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Reliability-based design optimization using probabilistic
sufficiency factor�
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Abstract A probabilistic sufficiency factor approach
is proposed that combines safety factor and probability
of failure. The probabilistic sufficiency factor approach
represents a factor of safety relative to a target prob-
ability of failure. It provides a measure of safety that
can be used more readily than the probability of fail-
ure or the safety index by designers to estimate the re-
quired weight increase to reach a target safety level. The
probabilistic sufficiency factor can be calculated from
the results of Monte Carlo simulation with little ex-
tra computation. The paper presents the use of prob-
abilistic sufficiency factor with a design response sur-
face approximation, which fits it as a function of design
variables. It is shown that the design response surface
approximation for the probabilistic sufficiency factor is
more accurate than that for the probability of failure
or for the safety index. Unlike the probability of failure
or the safety index, the probabilistic sufficiency factor
does not suffer from accuracy problems in regions of low
probability of failure when calculated by Monte Carlo
simulation. The use of the probabilistic sufficiency fac-
tor accelerates the convergence of reliability-based design
optimization.
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1
Introduction

Recently, there has been interest in using alternativemea-
sures of safety in reliability-based design optimization
(RBDO). These measures are based on margin of safety
or safety factors that are commonly used as measures of
safety in deterministic design. Safety factor is generally
expressed as the quotient of allowable over response, such
as the commonly used central safety factor that is de-
fined as the ratio of the mean value of allowable over the
mean value of the response. The selection of safety fac-
tor for a given problem involves both objective knowledge
such as data on the scatter of material properties and sub-
jective knowledge such as expert opinion. Given a safety
factor, the reliability of the design is generally unknown,
which may lead to unsafe or inefficient design. Therefore,
the use of the safety factor in reliability-based design op-
timization seems to be counterproductive.
Freudenthal (1962) showed that reliability can be ex-

pressed in terms of the probability distribution function
of the safety factor. Elishakoff (2001) surveyed the re-
lationship between the safety factor and reliability and
showed that in some cases the safety factor can be ex-
pressed explicitly in terms of reliability. The standard
safety factor is defined with respect to the response ob-
tained with the mean values of the random variables.
Thus a safety factor of 1.5 implies that with the mean
values of the random variables we have a 50% margin
between the response (e.g. stress) and the capacity (e.g.
failure stress). However, the value of the safety factor
does not tell us what the reliability is. Therefore, Birger
(1970), as reported by Elishakoff (2001), introduced a fac-
tor, which we call here the probabilistic sufficiency fac-
tor that is more closely related to the target reliability.
A probabilistic sufficiency factor of 1.0 implies that the
reliability is equal to the target reliability, a probabilistic
sufficiency factor larger than one means that the relia-
bility exceeds the target reliability, and a probabilistic
sufficiency factor less than one means that the system is
not as safe as we wish. Specifically, a probabilistic suffi-
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ciency factor value of 0.9 means that we need to multiply
the response by 0.9 or increase the capacity by 1/0.9 to
achieve the target reliability.
Tu et al. (2000) used the probabilistic performance

measure, which is closely related to Birger’s safety factor,
for RBDO using most probable point (MPP) methods
(e.g. the first-order reliability method). They showed that
the search for the optimum design converged faster by
driving the safety margin to zero than by driving the
probability of failure to its target value. Wu et al. (1998,
2001) used partial safety factors, which are similar to
probabilistic sufficiency factors in order to replace the
RBDO with a series of deterministic optimizations by
converting reliability constraints to equivalent determin-
istic constraints.
The use of the probabilistic sufficiency factor gives

a designer more quantitative measure of the resources
needed to satisfy the safety requirements. For example, if
the requirement is that the probability of failure is below
10−6 and the designer finds that the actual probability is
10−4, he or she cannot tell how much change is required
to satisfy the requirement. If instead the designer finds
that a probability of 10−6 is achieved with a probabilistic
sufficiency factor of 0.9, it is easier to estimate the re-
quired resources. For a stress-dominated linear problem,
raising the probabilistic sufficiency factor from 0.9 to 1
typically requires a weight increase of about 10 percent of
the weight of the over-stressed components.
Reliability analysis of systems with multiple failure

modes often employs Monte Carlo simulation (MCS),
which generates numerical noise due to limited sample
size. Noise in the probability of failure or safety index
may cause reliability-based design optimization (RBDO)
to converge to a spurious optimum. The accuracy of MCS
with a given number of samples deteriorates with decreas-
ing probability of failure. For RBDO problems with small
target probability of failure, the accuracy of MCS around
the optimum is not as good as in regions with high prob-
ability of failure. Furthermore, the probability of failure
in some regions may be so low that it is calculated to be
zero by MCS. This flat zero probability of failure does not
provide gradient information to guide the optimization
procedure.
The probabilistic sufficiency factor is readily avail-

able from the results of MCS with little extra computa-
tional cost. The noise problems of MCS motivate the use
of response surface approximation (RSA, e.g. Khuri and
Cornell 1996). Response surface approximations typically
employ low-order polynomials to approximate the proba-
bility of failure or safety index in terms of design variables
in order to filter out noise and facilitate design optimiza-
tion. These response surfaces are called design response
surface (DRS) and are widely used in the RBDO (e.g.
Sues et al. 1996).
The probability of failure often changes by several

orders of magnitude over narrow bands in design space,
especially when the random variables have small coeffi-
cients of variation. The steep variation of probability of

failure requires DRS to use high-order polynomials for the
approximation, increasing the required number of prob-
ability calculations (Qu et al. 2003). An additional prob-
lem arises when Monte Carlo simulations are used for cal-
culating probabilities. For a given number of simulations,
the accuracy of the probability estimates deteriorates as
the probability of failure decreases.
The numerical problems associated with steep varia-

tion of probability of failure led to the consideration of
alternative measures of safety. The most common one is
to use the safety index, which replaces the probability by
the distance, which is measured as the number of stan-
dard deviations from the mean of a normal distribution
that gives the same probability. The safety index does not
suffer from steep changes in magnitude, but it has the
same problems of accuracy as the probability of failure
when based onMonte Carlo simulations. However, the ac-
curacy of probabilistic sufficiency factor is maintained in
the region of low probability. The probabilistic sufficiency
factor also exhibits less variation than the probability of
failure or safety index. Thus the probabilistic sufficiency
factor can be used to improve design response surface ap-
proximations for RBDO.
The next section introduces the probabilistic suffi-

ciency factor, followed by the computation of the proba-
bilistic sufficiency factor by Monte Carlo simulation. The
methodology is demonstrated by the reliability-based
beam design problem.

2
Probabilistic sufficiency factor

The deterministic equivalent of reliability constraint in
RBDO can be formulated as

gr(x̂,d)≤ gc(x̂,d) (1)

where gr denotes a response quantity, gc represent a cap-
acity (e.g. strength allowable), x̂ is usually the mean value
vector of random variables, d is the design vector. The
traditional safety factor is defined as

s(x,d) =
gc(x,d)

gr(x,d)
(2)

and the deterministic design problem requires

s(x̂,d)≥ sr (3)

where sr is the required safety factor, which is usually 1.4
or 1.5 in aerospace applications. The reliability constraint
can be formulated as a requirement on the safety factor

Prob(s≤ 1)≤ Pr (4)

where Pr is the required probability of failure. Birger’s
probabilistic sufficiency factor Psf is the solution to

Prob(s≤ Psf ) = Pr (5)
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Fig. 1 Probability density of the safety factor. The area
under the curve left of s = 1 measures the actual probability
of failure, while the shaded area is equal to the required prob-
ability of failure indicating that the probabilistic sufficiency
factor = 0.8

It is the safety factor that is violated with the required
probability Pr.
Figure 1 shows the probability density of the safety

factor for a given design. The area under the curve left
of s = 1 represents the probability that s < 1, hence it
is equal to the actual probability of failure. The shaded
area in the figure represents the required probability of
failure, Pr. For this example, since it is the area left of
the line s = 0.8, Psf = 0.8. The value of 0.8 indicates
that the target probability will be achieved if we reduced
the response by 20% or increased the capacity by 25%
(1/0.8−1). For many problems this provides sufficient in-
formation for a designer to estimate the additional struc-
tural weight. For example, raising the safety factor from
0.8 to 1 of a stress-dominated linear problem typically re-
quires a weight increase of about 20% of the weight of the
over-stressed components.

2.1
The use of the probabilistic sufficiency factor to
estimate additional structural weight to satisfy the
reliability constraint

The following cantilever beam example (Fig. 2) is taken
fromWu et al. (2001) to demonstrate the use of the prob-
abilistic sufficiency factor.
There are two failure modes in the beam design prob-

lem. One failure mode is yielding, which is most critical at
the corner of the rectangular cross-section at the fixed end
of the beam

gS(R,X, Y,w, t) =R−σ =R−

(
600

wt2
Y +
600

w2t
X

)
(6)

where R is the yield strength, and X and Y are the in-
dependent horizontal and vertical loads. Another failure

Table 1 Random variables in the beam design problem

Random variables X Y R E

Distribution Normal Normal Normal Normal
(500, 100) lb (1000, 100) lb (40000, 2000) psi (29×106, 1.45×106) psi

Fig. 2 Cantilever beam subject to vertical and lateral
bending

mode is the tip deflection exceeding the allowable dis-
placement,D0

gD(E,X, Y,w, t) =D0−D=

D0−
4L3

Ewt

√(
Y

t2

)2
+

(
X

w2

)2
(7)

where E is the elastic modulus. The random variables are
defined in Table 1.
The cross-sectional area is minimized subjected to

a reliability constraint, which requires the safety index
to be larger than three (probability of failure less than
0.00135). The reliability-based design optimization prob-
lem, with the width w and thickness t of the beam as
design variables that are deterministic, can be formulated
as

minimize A= wt

such that

p−0.00135≤ 0 (8)

based on probability of failure, or

minimize A= wt

such that

3−β ≤ 0 (9)

based on the safety index, where β is the safety index, or

minimize A= wt

such that

1−Psf ≤ 0 (10)

based on the probabilistic sufficiency factor. The reliabil-
ity constraints are formulated in the above three forms,
which are equivalent in terms of safety. The details of the
beam design are given later in the paper.
In order to demonstrate the utility of the Psf for es-

timating the required weight for correcting a safety defi-
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ciency, it is useful to see how the stresses and the displace-
ments depend on the weight (or cross-sectional area) for
this problem. If we have a given design with dimensions
w0 and t0 and a Psf of Psf0, which is smaller than one,
we can make the structure safer by scaling both w and t
uniformly by a constant c

w = cw0 , t= ct0 (11)

It is easy to check from (6) that the stress will then change
by a factor of c3, and the area by a factor of c2. Since the
Psf is inversely proportional to the most critical stress or
displacement, it is easy to obtain the relationship

Psf = Psf0

(
A

A0

)1.5
(12)

where A0 = w0t0. This indicates that a one percent in-
crease in area (corresponding to 0.5 percent increase in w
and t) will improve the Psf by about 1.5 percent. Since
nonuniform increases in the width and thickness may be
more efficient than uniform scaling, we may be able to
do better than 1.5 percent. Thus, if we have Psf = 0.97,
we can expect that we can make the structure safe with
a weight increase under two percent. For displacement,
the factor at the exponent of (7) is 2. For general struc-
tures, engineering judgment is requirement to estimate
the factor.
The probabilistic sufficiency factor gives a designer

a measure of safety that can be used more readily than
the probability of failure or the safety index to estimate
the required weight increase to reach a target safety level.
The Psf of a beam design, presented in Sect. 4 in detail,
is 0.9733 for a target probability of failure of 0.00135,
(12) indicate that the deficiency in the Psf can be cor-
rected by scaling up the area by a factor of 1.0182. Since
the area A is equal to c2wt , the dimensions should be
scaled by a factor c of 1.0091 (= 1.01820.5) to w = 2.7123
and t = 3.5315. Thus the objective function of the scaled
design is 9.5785. The probability of failure of the scaled
design is 0.001302 (safety index of 3.0110 and probabilis-
tic sufficiency factor of 1.0011) evaluated by MCS with
1000000 samples. Such estimation is not readily available
using the probability of failure (0.00314) and the safety
index (2.7328) of the design.

3
Reliability analysis using Monte Carlo simulation

Let g(x) denote the limit state function of a performance
criterion (such as strength allowable larger than stress),
so that the failure event is defined as g(x) < 0, where x
is a random variable vector. The probability of failure of
a system can be calculated as

Pf =

∫
g(x)<0

fX(x)dx (13)

Fig. 3 Monte Carlo simulation of problem with two random
variables

where fX(x) is the joint probability distribution func-
tion (JPDF). This integral is hard to evaluate, because
the integration domain defined by g(x) < 0 is usually un-
known, and integration in high dimensions is difficult.
Commonly used probabilistic analysis methods are either
moment-based methods such as the first-order-reliability
method (FORM) and the second-order-reliabilitymethod
(SORM), or simulation techniques such as Monte Carlo
simulation (MCS) (e.g. Melchers 1999). Monte Carlo
simulation is a good method to use for system reliability
analysis with multiple failure modes. The present paper
focuses on the use of MCS with response surface approxi-
mation in RBDO.
Monte Carlo simulation utilizes randomly generated

samples according to the statistical distribution of the
random variables, and the probability of failure is ob-
tained by calculating the statistics of the sample simu-
lation. Figure 3 illustrated the Monte Carlo simulation
of a problem with two random variables. The probabil-
ity of failure of the problem is calculated as the ratio of
the number of samples in the unsafe region over the total
number of samples.
A small probability requires a large number of sam-

ples for MCS to achieve low relative error. Therefore, for
a fixed number of simulations, the accuracy of MCS de-
teriorates with the decrease of probability of failure. For
example, with 106 simulations, a probability estimate of
10−3 has a relative error of a few percent, while a prob-
ability estimate of 10−6 has a relative error of the order
of 100 percent. In RBDO, the required probability of fail-
ure is often very low, thus the probability (or safety in-
dex) calculated by MCS is inaccurate near the optimum.
Furthermore, the probabilities of failure in some design
regions may be so low that they are calculated as zero by
MCS. This flat zero probability of failure or infinite safety
index cannot provide useful gradient information for the
optimization.

3.1
Calculation of probabilistic sufficiency factor
by Monte Carlo simulation

Here we propose the use of the probabilistic sufficiency
factor to solve the problems associated with probability
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calculation by MCS. Psf can be estimated by MCS as fol-
lows. Define the nth safety factor of the MCS as

s(n) = n
th

M

min
i=1
(s(xi)) (14)

whereM is the sample size of the MCS, and the nth min
means the nth smallest safety factor amongM safety fac-
tors from the MCS. Thus s(n) is the n

th-order statistics
of M safety factors from the MCS, which corresponds to
a probability of n/M of s(x) ≤ s(n). That is, we seek to
find the safety factor that is violated with the required
probability Pr. The probabilistic sufficiency factor is then
given as

Psf = s(n) for n= P rM (15)

For example, if the required probability Pr is 10
−4 and

the sample size of Monte Carlo simulationM is 106, Psf is
equal to the highest safety factor among the 100 samples
(n= PrM) with the lowest safety factors. The calculation
of Psf only requires sorting the lowest safety factors in
the Monte Carlo samples. While the probability of failure
changes by several orders of magnitude the probabilistic
sufficiency factor usually varies by less than one order of
magnitude in a given design space.
For problems with k reliability constraints, the most

critical safety factor is calculated first for each Monte
Carlo sample,

s(xi) =
k

min
i=1

(
gic
gir

)
(16)

Then the sorting of the nth minimum safety factor can
proceed as in (14). When n is small, it may be more accu-
rate to calculate Psf as the average between the n

th and
(n+1)th lowest safety factor in the Monte Carlo samples.
The probabilistic sufficiency factor provides more in-

formation than the probability of failure or the safety
index. Even in the regions where the probability of fail-
ure is so small that it cannot be estimated accurately by
the MCS with given sample sizeM , the accuracy of Psf is
maintained. Using the probabilistic sufficiency factor also
gives designers useful insights on how to change the de-
sign to satisfy safety requirements as shown in Sect. 2.1.
The estimate is not readily available from the probability
of failure or the safety index. The probabilistic sufficiency
factor is based on the ratio of allowable to response, which
exhibits much less variation than the probability of failure
or safety index. Therefore, approximating the probabilis-
tic sufficiency factor in design optimization is easier than
approximating the probability of failure or the safety in-
dex as discussed in the next section.

3.2
Monte Carlo simulation using response surface
approximation

Monte Carlo simulation is easy to implement, robust, and
accurate with sufficiently large samples, but it requires

a large number of analyses to obtain a good estimate of
small failure probabilities. Monte Carlo simulation also
produces a noisy response and hence is difficult to use in
optimization. Response surface approximations solve the
two problems, namely simulation cost and noise from ran-
dom sampling.
Response surface approximations fit a closed-form ap-

proximation to the limit state function to facilitate reli-
ability analysis. Therefore, response surface approxima-
tion is particularly attractive for computationally expen-
sive problems such as those requiring complex finite elem-
ent analyses. Response surface approximations usually fit
low-order polynomials to the structural response in terms
of random variables

ĝ(x) = Z(x)Tb (17)

where ĝ(x) denotes the approximation to the limit state
function g(x), Z(x) is the basis function vector that usu-
ally consists of monomials, and b is the coefficient vector
estimated by least-square regression. The probability of
failure can then be calculated inexpensively by Monte
Carlo simulation or moment-based methods using the fit-
ted polynomials.
Response surface approximations (RSA) can be used

in differentways.One approach is to construct a localRSA
around the most probable point (MPP) that contributes
most to the probability of failure of the structure. The
statistical design of experiment (DOE) of this approach
is iteratively performed to approach the MPP on the fail-
ure boundary. For example, Bucher and Bourgund (1990),
and Sues (1996, 2000) constructed a progressively re-
fined local RSA around the MPP by an iterative method.
This local RSA approach can produce satisfactory results
given enough iterations. Another approach is to construct
a globalRSA over the entire range of randomvariables, i.e.
design of experiment around the mean values of the ran-
dom variables. Fox (1993, 1994, 1996) used Box-Behnken
design to construct global response surfaces and summa-
rized 12 criteria to evaluate the accuracy of the RSA.
Romero and Bankston (1998) employed progressive lat-
tice sampling as the design of experiments to construct
global RSA.With this approach, the accuracy of response
surface approximation around the MPP is unknown, and
caution must be taken to avoid extrapolation near the
MPP. Both approaches can be used to perform reliability
analysis for computationally expensive problems.
However, reliability analysis needs to be performed

and hence the RSA needs to be constructed at every
design point visited by the optimizer, which requires
a fairly large number of response surface constructions
and thus limit state evaluations. The local RSA approach
is even more computationally expensive than the global
approach in the design environment. Qu et al. (2003)
developed a global analysis response surface (ARS) ap-
proach in unified space of design and random variables
to reduce the number of RSA substantially and achieve
higher efficiency than the previous approach. This analy-
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sis response surface can be written as

ĝ(x,d) = Z(x,d)Tb (18)

x and d are the random variable and design variable vec-
tors, respectively. They recommended Latin hypercube
sampling as the statistical design of experiments. The
number of response surface approximations constructed
in the optimization process is reduced substantially by
introducing design variables into the response surface ap-
proximation formulation.
The selection of the RSA approach depends on the

limit state function of the problem and target probability
of failure. The global RSA approach is more efficient than
local RSA, but it is limited to problems with relatively
high probability or limit state function that can be well
approximated by regression analysis based on simple ba-
sis functions. To avoid the extrapolation problems, RSA
generally needs to be constructed around the important
region or MPP to avoid large errors in the results of MCS
induced by fitting errors in RS. Therefore, an iterative
RSA is desirable for general reliability analysis problem.
Design response surface approximations (DRS) are

fitted to probability of failure to filter out noise in MCS
and facilitate optimization. Based on past experience,
high-order DRS (such as quintic polynomials) are needed
in order to obtain a reasonably accurate approximation
of the probability of failure. Constructing highly accurate
DRS is difficult because the probability of failure changes
by several orders of magnitude over small distance in
design space. Fitting to the safety index β = −Φ−1(p),
where p is the probability of failure and Φ is the cumu-
lative distribution function of normal distribution, im-
proves the accuracy of the DRS to a limited extent. The
probabilistic sufficiency factor can be used to improve the
accuracy of DRS approximation.

4
Beam design example

The details of the beam design problem mentioned
in Sect. 2 are presented here. Since the limit state of
the problem is available in closed form, as shown by (6)
and (7), the direct Monte Carlo simulation with a suf-
ficiently large number of samples is used here (without
analysis response surface) in order to better demonstrate
the advantage of probabilistic sufficiency factors over the
probability of failure or safety index. By using the ex-
act limit state function, the errors in the results of Monte
Carlo simulation are purely due to the convergence errors,
which can be easily controlled by changing the sam-
ple size. In applications where analysis response surface
approximationmust be used, the errors introduced by ap-
proximation can be reduced by sequentially improving
the approximation as the optimization progresses.
The reliability constraints, shown in (8) to (10), are

approximated by design response surface approximates

that fit to the probability of failure, safety index, and
probabilistic sufficiency factor. The accuracy of the de-
sign response surface approximations is then compared.
The design response surface approximations are in two
design variables w and t. A quadratic polynomial in two
variables has six coefficients to be estimated. Since face
center central composite design (FCCCD, e.g. Khuri and
Cornell 1996) is often used to construct quadratic re-
sponse surface approximation, an FCCCD with 9 points
was employed here first with poor results. Based on our
previous experience, higher-order design response surface
approximations are needed to fit the probability of fail-
ure or the safety index, and the number of points of
a typical design of experiments should be about twice
the number of coefficients. A cubic polynomial in two
variables has 10 coefficients that require about 20 design
points. Latin hypercube sampling can be used to construct
the higher-order response surface (Qu et al. 2003). We
found that Latin hypercube samplingmight fail to sample
points near some corners of the design space, leading to
poor accuracy around these corners. To deal with this ex-
trapolation problem, all four vertices of the design space
were added to 16 Latin hypercube sampling points for
a total of 20 points. Mixed stepwise regression (e.g. Myers
andMontgomery 1995) was employed to eliminate poorly
characterized terms in the response surface models.

4.1
Design with strength failure mode

The range for the design response surface, shown in
Table 2, was selected based on the mean-based determin-
istic design,w= 1.9574′′ and t= 3.9149′′. The probability
of failure was calculated by directMonte Carlo simulation
with 100000 samples based on the exact stress in (6).
Cubic design response surfaces with 10 coefficients

were constructed and their statistics are shown in Table 3.
An R2adj close to one and an average percentage error
(defined as the ratio of root-mean-square error (RMSE)
predictor and mean of response) close to zero indicate
good accuracy of the response surfaces. It is seen that the
design response surfaces for the probabilistic sufficiency
factor has the highest R2adj and the smallest average per-
centage error. The standard error in probability calcu-
lated by Monte Carlo simulation can be estimated as

σp =

√
p(1−p)

M
(19)

where p is the probability of failure, and M is the sam-
ple size of the Monte Carlo simulation. If a probability

Table 2 Range of design variables for the design response
surface

System variables w t

Range 1.5′′ to 3.0′′ 3.5′′ to 5.0′′
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Table 3 Comparison of cubic design response surface approximations of probability of failure, safety index and probabilistic
sufficiency factor for single strength failure mode (based on Monte Carlo simulation of 100000 samples)

16 Latin hypercube sampling points + 4 vertices

Error Statistics Probability RS Safety index RS Probabilistic

sufficiency factor RS

R2adj 0.9228 0.9891 0.9999

RMSE predictor 0.1103 0.3027 0.002409

Mean of response 0.2844 1.9377 1.0331

APE (Average percentage 38.78% 15.62% 0.23%

error = RMSE predictor/Mean of response)

APE in Pof 38.78% 12.04% N/A

(=RMSE predictor of Pof/Mean of Pof)

of failure of 0.2844 is to be calculated by Monte Carlo
simulation of 100000 samples (the mean probability of
failure in Table 3), the standard error due to the limited
sampling is 0.00143. The RMSE error of the probability
design response surface is of 0.1103. Thus the error in-
duced by the limited sampling (100000) is much smaller
than the error of the response surface approximation to
the probability of failure.
The probabilistic sufficiency factor design response

surface has an average error less than one percent, while
the safety index design response surface has an average
error of about 15.6 percent. It must be noted, however,
that the average percent errors of the three design re-
sponse surface cannot be directly compared, because one
percent error in probabilistic sufficiency factor does not
correspond to one percent error in probability of failure or
safety index. Errors in safety index design response sur-

Table 4 Averaged errors in cubic design response surface approximations of probabilistic sufficiency factor, safety index and
probability of failure at 11 points on the curves of target reliability

Design response Probability of failure Safety index Probabilistic
surface of sufficiency factor

Average percentage error 213.86% 92.38% 10.32%
in probability of failure

Table 5 Comparisons of optimum designs based on cubic design response surface approximations of probabilistic sufficiency
factor, safety index and probability of failure

Design Minimize objective function F while β ≥ 3 or 0.00135 ≥ pof

response Optima Objective Pof/Safety index/Safety factor from

surface of function F = wt MCS of 100000 samples

Probability w = 2.6350, t= 3.5000 9.2225 0.00690/2.4624/0.9481

Safety index w = 2.6645, t= 3.5000 9.3258 0.00408/2.6454/0.9663

Probabilistic w = 2.4526, t= 3.8884 9.5367 0.00128/3.0162/1.0021

sufficiency factor

Exact optimum w = 2.4484, t= 3.8884 9.5204 0.00135/3.00/1.00

(Wu et al. 2001)

face were transformed to errors in terms of probability as
shown in Table 3. It is seen that the safety index design
response surface approximation is more accurate than the
probability design response surface approximation.
Besides the average errors over the design space, it

is instructive to compare errors measured in probability
of failure in the important region of the design space.
For optimization problems, the important region is the
region containing the optimum. Here it is the curve of tar-
get reliability according to each design response surface,
on which the reliability constraint is satisfied critically,
and the probability of failure should be 0.00135 if the de-
sign response surface approximation does not have errors.
For each design response surface approximation, 11 test
points were selected along a curve of target reliability and
given in the Appendix. The average percentage errors at
these test points, shown in Table 4, demonstrate the ac-



321

curacy advantage of the probabilistic sufficiency factor
approach. For the target reliability, the standard error
due to Monte Carlo simulation of 100000 samples is 8.6%,
which is comparable to the response surface error for the
Psf . For the other two response surfaces, the errors are
apparently dominated by the modelling errors due to the
cubic polynomial approximation.
The optima found by using the design response sur-

face approximations of Table 3 are compared in Table 5.
The probabilistic sufficiency factor design response sur-
face clearly led to a better design, which has a safety
index of 3.02 according to Monte Carlo simulation. It
is seen that the design from probabilistic sufficiency
factor design response surface approximation is very
close to the exact optimum. Note that the values of
Psf for the probability-based optimum and safety-index-
based optimum provide a good estimate to the required
weight increments. For example, with a Psf = 0.9663 the
safety-index-based design has a safety factor shortfall of
3.37 percent, indicating that it should not require more
than 2.25 percent weight increment to remedy the prob-
lem. Indeed the optimum design is 2.08 percent heavier.
This would have been difficult to infer from a probability
of failure of 0.00408, which is three times larger than the
target probability of failure.

4.2
Design with strength and displacement failure modes

For system reliability problems with strength and dis-
placement constraints, the probability of failure is cal-

Table 6 Comparison of cubic design response surface approximations of the first design iteration for probability of failure, safety
index and probabilistic sufficiency factor for system reliability (strength and displacement)

16 Latin hypercube sampling points + 4 vertices
Error statistics Probability response Safety index response Probabilistic

surface surface sufficiency factor
response surface

R2adj 0.9231 0.9887 0.9996

RMSE predictor 0.1234 0.3519 0.01055

Mean of response 0.3839 1.3221 0.9221

APE (Average percentage 32.14% 26.62% 1.14%

error = RMSE predictor/Mean of response)

APE in Pof 32.14% 10.51% N/A

(=RMSE predictor of Pof/Mean of Pof)

Table 7 Averaged errors in cubic design response surface approximations of probabilistic sufficiency factor, safety index and
probability of failure at 51 points on the curves of target reliability

Design response Probability of failure Safety index Probabilistic

surface of sufficiency factor

Average percentage error 334.78% 96.49% 39.11%

in probability of failure

culated by direct Monte Carlo simulation with 100000
samples based on the exact stress and exact displacement
in (6) and (7). The allowable tip displacement D0 is cho-
sen to be 2.25′′ in order to have two competing constraints
(Wu et al. 2001). The three cubic design response surface
approximations in the range of design variables shown
in Table 2 were constructed and their statistics are shown
in Table 6.
It is seen that the R2adj of the probabilistic suffi-

ciency factor response surface approximation is the high-
est among the three response surface approximations,
which implies that the probabilistic sufficiency factor de-
sign response surface approximation is the most accurate
in terms of averaged errors in the entire design space
defined in Table 2. The critical errors of the three de-
sign response surfaces are also compared. For each design
response surface approximation, 51 test points were se-
lected along a curve of target reliability (probability of
failure = 0.00135). The average percentage errors at these
test points, shown in Table 7, demonstrate that the prob-
abilistic sufficiency factor design response surface approx-
imation is more accurate than the probability of failure
and safety index response surface approximations.
The optima found by using the design response sur-

face approximations of Table 6 are compared in Table 8.
The probabilistic sufficiency factor design response sur-
face led to a better design than the probability or safety
index design response surface in terms of reliability. The
probability of failure of the Psf design is 0.00314 eval-
uated by Monte Carlo simulation, which is higher than
the target probability of failure of 0.00135. The deficiency
in reliability in the Psf design is induced by the errors
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Table 8 Comparison of optimum designs based on cubic design response surface approximations of the first design iteration for
probabilistic sufficiency factor, safety index and probability of failure

Design Minimize objective function F while β ≥ 3 or 0.00135 ≥ pof

response Optima Objective Pof/Safety index/Safety factor from

surface of function F = wt MCS of 100000 samples

Probability w = 2.6591, t= 3.5000 9.3069 0.00522/2.5609/0.9589

Safety index w = 2.6473, t= 3.5000 9.2654 0.00630/2.4949/0.9519

Probabilistic w = 2.6881, t= 3.500 9.4084 0.00314/2.7328/0.9733
sufficiency factor

Table 9 Range of design variables for design response sur-
face approximations of the second design iteration

System variables w t

Range 2.2′′ to 3.0′′ 3.2′′ to 4.0′′

in the probabilistic sufficiency factor design response sur-
face approximation. The probabilistic sufficiency factor
can be used to estimate the additional weight to satisfy
the reliability constraint. A scaled design of w = 2.7123
and t = 3.5315 was obtained in Sect. 2.1. The objective

Table 10 Comparison of cubic design response surface approximations of the second design iteration for probability of failure,
safety index and probabilistic sufficiency factor for system reliability (strength and displacement)

16 Latin Hypercube sampling points + 4 vertices

Error statistics Probability response Safety index response Probabilistic

surface surface sufficiency factor

response surface

R2adj 0.9569 0.9958 0.9998

RMSE predictor 0.06378 0.1329 0.003183

Mean of response 0.1752 2.2119 0.9548

APE (Average percentage 36.40% 6.01% 0.33%

error = RMSE predictor/Mean of response)

Table 11 Comparisons of optimum designs based on cubic design response surfaces of the second design iteration for probabilis-
tic sufficiency factor, safety index and probability of failure

Design Minimize objective function F while β ≥ 3 or 0.00135 ≥ pof

response Optima Objective function Pof/Safety index/Safety factor from

surface of F = wt MCS of 100000 samples

Probability w = 2.7923, t= 3.3438 9.3368 0.00511/2.5683/0.9658

Safety index w = 2.6878, t= 3.5278 9.4821 0.00177/2.9165/0.9920

Probabilistic w = 2.6041, t= 3.6746 9.5691 0.00130/3.0115/1.0009
sufficiency factor

function of the scaled design is 9.5785. The probability
of failure of the scaled design is 0.001302 (safety index of
3.0110 and probabilistic sufficiency factor of 1.0011) eval-
uated by MCS with 1000000 samples.
The design can be improved by performing another

design iteration, which would reduce the errors in design
response surface by shrinking the design space around
the current design. The reduced range of design response
surface approximations is shown in Table 9 for the next
design iteration. The design response surface approxima-
tions constructed are compared in Table 10. It is observed
again that the probabilistic sufficiency factor response
surface approximation is the most accurate.
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The optima based on design response surface approxi-
mations for the second design iteration shown in Table 10
are compared in Table 11. It is seen that the design con-
verges in two iterations with the probabilistic sufficiency
factor response design surface due to its superior accu-
racy over the probability of failure and safety index design
response surfaces.

5
Concluding remarks

The paper presented a probabilistic sufficiency factor as
a measure of the safety level relative to a target safety
level, which can be obtained from the results of Monte
Carlo simulation with little extra computation. It was
shown that a design response surface approximation can
be more accurately fitted to the probabilistic sufficiency
factor than to the probability of failure or the safety in-
dex. Using the beam design example with single or sys-
tem reliability constraints, it was demonstrated that the
design response surface approximation based on the prob-
abilistic sufficiency factor has superior accuracy and ac-
celerates the convergence of reliability-based design op-
timization. The probabilistic sufficiency factor also pro-
vides more information in regions of such low probability
where the probability of failure or safety index cannot be
estimated by Monte Carlo simulation with a given sam-
ple size, which is helpful in guiding the optimizer. Finally
it was shown that the probabilistic sufficiency factor can
be employed by the designer to estimate the required
additional weight to achieve a target safety level, which
might be difficult with probability of failure or safety
index.
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Fig. 4 Contour plot of the probabilistic safety factor design response surface approximation and test points along the curve of
target reliability
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Fig. 5 Contour plot of probability of failure design response surface approximation and test points along the curve of tar-
get reliability. The negative values of probability of failure are due to the interpolation errors of the design response surface
approximation

Appendix:
Contour plots of three design response surface
approximations and test points along the curve
of target reliability

To compare critical errors of the design response surface
approximations, 11 test points were selected along a curve
of target reliability (probability of failure = 0.00135) for
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Fig. 6 Contour plot of the safety index design response surface approximation and test points along the curve of target reliability

each design response surface approximation. The contour
plots and test points employed in error calculation for the
probabilistic sufficiency factor, probability of failure and

safety index response surface approximation are shown
by the following figures. The average percentage errors at
these test points are shown in Table 4.


