths. Typically, one would expect the communication
rate to increase with increasing message length and then
start to decrease when the message length becomes very
large. This monotonic behavior is rarely achieved in prac-
tice. However, the following conclusions can be drawn
from the results:

(a) The communication rate is a function of the message
length. While there is an optimal message length for
a specific cluster, it can rarely be used in practice.
One must, however, attempt to reduce not only the
message length but also the number of times mes-
sages are sent and received to increase the efficiency
of a parallel algorithm.

(b) Both BR and PPCR become less efficient with
increasing numbers of processes and machines. It
should be noted that, when more than one process
is launched on a machine, SMP clusters can provide
high performance if the shared memory bus of their

nodes provide high performance. However, the moth-
erboard on the High-Cost Cluster is not designed for
high performance and does become a bottleneck.

(c) While BR and PPCR show similar performances with
a small number of processes, BR is more efficient
when the number of processes begins to increase.
However, one must recognize that, due to (a), BR
may not be very efficient unless optimal message
lengths are used. Once again, due to the size of the
cluster, the high-cost cluster is affected but not the
low-cost cluster.

Test problems: The structural system that is designed
is shown in Fig. 2. The planar truss is described in terms
of two parameters – the number of bays and the num-
ber of storeys. The truss members are grouped into three
groups per storey – horizontal members, vertical mem-
bers and diagonal members. Hence, the number of design
variables (cross-sectional areas) is equal to three times
the number of storeys. The optimization problem is to
find the optimal values of the cross-sectional areas of the
members so as to minimize the mass of the truss subject
to an axial stress constraint. The specific values used in
the following examples are as follows:

ρ= 0.00881448 lbm/in3 (mass density)

σa = 10000 psi (allowable axial stress value)

xLj = 0.1 in
2 and xUj = 20 in

2 and precision is

taken as 0.1 in2

bay width = 240 in

storey height = 120 in

applied load, P = 10000 lb

Two test problems are solved and are identified as
TRUSS1 and TRUSS2. TRUSS1 is a structurally larger
problem, meaning that one complete finite element analy-
sis takes more time compared with the other model. How-

Fig. 2 Layout of the planar truss

346

ever, the number of design variables is smaller. TRUSS2,
on the other hand, is different – a smaller structural
model but with a much larger number of design variables.
The problem details and results are presented next. All
timing information is in terms of wall clock (or elapsed)
time obtained using the MPI_WTIME function and rep-
resents the average value of two runs. It should be noted
that wall clock time may vary as much as 10–20% be-
tween different runs of the same program and problem.
A fitness-improvement tolerance could have been used as
the convergence criterion. However, both these problems
were executed for a fixed number of generations because
the primary intent was to compare the different parallel
GA implementations.
For a homogenous system, we compute the speedup as

follows:

speedup obtained for n processes =
Time for one process

Time for n processes
(9)

For a heterogeneous system, we compute the speedup as
follows. Let the relative speed of the np processes with
respect to the slowest process be denoted as s1, s2, . . . ,
1, . . . , snp (with 1 corresponding to the slowest process),
the time taken for each single process run be denoted as
t1, t2, . . . , ti, . . . , tnp and t be the total time taken when
n processes are used. Then

sj =
max(t1, t2, . . . , tnp)

tj
, (10)

speedup obtained for n processes =

1
np∑
j=1

sj

(np∑
i=1

siti

)

t
.

(11)

Test problem 1 (ID: TRUSS1): The problem-specific data
are as follows:

Number of bays 300
Number of storeys 10
Nodes 3311
Elements 9010
Number of design variables 30
Chromosome Length 240
of generations 100
of function evals/generation 480

The initial population is randomly generated and the
GA is terminated after 100 generations. The problem is
solved in both the low-cost and high-cost clusters. The
results are shown in Table 3(a) and 3(b). The initial ob-
jective function is 115 545 lbm and the final value after
100 generations is 23 475 lbm.

Remark 1. The timing values for the LB approach show
that the program execution scales almost linearly in the
high-cost (homogenous) cluster. There is a modest drop

Table 3 Results of TRUSS1 problem

(a) High-cost cluster

LB version DLB version
Number of Time (s) Speedup Time (s) Speedup
processes
(machines)

1 (1) 2178 1.0 2178 1.0
3 (2) 1092 1.99 1100 1.98
4 (3) 734 2.97 740 2.94
5 (4) 553 3.94 552 3.94
6 (5) 448 4.86 443 4.92
7 (6) 382 5.70 375 5.81

(b) Low-cost cluster

LB version DLB version
Number of Time (s) Speedup Time (s) Speedup

processes C1/C21 C1/C2
(machines)

1 (1) 5080/3306 1.0 5080/3306 1.0
3 (2) 2042 1.96 1997 2.0

1 C1/C2: computer 1 and computer 2

in efficiency as the number of processes is increased. Using
(3), 245 760 bytes are sent and received every generation.
With the DLB approach, the speedup once again is al-
most linear. Using (4a) and (4b), 9600 point-to-point
bytes and 7680 broadcast bytes are sent and received
every generation. However, there is no perceptible differ-
ence in efficiency between the two approaches. As dis-
cussed in the cluster performance analysis, this lack of
difference is probably due to the fact that communication
time is not significant for this problem.

The low-cost heterogeneous cluster shows an almost
linear speedup, indicating that the approach of distribut-
ing the fitness evaluations works as intended – the num-
ber of fitness evaluations per generation computed by
C1 and C2, on an average, is 190 and 290, respectively
(a ratio of 1.53, which is the same as the ratio 5080/3306).
The DLB approach is more efficient, showing an ideal
speedup because the communication traffic is much less
compared with the LB approach.
The design history is shown in Fig. 3.

Test problem 2 (ID: TRUSS2): The problem-specific data
are as follows:

Number of bays 30
Number of storeys 50
Nodes 1581
Elements 4550
Number of design variables 150
Chromosome Length 1200
of generations 50
of function evals/generation 2400

The initial population is randomly generated and the
GA is terminated after 50 generations. The results are

347

Fig. 3 Design history showing objective function versus gen-
eration (TRUSS1)

Table 4 Results of TRUSS2 problem

(a) High-cost cluster

LB version DLB version

Number of Time (s) Speedup Time (s) Speedup

processes

(machines)

1 (1) 6762 1.0 6762 1.0

3 (2) 3366 2.0 3370 2.0

4 (3) 2269 2.98 2260 2.99

5 (4) 1709 3.96 1701 3.98

6 (5) 1382 4.89 1376 4.91

7 (6) 1155 5.85 1148 5.89

11 (5) 716 9.44 690 9.8

15 (7) 524 12.9 510 13.25

(b) Low-cost cluster

LB version DLB version

Number of Time (s) Speedup Time (s) Speedup
processes C1/C2 C1/C2

(machines)

1 (1) 18491/11930 1.0 18491/11930 1.0
3 (2) 7473 1.94 7301 1.99

shown in Table 4(a) and 4(b). The initial objective func-
tion value is 149 290 lbm and the final objective function
value after 50 generations is 65 116 lbm.

Remark 2. Network traffic is much more in this example.
With the LB approach, a total of 5 836800bytes are sent
and received every generation. With the DLB approach,
48 000 point-to-point bytes are sent and received every
generation, and 38400 broadcast bytes are sent and re-
ceived every generation. The amount of physical memory
appears to be adequate for the problem being solved.
When the system performance is monitored, the hard
page faults are shown to be minimal.

Fig. 4 Design history showing objective function versus gen-
eration (TRUSS2)

Once again, the low-cost heterogeneous cluster shows
an almost linear speedup. The DLB approach is more ef-
ficient, showing an ideal speedup because the communica-
tion traffic is much less compared with the LB approach.
On the other hand, with the high-cost cluster, as observed
in the cluster performance analysis, the DLB approach
becomes more effective with increasing numbers of pro-
cesses.
The design history is shown in Fig. 4.

5
Concluding remarks

The development and implementation of anMPI-enabled
GA is discussed. Due to the very nature of genetic algo-
rithms, linear speedup is possible with minimal effort –
a good example of an embarrassingly parallel problem.
The developed algorithms work well in both homogenous
and heterogeneous network of workstations clusters. Such
an environment can include shared as well as distributed
memory. Due to the nature of the problems discussed
in this paper and genetic algorithms, the heterogeneous
cluster using COTS components performed as well as the
more expensive homogenous cluster.
Computer systems and algorithms are evolving to

a point where commodity computers/workstations are
able to perform analyses that supercomputers were
performing just a few years ago. For example, in an
automotive-industry example, Sobeski et al. (2000) used
MSC/NASTRAN for NVH analysis and sensitivity com-
putations, and the crashworthiness analysis was per-
formed by the RADIOSS CRASH code. By using 254
processors to solve the optimization problem, the solution
as obtained in 1 day comparedwith an estimated 257 days
if only a single processor was used.
There are other approaches that can be taken to im-

prove the overall performance of the GA – better ac-

348

curacy and better efficiency. For example, the concept
of using DGA with subpopulations and migration be-
tween these population islands is suitable for a parallel-
computing environment (Fernandez et al. 2000). In add-
ition, there is a wealth of research ideas and data avail-
able in the area of parallel genetic algorithms (Cantú-
Paz 2000). These and other ideas are currently being
investigated.

References

Chen, S.-Y.; Situ, J.; Mobasher, B.; Rajan, S.D. 1997: Use of
Genetic Algorithms for the Automated Design of Residential
Steel Roof Trusses. ASCE Press, 43–54

Chen, S.-Y.; Rajan, S.D. 1998: Improving the efficiency of ge-
netic algorithms for frame designs. Eng. Optim. 30, 281–307

Rajan, S.D.; Mobasher, B.; Chen, S.-Y.; Young, C. 1999:
Cost-based design of residential steel roof systems: a case
study. Struct. Eng. Mech. 8(2), 165–180

Chen, S.-Y.; Rajan, S.D. 2000: A robust genetic algorithm for
structural 0ptimization. Struct. Eng. Mech. 10(4), 313–336

Biedron, R.T.; Mehrotra, P.; Nelson, M.L.; Preston, F.S.;
Rehder, J.J.; Rogers, J.L.; Rudy, D.H.; Sobieski, J.; Sto-
raasli, O.O. 1999: Compute as fast as the engineers can think!
NASA/TM-1999-209715 , September 1999

Eby, D.; Averill, R.C.; Gelfand, B.; Punch, III, W.F.; Math-
ews, O.; Goodman, E.D. 1997: An injection island GA for

flywheel design optimization. In: Proc. EUFIT ’97 – 5th Euro-
pean Congress on Intelligent Techniques and Soft Computing

Miki, M.; Hiroyasu, T.; Hatanaka, K. 1999: Parallel genetic al-
gorithms with distributed-environment multiple population
scheme. In: 3rd WCSMO World Congress of Structural and
Multidisciplinary Optimization, Niagara Falls, NY

Chipperfield, A.; Fleming, P. 1996: Parallel genetic algo-
rithms, chapter 39. In: Zomaya, A.Y. (ed.) Parallel and Dis-
tributed Computing Handbook , McGraw-Hill

Sarma, K.; Adeli, H. 2001: Bilevel parallel genetic algorithms
for optimization of large steel structures. Comput. Aid. Civil
Infrastruct. Eng. 16, 295–304

Scott, S.D.; Samal, A.; Seth, S. 1995: HGA: a hardware-based
genetic algorithm. Proc. of the 1995 ACM/SIGDA Third In-
ternational Symposium on Field-Programmable Gate Arrays,
53–59, Monterey, CA

MPI Software Technology, MPI-Pro Version 1.6.3, 2002

Sobieski, J.S.; Kodiyalam, S.; Yang, R.J. 2000: Optimization
of car body under constraints of noise, vibration, and harsh-
ness (NVH), and crash. Proc. 41st AIAA Structures, Struc-
tural Dynamics and Materials (SDM), Atlanta, GA

Fernandez, F.; Tomassini, M.; Punch,W.; Sanchez, J.M. 2000:
Experimental study of multipopulation parallel genetic pro-
gramming. In: Genetic Programming, Proc. of EuroGP2000,
Springer, Lecture Notes in Computer Science 1802, 283–293

Cantú-Paz, E. 2000: Efficient and Accurate Parallel Genetic
Algorithms. Boston, MA: Kluwer

