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Structural optimization as a harmony of design, fabrication and
economy

J. Farkas

Abstract The main requirements of load-carrying en-
gineering structures are safety, producibility and econ-
omy. The role and importance of fabrication constraints
and costs is shown in the case of a compression tubu-
lar strut, a tubular truss of parallel chords and a welded
stiffened square plate. The evaluation of optimal versions
of these structures shows that, neglecting the fabrication
constraints and costs, the design cannot result in up-to-
date solutions.

Key words fabrication constraints, minimum-cost de-
sign, residual welding deformations, tubular structures,
welded structures

Requirements of engineering structures

Optimization means a search for better solutions, which
better fulfil the requirements. For a modern load-carrying
engineering structure the main requirements are as
follows: load-carrying capacity (safety), producibility
and economy. These requirements can be fulfilled by
a structural synthesis system, in which a cost func-
tion is minimized considering constraints on design and
producibility.
This system can be symbolized by a simple spatial

structure as shown in Fig. 1. This symbol also shows two
important aspects: (1) when a requirement is missing,
the system does not work well, does not give better so-
lutions; (2) a tight cooperation (harmony) should be re-
alized among these main aspects, since they affect each
other significantly. Structural optimization is a general
system, which can synthesize all the important engineer-
ing aspects.
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Fig. 1 A structural optimization system

At the analytical level the structural characteristics
of the investigated type should be analysed as follows:
loads, materials, geometry, boundary conditions, profiles,
topology, fabrication, joints, transport, erection, mainte-
nance, costs. Those variables should be selected, changing
which best solutions can be achieved. A cost function and
constraints on design and fabrication should be mathe-
matically formulated as a function of these variables.
At the level of synthesis the cost function should be

minimized using effective mathematical methods for the
constrained function minimization. Comparing the opti-
mum solutions, designers can select the most suitable one.
This comparison can result in significant mass and cost
savings in the design stage.
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Structural solutions can be evaluated with respect to
the three main requirements mentioned above. The fol-
lowing three examples can serve as illustrations of this
evaluation.

Example 1: a circular hollow section (CHS) strut
of constant cross-section, loaded in compression

Two solutions are compared: the Euler solution does
not take into account the initial imperfection, which
is unavoidable in fabrication, the Eurocode 3 solution
calculates with initial crookedness and residual stresses
due to welding or cold-forming. Both solutions consider
the minimum cross-sectional area as the objective (cost)
function.

The Euler solution

The critical flexural buckling stress is

σE = π
2E/λ2 ; λ=KL/r ; r =

√
Ix/A (1)

where E is the elastic modulus, λ is the slenderness, K
is the end restraint factor (for pinned ends K = 1), Ix is
the moment of inertia, A is the cross-sectional area, and
r is the radius of gyration. In the calculation, the values
of yield stress fy = 355MPa, a= (50/(8 π))

1/2 = 1.4105,
K = 1 and a limiting slenderness of δ =D/t= 50 are used.
For CHS, using the notation δ = D/t = (d− t)/t,

where D is the mean diameter and d is the outside diam-
eter, t is the thickness, the following formulae are valid
(Farkas and Jármai 1997)

Ix =
πD3t

8
=
πD4

8δ
; A=

πD2

δ
; r =

D
√
8
= a
√
A ;

a=

√
δ

8π
(2)

Using (2), the slenderness can be expressed by A as fol-
lows:

λ2 =
L2

r2
=
L2

a2A
=
104

a2
1

104A/L2
=

5027

104A/L2
(3)

The flexural buckling constraint can be expressed as

N

A
≤ χfy ; χ=

1

λ̄2
for λ̄≥ 1

χ= 1 for λ̄≤ 1 (4)

where

λ̄= λ/λE ; λE = π (E/fy)
1/2
= 76.4091 (5)

From

104N/L2

104A/L2
≤
fy

λ
2 =
fyλ

2
E

λ2
(6)

using (4) one obtains

104A

L2
=

1

76.4091

√
5027

355

√
104N

L2
= 0.049247

√
104N

L2
(7)

valid for λ≥ λE . For λ≤ λE taking χ= 1 in (4) we get

104A

L2
≥
104N

L2fy
(8)

The Eurocode 3 (1992) (EC3) solution

The differential equation for a centrally compressed strut
with pinned ends and a sinusoidal initial crookedness
(Fig. 2)

a= a0 sin(πz/L) (9)

is

d2y

dz2
=−

M

EIx
=−
N(a+y)

EIx
(10)

N is the compressive force. Searching the solution in the
form of

y = y0 sin(πz/L) (11)

we get

y0 =
a0

FE/N −1
(12)

Fig. 2 An initially crooked compression strut and its second-
order deformation
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The overall buckling formula can be derived on the basis
of the check for eccentric compression

N

A
+
N(a0+y0)

Wx
≤ fy (13)

The European overall buckling curves have been deter-
mined for various sections based on statistical evaluation
of many test results.
The EC3 formula can be derived from (13) considering

one parameter which expresses the effect of initial imper-
fection and residual (welding or cold-forming) stresses as
follows.
With notations of

σ =N/A ; σE = FE/A ; ηb = a0A/Wx

Equation (13) can be written in the form

(fy−σ) (σE −σ) = ηbσσE (14)

This equation can be transformed using the following re-
lationships

σ/fy = χ ; σE/fy = π
2E/
(
fyλ

2
)
= 1/λ̄2 (15)

to obtain

(1−χ)

(
1

λ̄2
−χ

)
=
χηb

λ̄2
(16)

This leads to the following quadratic equation

χ2−

(
1+
ηb

λ̄2
+
1

λ̄2

)
χ+

1

λ̄2
= 0 (17)

The solution of (17) is

χ=
φ−
√
φ2− λ̄2

λ̄2
=

1

φ+
√
φ2− λ̄2

(18)

where

φ= 0.5
(
1+ηb+ λ̄

2
)
and ηb = α

(
λ̄−0.2

)

For λ̄≤ 0.2 it is χ= 1 .

α = 0.34 is the imperfection factor for cold-formed CHS
struts.
The strut should be checked for

N ≤ χAfy/γM1 (19)

where γM1 = 1.1 is the safety factor for buckling.

Numerical example

N = 1100 kN , L= 6m , 104N/L2 = 305.56N/mm2 ,

(a) Euler solution

104

L2
= 0.049247

(
104N

L2

)1/2
= 0.8608 ;

A= 0.8606×3600= 3099mm2 ;

D =
√
Aδ/π = 222.1 ; r = 1.4105(A)1/2 = 78.53mm .

For these values the profile of 244.5× 5mm is selected
using data of prEN 10219-2 (1996), A = 3760mm2, r =
84.7mm.
Check of the constraint: σ = 293< 355MPa.

(b) EC3 solution

Using a computer method, we get a profile of 273.0×
6mm, r = 94.4mm, A = 5030mm2. Check: 219 <
251MPa.
Evaluation: the Euler solution is “not the better” one,

it is an unsafe solution, since it does not take into account
the fabrication aspect (initial crookedness and residual
cold-forming stresses). The EC3 solution is a “better”
one, since it considers all the engineering aspects. This so-
lution requires 25% larger cross-sectional area than that
of the Euler solution.

Example 2: a tubular truss with parallel chords

The span length of a simply supported CHS truss (Fig. 3)
is L= 12a= 12×1.875= 22.5m and the original height is
H = 1.6m, i.e L/H = 14.0625 (Krampen 2001).
It is advantageous to use in calculations the ratio of

ω =H/a, in this case it is 1.6/1.875= 0.85333.
It will be shown that, changing the H/a ratio from

0.85333 to 1.3, i.e. the height from 1.6 to 2.4375 or the
ratio of L/H from 14.0625 to 9.23, significant mass and
cost savings can be achieved.
Member groups, having the same cross-section, are as

follows: 1. all chords, the governing member for tension is
GG′, for compression EJK (Fig. 3); 2. bracingmembers at
supports AB and BC, the governingmember for compres-
sion is BC; 3. all other bracing members, the governing
member for compression is DE.

Member forces in function of H/a

Loads: dead load 0.6 kN/m2, truss spacing La = 6.25m,
safety factor 1.35; service load 0.75 kN/m2, safety factor
1.50; two concentrated forces at joints J from dead load
150 kN, safety factor 1.35.
Loading vertical forces at upper nodes (symmetric)

(Fig. 3):
F ′A = 22.676 kN; FC = FE = FK = 2F

′
A = 45.351 kN;

FJ = 202.5 kN. The support reaction force is FA =
338.55 kN.
The uniformly distributed load is p = 1.35× 0.6×

6.25+1.5×0.75×6.25= 12.0938 kN/m.
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Fig. 3 The investigated simply supported CHS truss with parallel chords

The bending moment on node K is

MK = pL
2/8+1.35×150×5×1.875= 2663.75 kNm .

Forces in the governing members are as follows:

NGG′ =MK/H =MK/(ωa) (20)

(tension)
The bending moment on node G is

MG = (FA−F
′
A)5a−3aFC −aFE = 2621.15 kNm

NJK =MG/H =MG/(ωa) (21)

(compression)

NBC = (FA−F
′
A)
(
ω2+1

)1/2
/ω (22)

(compression)

NDE = (FA−F
′
A−FC)

(
ω2+1

)1/2
/ω (23)

(compression)

Check of profiles for ω= 0.85333 and 1.3

Check of profiles selected for governing members accord-
ing to prEN 10210-2 (1996) are summarized in Tables 1
and 2.

Table 1 Check of profiles in the case of ω = 0.85333

Member Stress Profile A mm2 Member Check MPa
group force kN

1 tension 193.7×10 5770 1665 288< 323

1 compression 193.7×10 5770 1638 284< 313

2 compression 139.7×5 2120 487 230< 286

3 compression 114.3×5 1720 417 242< 266

Check for tension:

N

A
≤
fy

γM1
=
355

1.1
= 323MPa (24)

Check for compression of hot-rolled sections:

N

A
≤ χ

fy

γM1
; χ=

1

φ+
(
φ2− λ̄2

)1/2 ; (25)

where

φ= 0.5
⌊
1+0.21

(
λ̄−0.2

)
+ λ̄2
⌋
; λ̄=

0.9Li
λEri

;

λE = π

(
E

fy

)1/2
= 76.4 ;

r is the radius of gyration.
It can be seen that, for a higher truss, smaller profiles

can be used.

Check of joints for eccentricity

K-joints

Prescription of the joint eccentricity according to Warde-
nier et al. (1991) is

e≤ 0.25d1 (26)
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Table 2 Check of profiles in the case of ω = 1.3

Member Stress Profile A mm2 Member Check MPa
group force kN

1 tension 139.7×10 4070 1093 266< 323

1 compression 139.7×10 4070 1075 264< 300

2 compression 114.3×6 2040 398 195< 227

3 compression 114.3×5 1720 341 198< 229

From

tan θ =
e+d1/2

g2+d2/ (2 sin θ)
; sin θ =

ω

(ω2+1)1/2
; (27)

assuming that the half gap is g2 = 0.05d2, one obtains the
following constraint

d2

2

(
ω2+1

)1/2
+d1 (0.05ω−0.75)≤ 0 (28)

For ω = 0.85333, d1 = 193.7, d2 = 139.7mm the con-
straint is fulfilled, because −45.19< 0.
For ω = 1.3, d1 = 139.7, d2 = 114.3mm the constraint

is also fulfilled, because −1.96< 0.

Joints G and G′ with two braces and a column

Gap joint can be used, when

e=
g

2
ω+
d3

2

(
ω2+1

)1/2
−
d1

2
≤ 0.25d1 (29)

where g2 =
d3
2 +2t3.

For ω = 0.85333, d1 = 193.7, d3 = 114.3mm the con-
straint is fulfilled, because 35.58< 48.42mm.
For ω = 1.3, d1 = 139.7, d2 = 114.3mm the constraint

is not fulfilled, because 111.18> 34.925mm, thus, overlap
joints should be used. This fact will be considered in the
cost calculation by a factor of 1.2 for cutting and welding
times of the two columns.

Check of chord plastification

K-joints

According to Wardenier et al. (1991) the criterion for
chord plastification is

N ≤N∗ =
fyt
2
1

sin θ

(
1.8+10.2

d2

d1

)
f (γ, g′) f (n′) ; (30)

Table 3 Checks of chord plastification for joint C

ω d1× t1 mm d2 mm NCE kN f
(
γ, g′
)

f
(
n′
)

Check kN

0.85333 193.7×10 139.7 1057 1.9145 0.7652 487< 734

1.3 139.7×10 114.3 694 1.7132 0.7867 398< 796

where

sin θ =
ω

(ω2+1)
1/2
;

f (γ, g′) = γ0.2
[
1+

0.024γ1.2

exp (0.5g′−1.33)+1

]
;

γ =
d1

2t1
; g′ =

0.1d1
t1
;

f (n′) = 1+0.3n′ (1−n′) ; n′ =−
σ

fy

(the minus sign means compression); σ =N/A.
Calculations for joint C are summarized in Table 3.

X-joints

According to Wardenier et al. (1991) the criterion for
chord plastification is expressed by

N ≤N∗ =
fyt
2
1

sin θ

5.2

1−0.81d2
d1

f (n′) (31)

Calculations for joints A and J are summarized in Ta-
bles 4 and 5.
It can be seen that the criteria for chord plastification

are fulfilled for both truss heights.

Comparison of masses and costs

The volume of the structure in mm3 is as follows:

V

103
= 41.25A1+7.5A2

(
ω2+1

)1/2
+

15A3
(
ω2+1

)1/2
+3.75A3ω (32)

Calculatingwithasteeldensityofρ= 7.85×10−6 kg/mm3

one obtains the mass for ω = 0.85333 asm= 2342 kg and
for ω = 1.3m= 1913 kg, thus, the saving in mass is 22%.
We use here an improved cost function, which includes

costs of material (profiles)KM , cutting of strut endsKC ,
assemblyKA, welding KW and painting KP (Farkas and
Jármai 2001a)
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Table 4 Check of chord plastification for joint A

ω d1× t1 mm d2 mm NAC kN f
(
n′
)
Check kN

0.85333 197.3×10 139.7 370 0.9360 487< 640
1.3 139.7×10 114.3 243 0.9411 398< 844

Table 5 Check of chord plastification for joint J

ω d1 mm d3 mm NEJK kN f
(
n′
)

Check kN

0.85333 193.7 114.3 1638 0.5682 202.5 ∼ 200.9
1.3 139.7 114.3 1075 0.6105 202.5 < 334.1

KM = 41.25kM1+7.5
(
ω2+1

)1/2
kM2+

15
(
ω2+1

)1/2
kM3+3.75ωkM3 (33)

According to the Price List (1995) the following profile
prices are considered:

for ω = 0.85333 kM1 = 51.16 , kM2 = 16.88 ,

kM3 = 14.27 $/m , KM = 2688 $ ;

for ω = 1.3 kM1 = 36.14 , kM2 = 16.88 ,

kM3 = 14.27 $/m , KM = 2137 $ .

KC = kFΘC
∑

i

2πdi
sin θ

(
4.54+0.4229t2i

)
; (34)

according to Tizani et al. (1996), the cost factor of fabri-
cation is taken as kF = 0.6667 $/min; the difficulty (com-
plexity) factor is ΘC = 3; di in m, ti in mm.
For ω = 0.85333 for diagonals, sin θ = 0.6491 and

KC = 431 $; for ω = 1.3 for diagonals, sin θ = 0.7926 and
we consider a factor of 1.2 for two columns with overlap
joints,KC = 384 $.

KA = kFΘA (κρV )
1/2
; ΘA = 3 ; (35)

the number of elements to be assembled is κ= 16.
For ω = 0.85333,KA = 387 $; for ω = 1.3,KA = 350 $.

KW = kFΘW
∑

i

CWia
n
WiLWi ; ΘW = 3.5 ; (36)

for shielded metal arc welding (SMAW) CW =
0.7889×10−3; aWi = ti (mm) is the weld size, n = 2;
LWi =

2πdi
sin θi

is the weld length in mm.
For ω = 0.85333 KW = 722 $, for ω = 1.3, consider-

ing also a factor of 1.2 for columns with overlap joint,
KW = 657 $.

KP = kPΘP
∑

i

πdiLi ; (37)

Table 6 Costs in $ for two different truss heights

ω KM KC KA KW KP K

0.85333 2688 431 387 722 1085 5313

1.3 2137 384 350 657 953 4481

according to Tizani et al. (1996) kP = 14.4 $/m
2; ΘP = 2;

Li is the strut length.
For ω = 0.85333, KP = 1085 $, for ω = 1.3, KP =

953 $.
The costs are summarized in Table 6.
It can be seen that, changing the truss height from 1.6

to 2.438m, an 18.6% cost saving can be achieved.
Evaluation: the truss of height H = 1.6m is “not the

better” solution, it takes into account only the safety and
fabrication (joints eccentricity) requirements and not the
aspect of economy. On the other hand, the truss of height
H = 2.4375m is a “better” solution, since it fulfils all the
engineering requirements and enables significant savings
in mass and cost.

Example 3: a welded stiffened square plate

In this case the shrinkage of eccentric longitudinal fil-
let welds causes residual deflection. In order to produce
a high-quality welded structure, this deflection should
be limited. This limitation is formulated as a fabrica-
tion constraint. Three structural versions are optimized
as follows:

1. minimum mass (without fabrication cost): only the
design (stress and buckling) constraints (without dis-
tortion constraint) are considered

2. minimum cost (material and fabrication costs): only
the design (stress and buckling) constraints (without
distortion constraint)

3. minimum cost, with stress, buckling and distortion
constraints

The cost function

Here, a relatively simple cost function is used, which in-
cludes the material and fabrication costs in the following
form (Farkas and Jármai 1997, Jármai and Farkas 1999)

K =Km+Kf = kmρV +kf
∑

i

Ti (38)

where km and kf are the material and fabrication cost
factors, respectively, ρ is the material density, V is the
volume of the structure, and Ti are the fabrication times.
Equation (38) can be written in the form of

K

km
= ρV +

kf

km
(T1+T2+T3) (39)
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Time for preparation, assembly and tacking can be ex-
pressed as

T1 = C1Θd(κρV )
1/2 (40)

where C1 = 1min/kg
0.5, Θd is a difficulty factor express-

ing the complexity of the structure (planar or spatial,
constructed from simple plate elements or profiles), κ is
number of structural elements to be assembled.

Welding time is T2 =
∑
C2ia

n
wiLwi (41)

where aW is the weld size, LW is the weld length. For-
mulae for C2a

n
W are developed using the COSTCOMP

(1990) database for different welding technologies and
weld types (Bodt 1990).
The additional time for electrode changing, deslagging

and chipping can be calculated as

T3 = 0.3T2 (42)

The final form of the cost function is

K

km
= ρV +

kf

km

(
Θd
√
κρV +1.3T2

)
(43)

The following data of cost factors are used: km =
0.5–1.2 $/kg, kf = 0–60 $/manhour= 0–1 $/min.To give
internationally usable results, values of kf/km = 0, 1 and
2 kg/min are considered, the value of 0 means minimum
weight design.
This cost function has been applied for several struc-

tural optimization problems, such as minimum cost de-
sign of cellular plates (Farkas and Jármai 1997), welded
steel silos (Farkas and Jármai 1996) and compressed
plates (Farkas and Jármai 2000; Jármai and Farkas 1999).
The above-described cost function cannot give gener-

ally valid values, but it is suitable for realistic compar-
isons of structural versions.

Residual welding stresses and distortions

In order to determine the residual stresses and deforma-
tions in a beam due to a thermal impulse it is necessary
to know the specific strain (shrinkage) of the centroid εG
and the beam curvature C due to the eccentricity yG of
the thermal impulse AT . Assuming that the beam is ho-
mogenous, the cross-section and the thermal impulse is
constant along the beam, and the cross-sections remain

Fig. 4 Residual shrinkage and deflection of a beam due to
shrinkage of a longitudinal weld

planar during the deformation, the results of a thermoe-
lasticity calculations are as follows:

εG =AT t/A (44)

and

C =AT tyG/Ix (45)

Knowing εG and C, it is possible to calculate the shrink-
age of the beam of length L

∆L= εGL (46)

and the deflection (Fig. 4)

f = CL2/8 (47)

The thermal impulse due to a one-pass longitudinal weld
is calculated as (Okerblom et al. 1963; Farkas and Jármai
1997, 1998)

AT t=
0.3355QTα0

cρ
(48)

where

QT = ηUIW /vW (49)

is the heat input in J/mm, η is the heat efficiency of the
welding technology used, U is the arc voltage (V), IW is
the arc current (A), vW is the welding speed (mm/s), α0 is
the coefficient of thermal expansion, c is the specific heat.
For steels it is α0 = 12×10−6 and cρ= 4.77×10−3, thus

AT t= 0.844×10
−3QT . (50)

We need to calculate the welding heat inputQT as a func-
tion of weld size aw or cross-sectional area of the weld Aw
(mm2). We use for hand welding of fillet welds of size aw,
QT = 78.8 a

2
w .

In the case of a double fillet weld connecting two plates
of a T-section beam, when the second weld is performed
after the cooling of the first one, the factor is 1.3. Thus, in
the distortion constraint the formula of

QT = 1.3×78.8a
2
W (51)

is used.

An illustrative numerical example

A square plate with simply supported edges, loaded by
uniformly distributed normal load is considered (Farkas
and Jármai 2001b). The plate is stiffened by flat ribs in
two directions (Fig. 5). The ribs are continuous in one di-
rection, in the other direction they are interrupted and
welded to the others by double fillet welds. The size of
a fillet weld is aW = 0.4tS, but aW min = 4mm.
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Fig. 5 A simply supported transversely uniformly loaded square plate stiffened by flat ribs

Data: b = 6m, p0 = 5×10−3N/mm2, steel of yield
stress 235MPa, the admissible stress is σadm = 120MPa,
the elastic modulus is E = 2.1×105MPa, ρ = 7.85×
10−6 kg/mm3.
In the optimization procedure we search for the opti-

mum values of the following variables: tF , h, tS and ϕ.
The number of stiffeners is ϕ−1.
It is assumed that the base plate is welded with butt

welds from 4 strips of dimensions 6×5m. Than the stiff-
eners are welded to the base plate by double fillet welds.
Finally the interrupted ribs are welded to the other ribs
by double fillet welds.
For the butt welds gas metal arc welding with mixed

gas (GMAW-M) technology is used, thus, the welding
time depends on the thickness of the base plate as follows:

For tF ≤ 15mm

T ′2 = 3b×0.1861×10
−3t2F , (52)

for tF > 15mm

T ′2 = 3b×0.1433×10
−3t1.9035F . (53)

For longitudinal fillet welds the GMAW-M technology is
used, thus, the welding time is

T ′′2 = 4b(ϕ−1)×0.3258×10
−3a2W (54)

for transverse fillet welds the shielded metal arc welding
(SMAW) technology is assumed, thus

T ′′′2 = 4h(ϕ−1)
2×0.7889×10−3a2W . (55)

The volume of the structure is

V = b2tF +2(ϕ−1)bhtS (56)

The number of assembled elements is κ= 3+ϕ2. The cost
function can be formulated as

K

km
= ρV +

kf

km

[
Θd (κρV )

0.5
+1.3 (T ′2+T

′′
2 +T

′′′
2 )
]

(57)

where Θd = 3.
The constraint on compressive stress in the central

faceplate element is expressed by

σmax = σmax .1+σf.max ≤ σadm (58)

where σmax .1 is caused by the bending of the whole plate,
σf.max is the normal stress due to the local bending of the
plate elements, σadm is the admissible stress.

σmax .1 =
cMpb

2

Ix/a
yG (59)

The uniformly distributed normal load p also contains the
self weight, approximately p= 1.1p0. Since the torsional
stiffness of the open section ribs is very small, the stiff-
ened plate can be calculated as orthotropic having zero
torsional stiffness. Schade (1941) has calculated for this
case cM = 0.1102.
According to Fig. 5 the distance of the centroidal

axis yG can be calculated as

yG =
h

2

1

1+α
, α=

atF

htS
=
btF

ϕhtS
(60)

and the moment of inertia is

Ix =
h3tS

12

1+4α

1+α
(61)

It should be noted that the admissible stress is selected so
low that it is not necessary to calculate with an effective
width of the face plate, thus, a= b/ϕ.
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The local bending stress can be calculated by means
of formulae valid for isotropic square plates with clamped
edges (Timoshenko 1959)

σf.max =
5.13×10−2p0a2

t2F /6
=
0.3078p0b

2

ϕ2t2F
(62)

The constraint on the maximum tensile stress in the cen-
tral ribs can be written as

σmax .2 = σmax .1(1+2α)≤ σadm (63)

Considering the constraint on local buckling of the central
face plate element compressed from both sides (Farkas
and Jármai 1997; Volmir 1967), for a plate compressed on
one side the buckling factor is k = 4. Instead of this value
we calculate with k = 2. For k = 4 the Eurocode 3 (1992)
gives for the limiting slenderness

(a/tF )lim = 42ε , ε= (235/fy)
0.5 , (64)

where fy is the yield stress, but instead of yield stress we
can calculate with the maximum stress. Thus, for k = 2
the buckling constraint can be written as

a/tF ≤ 42ε1/
√
2≈ 30ε1 , ε1 = (235/σmax .1)

0.5
(65)

The constraint on local buckling of ribs (it is assumed
that σmax .2 can also be compressive)

h/tS ≤ 14ε2 , ε2 = (235/σmax .2)
0.5

(66)

The constraint on shear buckling of ribs at the plate edges
can be formulated as

for
τub

γb
≤ τadm

τ =
0.42pb2

htSϕ
≤
τub

γb
=
5.34π2E

12(1−ν2)γb

(
tS

h

)2
(67a)

and for
τub

γb
≥ τadm

τ ≤ τadm (67b)

The factor of 0.42 is considered, since the distribution
of edge reactions is not uniform along the edges (Timo-
shenko and Woinowsky-Krieger 1959). τadm = σadm/

√
3

is the admissible shear stress, ν is the Poisson’s ratio.
Constraint on residual distortion due to shrinkage of

welds is formulated as follows.
Although the stiffeners are welded along two direc-

tions, we do not multiply the residual deflection by 2. We
use a multiplying factor of 1.5 considering the fact that
the longitudinal double fillet welds are intermittent due
to interruption of the ribs and that the residual plastic
zones of the continuous welds affect the deflection caused
by intermittent welds. Thus, the distortion constraint is
formulated as

f = 1.5Cb2/8≤ fadm (68)

where the admissible deflection is assumed to be fadm =
b/1000= 6mm.
The orthotropic plate bending theory is valid only in

the case when the number of stiffeners is more than 3,
thus

ϕ≥ 4 (69)

It can be seen that the objective function and the de-
sign constraints are highly nonlinear. For the constrained
function minimization the Rosenbrock’s hill-climb math-
ematical programming method is used (detailed descrip-
tion can be found in Farkas and Jármai (1997)) comple-
mented by an additional discretization of the continuous
optima considering rounded dimensions and integer num-
bers of stiffeners.
The optimum discrete values are given in Tables 7

and 8 in the function of ϕ to show the values of the cost
function in the vicinity of the optima.
It can be seen that the cost difference between the

investigated best and worst solutions in the case of
kf/km = 2 is 100(13975− 9317)/9317= 50%, thus it is
worth using the optimization procedure.
Evaluation: three solutions are compared to each

other as follows:

Table 7 Results for the case without distortion constraint.
Dimensions in mm. The optima are marked by bold letters

kf/km tF h tS ϕ K/km
(kg/min) (kg)

7 200 11 9 3636
7 190 10 10 3589

0 6 190 10 11 3485
6 190 10 12 3664
6 180 10 13 3730

1 11 250 14 4 6707
10 220 15 5 7501
9 210 14 6 7724
9 200 13 7 8184

2 11 250 14 4 9317
10 210 16 5 11454
9 210 14 6 11521
15 220 11 7 13975

Table 8 Results for the case with distortion constraint. Di-
mensions in mm. The optima are marked by bold letters

kf/km tF h tS ϕ K/km
(kg/min) (kg)

0 11 290 14 4 4256
12 260 13 5 4665
14 230 12 6 5256

1 12 250 14 4 7119
12 260 13 5 7932
14 230 12 6 9183

2 12 250 14 4 9857
13 250 13 5 11678
14 230 12 6 13109
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1. minimum mass, without distortion constraint
(Table 7): tF = 6, h = 190, tS = 10mm, ϕ = 11, the
distortion constraint is not fulfilled, since f = 19.67>
6.00mm; only the design requirement is considered,
the solution is not “better”;

2. minimum cost, without distortion constraint, for
kf/km = 1 (Table 7): tF = 11, h = 250, tS = 14mm,
ϕ = 4, the distortion constraint is not fulfilled, since
f = 6.32> 6.00mm; the design and economy require-
ments are considered, the fabrication one is not ful-
filled, the solution is not “better”;

3. minimum cost, with distortion constraint, for
kf/km = 1 (Table 8): tF = 12, h = 250, tS = 14mm,
ϕ = 4, the distortion constraint is fulfilled, since f =
5.82< 6.00mm; this solution is “better”, all the three
engineering aspects are taken into account.

Conclusions

Load-carrying capacity, producibility and economy are
the main requirements of modern engineering structures.
These requirements can be considered in a structural op-
timization system, which minimizes a cost function with
design and fabrication constraints.
Different structural versions can be evaluated consider-
ing these three main aspects. This structural evaluation is
shown in three examples.
A compression strut of circular hollow section optimized
using the Euler buckling constraint is unsafe, since this
constraint does not take into account the fabrication as-
pects i.e. the effect of initial crookedness and residual
stresses. The optimum solution using the Eurocode 3
buckling constraint is safe, but needs 25% larger cross-
sectional area.
A tubular truss of parallel chords should have an opti-
mum height (distance between chords) that minimizes
the structural cost. The original height was not economi-
cal, since 18% cost savings can be achieved by changing it.
In the case of a welded stiffened square plate a fabrica-
tion constraint should be fulfilled, which expresses the
limitation of residual deflection caused by the shrinkage
of eccentric longitudinal welds. Neglecting this constraint
the optimization cannot result in a high-quality welded
structure.
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Rheinland


