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Approximation methods in multidisciplinary analysis and

optimization: a panel discussion”

T.W. Simpson, A.J. Booker, D. Ghosh, A.A. Giunta, P.N. Koch, and R.-J. Yang

Abstract This paper summarizes the discussion at the
Approzimation Methods Panel that was held at the 9%
AIAA/ISSMO Symposium on Multidisciplinary Analysis
& Optimization in Atlanta, GA on September 2—4, 2002.
The objective of the panel was to discuss the current
state-of-the-art of approximation methods and identify
future research directions important to the community.
The panel consisted of five representatives from industry
and government: (1) Andrew J. Booker from The Boe-
ing Company, (2) Dipankar Ghosh from Vanderplaats
Research & Development, (3) Anthony A. Giunta from
Sandia National Laboratories, (4) Patrick N. Koch from
Engineous Software, Inc., and (5) Ren-Jye Yang from
Ford Motor Company. Each panelist was asked to (i) give
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one or two brief examples of typical uses of approxima-
tion methods by his company, (ii) describe the current
state-of-the-art of these methods used by his company,
(iii) describe the current challenges in the use and adop-
tion of approximation methods within his company, and
(iv) identify future research directions in approximation
methods. Several common themes arose from the discus-
sion, including differentiating between design of experi-
ments and design and analysis of computer experiments,
visualizing experimental results and data from approx-
imation models, capturing uncertainty with approxima-
tion methods, and handling problems with large num-
bers of variables. These are discussed in turn along with
the future directions identified by the panelists, which
emphasized educating engineers in using approximation
methods.

Key words analysis of variance, approximation
methods, design of experiments, kriging, response sur-
faces, surrogate models

1

Introduction

Computer-based simulation and analysis is used exten-
sively in engineering for a variety of tasks. Despite the
steady and continuing growth of computing power and
speed, the computational cost of complex high-fidelity en-
gineering analyses and simulations maintains pace. For
instance, Ford Motor Company reports that one crash
simulation on a full passenger car takes 36—160 hours (Gu
2001). The high computational expense of such analyses
limits, or often prohibits, the use of such codes in engin-
eering design and multidisciplinary design optimization
(MDO). Consequently, approximation methods such as
design of experiments combined with response surface
models are commonly used in engineering design to mini-
mize the computational expense of running such analyses
and simulations. The basic approach is to construct a sim-



plified mathematical approximation of the computation-
ally expensive simulation and analysis code, which is then
used in place of the original code to facilitate multidisci-
plinary design optimization, design space exploration, re-
liability analysis, etc. Since the approximation model acts
as a surrogate for the original code, it is often referred to
as a surrogate model, surrogate approximation, approxi-
mation model, or metamodel (i.e. a “model of a model”
(Kleijnen 1975)). A variety of approximation models exist
(e.g. polynomial response surfaces, kriging models, radial
basis functions, neural networks, multivariate adaptive
regression splines), and recent reviews and comparisons
of many of these approximation model types can be found
in (Simpson et al. 2001b,c; Jin et al. 2001; Sobieszczanski-
Sobieski and Haftka 1997; Haftka et al. 1998; Barthelemy
and Haftka 1993; Barton 1998).

To gain a better understanding of how approximation
methods are currently viewed and being used by indus-
try and government agencies, a panel discussion on Ap-
prozimation Methods was held at the 9" ATAA/ISSMO
Symposium on Multidisciplinary Analysis € Optimization
(MA&O) in Atlanta, GA on September 24, 2002. The
objective of the panel was to discuss the current state-of-
the-art of approximation methods and identify future re-
search directions important to the community. The panel
consisted of five representatives from industry and gov-
ernment: (1) Andrew J. Booker from The Boeing Com-
pany, (2) Dipankar Ghosh from Vanderplaats Research &
Development, (3) Anthony A. Giunta from Sandia Na-
tional Laboratories, (4) Patrick N. Koch from Engineous
Software, Inc., and (5) Ren-Jye Yang from Ford Motor
Company. Each panelist was asked to (i) give one or two
brief examples of typical uses of approximation methods
by his company, (ii) describe the current state-of-the-art
of these methods used by his company, (iii) describe the
current challenges in the use and adoption of approxima-
tion methods within his company, and (iv) identify future
research directions in approximation methods.

The remainder of this paper summarizes the discus-
sion that occurred at the panel and is intended to serve
as a record for the approximation methods community
at large who were unable to attend. Section 2 covers dis-
cussion points (i) and (ii). It contains a brief overview
of the example applications discussed by the panelists
along with a list of the approximation software presented
during the panel, which represents the state-of-the-art
at each company. Several common themes arose from
discussion points (iii) and (iv), and these included dif-
ferentiating between design of experiments and design
and analysis of computer experiments (Sect. 3), visual-
izing experimental results and data from approximation
models (Sect. 4), capturing uncertainty with approxima-
tion methods (Sect. 5), and handling problems with large
numbers of variables (Sect. 6). A brief summary of the
questions that followed the panelists’ opening remarks
are discussed as part of the closing remarks in Sect. 7
along with future challenges such as educating engineers
in using approximation methods.
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2
Overview of applications of approximation methods

A variety of applications were discussed by the panelists,
indicating the wide variety of uses for approximation
methods in engineering design and MDO. These applica-
tions ranged from space station power systems, to fluid
flow problems and oil tanker design, to structural design
and automotive crashworthiness. A brief overview of each
example follows.

Booker described a design of experiments approach
that was used to verify the performance of large DC
power systems for a space station (Karimi et al. 1996,
1997). Between 10 and 30 input loads could be switched
ON/OFF, and Design of Experiments was used to ana-
lyse the performance of the system and determine op-
erating conditions to achieve a desired phase margin.
Since each load could be switched either ON or OFF,
a two-level, resolution V fractional factorial design was
used to analyse the system (128 runs for the 10-variable
case, 1024 runs for the 30-variable case), and analysis
of variance (ANOVA) was used to estimate main effects.
Additional experiments on subsets of the variables were
used to confirm the optimum point determined from the
approximation.

Booker also discussed an aircraft jet engine inlet de-
sign problem involving 11 geometry parameters and five
responses that used a 12-pt Plackett—Burman design
(Plackett and Burman 1946) to achieve an accurate ap-
proximation to maximize the airflow rate on the inlet
surface (Mason et al. 1992). The design was subsequently
successively augmented by “folding over” the design to
resolve interactions and adding a centre point and star
points to estimate quadratic effects, yielding a total of 23
runs (12-pt Plackett—Burman design +5 x 2 star points
+1 centre point). The peak Mach number on the inlet
surface was estimated at five flight conditions and com-
pared to linear and quadratic model predictions; details
can be found in Mason et al. (1992). The significance of
this example was not so much the improvement in the
design, but the fact that the initial turnaround time of
two weeks for the analyses was reduced to one day by au-
tomating the set-up to run the experiments. The benefit
of the particular experimental design approach on this
problem was the ability to augment sequentially the de-
sign as turnaround time was reduced.

A fluid flow example involving the design of a cool-
ing system (Quinn 2002) was presented by Ghosh during
the panel, see Fig. 1. The example consisted of 12 design
variables, 10 constraints, and one objective function; fea-
sibility and convergence were achieved in 11 iterations,
requiring only 24 calls of Fluent, a computationally ex-
pensive fluid flow analysis software program. The approx-
imation model was successful in helping find a feasible
final solution since the initial solution was infeasible; the
optimum design was then determined directly in Fluent.

Koch discussed an oil tanker conceptual design prob-
lem from (Golovidov et al. 1999) that was used to com-
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Fig. 1 Visualization of fluid flow through cooling system
using Fluent

pare the accuracy of a single global approximation model
against two disciplinary analysis models — one for the
tanker’s hydrodynamic analyses and one for the tanker’s
structural analyses — that provided parameters for cost
estimation. The global response surface model had six in-
puts, 14 outputs, and required 50 function evaluations of
each of the actual codes (i.e. hydrodynamic and struc-
tural analyses) to build the global approximation model.
For the individual disciplinary approximations, only 25
function evaluations were required to build approxima-
tions of the four inputs and seven outputs for the hydro-
dynamic analyses, which were combined with a sequen-
tially updated Taylor-series approximation (53 evalua-
tions total) of the structural analysis. The global approx-
imation yielded a feasible tanker design with a return on
investment (ROI) of 1.118 while the combined two dis-
ciplinary approximations yielded a feasible design with
a ROI of 1.114; both designs are improvements over the
initial design, which is highly infeasible and had a scaled
ROI of 1.0. Both solutions from the approximations were
accurate to within 0.05 of the actual objective function
even though the individual approximations used fewer
function evaluations.

Approximation methods for structural analysis and
automotive crashworthiness were discussed by several
panelists. Yang described an automobile design example
involving the use of topology optimization to improve the
structural rigidity of the body (Leiva et al. 2001). Ve-
hicle safety analysis is a complex and computationally
expensive process, and researchers at Ford are inves-

Number of elements: 75 500

*Simulation time: 80 ms

«Computing time: 17 hrs (CRAY J916/16, 8 CPUs)
*N=Number of Design variables: 4 (thickness)

(a) Example Front Impact Simulation

Fig. 2 Automotive crashworthiness
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tigating the accuracy of different approximation types
for automotive crashworthiness studies (Gu 2001; Yang
et al. 2000, 2001). Yang et al. (2001) stress the impor-
tance of uniform sampling when only small sets of sample
points are available due the computational expense of
running crash simulations such as that shown in Fig. 2(a).
This example had nine input variables, 11 output re-
sponses, and used only 33 points to fit global models
to analyse crashworthiness. Meanwhile, a probabilistic
formulation for addressing uncertainty in automotive
design was presented by Koch to help identify designs
that are robust to the crash scenarios (see Fig. 2(b)) that
are considered during automotive crashworthiness stud-
ies (Koch et al. 2004; Koch and Gu 2001; Yang et al.
2002).

In addition to these examples, several software pack-
ages for building, constructing, validating, and optimiz-
ing approximation models were discussed by the pan-
elists. To avoid commercialism and bias, the reader is
referred to the following references and URLs to learn
more about the capabilities of the approximation soft-
ware packages discussed by the panelists:

— DAKOTA (Eldred et al. 2002a:)
http://endo.sandia.gov/DAKOTA.

— iSIGHT (Koch et al. 2002b):
http://www.engineous.com/products.htm.

— VisualDOC (Balabanov et al. 2002):
http://www.vrand.com/visualdoc3info.htm.

In addition to these packages, Design Explorer is being
developed at The Boeing Company to provide similar ca-
pabilities (Booker et al. 1999).

3
Challenge 1: Design of experiments versus design
and analysis of computer experiments

As mentioned previously, several common themes arose
from the panel discussion, including the need to differ-
entiate between design and analysis of computer experi-
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ments (DACE) and what we will term here “traditional
response surface methods”. There is an important dis-
tinction between physical experiments, which have ran-
dom error, and computer experiments, which are often
deterministic (i.e. the same output is obtained each time
the same input is given), which was made frequently dur-
ing the panel. Traditional response surface methods, as
discussed in Box and Draper (1987), assume that experi-
ments have sources of stochastic error, i.e. noise. They
typically assume the response function being modelled is
a polynomial. This is based on the assumption that the
independent variables are being varied in a small enough
region so that a Taylor expansion is appropriate. In con-
trast, DACE, as discussed in Sacks et al. (1989), assumes
responses are deterministic and makes only continuity
or levels of differentiability assumptions about the re-
sponse being modelled (see Fig. 3). A recent overview of
experimental design methods for computational simula-
tions can be found in Giunta et al. (2003). The next two
paragraphs describe how the underlying assumptions in
the two methods impact the choice of appropriate experi-
mental designs.

Traditional response surface methods were originally
developed for design and analysis of physical experiments
(Box and Draper 1959) where sources of random variation
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must be accounted for by randomization, by blocking,
by spreading the sample points out in the design space,
and by taking multiple data points (replicates) as shown
in Fig. 3. The design of an experiment for traditional re-
sponse surface methods will also ensure that coefficients
in a polynomial model are estimated in an “orthogonal”
(statistically independent) as possible way by account-
ing for confounding or aliasing in the experiment. So for
example, two-level fractional factorial designs for polyno-
mials with linear and cross terms (Box et al. 1978) are
constructed with sufficient “resolution” to ensure that
cross (interaction) terms can be estimated without hav-
ing the estimates influenced by the presence of linear
terms. Another example is the very important feature
of central composite designs (Box and Draper 1987) for
second-order polynomials that are typically “blocked”
to allow one to, for example, do half the experiment
on one day (block 1), and another half on a second day
(block 2).

Sacks et al. (1989) state that the “classical” notions
of blocking, replication, and randomization are irrelevant
when it comes to deterministic computer experiments. In
addition, very little is known a priori about the shape
of the response function. Thus, one could argue, sample
points should be chosen to fill the design space. Space

DoE/RS Modeling for
Physical Experiments

DACE/Kriging Models for
Computer Experiments

Space Filling

Experimental Account_ for Noise
Design :

Input variable sl -

settings at which 3
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Analysis
important variables,
relation to output

ANOVA,

Main Effects, Interactions

Functional ANOVA,
Main Effects, Interactions

Validation t-tests, F-statistics,
Determine fit R squared, Residual Plots
accuracy

Cross-validation, mean squared error

Fig. 3 Comparison of DOE/RS and DACE/Kriging (Booker 1998)
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filling experimental designs include Latin hypercube de-
signs (McKay et al. 1979), orthogonal arrays (Hedayat
et al. 1999; Owen 1992), uniform designs (Fang and Wang
1994; Fang et al. 2000), Hammersley sampling sequences
(Kalagnanam and Diwekar 1997), and minimax and max-
imin designs (Johnson et al. 1990) to name a few"?. We
note that one “experimental design” part of traditional
response surface methods, i.e. confounding or aliasing,
can be a very useful concept in deterministic experi-
ments and was the motivation for using these methods
in the power system example and engine inlet example.
These notions are somewhat accounted for in Latin hy-
percube designs and orthogonal arrays via “strength”
(Owen 1992). Note also that one could use space-filling
designs and fit traditional polynomial response surfaces
to the results as many researchers have done.

A class of designs that may bridge traditional response
surface methods and deterministic computer experiments
is “optimal designs”. A complete discussion is beyond
the scope of this paper. We note that so-called “alpha-
betic optimal designs” (Box and Draper 1987), A-, D-
and G-optimal, exist in the context of traditional experi-
ments (Box and Draper 1987) and in deterministic com-
puter experiments (Sacks et al. 1989; Johnson et al. 1990).
Roughly speaking, these designs attempt to choose points
by minimization of some measure of error in prediction,
based on an underlying assumed model. Another type of
optimal design is a “minimum bias design” (see e.g. Box
and Draper 1987, pages 437-442) that attempts to choose
points for fitting a particular model given a model for the
departure of the “true” response from the model being
fit. Minimum bias designs may be in some sense “space
filling”, depending on the assumed model for the depar-
ture. The main difficulty with optimal designs is their
calculation, especially for large problems, and the added
difficulty of specification of an “assumed departure” for
minimum bias designs. A notable exception is in Welch
(1983) in which very little is assumed about the underly-
ing “true” model.

Once sample data has been gathered, traditional re-
sponse surface modelling typically employs least-squares
regression to fit a polynomial model, typically first- or
second-order, to the sampled data so that it captures the
trends within the noisy data (see Fig. 3). Additional de-
tails on least-squares regression can be found in a number
of texts (Myers and Montgomery 1995; Box and Draper
1987; Box et al. 1978). Kriging models are constructed
using maximum likelihood estimation (see e.g. Sacks
et al. 1989; Booker 1998; Currin et al. 1991; Koehler
and Owen 1996; Giunta and Watson 1998; Simpson
et al. 2001a), and typically interpolate the data, provid-

! The orthogonal arrays mentioned here are not limited to
“Taguchi” orthogonal arrays and thus are not typically dis-
cussed in the traditional response surface literature. A notable
exception is (Hamada and Wu 2000).

2 A recent comparison of several space filling designs can be
found in Simpson et al. (2001c).

ing an exact fit of the sampled data. Non-interpolative
kriging models that “smooth” noisy data can also be
developed (Cressie 1988; Montés 1994; Kleijnen and
Van Beers 2003).

Once the approximation model is constructed, it must
be validated in order to ensure that it is sufficiently ac-
curate to use as a surrogate for the original code. Valida-
tion of response surface models is typically based on: (a)
testing statistical hypothesis (t-tests and F-statistics) de-
rived from error estimates of the variability in the data,
(b) plotting and checking the residuals, and (c) comput-
ing R2, the ratio of the model sum of squares to the
total sum of squares, and R2adj, which is R? adjusted
for the number of parameters in the model (Myers and
Montgomery 1995). Jin et al. (2001) discuss multiple per-
formance metrics for comparing approximation models
based on accuracy, efficiency, robustness, model trans-
parency, and simplicity; Yang added that Gearhart and
Wang (2001) discusses metrics for comparing response
surface models of different order to identify the “best”
model.

Sacks et al. (1989) and Welch et al. (1990) state that
statistical testing is inappropriate when it comes to deter-
ministic computer experiments which lack random error;
therefore, cross-validation and mean-square error (MSE)
are often employed to assess the accuracy of a kriging
model. A simplified procedure for leave-one-out cross
validation of kriging models is presented by Mitchell
and Morris (1992), but recent studies by Meckesheimer
et al. (2002) found that leave-one-out cross validation
does not work well for validating kriging models. Leave-
one-out cross validation often underestimates the true
root-mean-square error in a kriging model, and they sug-
gest using the more general leave-k-out cross validation
for kriging models with k= 0.1n or v/n where n is the
number of sample points used to fit the model.

4
Challenge 2: Visualizing experimental results
and data from approximation models

The importance of visualization was stressed by nearly
every panelist. First, visualization is useful for examin-
ing the experimental results themselves and can be used
to detect potential outliers in the data. Booker described
a case were an errant run of a simulation code yielded a re-
sponse about 10% orders of magnitude greater than the
other responses, which caused the resulting kriging ap-
proximation to fit poorly. The engineers had not noticed
the outlier when they examined the experimental data
file, but it showed up immediately when the design space
was plotted in 3D.

In addition to viewing the experimental results, ap-
proximation models also provide a useful surrogate for vi-
sualizing the entire design space. Koch gave the example
shown in Fig. 4 of three approximation models fit to the
same set of sample data — all three can be used to view
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Fig. 4 Graphical comparison of response surface and kriging model

the design space, but which is the most accurate? Based
on the sample data (indicated by small triangles in the fig-
ure) the design space is highly nonlinear, and it cannot
be accurately represented by a second-order RS model as
seen in Fig. 4(a). Higher-order polynomials are possible
with the given data or multiple models could be fit over
the design space; however, the plots in Fig. 4 are used
to compare global models of the most commonly used
response surface polynomials to the kriging model fit.
A fourth-order RS model is shown in Fig. 4(b) fit to the
sample data, but the symmetric fourth-order RS model
does not capture the asymmetry of the underlying func-
tion. The kriging model shown in Fig. 4(c) provides the
best fit to the sample data; it interpolates the sample data
and has sufficient flexibility to model the highly nonlinear
design space. A detailed example of a graphical compari-
son of response surface and kriging models for the design
of an aerospike rocket nozzle can be found in Simpson
et al. (2001a).

Visualization also plays an important role in opti-
mization. Ghosh stressed the importance of viewing the
history of the objective function during optimization to
monitor system performance. Koch advocated using the
approximation model to view design variable values in
real-time as they changed during optimization. Booker
stated that visualization is helpful in understanding why
a point is optimum and how it might be improved if con-
straints are changed or relaxed.

Panelists also emphasized that these visualization ca-
pabilities do not have to be very sophisticated. Booker
uses bar charts and pie charts to display functional
ANOVA results to help identify important main ef-
fects and interactions based on the sample data (Karimi
et al. 1997; Booker 1998, 2000a). Depending on the
type of experimental design, the functional ANOVA can
be computed directly, if using an orthogonal array of
strength 3 or higher (Owen 1992), or can be estimated
from the approximation model itself. Booker showed re-
sults from a sinusoidal test function proposed by Giunta
and Watson (1998) to demonstrate the useful informa-
tion that could be gained through functional ANOVA but
with some caution when using approximate models to
estimate the ANOVA (Booker 2000a).

5
Challenge 3: Capturing uncertainty
with approximation methods

Approximation methods are becoming popular tools for
modelling uncertainty and reducing the computational
expense of probabilistic analysis during probabilistic de-
sign optimization. Koch stated that a variety of prob-
abilistic methods have been developed to model and
assess the effects of known uncertainties by convert-
ing deterministic problem formulations into probabilistic
formulations, but until recently the computational ex-
pense of probabilistic analysis of a given design often
precluded its application to real engineering design prob-
lems, and probabilistic optimization has thus been con-
sidered impractical, particularly for complex multidisci-
plinary problems. He stated that approximation methods
are finding new uses in reducing the computational ex-
pensive of probabilistic analysis to make probabilistic
optimization more tractable. Approximation models are
being used at Ford to incorporate uncertainty into auto-
motive crashworthiness studies (Koch et al. 2004; Koch
and Gu 2001; Yang etal. 2002). Koch also outlined
a procedure for using approximation methods to facili-
tate reliability analysis and robust design optimization,
see Fig. 5. As an example, the oil tanker example de-
scribed in Sect. 2 was used to compare the performance
of response surface and kriging approximations for six-
sigma-based probabilistic design optimization in Koch
et al. (2002a).

Giunta used the plot in Fig. 6 to illustrate the differ-
ences between a global non-robust optimum and a local
robust optimum. Figure 6 was produced in a computa-
tional shock physics application that employed a finite
element code to simulate the implosion of an inertial con-
finement fusion capsule (Giunta et al. 2002). In this cap-
sule design study, the goal was to obtain high implosion
velocity and insensitivity to manufacturing variations of
40.005 cm on the capsule ablator radius, where the radius
varied from 0.101 cm to 0.104 cm. Giunta stated that for
this design problem it was more important to find robust,
“flat” regions in the design space that were insensitive to
these variations than it was to find the global optimum.
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Giunta presented the following formulation for simula-
tion-based optimization under uncertainty:

minimize: f(z)+ W7TS(x,u)

subject to: g1, < g(z) < gu @
ar < ATS(z,u) < ay
xp <r<uwy
x€R"

u are probabilistic (Normal Weibull Etc)

where S(z,u) are statistical metrics (e.g. means, stan-
dard deviations, failure probabilities, etc.) and W and
A are weighting vectors/matrices. Approximation models
are employed for f(x), g(x), and S(x,u) to reduce the
computational expense of these analyses. Detailed re-
sults for the computational shock physics example shown
in Fig. 6 can be found in Eldred et al. (2002b). Giunta also

mentioned that approximation models are useful for re-
ducing the numerical noise that might occur in the output
responses, citing his earlier work wherein response surface
models helped smooth numerical noise in an aerodynamic
analysis example (Giunta et al. 1994). While optimiza-
tion and uncertainty quantification are becoming more
important, they are still not viewed as critical path items
at Sandia; he said the focus is still on “getting the physics
right”.

6
Challenge 4: Handling problems with large numbers
of variables

Often referred to as the “curse of dimensionality” (Bala-
banov et al. 1996; Evans and Swartz 2000; Koch et al.
1999) a constant challenge in building accurate approxi-
mation models is handling problems with large numbers
of variables: the more design variables you have, the more
samples you need to build an accurate metamodel. This
becomes increasingly important when modelling uncer-
tainty because the design (input) variables and the un-
certain (noise) variables must be captured in the model,
thereby increasing the dimensionality of the design space
even more.

Screening experiments are often employed to reduce
the set of factors to those that are most important to the
response(s) being investigated. Statistical experimenta-
tion is used to define the appropriate design analyses that
must be run to evaluate the desired effects of the factors.
Often two-level fractional factorial designs (Montgomery
1997) or Plackett-Burman (Plackett and Burman 1946)
designs are used for screening, and only main (linear) ef-
fects of each factor are investigated.



Among the earliest such work, Box and Draper (1969)
proposed a method to gradually refine a response sur-
face model to better capture the real function by “screen-
ing” out unimportant variables. Ghosh discussed the use
of intermediate design variables to reduce the dimen-
sionality of the design space; a topology optimization
example of an automobile body to improve structural
rigidity was given as an example (Leiva et al. 2001). The
variable-complexity response surface modelling method
uses analyses of varying fidelity to reduce the design space
to the region of interest (Balabanov et al. 1999; Giunta
et al. 1996; Venter et al. 1998). A procedure for screen-
ing variables is offered by Welch et al. (1992) which uses
a kriging-based approximation methodology to identify
important variables, detect curvature and interactions,
and produce a useful approximation model for two 20
variable problems using only 30-50 runs of the computer
code. Booker noted, however, that the interaction be-
tween screening methods and optimization still needs to
be investigated further. For instance, variables that might
not be important during initial experimentation may be-
come important in the later stages of the optimization
such that the variables that were initially “screened out”
need to be added back into the model.

Problems involving mixed discrete/continuous vari-
ables were also mentioned as one of the challenges fac-
ing the design of experiments for building approximation
models. Booker emphasized that judicious selection of the
experimental design is needed when factors with discrete
levels are considered. For instance, the design variables
for the power system examples (Karimi et al. 1996, 1997)
mentioned in Sect. 2 had ON/OFF levels, mandating the
use of an experimental design with two levels. Orthogonal
arrays with discrete level choices are also available for
problems with two or more discrete levels (Owen 1992). In
general, problems with both continuous and discrete vari-
ables require special consideration and have thus far been
solved largely on a problem-by-problem basis.

7
Closing remarks and future directions

The discussion that followed the presentations by the
panelists revolved primarily around the research topics
outlined in the previous sections. Two additional topics
that continued to surface during the discussion involved
using gradient information in approximation models and
sequential methods for model fitting and building. Yang
stated that gradient information was usually not read-
ily available in their crashworthiness models; therefore,
he did not advocate the use of gradient-enhanced approx-
imations because obtaining gradient information added
computational expense. Booker and Giunta agreed that if
the information was readily available, or could be easily
obtained through procedures such as automatic differen-
tiation (Su and Renaud 1997), then it should be used
to improve the accuracy of the approximation model;
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Booker recommended a paper by Morris et al. (1993) that
offered a method for using gradient information in krig-
ing models and a paper by Koehler (1997) that discusses
the use of gradient information in kriging models and its
usefulness for estimating transmitted variation. Methods
for using gradient information to enhance approximation
models were also being developed by several members of
the audience (Liu and Batill 2000, 2002; van Keulen and
Vervenne 2002).

Sequential and adaptive approximation methods were
also being developed by several members of the audi-
ence (Pérez et al. 2002a,b,c; Rodriguez et al. 2001). A se-
quential method combining response surface models and
kriging models was also mentioned (Wang and Simpson
2002), which used “inherited” sample points in Latin hy-
percube designs as new samples were taken (Wang 2003).
The merits of sequentially sampling the design space
(Farhang-Mehr and Azarm 2002) to improve the accu-
racy of the approximation model in one or more regions of
interest were also discussed. The work by Osio and Amon
(1996)was cited for their multi-stage sampling procedure
for building kriging models.

Kriging models for approximation and global opti-
mization were another big topic of discussion. In fact,
more papers involving kriging-based approximation
models appeared at the 2002 MA&O Symposium than
at the past symposiums combined. Global optimization
procedures using kriging models were discussed (Booker
et al. 1999; Sasena et al. 2002; Audet et al. 2000), and
a procedure for calibrating a kriging model during opti-
mization that avoided problems with an ill-conditioned
correlation matrix was discussed by Booker (2000Db),
see Fig. 7. Procedures for updating the theta parameters
in a kriging model during continuous experimentation are
investigated in Martin and Simpson (2002).

In addition to outlining research directions for advanc-
ing approximation methods themselves, panelists also
charged the academic community with helping to educate
engineers in how to use them. Ghosh emphasized that
engineers should gain some basic exposure to approxima-
tion methods and their uses. He said that a strong theor-
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etical background was not necessary, but it was important
to know how to formulate a problem and interpret re-
sults to identify when problems occur. Koch echoed his
comments, stating that a basic level of understanding
is needed to build, validate, and exercise approximation
models even though the majority of these processes are
automated by software packages. A similar philosophy is
used in academia when teaching finite element methods
prior to using finite element software.

Giunta also stated that many engineers and analysts
do not have sufficient background in applied mathemat-
ics (i.e. optimization) and statistics to understand ap-
proximation methods and how they are used. They are
often unfamiliar with the statistical terms and concepts
and are overwhelmed by the many choices available for
the experimental design (e.g. central composite designs,
Latin hypercubes, uniform designs, orthogonal arrays)
and the approximation model (e.g. kriging, response sur-
faces, neural network, etc.). He closed in saying that
good graphical user interfaces can help mitigate this but
considerable “hand-holding” is needed in the meantime.
Booker made similar comments, stating that it is help-
ful to know what an engineer plans to do with the results
(e.g. identify main effects, screen variables, use the ap-
proximation for optimization) since that often dictates
the approach and tools employed in the study.
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