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Multipoint cubic surrogate function for sequential approximate
optimization�

R.A. Canfield

Abstract Multipoint cubic approximations are investi-
gated as surrogate functions for nonlinear objective and
constraint functions in the context of sequential approx-
imate optimization. The proposed surrogate functions
match actual function and gradient values, including the
current expansion point, thus satisfying the zero and
first-order necessary conditions for global convergence to
a local minimum of the original problem. Function and
gradient information accumulated from multiple design
points during the iteration history is used in estimating
a reduced Hessian matrix and selected cubic terms in
a design subspace appropriate for problems with many
design variables. The resulting approximate response sur-
face promises to accelerate convergence to an optimal
design within the framework of a trust region algorithm.
The hope is to realize computational savings in solving
large numerical optimization problems. Numerical exam-
ples demonstrate the effectiveness of the new multipoint
surrogate function in reducing errors over large changes in
design variables.
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1
Introduction

A nonlinear optimization problemmay be defined as find-
ing the design variable vector x∗ that minimizes an objec-
tive function f :Rn→R over the feasible domainΩ ∈Rn

f(x∗) = min
x∈Ω

f(x)

Ω = {x | g(x) ≤ 0, h(x) = 0} (1)

where the feasible region is the set of all design variables
that satisfy vector inequality constraints g(x) and vec-
tor equality constraints h(x). The vector inequality is
taken to mean that each and every component of the vec-
tor must satisfy the inequality. Side constraints on the
design variables may be incorporated in the inequality
constraints g(x).
Although many numerical methods are readily avail-

able to solve this problem, we are concerned with develop-
ing as efficient an algorithm as possible for the case where
function and gradient evaluations of the objective and
constraints may be expensive. Such is the case in many
practical design problems involving computation struc-
tural mechanics, computational fluid dynamics (CFD),
and robust control, where a complete finite element or
CFD analysis or dynamic simulation may be required,
for example, in order to evaluate the functions. To this
end, various approximation concepts have been proposed
(Schmit and Miura 1977). Initial efforts focussed on se-
lecting appropriate intermediate design variables (Haftka
and Gurdal 1992). More recently, researchers have ex-
amined intermediate response quantities that may be
approximated more accurately than the actual objec-
tive or constraint functions (Haftka and Gurdal 1992;
Barthelemy and Haftka 1993).
To illustrate these approximation concepts, let y(x)

be a vector of intermediate design variables that can be
expressed explicitly in terms of the original design vari-
ables x, e.g.reciprocal variables yi = 1/xi. Let q(y) be
a vector of intermediate response quantities from which
the objective and constraint functions can be calculated
explicitly
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f(x) = f̂(q(y(x)),y(x),x) , (2a)

g(x) = ĝ(q(y(x)),y(x),x) , (2b)

h(x) = ĥ(q(y(x)),y(x),x) . (2c)

In the approximation concepts approach, an exact analy-
sis is carried out to calculate the response quantities q(y).
Because this is typically quite expensive, the response
quantities are approximated, usually by a linear Taylor
series in the intermediate variables y.

q̃
L
(y) = q(yo)+{∇q(yo)}

T {y−yo} (3)

Approximations to the original functions can be made
easily, as they are explicit functions of the intermediate
responses formed by substituting (3) into (2) in place of
the actual response quantities

f̃(x) = f̂(q̃
L
(y(x)),y(x),x) , (4a)

g̃(x) = ĝ(q̃
L
(y(x)),y(x),x) , (4b)

h̃(x) = ĥ(q̃
L
(y(x)),y(x),x . (4c)

Now the approximate sub-problem is defined as

f̃(x∗) = min
x∈Ω̃

f̃(x)

Ω̃ =
{
x | g̃(x)≤ 0, h̃(x) = 0

}
(5)

where Ω̃ is the domain of the approximate feasible region.
Equations (5) are solved iteratively until the approxima-
tions in (4) converge to the exact values given by (2) to
within an acceptable tolerance.
The iterative solution of this approximate sub-prob-

lem can drastically reduce the number of full exact ana-
lyses, provided the approximations are of high enough
quality. Nevertheless, unlike certain unconstrained opti-
mization methods such as conjugate gradient or variable
metric methods, which accumulate historical information
about a function from previous design points, the afore-
mentioned approximation concepts are based on a sin-
gle design point. New approximations are reconstructed
each time an exact analysis is made. Information from
previous analyses is typically lost. Some methods do in-
corporate information from previous iterations into the
approximations. Haftka and Gurdal (1992) classify such
multipoint approximations asmid-range approximations.
Haftka et al. (1987) showed that two- and three-point
approximations can be accurate for interpolation, but
not necessarily for extrapolation. Fadel et al. (1990) in-
corporated previous gradient information in a two-point
approximation that was used to select better interme-
diate design variables for a linear approximation. In
contrast, Rasmussen (1990) incorporated only previous
function values, while ignoring gradients from previous
iterations. He demonstrated stable convergence for a can-
tilever box beam example for which other methods failed

to converge; however, he observed that more iterations
were required than for the method of moving asymptotes
(MMA), a single-point approximation (Svanberg 1987).
Snyman and Stander (1994) also used only the previous
function value in creating a two-point quadratic approx-
imation. Toropov et al. (1993) proposed a simulation
approach to structural optimization in which multiple
points generated as a “plan of experiments” are used as
the basis for multipoint approximations. He presented
results comparable in efficiency to Svanberg’s single-
point MMA. Xu and Grandhi (1998) developed a two-
point adaptive nonlinear approximation (TANA2) that
incorporates Fadel’s intermediate variables for gradient
matching with Snyman and Stander’s quadratic correc-
tion for function matching at a single previous point. Xu
and Grandhi (2000) extended TANA2 to multiple points
through the blending functions.
Vanderplaats (1984) outlines an approach estimating

certain terms in the Hessian matrix based on previous
information; however, details are not provided. For ex-
ample, it appears that only a subset of Hessian terms
would be approximated, but no guidance is available
for choosing that subset. In a different vein, Miura and
Schmit (1978) demonstrated the higher accuracy of quad-
ratic Taylor series approximations for structural opti-
mization with frequency constraints. However, the com-
putational savings due to improved convergence were bal-
anced by the increased cost of calculating second deriva-
tives. The present approach fully utilizes information
from previous iterations, in the same spirit as quasi-
Newton methods, which gradually build an approximate
Hessian (Gill et al. 1981).
Canfield (1994) derived a multipoint quadratic ap-

proximation (MQA). The objective was to extend the
accuracy of a class of Taylor series approximations with-
out having to calculate the second-order derivatives ap-
pearing in the Hessian matrix. Instead, quadratic correc-
tion terms were calculated using function and gradient
values from previous iterates. The resulting MQA suc-
ceeded in exactly matching previously known function
values at nearby points. It matched function values at
more distant points and previously known gradient values
as closely as possible. The obvious drawback for large
design problems was that the approximate Hessian ma-
trix it generated grew as the square of the number of
design variables. Thus, not only the calculation of the
MQA itself, but also its use in the solution of the approx-
imate optimization sub-problem, becomes too expensive
as the problem size grows. Canfield (2001) addressed
these deficiencies by deriving a reduced Hessian approx-
imation, created in a design subspace spanning all previ-
ous points.
The proposedmultipoint cubic approximation (MCA)

builds upon the MQA by eliminating the pseudo-inverse
approach to matching previous gradient values. Instead,
cubic terms in the reduced design space are used. In this
way enough coefficients are determined so that all previ-
ous information, both function and gradient values, are
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reproduced. The goal of this research, then, is to gar-
ner the higher accuracy and concomitant improvement
in convergence of a Taylor series approximation with-
out incurring the expense of calculating second or third
derivatives. The current approach satisfies the first-order
consistency conditions required for global convergence of
approximate models (Alexandrov et al. 1998). The se-
quential solution of successive MCA models relies on
a model trust region approach (Fletcher 1981) applied
to an augmented Lagrangian function (Conn et al. 1991).
The present approach employed a trust region strategy
similar to (Wujek and Renaud 1998), although a one-
dimensional line search was an option to determine the
adaptive move limits, as suggested by Fletcher (1981).

2
Theory

In this section the notation for a multivariate function
f(x) will be used for convenience. Nevertheless, the ap-
proximation is not limited to the objective function. In-
deed, in the context of the approximate sub-problem, the
functions being approximated would normally be elem-
ents of the vector q(y). However, to illustrate the gener-
ality of theMCA, intermediate responses were not used in
the numerical examples of Sect. 3.

2.1
Using previous information

Consider a quadratic approximation f̃
Q
to the function

f(x)

f̃
Q
(x,H) = f(xk)+{∇f(xk)}

T
∆x+

1

2
∆xTH∆x (6)

where xk is the design vector at the kth iteration, ∆x=
x−xk is the change in the design vector, ∇f(xk) is the
function’s gradient, and H is an approximation to its
Hessian matrix. If H were composed of analytic second
derivatives, (6) would represent a second-order Taylor se-
ries approximation. However, instead of evaluating the
second derivatives at the current design point xk, the
Hessian matrix will be estimated from function and gra-
dient values at previous points. In the first iteration, of
course, there is no previous information, so a standard
linear Taylor series or first-order conservative approxima-
tion is employed.
Let us consider the elements of the Hessian matrix H

as unknown parameters. We would like the quadratic ap-
proximation (6) to reproduce known function values from
the set of k−1 previous design points

f̃
Q
(xp,H) = f(xp) , p= 1, 2, . . . , k−1 (7)

where the symmetric Hessian matrix has N = n(n+1)/2
unknown elements for n design variables. We would also

like to reproduce the gradients from previous design
points as closely as possible. The gradients of the quad-
ratic approximation (6) evaluated at the previous design
points should satisfy

∇x f̃Q(xp,H) =∇f(xk)+H(xp−xk) =

∇f(xp) , p= 1, 2, . . . , k−1 . (8)

where (7) and (8) constitute a set of linear equations in
the N unknown elements of the Hessian matrix H; how-
ever, the equations are in general inconsistent. A Hessian
satisfying (8) will not satisfy (7) in general, when f(x) is
not a quadratic function. Moreover, for a large number
of design variables, it is impractical to solve for so many
Hessian terms. These issues will be addressed in the next
section.

2.2
Reduced basis multipoint cubic approximation

The preceding derivation is now modified so that the ap-
proximate Hessian is limited to a subspace of the design
variables determined by the vectors connecting the cur-
rent design point to the previous design points where
function and gradient information is available. Thus, the
reduced-order Hessian approximation has a dimension
equal to the number of iterates traversed in the optimiza-
tion solution (or is predetermined by a design of experi-
ments sampling). In addition, cubic terms in the reduced
space are appended in order to provide enough freedom to
match both previous functions and gradients.
We seek a reduced-order Hessian approximation. Let

the difference between the current base point, xk, and
previous points, xp, be arranged as columns in a matrix

Xk = [{x1−xk} {x2−xk} . . . {xk−1−xk}] . (9)

Next, we transform the matrix of changes from previ-
ous iterations to an orthonormal basis, using the Grahm-
Schmidt orthonormalization procedure, Gk =G(Xk), so
that the previous points may be represented as

xp = xk+Gkdp (10)

where dp = d(xp) is the vector of reduced basis coeffi-
cients corresponding to a previous point, xp. Now the
basis vectors may be used to project any design vector, x,
onto the subspace of the current and previous points.

d(x) =GTk {x−xk} . (11)

The multipoint cubic approximation (MCA) is formed
by adding quadratic and cubic terms in the subspace to
the linear approximation in the full space,

f̃
C
(x) = f̃

L
(x)+

1

2
d(x)T H̃ d(x)+

1

6

P∑
i=1

βid
3
i (x) (12)
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where di is the ith element of the vector d defined in (11)
and βi represent the unknown cubic coefficients to be de-
termined together with the Hessian approximation H̃ in
the proposed MCA. The linear approximation is denoted
as

f̃
L
(x) = f(xk)+{∇f(xk)}

T {x−xk} . (13)

The size of the reduced Hessian approximation H̃ is just
the square of the number of previous points. Likewise,
there are only as many cubic terms as the number of pre-
vious points, k−1.
The determination of the reduced-order approxima-

tion occurs in the subspace spanned by Xk instead of x.
The conditions to be satisfied in determining H̃ and βββ are
the function-matching conditions

f̃
C
(xp) = f(xp) , p= 1, 2, . . . , k−1 (14)

and the gradient-matching conditions

∇f̃
C
(xp) =∇f(xp), p= 1, 2, . . . , k−1 . (15)

The left side of (14) is found by evaluating (12) at each
previous point, xp. To evaluate the left side of (15) re-
quires the differentiation of (12) with respect to the de-
sign vector, x.

∇f̃
C
(x) =∇f(xk)+

1

2
Gk
(
H̃+ H̃T

)
GTk (x−xk)+

1

2

P∑
i=1

βid
2
i (x)
∂di

∂x
(16)

After substituting (11) into (16), pre-multiplying by the
transpose of the orthonormal transformation, and recog-
nizing that each ∂di

∂x is the ith column of the transform-
ation matrixGk, we have

GTk

{
∇f̃
C
(x)−∇f(xk)

}
=
1

2

(
H̃+ H̃T

)
d+

1

2

[
diag
(
d2
)]
βββ (17)

where diag (d2) indicates a diagonal matrix of the squares
of the reduced basis coefficients, d2i . The left side of (17) is
the difference between the MCA gradient and the actual
gradient at the current point, projected onto the sub-
space. Equating the MCA gradient to the actual gradi-
ent at each previous point according to (15), substituting
into (17), and assuming symmetry of H̃ gives

γγγp = H̃dp+
1

2

[
diag
(
d2p
)]
βββ (18)

where

γγγp ≡G
T
k {∇f(xp)−∇f(xk)} (19)

is the projected gradient difference, i.e.the difference be-
tween the gradient at the previous and current points pro-

jected onto the subspace. Pre-multiplying (18) by 12d
T
p

and rearranging terms allows us to isolate the quadra-
tic terms in order to eliminate them from the function-
matching equations that follow.

1

2
dTp H̃dp =

1

2
dTp γγγp−

1

4
dTp
[
diag
(
d2p
)]
βββ (20)

Introducing (20) into (12), which is equated to the pre-
vious function values according to (14), provides a system
of equations to solve for the vector βββ of cubic coefficients.
Denoting δp as the difference between the linear approxi-
mation (13) and the actual function value at point p, (14)
becomes

δp ≡ f(xp)− f̃L(xp) =
1

2
dTp H̃dp+

1

6

{
d3p
}T
βββ (21)

where d3p is a column vector of the reduced basis coeffi-
cients cubed, d3pi , for a previous point, xp. Next, substi-
tute (20) into (21) to eliminate the Hessian matrix, and
solve for the cubic coefficients

βββ =−12
[
D3
]−T
δ̄δδ (22)

where D3 represents a matrix with columns d3p and each
element of the column vector δ̄δδ is defined as

δ̄p = δp−
1

2
γγγTp dp . (23)

Once βββ is solved from (22), it is substituted into (18),
which is a vector equation for each previous point. Rear-
ranging the result yields

H̃dp = γγγp−
1

2

[
diag
(
d2p
)]
βββ ≡ γ̄γγp (24)

where γ̄γγp defines a gradient difference error. Arranging
the vectors in (24) column-wise, for each previous point,
in a single matrix equation permits the following solution
for the reduced approximate Hessian matrix

H̃= Γ[D]−1 (25)

whereD represents a matrix with columns dp and

Γ=
[
{γ̄γγ1} {γ̄γγ1} . . . {γ̄γγk−1}

]
(26)

is a matrix composed of column vectors of the gradient
difference errors. The matrix D is guaranteed to be full
rank by virtue of the orthonormalization. It can be made
square by retaining only as many previous function values
as there are independent basis vectors inXk, i.e. the rank
(number of columns) of Gk. Also, although H̃ was as-
sumed symmetric in going from (17) to (18), the solution
of (25) does not enforce symmetry. Therefore, there will
be some error in matching previous gradient information
using (15).
In summary, substituting theMCA f̃

C
(x) of (12), con-

structed in the reduced orthonormal basis Gk associated
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with (9), into the function- and gradient-matching con-
ditions of (14) and (15) leads to (22) and (25) for the
cubic and quadratic coefficients, βββ and H̃, respectively.
Solution of the latter involves the projected gradient dif-
ferences γγγp, given by (19), and the linear approximation
error for function values δp, given by (21).

2.3
Enriched reduced basis

The careful reader will observe that the transformation
from (15) to (18) implies that only the projected gradi-
ent differences γγγp of (19) are matched, not the original

gradients∇f̃
C
(xp) specified in (15).Whether the gradient

differences can be matched in (16) depends on whether
the gradient differences are spanned by the reduced ba-
sis Xk. To recover the original gradients, the gradient
differences {∇f(xp)−∇f(xk)} can be appended to the
design vector differences in the Xk basis. The drawback
to this enriched reduced basis is that each function has
a different reduced basis. This modification did not pro-
duce a significant difference in the optimization results for
the examples presented in Sect. 3. Before describing those
examples, the procedure outlined by (1–5) for sequential
approximate optimization is described next for the case
when MCAs are used for the surrogate model (4).

2.4
Sequential MCA

The original optimization problem defined by (1) was re-
placed by a sequence of approximate sub-problems given
by (5). In the first iteration the conservative approxima-
tion (single-point linear approximation with mixed dir-
ect and reciprocal variables, see (Barthelemy and Haftka
1993)) was used for the objective and constraint func-
tions. At each subsequent iteration k > 1 the nonlinear
objective function was approximated by a multipoint
cubic approximation

f̃ (k)
C
(x) = f̃ (k)

L
(x)+

1

2
dT (x)H̃

(k)
f d(x)+

1

6

k−1∑
i=1

β
(k)
fi
d3i (x)

(27)

where the vector βββ
(k)
f of length k−1 was solved from (22)

and the (k−1)× (k−1)matrix H̃(k)f was solved from (25).
Likewise, the nonlinear constraints were approximated in
the same way. No intermediate responses were used for
g(x). The reduced basis in (11) is not needed after the
number of linearly independent previous points exceeds
the number of design variables, n. Then, only the closest
n previous design points xp need be retained. Now Gk is
an identity matrix and d simply becomes the set of clos-
est linearly independent x. Alternatively, more previous
points can be retained, if the inverses in (22) and (25) are
made pseudo-inverses.

The model trust region was applied to the augmented
Lagrangian as a merit function

Φ = f(x)+λλλTψψψ+Rpψψψ
Tψψψ (28)

for inequality constraints (Vanderplaats 1984) where

ψj =max

(
gj(x),

−λj
2Rp

)
. (29)

The trust region ratio is defined as the ratio of the actual
reduction in the merit function to the merit reduction
predicted by the MCA model (Fletcher 1981)

r(k) =
Φk−Φk−1

Φ̃k− Φ̃k−1
(30)

where the approximate merit function is

Φ̃k = f̃
(k)
C
(x)+λλλT ψ̃ψψ+Rpψ̃ψψ

T
ψ̃ψψ (31)

and the MCA is used to model not only the objective, f̃
C
,

but also the active constraints, g̃
C
(x), through

ψ̃j =max

(
g̃
(k)
Cj (x),

−λj
2Rp

)
. (32)

Side constraints were adjusted each iteration by an adap-
tive move limit strategy governed by the MCA model
trust region ratio (Fletcher 1981; Wujek and Renaud
1998). The trust region was reduced whenever r(k) < 0.25
and it was expanded when r(k) > 0.75.
A positive semi-definite approximation is desirable for

inequality constraints, even though the constraint func-
tions may not be positive semi-definite. The effect of
a sign-indefinite Hessian approximation and cubic terms
with mixed signs is to afford the optimizer an opportunity
to compensate for constraint violations by seeking search
directions that create large negative quadratic and cubic
terms to achieve feasibility. The following modification
was made for constraint approximations to compensate
for this tendency.

g̃
(k)
Cj (x) = g̃

(k)
Lj (x)+

max

(
0,
1

2
dT (x)H̃

(k)
j d(x)+

1

6

k−1∑
i=1

β
(k)
ji d

3
i (x)

)
,

j = 1, . . . , na (33)

where na is the number of active constraints as deter-
mined by the current estimate of Lagrange multipliers, λλλ.
Inactive constraints were approximated by single-point
linear functions (direct, reciprocal or conservative).
Application of move limits to an initially infeasible

design may create an approximate sub-problem with no
solution. To ensure that each sub-problem had a solution,
slack variables were subtracted from all initially infeasi-
ble constraints in (2b). The non-negative slack variables
were forced to zero by adjoining them to the approximate
objective function given in (4a).
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3
Numerical optimization

Results using the sequential MCA with a trust region
strategy are presented. Iteration histories of the objec-
tive and constraint function values are shown for the
present method and the sequential quadratic program-
ming (SQP) method in MatLab (Branch and Andrew
1996).

3.1
Five-element cantilever beam optimization

The first example is a thin-walled, box beam, modelled
with finite elements, loaded at the tip (Fig. 1 inset). The
cantilever beam subject to a tip load is modelled with
five Euler–Bernoulli finite elements (Svanberg 1987). The
structural sizing optimization problem is to minimize the
beam’s mass subject to a maximum allowable tip deflec-
tion. The design variables are the width (height) of each
element’s square section for a box beam with fixed thick-
ness. The objective function, volume of material in the
beam, was minimized subject to a constraint on the tip
deflection. The objective and constraint functions can be
expressed as explicit functions of the design variables.
Then the problem is to minimize

f(x) = 0.0624(x1+x2+x3+x4+x5)

subject to the constraint

g(x) = 61/x31+37/x
3
2+19/x

3
3+7/x

3
4+1/x

3
5−1≤ 0 .

The initial design is xi = 5 for i= 1, 2, 3, 4, 5. The (exact)
linear approximation was always used for the objective
function, while linear, reciprocal andmultipoint cubic ap-
proximations were tested for the constraint. The termi-
nation criteria were that the objective and constraint be
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Fig. 1 Svanberg beam

Fig. 2 Svanberg beam – multipoint cubic approximation

Table 1 MCA convergence for Svanberg beam

Iter. Object. Constraint Merit L.M. Trust ratio

k f g Φ λ r(k)

1 1.560 0 1.5600 0.30 0.000

2 1.266 0.3924 1.5600 0.17 0.245
3 1.266 0.1977 1.3865 0.32 0.591

4 1.325 0.09748 1.3705 0.33 0.258

5 1.330 0.03145 1.3446 0.42 0.680
6 1.332 0.0793 1.3608 0.25 −1.281
7 1.335 0.01252 1.3406 0.43 0.504
8 1.338 0.004237 1.3404 0.45 0.092

9 1.340 0.0001055 1.3400 0.45 0.901
10 1.340 1.464×10−5 1.3400 0.45 0.929

within 0.01% of the analytical solution. All model trust
regions were initiated with 50% move limits. Fletcher’s
simple trust region adjustment strategy (Fletcher 1981)
was used (no one-dimensional search to adapt the move
limit).
Svanberg (1987) demonstrated that conventional

first-order approximations with fixed move limits oscil-
late and do not converge to the optimum, as seen in Fig. 1
for fixed 50% move limits. Furthermore, although se-
quential linear programming (SLP) can be made globally
convergent with a trust region strategy (it satisfies first-
order consistency conditions), it converges slowly (also
shown in Fig. 1).
In Fig. 2 the MCA is compared to MatLab’s SQP and

to the trust region algorithm applied to a second-order
Taylor series approximation using the true Hessian of the
constraint function. In principal, the latter is the most
efficient quadratic solution possible with the present aug-
mented Lagrangian approach. The merit function plotted
for SQP is simply the objective function, not an aug-
mented Lagrangian. The sequential MCA converged in 10
iterations, compared to 15 iterations for SQP and 6 it-
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Fig. 3 Svanberg beam – reciprocal variables

erations for the second-order Taylor series. The MCA
converged considerably quicker than SLP (Fig. 1). Use of
the enriched reduced basis for MCA made insignificant
changes to the results. Details of the iteration history are
shown in Table 1. The negative trust ratio in iteration
6 indicates that the point was rejected.

Fig. 4 Vanderplaats beam

When reciprocal variables were used for the con-
straint, the resulting sequential convex programming
(SCP) approximate optimization converged smoothly, as
long as the model trust region governed the move limits
(Fig. 3). Impressively, the MCA without the aid of any
intermediate variables converged as quickly as the SCP
using reciprocal variables for the constraint. When the
MCA was applied in the reciprocal variable space for the
constraint, it accelerated the convergence, (6 iterations),
comparable to the reciprocal, second-order Taylor series
(4 iterations).

3.2
Large-scale cantilever beam optimization

Vanderplaats (1984) defined a similar cantilever beam de-
sign problem. The design variables are the height and
width of the solid rectangular cross-sections of the beam.
The objective is to minimize the volume subject to con-
straints on tip deflection (2.5 cm), bending stress and an
aspect ratio constraint that the height to width ratio can-
not exceed five. Thus, each beam segment has two de-
sign variables contributing to a structural response with
nonseparable variables. The explicit functions are eas-
ily programmed for an arbitrary number beam segments,
making this an ideal problem to test MCA as the num-
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Table 2 Enriched basis MCA for Vanderplaats beam

# DV Iterations Objective (cm3)

10 7 65418
20 13 64244
40 19 63842
80 18 63757
100 21 63704

ber of design variables increases. Although appropriate
intermediate variables could be used for this example, it
is important to emphasize that none were used here. Re-
sults for increasing number of beam segments are shown
in Fig. 4. The enriched reduced basis was used in this ex-
ample. Its primary effect was to increase the accuracy of
the MCA in the early iterations, so that fewer points were
rejected. However, the total number of iterations to con-
verge was about the same. More importantly, the num-
ber of iterations to converge did not grow significantly as
the number of designed beam segments increased. Table 2
shows the number of iterations to converge to within 0.1%
of the optimum objective function value and 0.01% of the
constraint, as well as the final value of the objective, using
the enriched basis. The results bode well for the potential
efficiency of MCA for large numbers of design variables,
presuming an efficient algorithm is used to solve the ap-
proximate sub-problem.

3.3
Mixed-norm control synthesis

Another example (Fig. 5), the numerical solution of
a mixed-norm, optimal control design problem (Doyle
and Stein 1979) was selected to test MCA on a non-

Fig. 5 Mixed-norm (H2/H∞) control synthesis

structural optimization problem for which good interme-
diate variables y(x) and responses q(y) are not known.
Unlike the first beam example, which has separable de-
sign variables, this example is highly coupled.
The linear time-invariant model of the system dynam-

ics is defined by P . The compensator to be designed is
represented by K. Inputs to the system are zero-mean,
unit intensity white Gaussian noise shown as w, and
a bounded, but unknown, energy, input d. The measured
values coming out of the system are shown as y and are
input to the compensator. The control signal generated
by the compensator, labelled u, is fed back to the system.
The controlled outputs of the open-loop system are repre-
sented as z and e.
The H2 and H∞ problems have the following state

space representations

ẋ2 =A2x2+Bww+B2u ,

z = Czx2+Dzww+Dzuu ,

y2 = C2x2+Dyww+Dyuu ,

ẋ∞ =A∞x∞+Bdd+B∞u ,

e= Cex∞+Dedd+Deuu ,

y∞ = C∞x∞+Dydd+Dyuu .

The control synthesis problem is to find the compensator
K = (Ac, Bc, Cc) with the state space representation

ẋc =Acxc+Bcy

u= Ccxc

whichminimizes theH2 norm of the transfer function Tzw
from the noisy input w to the controlled output z, while
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constraining the H∞ norm of the transfer function Ted
from disturbance d to controlled output e below a speci-
fied level γ:

min
Kadm

||Tzw||2 subject to ||Ted||∞ ≤ γ

where the set of admissible compensators Kadm is the
set of all stabilizing compensators of given fixed order.
Hence, the design variables are the independent terms in
the controller matrices Ac, Bc, and Cc. For more details
see (Jacques et al. 1996).
A single-input/single-output example was used to

demonstrate how to recover robustness with observers.
The system’s state space matrices are

A2 =

[
0 1

−3 −4

]
,

B2 =

[
0

1

]
,

C2 =
[
2 1
]
,

Dyu = 0 .

Process andmeasurement noise are added to the model as

Bw =

[
35 0

−61 0

]
, Dyw =

[
0 1
]
.

TheH2 problem is a standard LQG problem with the fol-
lowing weighting matrices

Cz = 4

[
5
√
7
√
5

0 0

]
,

Dzw =

[
0 0

0 0

]
,

Dzu =

[
0

1

]
.

The H∞ problem is a weighted sensitivity minimiza-
tion problem used to improve tracking performance. The
resultingH∞ matrices are

A∞ =

[
A2 0

C2 −0.7

]
,

Bd =

[
0

1

]
,

B∞ =

[
B2

0

]

Ce =
[
C2 11

]
, C∞ =

[
C2 0

]
,

Ded = 1 , Deu = 0 ,

Dyd = 1 , Dyu = 0 .

The mixed H2/H∞ controller was run at the order of
the H2 problem (second order), yielding seven indepen-
dent design variables in the controller matrices. Thus, the
design variables are the four terms in Ac, two terms in
Bc, plus the single term Cc of the compensatorK. A con-
straint was imposed to reduce the H∞ norm from 15.18
at theH2 optimum design to 12. The trust region was ini-
tiated with 25% move limits. Iteration histories for the
objective normalized by the optimalH2 norm (493.8) and
theH∞ constraint are be plotted in Fig. 5. TheMCA con-
verged in half as many iterations (7) as SQP (14).

3.4
Discussion

Successive approximate optimization converged more
quickly with MCA than with single-point approximations
for all three examples. The beam example in Sect. 3.1
demonstrated that MCA without intermediate variables
could converge at least as quickly as the single-point
approximation with reciprocal variables for the displace-
ment constraint. The results presented in Figs. 2 and 3
were obtained using the same trust region strategy, in
order to highlight only the effect of the differing ap-
proximations. Although this example involved separable
design variables, MCA does not take advantage of that
information until there are more previous points than de-
sign variables, because the coefficients of the purely cubic
terms correspond to the reduced subspace in which the
original design variables are coupled. The design variables
in the next two examples were not separable.
The beam example in Sect. 3.2 demonstrated that the

MCA scales well to problems with large numbers of de-
sign variables. A good measure of efficiency for sequential
MCA is the comparison with sequential approximate op-
timization using the actual Hessian matrix in a second-
order Taylor series approximation. Sequential MCA com-
pared favourably in this regard. As expected, it never out-
performed the second-order Taylor series approximation,
since MCA requires several iterations to gather curvature
information. Use of MCA for the structural optimization
examples in Sects. 3.1 and 3.2 did not display dramatic
improvements over the mature approximation methods
used in modern structural optimization programs; how-
ever, the real potential is for multidisciplinary problems
where appropriate intermediate variables and responses
are unknown. This benefit was realized in theH2/H∞ op-
timal control problem in Sect. 3.3, where sequential MCA
outperformed SQP. Furthermore, the MCA does not suf-
fer from the curse of dimensionality as SQP and second-
order Taylor series approximation do as the number of
design variables increases.
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The effectiveness of MCA was demonstrated within
the framework of sequential approximate optimization
using a trust region strategy. More generally, MCA can
be considered a response surface technique. The author
observed its accuracy to be similar to or better than
the previously developed MQA, the accuracy of which
was demonstrated for arbitrarily generated design points
(Canfield 1994). Implementing MCA as a response sur-
face technique requires similar choices as any other, such
as, how many points to include and at what locations?
In the preceding examples, when the number of previous
points exceeded the number of design variables, n, only
the closest n linearly independent design vectors were
retained (except for the large-scale problem in Sect. 3.2
where the number of previous points was always fewer
than n). The major advantage of MCA is that the num-
ber of available design points determines the number
of higher-order terms, rather than the number of de-
sign variables dictating how many design points must be
sampled.
Noisy numerical simulations affect the implementa-

tion of MCA as a response surface technique. By virtue of
being a low-order polynomial, MCAwill exhibit a smooth
approximation when the design points are widely spaced.
When an optimization process dictates the selection
of design points, as in the preceding examples, widely
spaced points are typical in the early iterations. As the
spacing of design points becomes closer in the final stages
of convergence, a low signal-to-noise ratio will destroy the
accuracy of MCA, unless an over-determined system is
created by retaining more previous points than the num-
ber of cubic terms. Also, the gradient appearing in the
linear term may need smoothing. In the final iterations
of an optimization-guided process, an ample amount of
previous points makes an over-determined system easy to
accommodate. In a design of experiments (DOE) setting,
an over-determined MCA should be used for noisy sim-
ulations in the same manner as is done for conventional
response surfaces. This simply means that more points
than the number of cubic terms should be generated for
the DOE. Then a pseudo-inverse should be used in (22)
and (25).

4
Conclusion

A multipoint cubic approximation was developed for nu-
merical optimization. Its derivation hinged on the feature
that previously known function and gradient values are
recovered by the approximation. Reducing the quadra-
tic and cubic terms to a subspace of the design variables
spanned by the previous design points made for much
more efficient calculation and subsequent use of the ap-
proximate reduced Hessian and cubic terms. Numerical
examples demonstrated efficient global convergence.
In contrast to the Hessian updates used in quasi-

Newton methods, the multipoint cubic approximation is

not restricted to being positive definite, or even symmet-
ric, although it proved advantageous in numerical opti-
mization to use only positive quadratic/cubic corrections
for constraints. Furthermore, its “memory” of past design
points is based on both function values and gradients,
whereas the quasi-Newton updates use only gradients.
Independent use of MCA for the objective function and
active constraints is partly responsible for the quicker
convergence.
For structural optimization problems, convergence for

MCA without intermediate variables was comparable to
convergence achieved for problems that benefit from re-
ciprocal variables. The MCA offers the greatest benefit
when appropriate intermediate variables or responses are
not known, as theH2/H∞ control design problem demon-
strated. Moreover, the reduced basis for the quadratic
and cubic terms avoids the “curse of dimensionality” for
problems with many design variables. The subspace for
the higher-order terms does not reduce the search space,
however, because the linear terms are not reduced. Very
large problems, though, will require efficient solution of
the approximate sub-problem, which dominated the com-
putational time for the first two examples, which had
explicit functions. Design problems with computationally
intensive simulations for function and gradient evalua-
tions are the prime candidates to benefit from the effi-
ciency of MCA models. Future work should exploit the
potential for parallel computation, when MCA is applied
to problems with many constraints.
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