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An investigation of structural optimization in crashworthiness
design using a stochastic approach
A comparison of stochastic optimization and the response surface methodology

M. Redhe, M. Giger and L. Nilsson

Abstract In this paper the response surface method-
ology (RSM) and stochastic optimization (SO) are com-
pared with regard to their efficiency and applicability in
crashworthiness design. Optimization of simple analytic
expressions and optimization of a front rail structure are
the applications used to assess the respective qualities of
both methods. A low detail vehicle structure is optimized
to demonstrate the applicability of the methods in en-
gineering practice. The investigations reveal that RSM is
better compared to SO for fewer than 10–15 design vari-
ables. The convergence behaviour of SO improves com-
pared to RSM when the number of design variables is
increased. A novel zooming method is proposed which im-
proves the convergence behaviour. A combination of both
the RSM and the SO is efficient, stochastic optimization
could be used in order to determine appropriate start-
ing points for an RSM optimization, which continues the
optimization. Two examples are investigated using this
combined method.

Key words finite element analysis, response surface
methodology, stochastic optimization, structural opti-
mization

1
Introduction

The use of structural optimization has increased rapidly
during recent years, mainly due to faster computers, bet-
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ter algorithms and more frequent use of finite element
(FE) simulations. Optimization is a useful tool to im-
prove design in a well-structured manner. Structural op-
timization often uses gradients of the objective and con-
straints to find a search direction towards the optimal
solution. For dynamic problems, like impact problems,
the responses are often noisy and it is hard and expensive
to find these gradients.
Stochastic optimization (SO) does not create these

gradients therefore the amount of samples needed does
not depend on the number of parameters or variables
but simply on the precision of the desired statistical de-
scription. As opposed to traditional gradient-based opti-
mization methods or the response surface methodology
(RSM), the aim of SO is not to find the absolute optimum
solution, but to develop sufficiently improved design.
In SO different background variables, e.g. initial vel-

ocity or different material properties, can vary stochasti-
cally during the optimization procedure. Thus, the opti-
mum solution found includes natural changes from these
background variables. A major difference between SO
and traditional optimization methods is that SO does not
need artificially frozen conditions. It is rather a reproduc-
tion of the real model considering uncertainties of manu-
facturing tolerances andmaterial properties. However, we
want to compare the convergence speed of SO and RSM,
therefore all our design parameters in this paper are de-
terministic parameters and no background variables are
used.
Today, RSM is the preferred optimization method

in vehicle crashworthiness design. Several attempts have
been made to use optimization methods in crashworthi-
ness design problems. Etman et al. (1996) and Etman
(1997) were among the first using RSM in structural op-
timization. Yamazaki and Han (1998) crashed tubes into
a rigid wall and compared the optimized results with real
physical tests. Roux et al. (1998) determined an optimal
number of experimental points such the surface approx-
imation error was reduced a lot. Schramm and Thomas
(1998, 1999) and Schramm (2001, 2002) have applied
RSM in a vehicle design context. Marklund and Nilsson
(2001) were among the first to use RSM for an indus-
trial application, they minimized the mass of a B-pillar
of a vehicle. Sobieszczanski-Sobieski et al. (2000) used
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RSM to minimize the mass of a vehicle when the roof
crush performance was coupled to its noise, vibration and
harshness (NVH) as constraints. Yang (2001, 2002) have
made large industrial applications of optimization and
multidisciplinary optimization using RSM. Redhe (2001),
Redhe and Nilsson (2002a,c) and Redhe et al. (2002b)
have studied different aspects of RSM in crashworthiness
applications and carried out some work on space map-
ping compared to RSM. Craig et al. (2002) applied RSM
to multidisciplinary optimization where he separated the
design variables for the different disciplines. Finally Fors-
berg (2002) has studied accuracy aspects of RSM using
linear polynomials and Kriging.
As opposed to RSM, the number of evaluations per

iteration for SO is user defined, typically 10–20 evalua-
tions per iteration. Thus, one can expect far fewer neces-
sary evaluations using SO for improving a system with
a large number of design variables. Marczyk (1999) shows
a procedure for how to use stochastic design improve-
ment in a simulation-based design context. Dudeck et al.
(2003) uses SO to optimize a vehicle with respect to crash
and noise, vibration and harshness (NVH). Yang et al.
(2003) has used the commercial program ST-ORM to op-
timize the crash performance of a vehicle. Their conclu-
sions was that it was easy to use SO and it can improve
the design even for many design variables. However, it
does not guarantee the production of an optimal solution;
other conventional methods gave better optimum solu-
tions. The stochastic optimization method belongs to the
group of 0-th order methods. Some other methods using
a 0-th order approach are for example the pattern search
method, see Torczon (1997), and the downhill simplex
method, see Nelder and Mead (1965). These methods
are based on other experiment selection strategies than
stochastic simulation.
This paper aims to compare the RSM with SO and

determine an upper/lower limit to the number of de-
sign variables for which the convergence speed of each
method is too low compared to the other method. A novel
zooming in combination with the SO method is presented
to improve the convergence speed. Finally, a combined
method using both SO and RSM is presented and exem-
plified with a larger vehicle crash optimization problem.
All optimization problems are solved using both RSM

with linear polynomials and SO. To solve the optimiza-
tion problems using RSM, the optimization package LS-
OPT, see Stander et al. (2002a), was used. Solving the
problems using the SO we used our own MATLAB code.

2
Successive optimization methods

2.1
Successive response surface approach

The response surface methodology is a method for con-
structing global approximations of the objective and con-

straint functions based on functional evaluations at var-
ious points in the design space. The strength of the
method is in applications where gradient-based methods
fail, i.e. when design sensitivities are difficult or impos-
sible to evaluate, global optimization, exploration of de-
sign spaces and in multidisciplinary optimization.
The design domain is the space spanned by the de-

sign variables, i.e. {x1, x2, . . . , xi}. The design domain
can be further narrowed by introducing limits on the de-
sign variables separate from the global limits. This cre-
ates a sub-domain called the region of interest, see Fig. 1,
where the approximations are calculated. When the op-
timum is found, the region of interest is moved in the
indicated direction during the next iteration and the op-
timization continues, see Stander and Craig (2002b) for
an automatic panning and zooming scheme. The selec-
tion of approximation functions to represent the actual
behaviour is essential. For a general quadratic polynomial
surface approximation the function will be,

yi = β0+
n∑
j=1

βjxij+
n∑
j=1

n∑
k=j

βjkxijxik+ εi

i= 1, 2, . . . , N (1)

where βj are the constants to be determined, xi are the
design points in the region of interest and εi includes both
bias errors and random errors.

x1

x2

Ω0

Ωs Ω0 Design domain
Ωs Region of interest

Fig. 1 Example of the design domain and the region of inter-
est (two design variables x1, x2)

The minimum number of function evaluations (Nmin)
is equal to the number of unknown constants βj . The min-
imum number of simulations for different approximations
is stated as a function of the number of design variables
in Table 1.

Table 1 Minimum number of simulations, Nmin, as function
of the number of variables, n

Assumption Nmin

linear n+1

elliptic 2n+1

quadratic (n+1)(n+2)/2
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In this paper the D-optimal criterion is used to deter-
mine the experimental plan, see Myers and Montgomery
(1995) for further reading.
In order to minimize the error εi a least square ap-

proach is used to find the estimates of βj . These values of
βj are denoted b. Thus,

b= (XTX)−1XTy . (2)

For all applications in this paper, only linear polynomial
are used as response surfaces.

2.2
Stochastic optimization

Stochastic analysis is based on Monte Carlo simulation
(MCS). The result of an MCS is a response cloud. It is im-
portant to distinguish between the objective response and
constraint responses. Stochastic optimization, also called
stochastic design improvement (SDI), aims to transport
the entire objective response cloud towards the target
value in order to improve the design. However, it is not
always possible to move a constellation of points to an
arbitrary location in the design space due to physical limi-
tations or boundary conditions. At each MCS constraint,
response clouds can be created as well. An improved de-
sign is therefore only valid if all constraint values meet
the boundary conditions to which they are subject. If the
objective response cloud is close enough to the desired
location and all constraints are fulfilled, a valid and im-
proved design is found.
A response cloud consists of a user-defined number of

points. These points result from different sets of randomly
chosen design and background variables. In all examples
in this paper no background variables are used.

yi = f(xi) i= 1, 2, . . . , N (3)

whereN is the number of evaluations.
The first step is the definition of a set of design vari-

ables which generally follow a stochastic distribution; in
this paper a uniform distribution is used. Then, two dif-
ferent types of limits have to be implemented. At first,
engineering limits are required within which the design
variables are allowed to be varied. Secondly, so called
sampling limits have to be defined. These sampling limits
must not exceed the engineering limits and can be consid-
ered as analogies of the region of interest used in RSM.
They define the width of the uniform distributions of all
design variables. In this way, a subregion of the design
space (limited by the engineering limits) is created. Sam-
pling limits can be described as follows

xl,k < µk < xr,k k = 1, 2, . . . , n (4)

where xl,k and xr,k define the sampling limits and n is the
number of design variables.

A Monte Carlo simulation is conducted considering
the distributions of design and background variables.
This simulation leads to a first response cloud with N
response values of yi. Experiment j with the minimum
objective value, result and input variables xj is then se-
lected. At this stage, the uniform distributions of all de-
sign variables are redefined. Their mean values are shifted
to the input variable values xj of experiment j.

µk = xj,k k = 1, 2, . . . , n (5)

Thus, the initial model is replaced by the best experi-
ment j. After this redefinition, a new MCS is carried out
in order to find a response value even closer to the op-
timum value. This iterative procedure is continued until
convergence is reached. A working schedule of SO can be
found in Fig. 2.

Define engineering limits for each
design variable (design space)

Define uniform distributions of design
variables (sampling limits)

Define distributions of background variables

Monte Carlo simulation
◦ Generate random variables
◦ Generate response cloud

Determine the objective and constraint values

Convergence?

Replace mean values of all design
variables by those of j-th shot,

µ= xj .

Update sampling limits

Done!

Yes!

No!

Fig. 2 Working schedule of stochastic optimization

It is important to note that the transport of response
clouds is not arbitrarily fast. The “velocity” of transport
of such a constellation of points is limited to approxi-
mately half of the diameter of the response cloud per it-
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eration. Since the response clouds are generally not round
in shape, this is only an estimated value.
Furthermore, all sampling limits have to be defined

carefully. If the width of the uniform distribution of the
design variables is too small, the design variables cannot
achieve the engineering limits within a given number of it-
erations. Therefore, either the number of iterations or the
distances of the sampling limits need to be increased.
One question is under which conditions the design im-

provement converges to the optimum value. Convergence
means that in each subsequent iteration a smaller objec-
tive value can be found. Thus, it is necessary to estimate
the probability of finding a value closer to the optimum
value in the next iteration step. In the subsequent iter-
ation there are N function values yi, of which at least
one should be smaller than the last iteration function
value. The distribution of the yi around the last iteration
function value is supposed to be approximately symmet-
ric. The ST-ORM User’s Manual (2000) shows that the
probability of finding at least one yi smaller than the y
from the last iteration for a monotonic decreasing func-
tion with only feasible design points is given by

p(N) = 1−

(
1

2

)N
(6)

Thus, the probability of advancing towards the optimum
value in the next iteration step depends on the number of
experiments in each iteration. Table 2 gives the probabil-
ity of convergence subject to the supposed conditions. In
order to guarantee convergence it is sufficient to choose
about 8 to 32 experiments per iteration. This conver-
gence rate cannot be reached for practical problems due
to infeasible design points and non-monotonic decreasing
functions; this convergence behaviour can only be a the-
oretical upper limit.

Table 2 Probability of convergence for stochastic optimiza-
tion

N p(N)

1 0.5
2 0.75
4 0.9375
8 0.9960938
16 0.9999847
32 0.9999999

2.3
Zooming methods for the region of interest

Response surface methodology

The response surface optimization in LS-OPT uses a re-
gion of interest (RoI), which is a subspace of the complete
design space to determine an approximative optimum.
The initial RoI is given by the user and can only shrink

during the iterations. The shrinking depends on three fac-
tors (γpan, γosc and η) and the design variable history. If
the new potential optimum is located on the boundary of
the RoI, there will be no shrinking of the updated RoI (if
γpan = 1). If the potential optimum point oscillates inside
the RoI, it will shrink by a factor γosc. Finally, if the po-
tential optimum is found inside RoI, the updated RoI will
shrink with a factor η. If a combination of all the above
happens, a combination of all factors will shrink the RoI.
All equations to calculate the new RoI, i.e. (7) to (11),
follow Stander and Craig (2002b).
In this updating scheme, xk and xk−1 are equal to the

size of the current and the previous designs, respectively,
and δk is the current size of the RoI. The lower index k is
defined as the iteration index and in this section the up-
per index is equal to the respective design variable. An
oscillation indicator is defined as,

ci = dik ·d
i
k−1 (7)

where

dik = 2 ·∆x
i
k/δ

i
k ; ∆x

i
k = x

i
k−x

i
k−1 ; d

i
k ∈ [−1, 1] (8)

The oscillation indicator is normalized as

ĉi =
√
|ci|sign

(
ci
)

(9)

Next, the shrinking parameter γ is defined as

γi =
γpan

(
1+ ĉi

)
+γosc

(
1− ĉi

)
2

(10)

Finally, the new RoI is defined as,

δik+1 = λ
iδik , where λ

i = η+ |dik|
(
γi−η

)
(11)

The factors γpan, γosc and η are given by the user. Typical
values are γpan = 1.0, γosc = 0.6 and η = 0.6.

Stochastic optimization

The RSM zooming method cannot be adapted to SO as
the stochastic distribution of the design variables does
not generally give a suboptimal solution on the boundary
of the sub-domain, and due to the low number of evalu-
ations, not all corners of the sub-domain are evaluated.
This might give a suboptimal solution that seems to os-
cillate. This is only due to the fact that there is no design
point on this side of the centre, therefore the same zoom-
ing/panning method as RSM cannot be used for SO.
We introduce a novel zooming of the RoI, which we

call the stochastic optimization zoomingmethod (SOZM)
and the basic idea is as follows: The initial size of the RoI
remains constant as long as all subsequent iterations pro-
duce lower objective values. In the case that the optimiza-
tion stops converging, i.e. the current iteration produces
a worse result than the previous one, this indicates the
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necessity for zooming. In general, the topology of the ob-
jective function is unknown. Thus, there is no evidence
indicating which zooming factor should be used. One has
to be aware that each optimization problem has a unique
zooming factor for maximum efficiency. Consequently, an
assumption has to be made for the zooming factor (be-
tween 0 and 1). However, a rather large zooming factor
close to the maximum value of 1 seems to be useless, be-
cause the probability of finding a better point would only
be increased marginally.
Most optimization problems are subjected to con-

straints. As a consequence, the result of the best experi-
ment of each iteration is restricted to meet all constraints,
otherwise the centre of the region of interest of the next
iteration would violate the boundary conditions. Thus,
most of the subsequent evaluations would also violate the
constraints and the optimization process would produce
a lot of inadmissible results. In the case that no better de-
sign can be found close to a constraint, the RoI has to be
scaled down. Figure 3 shows the proposed working sched-
ule of SOZM.

Start new stochastic optimization
k=0

k=k+1Run iteration k+1!

Zoom in region
of interest!

Determine best
experiment!

Remove points with
constraint violation

Improved design?
yk+1 < yk

Convergence?
|yk+1−yk|
|yk+1|

< 1%

Done!

Yes!

Yes!

No!

No!

Fig. 3 Proposed working schedule of stochastic optimization
zooming method and check on constraint violations

2.4
Combination of RSM and SO

In many cases traditional RSM produces results that vi-
olate the constraints early in the optimization process.
Normally, this is caused by inaccurate response surfaces
and a lot of iterations are needed in order to come close
to a valid design. Consequently, it is impossible to abort
the optimization after a few iterations in the case that

only a slightly improved design is desired, or computing
capacity is limited. A major quality of SOZM is that all
improved designs meet the constraints, provided that at
least one design point is valid. Thus, the first few iter-
ations already produce improved and valid designs. The
optimization process can be stopped, if the design im-
provement is sufficient. However, in cases where SOZM
closely approaches one of the constraints, the method
generally loses its efficiency.
It is therefore proposed to switch the optimization

method to RSM in cases where further design improve-
ments are demanded. The current best design is used as
the starting point for RSM.

2.5
Stopping criteria

To determine if the optimization method has converged,
we calculate the percentage change in the objective func-
tion value in the last two iterations. If this change is
less than 1%, the optimization routine is terminated. The
stopping criteria for RSM as well as for SO is calculated
as,

|fk+1−fk|

|fk+1|
< 1% (12)

3
Analytical test examples

In this section the RSM is compared to SO with respect to
accuracy and efficiency. Three different analytic functions
are defined for this investigation. A quadratic polynomial
function, the so-called generalized Rosenbrock function
and the 12-corner polytope is used. In this investigation,
the functions are optimized for several different numbers
of design variables varying from 2 to 50.
It is important to note that the dimension of the an-

alytic functions affects the number of necessary experi-
ments per iteration using RSM. The D-optimality crite-
rion and 50%more than the minimum required number of
points are used for constructing linear response surfaces.
The number of experiments per iteration for SO is defined
to be 20.

3.1
Quadratic polynomial

The quadratic polynomial function is given by

f(x) =

[
n∑
i=1

x2i

]
+1 . (13)

Apparently, the minimum value f�a (x
�
a) can be found at

the point of origin

f�a (x
�
a) = 1 , x�a,i = 0 , i= 1, 2, . . . , n
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where the index a indicates the exact analytic solution
and n stands for the number of design variables. The op-
timization problem is formulated as follows

min (f(x))

s.t. −4≤ xi ≤ 4 i= 1, 2, . . . , n

where the values of−4 and 4 define the boundaries of the
design space. The starting point is set to,

xSPi = 1.5 , i= 1, 2, . . . , n (14)

and the initial RoI for all RSM optimizations is defined as
follows

−1.0≤ xi ≤ 4.0 , i= 1, 2, . . . , n (15)

Originally, SO was planned to use the same RoI, but the
first results obtained by these optimizations already re-
veal that the size of the RoI is considerably too large.
Stochastic optimization could not produce significantly
improved function values. The explanation of this prob-
lem is that the region of interest is relatively large and
the minimum value of the analytic function is already sit-
uated within the region of interest. The probability of
finding a better point in the subsequent iteration is rather
small due to the fact that the RoI cannot shift towards
the absolute minimum point. In fact, the RoI remains at
almost the same position. This effect is made worse by in-
creasing the number of design variables, which is the same
as an enlargement of the design space without increasing
the number of experiments. Consequently, a lot of fortune
or a lot of iterations are needed to find a “lucky” point
which is situated very close to the optimum point. For this
reason, the size of the RoI is reduced to 10% of the design
space and is therefore given by

1.1≤ xi ≤ 1.9 , i= 1, 2, . . . , n (16)

Optimization results

Table 3 gives a summary of the obtained results of the
quadratic polynomial function optimization. The table
shows the number of design variables, the number of per-
formed iterations and the overall cost, i.e. the total num-
ber of evaluated experiments.
The analysis of the results produced by the optimiza-

tion of the quadratic polynomial function delivers insight
into the convergence behaviour of RSM and SO. In gen-
eral, RSM provides extremely accurate minimum values
f�RSM independent of the number of design variables. The
total number of experiments increases with the number of
design variables.
Stochastic optimization shows a different behaviour.

For the 2-dimensional problem a number of 220 eval-
uations is performed in order to produce an accurate
solution. This is much more than the 40 experiments

Table 3 Results of the quadratic polynomial function opti-
mization for RSM and SO

RSM SO
n # it. cost f�RSM # it. cost f�SO

2 8 40 1.009 11 220 1.0026

10 10 170 1.009 13 260 1.4057

25 12 468 1.011 24 480 4.8372

50 12 900 1.021 26 520 21.2344

needed by RSM. Only a few more experiments (260) are
performed with SO to solve the 10-dimensional prob-
lem, while RSM approximately quadruples the number
of experiments to 170. Thus, one could expect that the
25-dimensional problem solved by RSM should perform
significantly more experiments compared to SO, but this
is not the case.
Both methods converge after almost the same num-

ber of experiments, 468 and 480, respectively. Obviously,
this phenomenon is caused by the larger RoI; 25 design
variables instead of 10 are simulated. Since the number
of experiments per iteration remains constant for SO, the
probability of finding a better point in the next iteration
decreases significantly due to the enlarged region of inter-
est. Several repetitions of the 25-dimensional optimiza-
tion lead to almost identical results. Thus, this cannot be
a coincidental result.
In comparison, SO cannot guarantee the same result

quality as RSM. In particular for a larger number of de-
sign variables the minimum values f�SO are much worse
compared to the respective RSM solutions.

3.2
Extended Rosenbrock

The generalized Rosenbrock function is given by

f(x) =
n−1∑
i=1

[
100
(
xi+1−x

2
i

)2
+(xi−1)

2
]

(17)

The analytic minimum value f�a (x
�
a) is equal to zero and

can be found at the point defined by

f�a (x
�
a) = 0 , x�a,i = 1.0 , i= 1, 2, . . . , n (18)

where the index a indicates the exact analytic solution
and n stands for the number of design variables. For this
Rosenbrock function the design space depends per defin-
ition on the number of design variables. The optimization
problem is formulated as

min f(x)

s.t. −n≤ xi ≤ n i= 1, 2, . . . , n

where the values of−n and n define the boundaries of the
design space. Consequently, starting points and regions
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Table 4 Starting points and regions of interest of the RSM
Rosenbrock optimizations

Starting p. Region of interest

n (x1, . . . , xn) RSM

2 xi = 0.8 xSPi −1.2≤ xi ≤ x
SP
i +1.2

10 xi = 4.8 xSPi −6.0≤ xi ≤ x
SP
i +6.0

25 xi = 10.0 xSPi −15.0≤ xi ≤ x
SP
i +15.0

50 xi = 24.0 xSPi −30.0≤ xi ≤ x
SP
i +30.0

Table 5 Starting points and regions of interest of the
stochastic Rosenbrock optimizations

Starting p. Region of interest

n (x1, . . . , xn) SO

2 xi = 0.8 xSPi −0.2≤ xi ≤ x
SP
i +0.2

10 xi = 4.8 xSPi −1.0≤ xi ≤ x
SP
i +1.0

25 xi = 10.0 xSPi −2.5≤ xi ≤ x
SP
i +2.5

50 xi = 24.0 xSPi −5.0≤ xi ≤ x
SP
i +5.0

of interest have to be adapted to the number of design
variables. Tables 4 and 5 summarize the values of starting
points and regions of interest for all optimization prob-
lems. Apparently, one has to take into account that the
same problem of the too large RoI occurs here as well. For
this reason, the sizes of the regions of interest for SO are
reduced in the same way.

Optimization results

The Rosenbrock function shows a more complicated
shape with larger gradients than the quadratic poly-
nomial function.
Significantly more iterations are performed compared

to the square function optimization. The results of the
2-dimensional problem reveal that RSM is more expen-
sive and produces a worse result than SO. Thus, for
a larger number of design variables an even better con-
vergence behaviour of SO could be expected. In fact, all
further investigations with an increased number of design

Table 6 Results of the Rosenbrock function optimization for
RSM and SO

RSM SO
n # it. cost f�RSM # it. cost f�SO

2 14 70 2.159 2 40 0.0072

10 77 1309 8.616 17 340 436.9

25 52 2028 276.81 16 320 8.0×105

50 49 3675 1821.2 13 260 6.1×108

variables indicate a contrary behaviour. Although SO
converges after fewer experiments than RSM, the qual-
ity of the produced results is extremely worse. In spite of
increasing the number of iterations and ignoring the con-
vergence criterion, the objective value cannot be reduced
significantly.

Optimization results using different region of interest

In Table 7, four different regions of interest are defined
by the width of their uniform distributions. Each design
variable is restricted to follow exactly the same uniform
distribution limited by the boundary values a and b, re-
spectively. The mean value of each distribution is equiva-
lent to the starting point of the optimization problem at
hand.
The resulting convergence behaviour of each opti-

mization process is depicted in Fig. 4. The fifth curve is
used as a basis for comparison and represents the conver-
gence behaviour of the previously performed RSM opti-
mization. Curve (1) needs a lot of iterations to approach
a minimum value as a consequence of the relatively small
RoI. In each iteration the centre of the RoI cannot be
shifted more than half of the width of each uniform distri-
bution. For this reason, it is advisable to use a rather large
RoI, otherwise it is too expensive to approach a better
solution.
Curves (2) and (3) indicate an improved convergence

behaviour in the beginning, but then they show a rather
noisy behaviour. Furthermore, both objective function
values are not reduced substantially compared to the
RSM optimization. Apparently, the theory of SO, i.e.
more than 99.9% probability of convergence, does not
agree with the real convergence behaviour of these two
curves.
For the first iterations of curve (4) one can observe

a comparatively fast convergence behaviour, but later the
same noisy behaviour occurs. Finally, it is important to
note that none of the SO processes provides a better re-
sult than the RSM optimization. It is a matter of fact
that at least in the beginning of the optimization process
a large RoI converges much faster than a small one. Thus,
a large RoI is well suited to approach a local or global
minimum with only a few iterations, but only as long as
the objective function has rather large gradients. As soon
as the region of interest intersects more than once with
the objective function, the probability of improvement

Table 7 Definition of four different regions of interest

ID Size Mean a b

(1) 0.2 10 9.9 10.1

(2) 1.0 10 9.5 10.5

(3) 2.0 10 9.0 11.0

(4) 4.0 10 8.0 12.0
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Fig. 4 Convergence behaviour depending on different re-
gions of interest

decreases significantly. The functions have small gradi-
ents close to their local or global minima. Consequently,
SO loses its efficiency when approaching to a minimum
as soon as this minimum lies within the RoI. Basically,
there are two different alternatives to improve the general
convergence behaviour:

1. Increasing the number of experiments per iteration in
order to achieve a higher probability of finding a bet-
ter solution.

2. Automatic scaling of the size of the RoI.

Some additional tests have shown that increasing the
number of experiments per iteration is very expensive and
does not improve the quality of the results substantially.
In particular for a large number of design variables doub-
ling and not even tripling the number of experiments per
iteration guarantees better results. The second alterna-
tive seems to be a promising approach due to the constant
number of experiments.

Optimization results using SOZM

To improve the convergence speed and find the true op-
timum solution the SOZM, see Sect. 2.3, is used to opti-
mization the extended Rosenbrock function. An assump-
tion has to be made for the zooming factor (between 0
and 1). However, a rather large zooming factor close to
the maximum value of 1 seems to be useless, because the
probability of finding a better point would only be in-
creased marginally. For this reason, two different zooming
factors of 0.1 and 0.5, respectively, have been used for
the optimization. Both the resulting convergence plots
are depicted in Fig. 5. Apparently, the proposed zooming
method shows an improved convergence behaviour com-
pared to the initial optimizations. The zooming method
is even better compared to the RSM optimization and
achieves convergence after 42 and 50 iterations, respec-
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Fig. 5 Convergence behaviour of SOZM for the 10-dimen-
sional Rosenbrock problem

Table 8 Results of 10-dimensional Rosenbrock optimization
using RSM and SOZM

RSM SOZM f = 0.1 SOZM f = 0.5

f� 8.616 4.535 4.454

Iterations 77 50 42

Experiments 1309 1000 840

Zoomings – 2 6

tively. Table 8 gives a brief summary of the results of RSM
and SOZM.
The main difference between the two optimizations

with different zooming factors is the number of zoomings
itself. The optimization process using a zooming factor of
0.5 requires a total of six zoomings, whereas the other op-
timization with a factor of 0.1 only zooms in twice. This
means that a zooming factor of 10% produces more it-
erations in order to approach the minimum value and,
therefore, this optimization process is less efficient. Addi-
tionally, the probability of ending up in a local minimum
is slightly higher, in particular in cases with a noisy re-
sponse. Thus, the zooming factor of 0.5 seems to be a rea-
sonable value.

3.3
12-corner polytope

In this section the combinedmethod presented in Sect. 2.4
used to solve the optimization problem.
The problem maximizes the area of the polytope sub-

ject to a constraint on the circumference. Objective and
constraint functions are defined as follows

f(rj , vj) =−
1

2

10∑
j=1

rjrj+1sin vj (19)
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c(rj , vj) = r1+ r11+
10∑
j=1

(
r2j + r

2
j+1−2rjrj+1cos vj

)1/2
(20)

In consideration of the design space limits, the optimiza-
tion problem can be formulated as follows

min f(rj , vj)

s.t. c≤ 60

1≤ rj ≤ 30 , j = 1, . . . , 11

1≤ vj ≤ 45 , j = 1, . . . , 10 (21)

The starting point is rj = 11 and vj = 18 for all j
′s result-

ing in a constraint value of csp(rj , vj) = 56.416.The initial
region of interest of all design variables is defined to be 10
for RSM as well as for SOZM. The default number of 33
experiments per iteration is used for RSM and a number
of 20 experiments per iteration is used for SOZM.

Optimization results

The convergence plots of objective and constraint func-
tions can be found in Figs. 6 and 7, respectively. RSM
produces results far below the mathematical optimum
solution of f(rj , vj) =−279.9 in the first few iterations.
The constraint values are above the threshold value of
c(rj , vj) = 60 and therefore these results are not valid.
Approximately 400 experiments are performed in order
to find a rather good solution, but the constraint is still
slightly violated. Strictly speaking, RSM fails to localize
a valid solution, at least for the first 400 experiments.
As opposed to RSM, SOZM shows a quite stable con-

vergence behaviour with exclusively valid solutions. Ho-
rizontal parts of the convergence plot indicate a zooming
of 50%, i.e. no better solution could be found. After ex-
actly 200 experiments the third zooming is performed.
At the same time, the constraint plot approaches the
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Fig. 6 Convergence plot of the objective function
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Fig. 7 Convergence plot of the constraint function

threshold value very closely. This indicates that the op-
timization starts converging along the constraint and the
optimization becomes less efficient. This can also be seen
in the convergence plot of the objective function. After
experiment number 200, the gradient of the convergence
plot is significantly smaller than before.
Instead of continuing SOZM, the result of the tenth

iteration is used as the starting point for a RSM optimiza-
tion. Unfortunately, this optimization violates the con-
straint at the beginning of the optimization. However, the
constraint violation is much smaller than the violation of
the first RSM optimization. Finally, the convergence be-
haviour of both RSM optimizations is very similar. There
are no significant differences after about 400 experiments.

4
Crashworthiness application

4.1
Front rail structure

Figure 8 shows the front rail structure that will be op-
timized using SOZM and RSM. The front rail structure
will be parameterized for three different numbers of de-
sign variables, namely 2, 11 and 20.

Fig. 8 Front rail structure
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4.1.1
Problem description

The front rail structure of a fictitious vehicle model is sub-
jected to a rigid wall impact. The maximum acceleration
value is defined as the objective to be minimized in order
to improve the crashworthiness of the vehicle. Further re-
sponses are mass and maximum intrusion after impact.
Both responses are limited by predefined boundary con-
ditions. The experimental setup is depicted in Fig. 9, with
initial velocity v0 = 15.64ms

−1 and massM = 275 kg.
The front rail structure is parameterized for a max-

imum number of 20 design variables, i.e. 16 thicknesses
and 4 different yield stresses. For the optimizations with
2 and 11 design variables some of the variables are sup-
posed to be constant. Thus, the optimization problem is
formulated as

min |amax|

subject to: Mass ≤ 17.5 kg

Intrusion ≤ 0.3m

1mm ≤ tn ≤ 3mm

304MPa ≤ σm ≤ 456MPa

All optimizations are implemented with an initial re-
gion of interest size of 1 mm for each design variable.
Twelve experiments per iteration are evaluated in SOZM
and the default numbers of experiments are used for RSM
optimizations, namely 5, 17 and 32.

4.1.2
Optimization results

The discussion of the optimization results is divided into
three sections with respect to the different number of de-
sign variables.

2-dimensional optimization

The design variables are the sheet thicknesses of the up-
per and the lower beams, respectively. All yield stress
values are supposed to be constant (380MPa).

M

v0

Fig. 9 Front rail structure subjected to impact

Table 9 2-dimensional front rail optimization

SOZM RSM

Experiments per iteration 12 5

Number of iterations 6 7

Total number of experiments 72 35

Optimum result

Acceleration,
[
ms−2

]
−1050 −1033

Mass, [kg] 12.30 12.23

Intrusion, [m] 0.291 0.297
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Fig. 10 Convergence plot of 2-dimensional optimization

The results stated in Table 9 and Fig. 10 confirm that
RSM is definitely superior to SOZM for a small num-
ber of design variables. Both methodologies converge to-
wards the same optimum solution, but RSM performs
about half as many experiments as SOZM. In addition
the efficiency of SOZM decreases because of constraint vi-
olations. Some of the experiments violate the intrusion
constraint and therefore the RoI has to be scaled down.
The optimization leads to an improved front rail struc-

ture design with a maximum acceleration that is reduced
to approximately 50% of the initial value and the intru-
sion is at threshold value of 0.3m. The newly determined
thicknesses of the upper and lower beams are TU = 1.75
mm and TL = 1.00 mm, respectively.

11-dimensional optimization

The eleven design variables are all thicknesses. The lower
and upper beam parts are divided into five sections, re-
spectively. Furthermore, the thickness of additional stiff-
ening plates in the upper beams is one more design vari-
able.
The results stated in Table 10 and Fig. 11 reveal that

SOZM and RSM show almost identical convergence be-
haviours, at least in the beginning of the optimization
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Table 10 11-dimensional front rail optimization

SOZM RSM

Experiments per iteration 12 17

Number of iterations 9 13

Total number of experiments 108 221

Optimum result

Acceleration,
[
ms−2

]
−786.0 −662.8

Mass, [kg] 15.37 12.95

Intrusion, [m] 0.303 0.303
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Fig. 11 Convergence plot of 11-dimensional optimization

processes. Once the first zooming of the region of inter-
est is implemented in SOZM (iteration 5), an obvious
loss of efficiency appears. A comparison of the optimum
results after 108 (SOZM) and 102 (RSM) experiments, re-
spectively, results in almost the same objective function
values. Thus, none of the methods is significantly supe-
rior to the other. However, in this case the RSM solution
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Fig. 12 Convergence plot of 20-dimensional optimization

Table 11 20-dimensional front rail optimization

SOZM RSM

Experiments per iteration 12 32

Number of iterations 9 14

Total number of experiments 108 448

Optimum result

Acceleration,
[
ms−2

]
−726.7 −651.1

Mass, [kg] 14.76 13.06

Intrusion, [m] 0.272 0.311

should be preferred due to the lower weight of the front
rail structure. The optimizations converge to different op-
timum solutions.
In some cases, RSM produces better solutions than

SO at the beginning of the optimization process, but
violates the constraints due to an inaccurate response
surface. However, there is no guarantee that RSM pro-
duces exclusively valid designs, i.e. without any con-
straint violations.

20-dimensional optimization

The number of design variables is increased to 20 by
adding variable yield stress values and five additional
thickness values.
SOZM shows a better convergence behaviour in the

beginning of the optimization process compared to RSM.
While SOZM determines five improved and valid front
rail designs in the first 60 experiments, RSM has not even
completed the second iteration. For a larger number of
design variables this advantage of SOZM will be even
greater, because RSM needs a lot more experiments in
order to complete its iterations. As soon as the first zoom-
ing is implemented in SOZM, there is a loss of efficiency as
seen for the 11-dimensional optimization case. However,
it is obvious that SOZM produces much better solutions
in the first few iterations compared to RSM.
In the beginning of the optimization process, SOZM

is more efficient than RSM in terms of convergence be-
haviour, if the number of design variables exceeds a limit
of about 15 to 20. As soon as constraints are violated
or the RoI has to be scaled down, SOZM loses its excel-
lent efficiency. Further design improvement can hardly
be found without lots of subsequent experiments. The
results of this chapter indicate that for optimization
problems with a large number of design variables SOZM
should be used.
This front rail optimization reveals that SOZM and

RSM have different qualities. On the one hand, SOZM
is suitable to scan the entire design space for solutions
rather close to local optimum solutions, but on the other
hand, RSM is able to find exact mathematical optimum
solutions. Thus, the combined method will utilize their
respective qualities.
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4.2
Vehicle structure subjected to frontal impact

The optimization of a vehicle structure subjected to
frontal impact is presented as an industrial example. The
simple vehicle structure, see Fig. 13, is composed of 87
parts. In order to reduce the computing time, the engine
block is represented by a rigid substructure. Furthermore,
the structure is symmetric and 15 design variables are
used in order to improve the crashworthiness design.
In consideration of all constraints and the limits of the

design space, the optimization problem can be formulated
as follows:

min|amax|
s.t. Intrusion D2 ≤ 0.095m

Intrusion D3 ≤ 0.095m
Intrusion D4 ≤ 0.095m

Average rigid wall force ≤ 90000N
Mass ≤ 45 kg

1 ≤ tx ≤ 3mm

The intrusion is measured at three different points, i.e.
D2, D3 and D4. All optimizations are implemented with
an initial size of the region of interest of 1 mm for each de-
sign variable. The default number of 25 experiments per
iteration is used for the RSM optimization. In SOZM, 12
experiments per iteration are evaluated.

Optimization results

All relevant results are stated in Table 12 and Fig. 14
shows the convergence plots of all three different opti-
mization processes, i.e. RSM, SOZM and the combined
optimization method.
After six SO iterations no improved design can be

found and therefore the first zooming would be im-
plemented. The current best design point (|amax| =
318.3ms−2, 72 experiments) is used as the starting point

Fig. 13 Vehicle structure (symmetric)

Table 12 Results of combined vehicle structure optimization

RSM SOZM COMB

Experiments 25 12 12/25
per iteration
Number of iterations 11 14 6/7

Total number 275 168 247
of experiments
Optimum result

Acceleration,
[
ms−2

]
−312.8 −284.3 −282.0

Intrusion D2, [m] 0.0823 0.0771 0.0917

Intrusion D3, [m] 0.0592 0.0615 0.0858
Intrusion D4, [m] 0.0921 0.0873 0.0901

Rigid wall force, [N] 86900 87080 85580
Mass, [kg] 42.7 43.45 41.75
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Fig. 14 Convergence plot of combined optimization method

for RSM. In order to avoid major constraint violations,
the size of the RoI is reduced to 20% of the initial size. In
general, it is very difficult to find optimization parame-
ters leading to maximum efficiency. Thus, this reduction
is based rather on experience than on predefined and es-
tablished rules. Nevertheless, the first few RSM results
slightly violate the constraints and no better design can
be located compared to SOZM. Only after the fourth
RSM iteration somewhat better results are found, but
their determination is rather expensive.
Finally, although this does not concern the compari-

son of the combined optimization method and SOZM, it
is important to note that both methods are better com-
pared than RSM with respect to efficiency and result
quality in this example.

5
Conclusions

The investigations in this paper reveal that SO and RSM
shows rather different qualities. On the one hand, RSM
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is suitable for finding the mathematical optimum solution
of the global or at least of a local minimum. On the other
hand, for these optimization problems SO often produces
a better convergence behaviour in the beginning of the
optimization process for a large number of design vari-
ables. It has been shown that SO should not be used for
optimization problems with less than 10–15 design vari-
ables; RSM is superior to SO for these examples. How-
ever, the more design variables the problem has, the more
efficient SO becomes.
The convergence behaviour of all SO depends to

a large extent on the size of the RoI. The results of this
investigation indicate that SOZM has to be used instead
of SO, otherwise the convergence behaviour can be un-
acceptable. SOZM combines the advantages of a large
RoI with regard to the shifting capabilities and a small
RoI with regard to the capability of finding accurate so-
lutions. Thus, the optimizations should start with a rela-
tively large RoI due to the fact that the RoI is scaled down
automatically.
Finally, the combination of both methods is a promis-

ing approach. In particular, if only a slightly improved
design is required or the computing capacity is limited,
SOZM produces valid and improved designs within the
first few iterations. In the case that a further design im-
provement is desired, the SOZM result can be used as
a starting point for an RSM optimization.
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