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Planar articulated mechanism design by graph theoretical
enumeration

A. Kawamoto, M.P. Bendsøe and O. Sigmund

Abstract This paper deals with design of articulated
mechanisms using a truss-based ground-structure repre-
sentation. By applying a graph theoretical enumeration
approach we can perform an exhaustive analysis of all
possible topologies for a test example for which we seek
a symmetric mechanism. This guarantees that one can
identify the global optimum solution. The result under-
lines the importance of mechanism topology and gives
insight into the issues specific to articulated mechanism
designs compared to compliant mechanism designs.
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1
Introduction

Research on the design of compliant mechanisms (e.g.,
Sigmund (1997), Pedersen (2001), Bruns (2001) and
Ananthasuresh (1994)) using topology optimization tech-
niques in continuum structures suggests that it should
also be possible to obtain results for articulated mechan-
isms by applying such techniques (Sigmund 1996; Frecker
1997).
In this paper we examine exhaustively all possible

topologies of one test example by a graph theoretical enu-
meration approach. This allows for identifying the global
optimum solution when we assume that the resultant
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mechanism is symmetric. We view the present work as
a first step in devising optimization techniques for design
of an articulated mechanism, with the achieved global
optimum solution providing a rigorous comparison de-
sign with which solutions obtained by methods currently
under development can be matched.

2
Definition of test example

The test example we examine in detail is shown in Fig. 1.
The figure shows the truss ground structure of possible
nodes and connections, as well as all necessary bound-
ary conditions, load cases and other related parameters.
One relevant mechanism design problem is the maximiza-
tion of the output displacement Dout for the given input
forces Fin by pickingM

∗ truss elements out of theM pos-
sible connections, so that the resultant mechanism has
f = 1 degree of freedom (DOF) and is symmetric with
respect to the horizontal line between nodes 2 and 11.
This problem can be formulated as the following binary
integer optimization problem for the truss connectivity
vector χ= (χ1, . . . , χM ):

max
χ∈{0,1}M

Dout s.t.
M∑

e=1

χe =M
∗ ; f = 1 ; symmetric.

(1)
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Here Dout is given via the displacement vector U which
is a solution to an equation R(U) = 0 that expresses
the residual version of the equilibrium equations. Ge-
ometrical non-linearity should be taken into account,
so we adopt a force incremental method with Newton–
Raphson equilibrium iterations for evaluation of the dis-
placementDout.

3
Graph theoretical enumeration approach

There are 66 potential elements in the ground struc-
ture of Fig. 1. When the number of bars in the mech-
anism is set at M∗ = 8, the complexity of the problem
is 66C8(∼ 6×1010), so evaluating the totality of possible
mechanisms is not a viable approach.1

An alternative way to address the problem is to first
generate a complete set of topological graphs and then
embed them (as shown in Fig. 2) into the ground struc-
ture in all possible ways. Assuming that the mechan-
ism has no redundant elements (for brevity, we shall not
discuss this here; see, e.g., Calladine (1978), Pellegrino
(1986) and Fowler (2000) for details), the degrees of free-
dom of a mechanism that is supported in a statically
determinate manner can be calculated by the following
DOF equation based on Maxwell’s rule in 2D:

f = 2n−m−3 (2)

where n is the number of nodes and m is the number of
bars. In this case wherem= 8 and f = 1, a possible mech-
anism has n= 6 nodes (note that this is only a necessary
condition, see the above references). If we choose to fo-
cus on one topological configuration of eight edges and
six vertices (we shall use edge and vertex for topological
graphs), as shown in Fig. 2, we can reduce the design
problem to a subproblem that entails picking six ordered
nodes from the 12 potential nodes of the ground struc-
ture. This results in the assignment of six vertices of the

1 If one function evaluation (i.e., one non-linear analysis)
takes one second, the total calculation time amounts to about
180 years.
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topological graph to six out of 12 nodes in the ground
structure. The subproblem can be illustrated by a bipar-
tite matching problem shown in Fig. 3. The complexity
of the subproblem is only 12P6(∼ 6×105)

2. If we have p
different topological configurations, the calculation time
is simply multiplied by p. In the present case, p= 24 and
the complete set of the 24 non-isomorphic graphs, which
have six vertices and eight edges, can be found in Harary
(1969).
So far, we have not utilized the symmetry constraint

and we illustrate now how to use this to reduce the prob-
lem further. We begin with vertex configurations without
edges. There are two possible symmetric vertex configu-
rations with three rows (see Fig. 4). Here we introduce
a symmetric embedding that assigns the vertices to the
nodes maintaining the symmetry around the horizontal
mid-axis, which means that the vertices on the first row
go to the nodes on the first row, the second row in F1 or
F2 goes to the second row in Fig. 1, and so on.

3.1
Case F1

Note that all the possible topological graphs generated
from the vertex configuration F1 should satisfy the fol-
lowing condition on the number of incident edges with
a vertex, namely vertex degree vi (i= 1, . . . , 6):

v1 = v6 (3)

due to the restriction of the symmetry. Besides, if the
embeddings involve all possible swaps among vertices 2
through 5, it suffices to consider the cases where vertex
degrees meet the constraints:

v2 ≥ v3 ≥ v4 ≥ v5 . (4)

2 This amounts to 7.7 days of computational time for evalu-
ating all designs.
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This is because vertices 1 and 6 should be assigned to the
input ports in the ground structure of Fig. 1 anyway.
We can thus classify the topological graphs generated

from the configuration F1 by the vertex degree v1(= v6)
running from 1 to 4; these correspond to the classes
(i) to (iv) in Fig. 5. Note that the number of possible
graphs varies in the different classes. Graph (i) is actu-
ally irrelevant as in reality it has two degrees of free-
dom even though (2) gives f = 1 DOF. This is a special
case where the structure has one redundant bar in the
mid axis. In this case, the structure has extra states of
self-stress and mechanism mode. Thus the mechanism
DOF increases; see Calladine (1978), Pellegrino (1986)
and Fowler (2000) for details. Graphs (ii)-{1, . . . ,5},
(iii)-{1,2} and (iv)-1 are also all irrelevant due to the sym-
metric loading and support conditions; all these graphs
have asymmetric mechanism modes with respect to the
horizontal mid-axis.
With reference to the mechanisms that have one iso-

lated bar, since the rest of nodes and bars form a struc-
ture, these mechanisms cannot transfer energy or work
from the input ports to the output port. Also, we have ob-
served that the isolated bars cause the mechanical DOF
to increase in graph (i). We are not interested in all of
these irrelevant mechanisms, and will consider the topo-
logical graphs that satisfy vi ≥ 2 as the candidate graphs
henceforth.
The final graph (iv)-2 essentially has only one pos-

sible embedding into the ground structure because ver-
tices 1 and 6 of the graph are assigned to the input ports
in Fig. 1, and swapping any pair of vertices 2 through
5 makes no difference in terms of the embedding. This
mechanism is, however, difficult to move because the edge
between vertices 1 and 2 and the edge between vertices 2
and 6 are on the straight line. The mechanism relies on
buckling, which would only occur due to some imperfec-
tion; thus we discard this graph, too.
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Fig. 5 Topological graphs generated from the vertex config-
uration F1

3.2
Case F2

There is a formula for the relation between the total ver-
tex degrees and the total number of edges m in a graph
(see, e.g., Kaveh (1991)):

n∑

i=1

vi = 2m. (5)

Considering the symmetry of the vertex configuration F2,
we obtain

v1+2v2+2v3+ v4 = 16 ; v2 = v6 ; v3 = v5 . (6)

Embedding a graph from the vertex configuration F2 into
the ground structure requires that one pair of the ver-
tices 2 and 6 and the vertices 3 and 5 retain their sym-
metry. If the embedding involves any vertical reflection, it
suffices to investigate the following cases.

v1 ≤ v4 ; v2 ≤ v3 . (7)

Besides, because we are not interested in isolated edges
and the maximum vertex degree is five (as the number of
vertices is six), we can bound each variable as

2≤ vi ≤ 5 (i= 1, . . . , 6) . (8)

Based on (6) together with (7) and (8), the vertex config-
uration F2 produces six classes described in Table 1. Each
class has at least one possible graph as shown in Fig. 6.
In order to obtain a valid mechanism among the embed-
dings one has to require that a relative move between
vertices 3 and 5 is possible (or, topologically equivalent,
between vertices 2 and 6). For that reason, we can dis-
card graphs (I)-1 and (I)-2 immediately because both
pairs, vertex 2–6 and vertex 3–5, are linked directly. Like-
wise, graph (V) can be discarded because vertices 2 and
6 are linked directly and vertices 3 and 5 are on the ad-
jacent two triangles, which form a rigid substructure in
the graph. Graphs (IV)-1 and (IV)-2 are irrelevant be-
cause the motion of the mechanism is asymmetric. All in
all, we can conclude that all the relevant graphs amounts
to only five, namely graphs (I)-3, (II), (III)-1, (III)-2 and
(VI). The original problem is thus reduced to five em-
bedding subproblems, corresponding to each of the five

Table 1 Classification of topological graphs from F2 by ver-
tex degrees

Class v1 v2 v3 v4

I 2 3 3 2
II 2 2 4 2
III 2 2 3 4
IV 3 2 3 3
V 3 2 2 5
VI 4 2 2 4
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Fig. 6 Topological graphs generated from the vertex config-
uration F2

graphs. (II), (III)-1 and (III)-2 require 36 calculations for
each. (I)-3 and (VI) need 18 calculations for each because
of their vertical symmetry. The total enumeration corres-
ponds to the evaluation of 144 possible mechanisms, one
of which then constitutes the globally optimal (symmet-
ric) mechanism.
Figure 7 shows the best mechanism among the embed-

dings of graph (III)-2 with the undeformed state depicted
in grey and the deformed state in black. Also, this mech-
anism is the global optimum solution to the problem.
Figure 8 compares the performance among the best mech-
anisms from the five different graphs. Graph (III)-2 is sig-
nificantly better than the rest of the topologies, which all
have a similar performance that is significantly lower than
that of the optimal mechanism. This shows the great im-
portance of also choosing good topologies when designing
mechanisms – bad topologies cannot be expected to be
improved significantly by changing the shape. Moreover,
note that the optimal topology (III)-2 forms a scissors-
like mechanism when embedded as the globally optimal
mechanism and this is the reason for its outstanding per-
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Fig. 7 Best mechanism from graph (III)-2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Force

D
is

pl
ac

em
en

t

I-3
II
III-1
III-2
VI

Fig. 8 Comparison of the performance

formance. This kind of mechanism can not be obtained
by the continuum-based topology optimization technique
that has been very successful for compliant mechanism,
suggesting that an inclusion of hinges in the “ground
structure” is crucial for obtaining efficient articulated
mechanisms.
We close this technical note by remarking that the de-

velopment above should be seen as a method to obtain
a benchmark design that will be useful for further devel-
opments in the area; the key is that the globally optimal
solution has been identified. It is not clear if the approach
can be generalized to more complicated settings – it is
the identification of the topological graphs that is a cor-
nerstone of the method and here number synthesis, as
described by Tischler (1995), may provide a viable path
ahead.
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