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Survey of multi-objective optimization methods for engineering

R.T. Marler and J.S. Arora

Abstract Asurveyofcurrentcontinuousnonlinearmulti-
objective optimization (MOO) concepts and methods is
presented. It consolidates and relates seemingly differ-
ent terminology and methods. The methods are divided
into three major categories: methods with a priori ar-
ticulation of preferences, methods with a posteriori ar-
ticulation of preferences, and methods with no articula-
tion of preferences. Genetic algorithms are surveyed as
well. Commentary is provided on three fronts, concern-
ing the advantages and pitfalls of individual methods,
the different classes of methods, and the field of MOO
as a whole. The Characteristics of the most significant
methods are summarized. Conclusions are drawn that re-
flect often-neglected ideas and applicability to engineer-
ing problems. It is found that no single approach is supe-
rior. Rather, the selection of a specific method depends on
the type of information that is provided in the problem,
the user’s preferences, the solution requirements, and the
availability of software.
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Fmaxi Maximum objective function values
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F normi Normalized objective functions
Fs Primary objective function
F transi Transformed objective functions
F◦ Utopia point
F Vector of objective functions (point in the criterion
space)

gj Inequality constraints
hl Equality constraints
k Number of objective functions
λ Min-max parameter
m Number of inequality constraints
n Number of design variables
p Exponent for a global criterion
U Utility function
w Vector of weighting coefficients/exponents
x Vector of design variables (point in the design space)
X Feasible design space
z Aspiration point
Z Feasible criterion space

1
Introduction

1.1
Background and objectives

The process of optimizing systematically and simultan-
eously a collection of objective functions is called multi-
objective optimization (MOO) or vector optimization.
This paper is a survey of methods for MOO and is a con-
densation of the work by Marler and Arora (2003), which
provided a comprehensive review of methods (and their
variants) with an eye towards engineering applications.
In contrast, this survey excludes many of the technical
details and, instead, provides a road map of currently
available continuous nonlinear methods and literature.
General concepts are briefly described, and references are
included for further investigation. In addition, this paper
consolidates seemingly different concepts, methods, and
terminology stemming from diverse applications.
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1.2
Definition of a multi-objective optimization problem

The general multi-objective optimization problem is
posed as follows:

Minimize F (x) = [F1 (x) , F2 (x) , . . . , Fk (x)]
T

x

subject to gj (x)≤ 0 , j = 1, 2, . . . ,m ,
(1)

hl (x) = 0 , l = 1, 2, . . . , e ,

where k is the number of objective functions, m is the
number of inequality constraints, and e is the number of
equality constraints. x∈En is a vector of design variables
(also called decision variables), where n is the number
of independent variables xi. F (x) ∈Ek is a vector of ob-
jective functions Fi (x) : E

n→ E1. Fi (x) are also called
objectives, criteria, payoff functions, cost functions, or
value functions. The gradient of Fi (x) with respect to
x is written as ∇xFi (x) ∈ En. xi∗ is the point that
minimizes the objective function Fi (x). Any comparison
(≤,≥, etc.) between vectors applies to corresponding vec-
tor components.
The feasible design space X (often called the feas-

ible decision space or constraint set) is defined as the
set {x|gj (x) ≤ 0, j = 1, 2, ...,m; and hi(x) = 0, i = 1, 2,
..., e}. The feasible criterion space Z (also called the feas-
ible cost space or the attainable set) is defined as the
set {F(x)|x ∈X}. Although the terms feasible criterion
space and attainable set are both used in the literature
to describe Z, there is a subtle distinction between the
ideas of feasibility and attainability. Feasibility implies
that no constraint is violated. Attainability implies that
a point in the criterion space maps to a point in the de-
sign space. Each point in the design space maps to a point
in the criterion space, but the reverse may not be true;
every point in the criterion space does not necessarily cor-
respond to a single point x ∈X. Consequently, even with
an unconstrained problem, only certain points in the cri-
terion space are attainable. In this study, Z is used to
indicate points in the criterion space that are feasible and
attainable.

1.3
Motivation and overview of the literature

Althoughsurveysofmulti-objectiveoptimizationmethods
are common, they are often incomplete in terms of com-
prehensive coverage, algorithm presentation, and gen-
eral applicability to engineering design. For example,
many surveys only target specific applications (Jendo
et al. 1985; Psarras et al. 1990; Tseng and Lu 1990), while
others only address the critical literature in the field. As
opposed to presenting computational methods, some sur-
veys focus on historical aspects (Stadler 1987). At the
opposite end of the spectrum are discussions that focus

on mathematics (Yu 1985; Dauer and Stadler 1986). Sur-
veys that do explicitly present a variety of algorithms
tend to incorporate minimal discussion of their advan-
tages and disadvantages, and most surveys only target
a limited number of approaches (Boychuk and Ovchin-
nikov 1973; Gerasimov and Repko 1978; Roy and Vincke
1981; Koski 1984; Osyczka 1985; Stadler 1988; Stadler
and Dauer 1992). Much of the early pioneering work with
multi-objective optimization focuses specifically on struc-
tural design (Baier 1977; Leitmann 1977; Stadler 1977,
1978; Koski 1979, 1980; Carmichael 1980). There is a need
for a survey that is comprehensive in its consideration
of currently available methods, consolidating conceptual
and practical developments. Textbooks can be complete
in the treatment of a specific topic (Hwang and Md. Ma-
sud 1979; Salukvadze 1979; Goicoechea et al. 1982; Ze-
leny 1982; Chankong and Haimes 1983; Osyczka 1984;
Steuer 1989; Eschenauer et al. 1990; Miettinen 1999). Al-
ternatively, a survey paper can provide a relatively quick
overview of the literature.

1.4
Scope of the survey

This survey addresses continuous nonlinear multi-objec-
tive optimization methods. Section 2 lays the foundation
of fundamental concepts. Then, because a primary goal
of multi-objective optimization is to model a decision-
maker’s preferences (ordering or relative importance of
objectives and goals), methods are categorized depending
on how the decision-maker articulates these preferences.
Section 3 contains methods that involve a priori articula-
tion of preferences, which implies that the user indicates
the relative importance of the objective functions or de-
sired goals before running the optimization algorithm.
Section 4 describes methods with a posteriori articulation
of preferences, which entail selecting a single solution from
a set of mathematically equivalent solutions. In Sect. 5,
methods that require no articulation of preferences are ad-
dressed.Algorithms that involve a progressive articulation
of preferences, in which the decision-maker is continu-
ally providing input during the running of the algorithm,
are not discussed. Section 6 addresses genetic global al-
gorithms. Advantages and disadvantages of the different
methods are discussed throughout the paper. In addition,
each section is followed by a broader discussion of the
methods. Section 7 provides a summary and conclusions
relevant to multi-objective optimization as a whole.

2
Basic concepts and definitions

2.1
Definition of terms

Multi-objective optimization originally grew out of three
areas: economic equilibrium and welfare theories , game
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theory, and pure mathematics. Consequently, many
terms and fundamental ideas stem from these fields.
The reader is referred to Stadler and Dauer (1992), and
Stadler (1987, 1988) for extensive discussions of these
topics and for the history of multi-objective optimization.
For the sake of brevity, only critical terms are defined be-
low. Many of these terms have multiple definitions in the
literature stemming from the differences between engin-
eering and economic jargon, and in such cases, the most
common and most appropriate definitions are used.
Preferences. Preferences refer to a decision-maker’s

opinions concerning points in the criterion space. With
methods that involve a posteriori articulation of prefer-
ences, the decision-maker imposes preferences directly on
a set of potential solution points. Then, theoretically the
final solution reflects the decision-maker’s preferences ac-
curately. With a priori articulation of preferences, one
must quantify opinions before actually viewing points in
the criterion space. In this sense, the term preference of-
ten is used in relation to the relative importance of differ-
ent objective functions. Nonetheless, this articulation of
preferences is fundamentally based on opinions concern-
ing anticipated points in the criterion space.
Preference Function. A preference function is an ab-

stract function (of points in the criterion space) in the
mind of the decision-maker, which perfectly incorporates
his/her preferences.
Utility Function. In the context of economics, utility,

which is modeled with a utility function, represents an
individual’s or group’s degree of contentment (Mansfield
1985). This is slightly different from the usual meaning of
usefulness or worth. Instead, in this case, utility empha-
sizes a decision-maker’s satisfaction. In terms of multi-
objective optimization, an individual utility function is
defined for each objective and represents the relative im-
portance of the objective. The utility function U is an
amalgamation of the individual utility functions and is
a mathematical expression that attempts to model the
decision-maker’s preferences. It is used to approximate
the preference function, which typically cannot be ex-
pressed in mathematical form.
Global Criterion. A global criterion is a scalar function

that mathematically combines multiple objective func-
tions; it does not necessarily involve utility or preference.
Game theory. Stadler (1988) writes that “the math-

ematical and economic approaches [to multi-objective
problems] were eventually united with the inception of
game theory by Borel in 1921.” According to the tradi-
tional game theory interpretation, a game is any situation
of conflict or cooperation between at least two players
with multiple possible strategies or moves. Game the-
ory represents multi-objective optimization with multiple
decision-makers, each controlling certain design variables
(Vincent 1983). If all players cooperate, the result is the
same as a single player acting as a decision-maker for
a multi-objective optimization problem.
One of the predominant classifications of multi-

objective approaches is that of scalarization methods

and vector optimization methods. Given a vector of ob-
jective functions, it is possible simply to combine the
components of this vector to form a single scalar ob-
jective function, hence the term scalarization. Although
few authors make the distinction, the term vector opti-
mization loosely implies independent treatment of each
objective function. Both approaches are discussed in this
study.

2.2
Pareto optimality

In contrast to single-objective optimization, a solution
to a multi-objective problem is more of a concept than
a definition. Typically, there is no single global solution,
and it is often necessary to determine a set of points that
all fit a predetermined definition for an optimum. The
predominant concept in defining an optimal point is that
of Pareto optimality (Pareto 1906), which is defined as
follows:

Definition 1. Pareto Optimal: A point, x∗ ∈ X, is
Pareto optimal iff there does not exist another point,
x ∈X, such that F (x) ≤ F (x∗), and Fi (x)< Fi (x∗) for
at least one function.

All Pareto optimal points lie on the boundary of the
feasible criterion space Z (Athan and Papalambros 1996;
Chen et al. 2000). Often, algorithms provide solutions
that may not be Pareto optimal but may satisfy other
criteria, making them significant for practical applica-
tions. For instance, weakly Pareto optimal is defined as
follows:

Definition 2. Weakly Pareto Optimal: A point, x∗ ∈X,
is weakly Pareto optimal iff there does not exist another
point, x ∈X, such that F (x)< F (x∗).

A point is weakly Pareto optimal if there is no other point
that improves all of the objective functions simultan-
eously. In contrast, a point is Pareto optimal if there is no
other point that improves at least one objective function
without detriment to another function. Pareto optimal
points are weakly Pareto optimal, but weakly Pareto op-
timal points are not Pareto optimal.
All Pareto optimal points may be categorized as being

either proper or improper . The idea of proper Pareto opti-
mality and its relevance to certain algorithms is discussed
by Geoffrion (1968), Yu (1985), and Miettinen (1999). It
is defined as follows:

Definition 3. Properly Pareto Optimal: A point, x∗ ∈
X, is properly Pareto optimal (in the sense of Geoffrion)
if it is Pareto optimal and there is some real number
M > 0 such that for each Fi (x) and each x ∈X satisfy-
ing Fi (x) < Fi (x

∗), there exists at least one Fj (x) such

that Fj (x
∗) < Fj (x) and

Fi(x∗)−Fi(x)
Fj(x)−Fj(x∗)

≤M . If a Pareto
optimal point is not proper, it is improper.
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The quotient is referred to as a trade-off , and it repre-
sents the increment in objective function j resulting from
a decrement in objective function i. Definition 2.3 re-
quires that the trade-off between each function and at
least one other function be bounded in order for a point to
be properly Pareto optimal.
Methods for determining whether a point is Pareto op-

timal or not are given in Benson (1978), and Brosowski
and da Silva (1994). Miettinen (1999) summarizes the
work of Benson (1978) with the following common simple
test for the point x∗:

Minimize
x∈X,δδδ≥0

k∑
i=1

δi (2)

subject to Fi (x)+ δi = Fi (x
∗) , i= 1, 2, . . . , k.

If all δi are zero, then x
∗ is a Pareto optimal point.

For any given problem, there may be an infinite num-
ber of Pareto optimal points constituting the Pareto
optimal set . Therefore, one must distinguish between
methods that provide the Pareto optimal set or some por-
tion of that set, and methods that actually seek a single
final point. Both approaches are considered in this survey.

2.3
Necessary and sufficient conditions

Whether or not solving a particular multi-objective opti-
mization formulation serves as a necessary and/or a suf-
ficient condition for Pareto optimality is central to its
performance. However, these characterizations may veer
slightly from their meaning in terms of single-objective
optimization. If a formulation provides a necessary con-
dition, then for a point to be Pareto optimal, it must
be a solution to that formulation. Consequently, every
Pareto optimal point is attainable with adjustments in
method parameters (exponents, weights, etc.), which
are discussed in Sect. 3. If a point is attainable using
a particular formulation, the formulation is said to cap-
ture that point. However, some solutions obtained using
this formulation may not be Pareto optimal. On the
other hand, if a formulation provides a sufficient con-
dition, then its solution is always Pareto optimal, al-
though certain Pareto optimal points may be unattain-
able. Many authors discuss theoretical necessary and
sufficient conditions as a means of qualifying Pareto op-
timality, and surveys on such conditions are available
(Vincent and Grantham 1981; Miettinen 1999). How-
ever, in this paper, the terms necessary and sufficient are
used in a more practical sense to describe the ability of
a method/formulation to provide Pareto optimal points.
In terms of a global criterion Fg, Stadler (1988)

presents the following sufficiency condition for a Pareto
optimal point, which is useful for evaluating the effective-
ness of a scalarization method:

Theorem 1. Let F ∈ Z, x∗ ∈X, and F∗ = F (x∗). Let
a scalar global criterion Fg (F) : Z→ R1 be differen-
tiable with ∇FFg (F) > 0 ∀ F ∈ Z. Assume Fg (F∗) =
min {Fg (F)< F ∈ Z}. Then, x∗ is Pareto optimal.

Theorem 1 suggests that minimization of a global func-
tion Fg (F) is sufficient for Pareto optimality if Fg (F)
increases monotonically with respect to each objective
function. Furthermore, if x∗ is a Pareto optimal point,
then there exists a function Fg (F) that satisfies Theo-
rem 1 and captures x∗ (Messac et al. 2000a). If minimiz-
ing Fg (F) is to provide a necessary condition for Pareto
optimality, the Hessian of Fg (F) with respect to F must
be negative definite (Athan and Papalambros 1996).

2.4
Efficiency and dominance

Efficiency, which is the same idea as admissibility or non-
inferiority (Steuer 1989), is another primary concept in
multi-objective optimization and is defined as follows:

Definition 4. Efficient and Inefficient: A point, x∗

∈X, is efficient iff there does not exist another point,
x ∈X, such that F (x)≤ F (x∗) with at least one Fi (x) <
Fi (x

∗). Otherwise, x* is inefficient.

Definition 5. Efficient Frontier: The set of all efficient
points is called the efficient frontier.

Steuer also provides the following definition for non-
dominated and dominated points:

Definition 6. Non-Dominated and Dominated Points:
A vector of objective functions, F (x∗) ∈ Z, is non-
dominated iff there does not exist another vector, F (x) ∈
Z, such that F (x) ≤ F (x∗) with at least one Fi (x) <
Fi (x

∗). Otherwise, F (x∗) is dominated.

For all practical purposes, Definitions 4 and 6 are the
same. However, efficiency typically refers to a vector of
design variables in the design space, whereas dominance
refers to a vector of functions in the criterion space.
The definition of Pareto optimality is similar to that

of efficiency, and a Pareto optimal point in the criterion
space is often considered the same as a non-dominated
point. However, efficiency and dominance were originally
given more general, less common definitions in terms of
domination structures and convex cones (Yu 1974; Yu
and Leitmann 1974). Pareto optimality is a subtly distin-
guishable special case of efficiency, but this distinction is
irrelevant in terms of practical applications.

2.5
Compromise solution

An alternative to the idea of Pareto optimality and ef-
ficiency, which yields a single solution point, is the idea
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of a compromise solution (Salukvadze 1971a,b). It entails
minimizing the difference between the potential optimal
point and a utopia point (also called an ideal point), which
is defined as follows (Vincent and Grantham 1981):

Definition 7. Utopia Point: A point, F◦ ∈ Zk, is a uto-
pia point iff for each i = 1, 2 . . . , k, F ◦i = minimumx

{Fi (x) |x ∈X}.

In general,F◦ is unattainable. The next best thing is a so-
lution that is as close as possible to the utopia point. Such
a solution is called a compromise solution and is Pareto
optimal. A difficulty with the idea of a compromise so-
lution is the definition of the word close. The term close
usually implies that oneminimizes the Euclidean distance
N(x), which is defined as follows:

N(x) = |F (x)−F◦|=

{
k∑
1

[Fi (x)−F
◦
i ]
2

} 1
2

. (3)

However, it is not necessary to restrict closeness to the
case of a Euclidean norm (Vincent 1983). In addition, if
different objective functions have different units, the Eu-
clidean norm or a norm of any degree becomes insufficient
to represent closeness mathematically. Consequently, the
objective functions should be transformed such that they
are dimensionless.

2.6
Function transformations

For the sake of consistent comparison between methods,
it is assumed that the objective functions shown in (1)
are not modified. However, in many cases it is advanta-
geous to transform the original objective functions. This
is especially true with scalarization methods that involve
a priori articulation of preferences. Therefore, we present
some common function transformation methods.
The first approach is given as follows (Proos et al.

2001):

F transi =
Fi (x)

|Fmaxi |
, (4)

which results in a non-dimensional objective function
with an upper limit of one (or negative one) and an un-
bounded lower limit (note that Fmaxi �= 0 is assumed).
There are two approaches for determining Fmaxi . One can
define Fmaxi such that Fmaxi = max

1≤j≤k
Fi
(
x∗j
)
, where x∗j

is the point that minimizes the jth objective function.
x∗j is a vertex of the Pareto optimal set in the design
space, and F

(
x∗j
)
is a vertex of the Pareto optimal set in

the criterion space. This approach of determining Fmaxi

has been used in the development of membership func-
tions for fuzzy multi-objective optimization (Marler and
Arora 2003) and for Rao’s method, which is discussed
in Sect. 5.3. Alternatively, the denominator in (4) may

also be determined using the absolute maximum (if it ex-
ists) of Fi (x) or its approximation based on engineering
intuition.
An alternative to (4) is given as follows (Osyczka 1978;

Salukvadze 1979; Hwang and Md. Masud 1979):

F transi (x) =
Fi (x)−F ◦i
F ◦i

. (5)

This approach also provides a non-dimensional objec-
tive function. However, in this case, the lower value of
F transi (x) is restricted to zero, while the upper value is
unbounded. (5) is often referred to as the relative devi-
ation or fractional deviation. Computational difficulties
can arise not only if the denominator is zero but also if it is
negative. Consequently, one assumes that the denomina-
tor is positive (Koski and Silvennoinen 1987; Eschenauer
et al. 1990), or uses its absolute value (Osyczka 1981).
The following is a variation on (5) (Koski and Silven-

noinen 1987; Chen et al. 1999):

F transi (x) =
Fi (x)

F ◦i
, F ◦i > 0 . (6)

This approach yields non-dimensional objective function
values with a lower limit of one.
The most robust approach to transforming objective

functions, regardless of their original range, is given as fol-
lows (Koski 1984; Koski and Silvennoinen 1987; Rao and
Freiheit 1991):

F transi =
Fi (x)−F ◦i
Fmaxi −F ◦i

. (7)

This approach is consistently referred to as normaliza-
tion. In this case, F transi (x) generally has values between
zero and one, depending on the accuracy and method
with which Fmaxi (x) and F ◦i (x) are determined.
It may be prohibitively expensive to compute the

utopia point used in the foregoing approaches; therefore,
one may use its approximation.

3
Methods with a priori articulation of preferences

The methods in this section allow the user to specify pref-
erences, which may be articulated in terms of goals or the
relative importance of different objectives. Most of these
methods incorporate parameters, which are coefficients,
exponents, constraint limits, etc. that can either be set
to reflect decision-maker preferences, or be continuously
altered in an effort to represent the complete Pareto op-
timal set. The latter approach is discussed in Sect. 4.
Consideration of more than one objective function in

an optimization problem introduces additional degrees
of freedom. Unless these degrees of freedom are con-
strained, mathematical theory indicates a set of solution
points rather than a single optimal point. Preferences
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dictated by the decision-maker provide constraints. The
most common approach to imposing such constraints is to
develop a utility function as defined earlier. Thus, most
of the formulations in this section are based on different
utility functions.

3.1
Weighted global criterion method

One of the most common general scalarization methods
for multi-objective optimization is the global criterion
method in which all objective functions are combined to
form a single function. The term global criterion techni-
cally can refer to any scalarized function, but it often is
reserved for the formulations presented in this subsection.
Although a global criterion may be a mathematical func-
tion with no correlation to preferences, a weighted global
criterion is a type of utility function in which method pa-
rameters are used to model preferences. One of the most
general utility functions is expressed in its simplest form
as the weighted exponential sum:

U =
k∑
i=1

wi[Fi(x)]
p , Fi(x)> 0 ∀i , (8)

U =
k∑
i=1

[wiFi(x)]
p , Fi(x)> 0 ∀i . (9)

The most common extensions of (8) and (9) are (Yu
and Leitmann 1974; Zeleny 1982; Chankong and Haimes
1983)

U =

{
k∑
i=1

wi[Fi (x)−F
◦
i ]
p

} 1
p

, (10)

U =

{
k∑
i=1

wpi [Fi (x)−F
◦
i ]
p

} 1
p

. (11)

Here,w is a vector of weights typically set by the decision-
maker such that

∑k
i=1 wi = 1 and w > 0. As with most

methods that involve objective function weights, set-
ting one or more of the weights to zero can result in
weak Pareto optimality where Pareto optimality may be
achievable. Generally, the relative value of the weights
reflects the relative importance of the objectives.
One can view the summation arguments in (10) and

(11) in two ways: as transformations of the original ob-
jective functions, or as components of a distance func-
tion that minimizes the distance between the solution
point and the utopia point in the criterion space. Conse-
quently, global criterion methods are often called utopia
point methods or compromise programming methods, as
the decision-maker usually has to compromise between
the final solution and the utopia point. For computa-
tional efficiency or in cases where a function’s indepen-
dent minimum may be unattainable, one may approxi-
mate the utopia point by z, which is called an aspiration

point (Wierzbicki 1986; Miettinen 1999), reference point
(Wierzbicki 1982), or target point (Hallefjord and Jorn-
sten 1986). When this is done, U is called an achievement
function. Assuming w is fixed, if z /∈ Z, then minimizing
(10) or (11) is necessary (with modifications in z) and
sufficient for Pareto optimality (Wierzbicki 1986). That
is, every Pareto optimal point may be captured by using
a different aspiration point z, as long as the aspiration
point is not in the feasible criterion space Z. However,
this is not a practical approach for depicting the complete
Pareto optimal set. Often, it is not possible to determine
whether z is in the feasible criterion space (z ∈ Z) before
solving the problem.
The solution to these approaches depends on the value

of p. Generally, p is proportional to the amount of em-
phasis placed on minimizing the function with the largest
difference between Fi (x) andF

◦
i (Koski and Silvennoinen

1987). Hwang and Md. Masud (1979) exclude the root
1/p, but formulations with and without the root theor-
etically provide the same solution. Global criteria yield
portions of the Pareto optimal set with continuous vari-
ation in p (Yu 1973). However, varying only p (with all
other method parameters constant) usually yields only
a limited number of Pareto optimal solution points in
a relatively small neighborhood. The current literature
does not address the repercussions of applying the expo-
nent p to the weights wi as shown in (9) and (11); these
formulations are not compared with the formulations in
(8) and (10). In fact, p and w typically are not varied or
determined in unison. Rather, one usually selects a fixed
value for p. Then, the user either sets w to reflect prefer-
ences a priori or systematically alters w to yield a set of
Pareto points. With (9) and (11), using higher values for
p increases the effectiveness of the method in providing
the complete Pareto optimal set (Athan and Papalam-
bros 1996). This is the case with (8) and (10) as well
(Messac et al. 2000a,b).
Here, we briefly discuss under what conditions solu-

tions are Pareto optimal. (10) is sufficient for Pareto opti-
mality as long asw> 0 (Chankong and Haimes 1983; Mi-
ettinen 1999). (11) is also sufficient for Pareto optimality
(Zeleny 1982). Athan and Papalambros (1996) prove that
(9), which is similar to (11), provides a necessary condi-
tion for Pareto optimality assuming F (x) ≥ 0. Techni-
cally, this means that for each Pareto optimal point xp,
there exists a vectorw and a scalar p such that xp is a so-
lution to (9). However, a relatively large value of pmay be
required in order to capture certain Pareto optimal points
especially with non-convex Pareto optimal sets, and as
p approaches infinity, minimizing (9) is no longer suffi-
cient for Pareto optimality; it is sufficient only for weak
Pareto optimality. Therefore, for a fixed value of p, (9)
cannot be both necessary and sufficient for Pareto opti-
mality. In this vein, the value of p determines the extent
to which a method is able to capture all of the Pareto opti-
mal points, even when the feasible criterion space may be
non-convex. Generally, although using a higher value for
p enables one to better capture all Pareto optimal points
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(with variation inw), doing so may also yield non-Pareto
optimal points.

3.2
Weighted sum method

The most common approach to multi-objective optimiza-
tion is the weighted sum method:

U =
k∑
i=1

wiFi (x) . (12)

This is a form of (8) or (9) with p= 1. If all of the weights
are positive, the minimum of (12) is Pareto optimal
(Zadeh 1963); i.e., minimizing (12) is sufficient for Pareto
optimality. However, the formulation does not provide
a necessary condition for Pareto optimality (Zionts 1988).
Koski and Silvennoinen (1987)present a partial weight-

ing method in which the original objective functions are
grouped into sets with common characteristics. Each set
is then used to form an independent weighted sum func-
tion with a unique set of weights, and in this way, the
number of original objective functions is reduced.
Steuer (1989) mathematically relates the weights to

the decision-maker’s preference function. Das and Dennis
(1997) provide a graphical interpretation of the weighted
sum method for two-objective problems to explain some
of its deficiencies. Eschenauer et al. (1990) give a brief
depiction of the method in criterion space. Koski and
Silvennoinen (1987) discuss and illustrate the weighted
sum method as a special case of methods that involve
a p-norm.
Misinterpretation of the theoretical and practical

meaning of the weights can make the process of in-
tuitively selecting non-arbitrary weights an inefficient
chore. Consequently, many authors have developed sys-
tematic approaches to selecting weights, surveys of which
are provided by Eckenrode (1965), Hobbs (1980), Hwang
and Yoon (1981), and Voogd (1983). Here, we briefly
describe the basic general approaches. With ranking
methods (Yoon and Hwang 1995), the different objective
functions are ordered by importance. The least import-
ant objective receives a weight of one, and integer weights
with consistent increments are assigned to objectives that
are more important. The same approach is used with
categorization methods, in which different objectives are
grouped in broad categories such as highly important , and
moderately important . With rating methods, decision-
makers assign independent values of relative importance
to each objective function. Such an approach attaches
a more than ordinal significance to each weight. Ratio
questioning or paired comparison methods provide sys-
tematic means to rate objective functions by comparing
two objectives at a time. In this vein, Saaty (1977) pro-
vides an eigenvalue method of determining weights, which
involves k (k−1)/2 pair-wise comparisons between ob-
jective functions. This yields a comparison matrix , and

the eigenvalues of the matrix are the weights. Rao and
Roy (1989) provide a method for determining weights
based on fuzzy set theory. For cases in which the rela-
tive importance of the objective functions is unclear,
Wierzbicki (1986) provides an algorithm that calculates
weights based on the aspiration point and the utopia
point.
Many authors touch on difficulties with the weighted

sum method (Koski 1985; Stadler 1995; Athan and Pa-
palambros 1996; Das and Dennis 1997; Messac et al.
2000a,b). First, despite the many methods for determin-
ing weights, a satisfactory, a priori selection of weights
does not necessarily guarantee that the final solution will
be acceptable; one may have to resolve the problem with
new weights. In fact, weights must be functions of the ori-
ginal objectives, not constants, in order for a weighted
sum to mimic a preference function accurately (Messac
1996).
The second problem with the weighted sum approach

is that it is impossible to obtain points on non-convex
portions of the Pareto optimal set in the criterion space.
Das and Dennis (1997) and Messac et al. (2000a,b) give
theoretical reasons for this deficiency. Although non-
convex Pareto optimal sets are relatively uncommon (Das
and Dennis 1998), some examples are noted in the litera-
ture (Koski 1985; Stadler and Dauer 1992; Stadler 1995).
The final difficulty with the weighted sum method is

that varying the weights consistently and continuously
may not necessarily result in an even distribution of
Pareto optimal points and an accurate, complete rep-
resentation of the Pareto optimal set. Das and Dennis
(1997) discuss this deficiency in detail and illustrate the
necessary conditions for a series of weighted sum itera-
tions to yield an even spread of points on the Pareto curve
(in the criterion space).

3.3
Lexicographic method

With the lexicographic method , the objective functions
are arranged in order of importance. Then, the following
optimization problems are solved one at a time:

Minimize
x∈X

Fi (x) (13)

subject to Fj (x)≤ Fj
(
x∗j
)
, j = 1, 2, . . . , i−1 , i > 1 ,

i= 1, 2, . . . , k .

Here, i represents a function’s position in the preferred
sequence, and Fj

(
x∗j
)
represents the optimum of the jth

objective function, found in the jth iteration. After the
first iteration (j = 1), Fj

(
x∗j
)
is not necessarily the same

as the independent minimum of Fj (x), because new con-
straints have been introduced. The constraints in (13) can
be replaced with equalities (Stadler 1988).
Some authors distinguish the hierarchical method

from the lexicographic approach, as having the following



376

constraints (Osyczka 1984):

Fj (x)≤

(
1+
δj

100

)
Fj
(
x∗j
)
, j = 1, 2, . . . , i , i > 1 .

(14)

Compared with (13), (14) represents a constraint relax-
ation, induced by increasing the right hand side of the
constraint by a percentage of Fj

(
x∗j
)
. δj ranges between

0 and 100. One may vary δj to tighten the constraints and
in this way generate different Pareto optimal points.
Waltz (1967) proposes another variation of the lexi-

cographic approach with which the constraints are for-
mulated as Fj (x) ≤ Fj

(
x∗j
)
+ δj . In this case, δj are

positive tolerances determined by the decision-maker,
and as they increase, the feasible region dictated by the
objective functions expands. This reduces the sensitiv-
ity of the final solution to the initial objective-function
ranking process. δj need not be less than 100. (14) and
Waltz’s approach combine characteristics of the lexico-
graphic method and the ε-constraint approach discussed
in Sect. 3.8. Consequently, the nature of the solutions to
these formulations is not straightforward and is not dis-
cussed in the literature.
Rentmeesters et al. (1996) demonstrate that solutions

with the lexicographic method do not satisfy the typical
constraint qualification of regularity associated with the
Kuhn–Tucker optimality conditions (Kuhn and Tucker
1950). The authors present alternate optimality condi-
tions and solve them with Newton-like methods.

3.4
Weighted min-max method

The weighted min-max formulation, or weighted Tcheby-
cheff method, is given as follows:

U =max
i
{wi [Fi (x)−F

◦
i ]} . (15)

A common approach for treating (15) is to introduce an
additional unknown parameter λ:

Minimize
x∈X,λ

λ (16)

subject to wi [Fi (x)−F ◦i ]−λ≤ 0 , i= 1, 2, . . . , k .

However, increasing the number of constraints can in-
crease the complexity of the problem.
As discussed in Sect. 3.1, increasing the value of p

can increase the effectiveness of the weighted global crite-
rion method in providing the complete Pareto optimal set
(Messac et al. 2000a,b). The weighted min-max method
shown in (15) is the limit of (11) as p→∞. Therefore,
(15) can provide the complete Pareto optimal set with
variation in the weights; it provides a necessary condi-
tion for Pareto optimality (Miettinen 1999). In addition,

it is sufficient for weak Pareto optimality (Koski and Sil-
vennoinen 1987). If the solution is unique, it is Pareto
optimal.
It is possible to modify the weighted min-max method

in order to alleviate the potential for solutions that
are only weakly Pareto optimal, using the augmented
weighted Tchebycheff method (Steuer and Choo 1983;
Kaliszewski 1985; Romero et al. 1998) or the modi-
fied weighted Tchebycheff method (Kaliszewski 1987), as
shown in (17) and (18) respectively:

U =max
i
{wi [Fi (x)−F

◦
i ]}+ρ

k∑
j=1

[
Fj (x)−F

◦
j

]
, (17)

U =max
i


wi


Fi (x)−F ◦i +ρ k∑

j=1

(
Fj (x)−F

◦
j

)

 .
(18)

ρ is a sufficiently small positive scalar assigned by the
decision-maker. Miettinen (1999) discusses and illus-
trates the features of these methods thoroughly.
Minimizing (17) or (18) is necessary and sufficient for

Pareto optimality with discrete problems and with prob-
lems involving only linear constraints (polyhedral prob-
lems) (Steuer and Choo 1983; Kaliszewski 1987). For gen-
eral problems, the two formulations are necessary and
sufficient for proper Pareto optimality (Choo and Atkins
1983; Kaliszewski 1985). Steuer (1989) suggests that (17)
is necessary and sufficient for Pareto optimality as long as
ρ is not too large, where “ . . . values between 0.0001 and
0.01 should normally suffice.”
The following modification to (17) also provides a ne-

cessary and sufficient condition for proper Pareto opti-
mality (Wierzbicki 1986):

U =max
i
{wi [Fi (x)−F

◦
i ]}+ρ

k∑
j=1

wj
[
Fj (x)−F

◦
j

]
.

(19)

Sufficiency for proper Pareto optimality implies suffi-
ciency for Pareto optimality. Therefore, (17) through (19)
always yield Pareto optimal points, but they may skip
improper Pareto optimal points. However, these formula-
tions all eliminate the possibility of weakly Pareto opti-
mal results (Miettinen 1999).
The lexicographic weighted Tchebycheff method pro-

vides another modification that always yields Pareto opti-
mal points (Tind andWiecek 1999). This approach stems
from (17) and optimality in the min-max sense (Osyczka
1978). First, one solves (15) using the formulation in (16).
This results in an optimal point and an optimal λ-value.
Then, with λ fixed at its optimum value, one minimizes∑k
i=1 [Fi (x)−F

◦
i ], still subject to the constraints in (16).

In this way, the algorithm eliminates the possibility of
non-unique solutions, and the use of ρ becomes unneces-
sary. This approach is necessary and sufficient for Pareto
optimality (Steuer and Choo 1983).
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3.5
Exponential weighted criterion

In response to the inability of the weighted sum method
to capture points on non-convex portions of the Pareto
optimal surface, Athan and Papalambros (1996) propose
the exponential weighted criterion, as follows:

U =
k∑
i=1

(epwi −1) epFi(x) , (20)

where the argument of the summation represents an in-
dividual utility function for Fi (x). Although large values
of p can lead to numerical overflow, minimizing (20)
provides a necessary and sufficient condition for Pareto
optimality. The qualifications concerning the authors’
proof for necessity and sufficiency, which are discussed in
Sect. 3.1, apply here as well.

3.6
Weighted product method

To allow functions with different orders of magnitude to
have similar significance and to avoid having to trans-
form objective functions, one may consider the following
formulation:

U =
k∏
i=1

[Fi (x)]
wi , (21)

where wi are weights indicating the relative significance
of the objective functions. Bridgman (1922) is the first
to refer to this approach and calls it a product of pow-
ers. Gerasimov and Repko (1978) successfully apply the
method, which they refer to as the valid compromise, to
the multi-objective optimization of a truss. They mini-
mize the weight, displacement, and difficulty of construc-
tion. The cross-sectional areas of the rods are the de-
sign variables, and constraints are on strength and sta-
bility. However, other than the work of Gerasimov and
Repko, the approach has not been used extensively, and
the characteristics of the weights are unclear. This lack of
extensive use could be the result of potential nonlineari-
ties in the utility function and consequent computational
difficulties.

3.7
Goal programming methods

Charnes et al. (1955), Charnes and Cooper (1961), Ijiri
(1965), and Charnes et al. (1967) developed the goal pro-
gramming method , in which goals bj are specified for each
objective function Fj (x). Then, the total deviation from

the goals
∑k
j=1 |dj | is minimized, where dj is the devi-

ation from the goal bj for the jth objective. To model
the absolute values, dj is split into positive and nega-
tive parts such that dj = d

+
j −d

−
j , with d

+
j ≥ 0, d

−
j ≥ 0,

and d+j d
−
j = 0. Consequently, |dj |= d

+
j +d

−
j . d

+
i and d

−
i

represent underachievement and overachievement, re-
spectively, where achievement implies that a goal has
been reached. The optimization problem is formulated as
follows:

Minimize
x∈X,d−,d+

k∑
i=1

(
d+i +d

−
i

)
(22)

subject to Fj (x)+d
+
j −d

−
j = bj , j = 1, 2, . . . , k ,

d+j , d
−
j ≥ 0 , j = 1, 2, . . . , k ,

d+j d
−
j = 0 , j = 1, 2, . . . , k .

In the absence of any other information, bj = F
◦
j , in which

case (22) is theoretically similar to compromise program-
ming and can be considered a type of global criterion
method (Romero et al. 1998). This is especially appar-
ent when an aspiration point is used with absolute values
signs in (9), (10), or (11). Lee and Olson (1999) provide
an extensive review of applications for goal programming.
However, despite its popularity and wide range of appli-
cations, there is no guarantee that it provides a Pareto
optimal solution. In addition, (22) has additional vari-
ables and nonlinear equality constraints, both of which
can be troublesome with larger problems.
Archimedean goal programming (or weighted goal pro-

gramming) constitutes a subclass of goal programming,
in which weights are assigned to the deviation of each
objective from its perspective goal (Charnes and Cooper
1977). The preemptive (or lexicographic) goal program-
ming approach is similar to the lexicographic method
in that the deviations |dj | = d

+
j + d

−
j for the objectives

are ordered in terms of priority and minimized lexico-
graphically as described in Sect. 3.3. Archimedean goal
programming and preemptive goal programming provide
Pareto optimal solutions if the goals form a Pareto op-
timal point or if all deviation variables, d+j for functions

being increased and d−j for functions being reduced, have
positive values at the optimum (Miettinen 1999). The
latter condition suggests that all of the goals must be
unattainable. Generally, however, Archimedean and pre-
emptive goal programming can result in non-Pareto opti-
mal solutions (Zeleny 1982).
Zeleny (1982) briefly mentions multigoal program-

ming, in which various functions of |dj | are minimized as
independent objective functions in a vector optimization
problem.
Hwang and Md. Masud (1979) present the goal at-

tainment method , initially proposed by Gembicki (1974),
which is computationally faster than typical goal pro-
gramming methods. It is based on the weighted min-max
approach and is formulated as follows:

Minimize
x∈X,λ

λ (23)

subject to Fi (x)−wiλ≤ bi , i= 1, 2, . . . , k ,
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where wi are weights indicating the relative importance
of each objective function and λ is an unrestricted scalar,
similar to that which is used in (16).
In response to the inability of goal programming to

consistently yield Pareto optimal solutions, Ogryczak
(1994) develops a method called reference goal program-
ming, which is loosely based on the weighted min-max
approach. Specifically, it entails using (19) with an as-
piration point rather than the utopia point. However, in
this case, the utility function is modeled with the goal
programming format such as (22) and always provides
a Pareto optimal solution.

3.8
Bounded objective function method

The bounded objective function method minimizes the sin-
gle most important objective function Fs (x). All other
objective functions are used to form additional con-
straints such that li ≤ Fi (x) ≤ εi, i = 1, 2, . . . , k, i �= s
(Hwang and Md. Masud 1979). li and εi are the lower and
upper bounds for the objective function Fi (x), respec-
tively. li is obsolete unless the intent is to achieve a goal
or fall within a range of values for Fi (x), rather than to
determine a minimum.
Haimes et al. (1971) introduce the ε-constraint ap-

proach (also called the e-constraint or trade-off ap-
proach), in which li is excluded. In this case, a systematic
variation of εi yields a set of Pareto optimal solutions
(Hwang and Md. Musad 1979). However, improper selec-
tion of εεε ∈Rk can result in a formulation with no feasible
solution. Goicoechea et al. (1976), Cohon (1978), and
Stadler (1988) present methods for selecting ε-values that
reflect preferences. A general mathematical guideline for
selecting εi is provided as follows (Carmichael 1980):

Fi (x
∗
i )≤ εi ≤ Fs (x

∗
i ) . (24)

If it exists, a solution to the ε-constraint formula-
tion is weakly Pareto optimal (Miettinen 1999), and any
weakly Pareto optimal point can be obtained if the feas-
ible region is convex and if all objective functions are
explicitly quasi-convex (Ruiz-Canales and Rufian-Lizana
1995). If the solution is unique, then it is Pareto opti-
mal (Miettinen 1999). Of course, uniqueness can be dif-
ficult to verify, although if the problem is convex and if
Fs (x) is strictly convex, then the solution is necessar-
ily unique (Chankong and Haimes 1983). Solutions with
active ε-constraints (and non-zero Lagrange multipliers)
are necessarily Pareto optimal (Carmichael 1980).
Carmichael (1980) applies the ε-constraint approach

to a five-bar two-objective truss problem from Majid
(1974). Weight is minimized with an ε-constraint on
nodal displacement, and ε is varied to yield a series of
Pareto optimal solutions. Four design variables represent
various dimensions and the areas of the truss members.
Two equality constraints are used to represent the struc-

tural constitutive relations, and limits are placed on each
of the design variables.
The method of proper equality constraints (PEC) is

a modified version of the ε-constraint approach that en-
tails using strict equality constraints (Lin 1976). How-
ever, the method may not always produce Pareto op-
timal solutions. Stadler and Dauer (1992) call this the
method of constraints and determine limits for εεε, suggest-
ing that varying εεε provides the Pareto optimal set. The
approach is implemented with basic mathematical exam-
ples that have two and three objective functions. Dauer
and Krueger (1980) integrate the method of constraints
with preemptive goal programming and are able to solve
problems with a larger number of objective functions.
They apply their approach to a water resource-planning
problem described by Cohon (1978). Five objective func-
tions are used to model budget, flood control capabilities,
irrigation potential, water recreation, and wildlife ben-
efits. 1500 variables are used to model design parame-
ters for two reservoir sites, six smaller flood control sites,
and three flood damage sites. 600 constraints are used
to model continuity in water mass flow, reservoir storage
capacity, irrigation restrictions, hydroelectric energy re-
quirements, and inter-basin water transfers.
Miettinen (1999) summarizes the work of Wendell

and Lee (1977) and Corley (1980) in presenting a hybrid
method , in which the primary objective function Fs (x) is
a weighted sum of all the objective functions and is sub-
ject to the constraints of the ε-constraint method. This
approach yields a Pareto optimal solution for any εεε.

3.9
Physical programming

Initially developed by Messac (1996), physical program-
ming maps general classifications of goals and objectives,
and verbally expressed preferences to a utility function.
It provides a means of incorporating preferences without
having to conjure relative weights. The reader is referred
to Messac (1996) for a complete explanation and to Chen
et al. (2000) for further illustration.
Objective functions, constraints, and goals are treated

equivalently as design metrics. In general, the decision-
maker customizes an individual utility function, which is
called a class function F i [Fi (x)], for each design metric.
Specifically, each type of design metric is first associated
with a type of individual utility function distinguished by
a general form, such as a monotonically increasing, mono-
tonically decreasing, or unimodal function. Then, for each
metric, the decision-maker specifies the numerical ranges
that correspond to different degrees of preference (desir-
able, tolerable, undesirable, etc.). These ranges include
limits on the values of the metrics, which are modeled as
additional constraints. As the design process evolves, the
ranges defining designer preferences may change accord-
ingly. Messac (1996) discusses the mathematical details
behind the construction of the class functions. Because
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of the way these class functions are constructed, physi-
cal programming is able to effectively optimize objective
functions with significantly different orders of magnitude
(Messac et al. 2004). The requirement that the decision-
maker quantitatively classify different ranges of values for
each metric can be viewed in two ways. On one hand,
it suggests that physical programming requires signifi-
cant familiarity with each objective and constraint. On
the other hand, in a more positive light, it implies that
physical programming allows one to make effective use
of available information. The individual utility functions,
as non-dimensional unimodal transformations, are com-
bined into a utility function as follows:

Fa (x) = log

{
1

dm

dm∑
i=1

F i [Fi (x)]

}
, (25)

where dm represents the number of design metrics being
considered.
Messac et al. (2001) prove that physical programming

provides a sufficient condition for Pareto optimality. In
addition, Messac and Mattson (2002) demonstrate how
physical programming can be used as a necessary condi-
tion for Pareto optimality, providing all Pareto optimal
points. In fact, it is superior to the weighted sum method
and to compromise programming in its ability to repre-
sent the complete Pareto optimal set with an even distri-
bution of points (Chen et al. 2000; Messac 2000; Messac
et al. 2001). The process by which physical programming
is used to provide multiple Pareto optimal points is de-
scribed briefly in Sect. 4.1, in reference to methods with
a posteriori articulation of preferences. Martinez et al.
(2001) demonstrate the method’s ability to handle non-
convex Pareto optimal surfaces.
Physical programming has been applied to a variety

of problems. In summarizing the application details, note
that constraints and objectives may be treated equiva-
lently as design metrics. Messac and Hattis (1996) ap-
ply physical programming to the design of high-speed
transport planes. The design metrics are the tank-
volume ratio, recurring cost per passenger seat, initial
cost per passenger seat, propellant mass ratio, fuselage-
length/wing-root-length ratio, engine inlet area, wing
sweep-back angle, and number of passengers. The de-
sign parameters are the engine inlet area, wingspan, wing
sweep-back angle, number of passengers, and propellant-
tank volume. Certain quantities appear both as design
parameters and as metrics, shedding light on the versa-
tility of this method. Although parameters may vary, the
decision-maker may express preferences regarding their
values. Messac and Wilson (1998) apply physical pro-
gramming to the design of a robust controller for a two
degree-of-freedom spring-and-mass system. There are five
design metrics: settling time, stability, noise amplifica-
tion, control effort (output of controller), and controller
complexity (indicated by controller order). The nine de-
sign variables are mathematical parameters used in the
development of the controller. Messac (2000) models un-

constrained simple beams with three objectives (mass,
displacement, and width) and two design variables (beam
height and width). Chen et al. (2000) solve a propulsion
system design problem with two objectives, five design
variables, and three constraints. Martinez et al. (2001)
optimize a relatively complex wing spar with three ob-
jectives: cost, weight, and deflection; twenty-two design
variables concerning spar dimensions; and 101 constraints
concerning strength and limits on design variables. Phys-
ical programming has also been used with complex prob-
lems such as finite element sizing optimization involving
inflatable thin-walled structural members for housing
(Messac et al. 2004).

3.10
Discussion

Given the variety of methods in this section, the ques-
tion arises as to which method is the best. Unfortunately,
there is no distinct answer. However, methods that pro-
vide both necessary and sufficient conditions for Pareto
optimality are preferable.When one is interested in deter-
mining a single solution, the advantages of obtaining only
Pareto optimal solutions (using a formulation that pro-
vides a sufficient condition) are clear. In addition, provid-
ing a necessary condition for Pareto optimality is also ad-
vantageous. Methods with this latter ability are more ef-
fective in reflecting the decision-maker’s preferences than
formulations that necessarily miss certain points (do not
provide a necessary condition). This is because, assuming
all Pareto points are similar mathematically, distinguish-
able only by the user’s preferences, there is no reason
to inherently exclude potential solutions. Such exclusion
may rob the decision-maker of a solution that best reflects
his/her preferences.
Of the methods that provide a necessary and suffi-

cient condition, which one should be used? The answer
to this question hinges, in part, on how accurately one
is able to approximate the preference function. Phys-
ical programming is effective in this respect. Whereas
a weight represents the simplest form of an individual
utility function, physical programming allows one to cus-
tomize a more complex and accurate individual utility
function for each objective. In addition, although physical
programming operates based on imposed preferences, it
provides a means to circumvent the use of weights, which
may be awkward. However, the initial coding can be rela-
tively complicated, and significant knowledge of the prob-
lem functions is needed. Consequently, although other
methods that provide a necessary and sufficient condition
may come with deficiencies, they can be useful.
The exponential weighted criterion and the aug-

mented Tchebycheff approach provide formulations that
are both necessary and sufficient for Pareto optimality.
However, they involve additional parameters ρ and p,
and it can be difficult to set them without inducing com-
putational complications. The lexicographic Tchebycheff
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method also serves as a necessary and sufficient condition,
but its pitfall is the computational expense of having to
solve multiple problems.
Formulations with an achievement function can also

provide sufficient and necessary conditions for Pareto op-
timality as long as the aspiration point is unattainable.
This is true regardless of whether or not weights are in-
corporated; the aspiration point can be used as an in-
dependent method parameter. However, when using the
formulation as a necessary condition, different solution
points are determined by altering the aspiration point.
Systematically modifying the aspiration point in an ef-
fort to represent the complete Pareto optimal set, while
ensuring that the aspiration point is infeasible, is imprac-
tical. Consequently, achievement function formulations
are most accurately categorized as methods with no ar-
ticulation of preferences, unless weights are incorporated.
The aspiration point is most effectively used only as an
approximation of the utopia point.
Most of the methods in this section allow one to de-

sign a utility function by setting method parameters.
The bounded objective function method and the more
robust ε-constraint method are apparent exceptions to
this idea. Rather than requiring weights or an ordering
of objectives, these methods involve setting limits on the
objectives. However, one can view the vector εεε as a set
of method parameters rather than as a set of functional
limits. Consistent variation in these parameters theoret-
ically can yield the complete Pareto optimal set, although
difficulties may be encountered in selecting parameters
that provide a feasible solution. Nonetheless, the differ-
ent types of method parameters discussed thus far can
be used to represent different types of preferences. Con-
sequently, the nature of the decision-maker’s preferences
(goals, relative importance of functions, limits, etc.) can
dictate which approach is most suitable.
Study of the physical programming method raises an

issue that is central to multi-objective optimization.With
physical programming, the decision-maker needs to spec-
ify a relatively large amount of information, and as we
implied, this can be viewed as a hindrance or as an oppor-
tunity. It is an opportunity in that physical programming
is relatively effective in reflecting preferences, and this ef-
fectiveness is a consequence of the method’s capacity for
information that the decision-maker may provide. With
relatively complex preferences, one must provide more in-
formation. Then, the more information one provides, the
more accurately preferences are represented. However, as
a method increases in its ability to incorporate more in-
formation, its use inherently becomes more involved.
Some methods, such as the weighted sum, have a low

capacity for preference information; they do not allow
the user to provide extensive input. This is not neces-
sarily detrimental, as there may be instances when pref-
erence information is limited or simply does not exist.
The decision-maker may not know exactly what he/she
wants, and such scenarios do not warrant approaches
that can incorporate additional information. In the ex-

treme, the decision-maker may have no preferences what-
soever, in which case methods with no articulation of
preferences (discussed in Sect. 5) are most appropriate.
Thus, discussing effectiveness in reflecting preferences
assumes that preferences exist, which may not always
be the case. In addition, the decision-maker may have
varying amounts of preference information, and this can
dictate the complexity of the approach that should be
used.

4
Methods for a posteriori articulation of preference

In some cases, it is difficult for a decision-maker to ex-
press an explicit approximation of the preference func-
tion. Therefore, it can be effective to allow the decision-
maker to choose from a palette of solutions. To this end,
an algorithm is used to determine a representation of the
Pareto optimal set. Such methods incorporate a posteri-
ori articulation of preferences, and they are called cafete-
ria or generate-first-choose-later approaches (Messac and
Mattson 2002).
The use of weighted methods is a common means

of providing the Pareto optimal set (or subset). These
methods all depend on the solution of multiple sequen-
tial optimization problems with a consistent variation in
method parameters. When these methods are used to
provide only a single Pareto optimal point, the decision-
maker’s preferences are presumably embedded in the pa-
rameter set. On the other hand, when the decision-maker
desires a set of Pareto optimal points, the parameters
vary simply as a mathematical device. In such cases, it
is important for the formulation to provide a necessary
condition for Pareto optimality, encompassing the abil-
ity to yield all of the Pareto optimal points. However,
repeatedly solving the weighted formulations in Sect. 3
can be ineffective in providing an even spread of points
that accurately represents the complete Pareto optimal
set. In addition, although a formulation theoretically pro-
vides a necessary condition, it may not be clear how to set
method parameters in order to capture only Pareto opti-
mal points. Consequently, some algorithms are designed
specifically to produce a set of Pareto optimal points that
accurately represents the complete Pareto set.

4.1
Physical programming

Although it was initially developed for a priori articula-
tion of preferences, physical programming can be effective
in providing Pareto optimal points that accurately rep-
resent the complete Pareto optimal set, even when the
Pareto optimal surface is non-convex (Messac and Matt-
son, 2002; Martinez et al. 2001). As explained earlier,
when physical programming is used for a priori articula-
tion of preferences, the decision-maker specifies a set of
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constants that delineates numerical ranges of objective
function and constraint values. These ranges are associ-
ated with different degrees of preference (desirable, tol-
erable, undesirable, etc). This is done for each metric,
resulting in a unique utility function. In order to represent
the complete Pareto optimal set for a posteriori articu-
lation of preferences, Messac and Mattson (2002), and
Messac et al. (2001) provide a detailed algorithm for sys-
tematically modifying these constants as a mathematical
tool rather than an indication of preferences. As the con-
stants are shifted, contours of the utility function traverse
the criterion space, capturing different Pareto optimal
points.

4.2
Normal boundary intersection (NBI) method

In response to deficiencies in the weighted sum approach,
Das (1999) and Das and Dennis (1998) present the nor-
mal boundary intersection (NBI) method . This method
provides a means for obtaining an even distribution of
Pareto optimal points for a consistent variation in the
user-supplied parameter vector w, even with a non-
convex Pareto optimal set. The approach is formulated as
follows:

Minimize
x∈X,λ

λ (26)

subject to Φw+λn= F (x)−F◦ .

Φ is a k× k pay-off matrix in which the ith column is
composed of the vector F (xi

∗)−F◦, where F (xi∗) is the
vector of objective functions evaluated at the minimum
of the ith objective function. The diagonal elements of Φ
are zeros. w is a vector of scalars such that

∑k
i=1 wi = 1

and w ≥ 0. n=−Φe, where e ∈Rk is a column vector of
ones in the criterion space. n is called a quasi-normal vec-
tor. Since each component of Φ is positive, the negative
sign ensures that n points towards the origin of the cri-
terion space. n gives the NBI method the property that
for any w, a solution point is independent of how the ob-
jective functions are scaled. As w is systematically modi-
fied, the solution to (26) yields an even distribution of
Pareto optimal points representing the complete Pareto
set.
Technically, the NBI method finds the portion of the

boundary of Z that contains the Pareto optimal points.
However, the method may also yield non-Pareto opti-
mal points; it does not provide a sufficient condition for
Pareto optimality. This is not necessarily a disadvantage,
since such points help construct a “ . . . smoother ap-
proximation of the Pareto boundary” (Das and Dennis
1998).
The NBI method also overlooks some Pareto optimal

points when k > 2; it does not always serve as a necessary
condition for Pareto optimality. However, the overlooked
points tend to lie near the periphery of the Pareto set

and are not significant in terms of deciding with which
objective to accept a loss and with which to pursue an
improvement. Das (1999) provides a modification to the
NBI method that enables it to yield a greater number of
Pareto points in the nonlinear portions of the Pareto op-
timal surface.
Das and Dennis (1998) apply the NBI method to

a relatively simple two-objective mathematical example
and to a three-bar truss design problem from Koski
(1988). In the latter problem, five objective functions are
used to represent the total volume, the nodal displace-
ment, and the absolute value of the stress in each bar. The
four design variables are the cross-sectional area of each
bar and the position of the vertical bar, which has a fixed
length. The constraints consist of limits on the stresses.

4.3
Normal constraint (NC) method

The normal constraint method provides an alternative to
the NBI method with some improvements (Messac et al.
2003). When used with normalized objective functions
and with a Pareto filter , which eliminates non-Pareto op-
timal solutions, this approach provides a set of evenly
spaced Pareto optimal points in the criterion space. In
fact, it always yields Pareto optimal solutions. In add-
ition, its performance is independent of design objective
scales. The method proceeds as follows.
First, the utopia point is determined, and its com-

ponents are used to normalize the objectives with (7).
The individual minima of the normalized objective func-
tions form the vertices of what is called the utopia hy-
perplane (in the criterion space). A sample of evenly dis-
tributed points on the utopia hyperplane is determined
from a linear combination of the vertices with consis-
tently varied weights in the criterion space. The user must
specify how many points are needed to accurately repre-
sent the Pareto optimal set. Then, each sample point is
projected onto the Pareto optimal surface (boundary of
the feasible criterion space) by solving a separate single-
objective problem. This problem entails minimizing one
of the normalized objective functions with additional in-
equality constraints. Note that the NBI method involves
additional equality constraints. Under “contrived circum-
stances,” the method described thus far may generate
non-Pareto optimal solutions, so a Pareto filter is used
to rectify this potential fault. Essentially, the filter al-
gorithm searches for and deletes any dominated solution
points. This is done by comparing each potential solution
point to every other solution point. All dominated points
are discarded. Similar procedures are common with ge-
netic algorithms, as discussed in Sect. 6.
Messac et al. (2003) apply this approach to two il-

lustrative mathematical examples, each with two objec-
tives, two variables, and one constraint. In addition, the
method is applied to a three-bar truss problem from
Koski (1985). The cross-sectional areas of the bars are
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the design variables. The linear combination of nodal
displacement and the volume are minimized. Limits are
placed on the design variables and on the stresses in each
bar.

4.4
Discussion

The methods in this section allow the decision-maker to
view options before making a decision. One does not con-
sider which objective function is more or less important;
one only considers which solution is most appealing. This
can be done in terms of the design space or in terms of
the criterion space; one may select a final point based
on objective function values or based on design variable
values. Nonetheless, one must eventually present the solu-
tions to the decision-maker in graphical or tabular form.
Graphical presentations of solutions generally are limited
to three-dimensional space, and even three-dimensional
representations of a Pareto surface can be unclear. When
presenting solutions in tabular form, selecting a single so-
lution can be an intimidating task with a relatively large
number of objectives, variables, or solution points. Con-
sequently, these methods are best suited to problems with
a relatively small number of objectives.
In terms of computational expense and in terms of

presentation to the user, one must decide how many
points to use to represent the Pareto optimal set. On
one hand, using more solution points requires additional
computation time, but it can provide a clearer represen-
tation of the Pareto optimal set. On the other hand, using
fewer points requires less CPU and makes presentation of
Pareto solutions in tabular form more manageable, but it
can result in an incomplete depiction of the Pareto set.
Genetic algorithms, which are discussed later in the

paper, also provide a useful approach for determining
the Pareto optimal set for a posteriori articulation of
preferences.

5
Methods with no articulation of preferences

Often the decision-maker cannot concretely define what
he or she prefers. Consequently, this section describes
methods that do not require any articulation of pref-
erences. Most of the methods are simplifications of the
methods in Sect. 3, typically with the exclusion of method
parameters. Consequently, much of the discussion in
Sect. 3 applies to this section as well.

5.1
Global criterion methods

The fundamental idea behind most global criterion
methods is the use of an exponential sum, which is formed
by setting all of the weights in (8) or (9) to one. This

yields a single function Fg(F). Whereas such an approach
is the lowest common denominator, the primary general
global criterion formulation, which can be reduced to
many other formulations, is given by (10) or (11) with all
of the weights equal to one (Hwang and Md. Masud 1979;
Zeleny 1982; Stadler 1988). Variations of the basic global
criterion method are discussed as follows.
Technique for order preference by similarity to ideal

solution
When forming a measure of distance, it is possible and

often necessary to seek a point that not only is as close
as possible to the utopia point but also is as far away as
possible from some detrimental point. The technique for
order preference by similarity to ideal solution (TOPSIS)
takes this approach and is a form of compromise program-
ming (Yoon 1980; Hwang et al. 1993). The utopia point is
the positive ideal solution, and the vector in the criterion
space that is composed of the worst or most undesirable
solutions for the objective functions is called the nega-
tive ideal . Similarity is developed as a function that is
inversely proportional to the distance from the positive
ideal and directly proportional to the distance from the
negative ideal. Then, the similarity is maximized.
Hwang et al. (1993) use this method with fuzzy the-

ory and solve a linear nutrition problem. The problem
involves seven variables that represent quantities of dif-
ferent types of food; three objective functions modeling
carbohydrate intake, cholesterol intake, and cost; and ten
constraints representing limits on the intake of various vi-
tamins and food groups.
Objective sum method
When (8) is used with p = 1 and w = 1, the result

is simply the sum of the objective functions. Not only
is this a special case of a global criterion method, it is
a special case of the weighted sum method discussed in
Sect. 3.2. We introduce the term objective sum method
to highlight a fundamental approach that always provides
a Pareto optimal solution. In addition, it provides a fur-
ther example of the similarities between the methods in
this section and those in Sect. 3.
Min-max method
A basic min-max formulation is derived by excluding

the weights in (8) and (9), and using p=∞. Assuming the
weights are excluded (10) yields an L∞-norm, which does
not necessarily yield a Pareto optimal point (Yu 1973;
Stadler 1988). However, in accordance with the definition
of optimality in the min-max sense (Osyczka 1978), if the
minimum of the L∞-norm is unique, then it is Pareto
optimal. If the solution is not unique, the definition of
optimality in the min-max sense provides additional the-
oretical (impractical in terms of computational applica-
tion) criteria for a min-max algorithm to eventually yield
a Pareto optimal point. For the case of two objective func-
tions, Yu (1973) derives conditions for the Pareto optimal
set in the criterion space under which the L∞-norm has
a unique solution. In most cases, however, one cannot
verify uniqueness, so it is unclear whether a solution is
Pareto optimal or not. Regardless of uniqueness, the L∞-
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norm always provides a weakly Pareto optimal solution
(Wierzbicki 1986).
The basic min-max formulation is posed as follows:

Minimize
x∈X

max
i
[Fi (x)] . (27)

Osyczka (1978) treats (27) as a standard single objective
function, where max

i
[Fi (x)] provides the objective func-

tion values at point x. Tseng and Lu (1990) incorporate
Osyczka’s approach for a ten-member cantilever truss,
a twenty-five-member transmission tower, and a two-
hundred-member plane truss, all of which are detailed by
Haug and Arora (1979). There are four objectives: mini-
mize the weight, minimize the maximum member-stress,
minimize the maximum nodal displacement, and maxi-
mize the natural frequency. The actual number of objec-
tive functions depends on the number of members and
nodes. The cross-sectional areas of the members represent
the design variables, and the constraints are on member
stress and areas.
Eschenauer et al. (1990) follow Bendsoe et al. (1984),

and use a more common formulation like the one shown in
(16), with additional constraints such that (Fi (x)−F ◦i )
/F ◦i −λ≤ 0. Vasarhelyi and Logo (1986) use a similar ap-
proach to design a steel frame. Volume and shear stress
are minimized using ten design variables representing
cross-sectional dimensions.
In order to avoid additional constraints and the dis-

continuity of (27), Li (1992) and Ben-Tal and Teboulle
(1989) develop the following smooth approximations:

Fg (x) =
1

c
ln

[
k∑
i=1

ecFi(x)

]
, (28)

Fg (x) = c log

[
k∑
i=1

e
Fi (x)/c

]
. (29)

c > 0 is called the controlling parameter . Although the
physical significance of c is unclear, in general it controls
the accuracy with which (28) and (29) approximate (15).
The accuracy improves as c tends to infinity with (28)
and as c tends to zero with (29). Li (1992) shows that
the solution with (28) is “fairly insensitive” to changes
in c. This is done using simple unconstrained mathe-
matical examples with three objective functions and two
variables. Li recommends values between 104 and 106,
although Cheng and Li (1998b) suggest using values be-
tween 103 and 104.

5.2
Nash arbitration and objective product method

The Nash arbitration scheme is an approach that is de-
rived from game theory. Based on predetermined axioms
of fairness, which are summarized by Davis (1983), Nash
(1950) suggests that the solution to an arbitration prob-
lem be the maximum (over a convex compact set of

points) of the product of the players’ utilities. In this case,
the utility functions always have non-negative values and
have a value of zero in the absence of cooperation (when
no agreement is reached). In terms of a mathematical
formulation in which individual objective functions are
minimized, the method entails maximizing the following
global criterion (Straffin 1993):

Fg (x) =
k∏
i=1

[si−Fi (x)] , (30)

where si ≥ Fi (x). si may be selected as an upper limit
on each function, guaranteeing that F (x) < s. This en-
sures that (30) yields a Pareto optimal point, considering
that if any component of the product in (30) becomes
negative, the result can be a non-Pareto optimal solu-
tion. Alternatively, si may be determined as the value of
objective i at the starting point, in which case the con-
straints Fi (x) ≤ si must be added to the formulation to
ensure Pareto optimality. In any case, the solution to this
approach, in terms of game theory or in terms of multi-
objective optimization, depends on the value of s, and
(30) tends to improve most significantly those objectives
that are farthest away from si (Davis 1983).
Mazumdar et al. (1991) demonstrate the use of (30)

in solving a telecommunications problem concerning op-
timal network flow. The problem has two objective func-
tions (general performance indices for each network user),
two design variables (the throughput for each user, asso-
ciated with a specific objective function), and four basic
constraints.
On a fundamental level, the Nash arbitration ap-

proach simply entails minimizing the product of the
objective functions. In fact, doing so provides a basic,
though uncommon, approach to multi-objective opti-
mization, which may be called the objective product
method. It is equivalent to (21) with w = 1. Cheng and
Li (1996) prove that the solution to such a formulation
is always Pareto optimal. However, the proof involves
normalized objective functions, and the Pareto optimal
characteristics of the solution depend on the nature of the
normalization scheme.
Although the solution to is a function of the normal-

ization scheme, a benefit of this approach is that it is
not necessary to ensure that different functions have simi-
lar orders of magnitude. With a product, even objective
function values with relatively small orders of magnitude
can have a significant effect on the solution. However,
a caveat of any product-type global criterion is that it can
introduce unwieldy nonlinearities.
Cheng and Li (1996) apply the objective product

method to a three-story steel shear frame with four objec-
tive functions concerning weight, strain energy, potential
energy, and input energy; seven constraints concerning
stress, displacement, stiffness, and dimensions; and nine
design variables representing the moments of inertia of six
columns and the mass of three girders. They also solve
a similar problem with control requirements.
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5.3
Rao’s method

The following work by Rao (1987) and Rao and Frei-
heit (1991) involves a method that is based on the use of
a product-type global criterion shown in (30). First, the
following supercriterion is minimized:

SU =
k∏
i=1

[1−F normi (x)] , (31)

where F normi (x) is a normalized objective function, with
values between zero and one, such that F normi = 1 is the
worst possible value. Next, one forms the Pareto optimal
objective FC , which is any scalarized objective function
that yields a Pareto optimal solution. The method pa-
rameters that are incorporated in the scalarized objective
function are included as design variables. Then, a new
objective function, OBJ = FC−SU , is minimized. Al-
though Rao and Freiheit (1991) provide sound reason-
ing behind the development of this method, the work of
Cheng and Li (1996), along with the properties of the
Nash arbitration scheme, suggest that using FC may not
be necessary.
Rao and Hati (1980) apply this method to a three-

degree-of-freedom spring-and-damper system. The rela-
tive displacement and transmitted force are minimized
subject to limits on the design variables, which are the
mass, spring constant, and damping coefficient for each
degree-of-freedom. Rao et al. (1988) optimize actively
controlled two-bar and twelve-bar trusses. There are four
objective functions: weight, “control effort”, effective
damping response time, and performance index, which
provides a measure of the total system energy. The cross-
sectional areas of the structural members are the design
variables. Limits are placed on the damping ratios and
cross-sectional areas. Rao and Freiheit (1991) apply this
approach to the probabilistic design of an eighteen-speed
gear train. Reliability in bending and in wear is maxi-
mized while weight is minimized. The width of each gear
is used as a design variable.

5.4
Discussion

Although this section covers a few different approaches,
there are essentially two fundamental formulations: ex-
ponential sum and objective product. The common min-
max and objective sum methods are special cases of
the exponential sum formulation. Most other approaches
that do not require any articulation of preferences simply
entail some variation of these fundamental scalarization
formulations.
The global criterion method, which is a form of the

exponential sum, is a broad, easy-to-use approach encom-
passing many common algorithms. In the current liter-
ature, there is little discussion of the significance of the

value of the exponent. Different values of p do in fact con-
stitute an articulation of preferences, in that such stipu-
lations contribute to the design of the utility function. In
addition, the size of the exponent reflects the emphasis
that is placed on the largest component of the summa-
tion. However, articulation of preferences typically im-
plies that one orders or indicates the relative importance
of objectives.
The objective product method and the Nash arbitra-

tion scheme provide approaches that alleviate the need
for function transformation. However, they introduce
nonlinearities and thus computational difficulties. These
formulations are most often incorporated within other
algorithms, such as Rao’s method.

6
Genetic algorithms

The methods for multi-objective optimization presented
thus far have involved unique formulations that are solved
using standard optimization engines (single-objective op-
timization method). However, other approaches such
as genetic algorithms can be tailored to solve multi-
objective problems directly. Holland (1975) introduced
genetic algorithms. Kocer and Arora (1999) outline a gen-
eral genetic algorithm and compare it with simulated
annealing in its ability to minimize the cost of H-frame
transmission poles subjected to earthquake loading with
discrete variables. Gen and Cheng (1997) give a com-
prehensive treatment of genetic algorithms with a slant
towards industrial engineering, whereas Davis (1991) and
Goldberg (1989) provide a more general treatment.
Because genetic algorithms do not require gradient in-

formation, they can be effective regardless of the nature
of the objective functions and constraints. They combine
the use of random numbers and information from previ-
ous iterations to evaluate and improve a population of
points (a group of potential solutions) rather than a single
point at a time.
Genetic algorithms are global optimization techniques ,

which means they converge to the global solution rather
than to a local solution. However, this distinction be-
comes unclear when working with multi-objective opti-
mization, which usually entails a set of solution points.
Mathematically, a single global solution to a multi-
objective problem does not exist unless the utopia point
happens to be attainable. The defining feature of multi-
objective optimization methods that involve global opti-
mization is that they determine solutions that are glob-
ally Pareto optimal, not just locally Pareto optimal. This
means that Definitions 1 through 3 apply to the complete
feasible space, and not just to a localized feasible region.
Global optimization techniques can be used for multi-

objective optimization in two capacities. First, any single-
objective global optimization technique, of which there
are many (Torn and Zilinskas 1987; Arora et al. 1995; El-
wakeil and Arora 1996), can be used as an optimization
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engine for the formulations in Sects. 3–5. There are few
examples for which techniques are used in this capacity,
with the exceptions of interval analysis (Ichida and Fujii
1990) and genetic algorithms (Leu and Yang 1999; Chi-
ampi et al. 1998). This approach does have advantages.
For instance, although there is a relatively high compu-
tational expense with genetic algorithms, the ability to
locate a global optimum and the independence from the
structure of the constraints and objective functions can
be worth the cost. However, in terms of multi-objective
optimization, the appeal of genetic algorithms is their
ability to converge on the Pareto optimal set as a whole.
We refer to genetic algorithms that are used in this al-
ternative capacity as genetic multi-objective algorithms.
These algorithms compete with gradient-based methods
for a posteriori articulation of preferences. However, the
computational efficiency of these two approaches has not
been compared.
Genetic algorithms loosely parallel biological evolu-

tion and are based on Darwin’s theory of natural selec-
tion. The specific mechanics of the algorithms involve
the language of microbiology and, in developing new po-
tential solutions, mimic genetic operations. A population
represents a group of potential solution points. A gener-
ation represents an algorithmic iteration. A chromosome
is comparable to a design point, and a gene is comparable
to a component of the design vector. Following a dis-
cussion of genetic algorithms for single-objective prob-
lems, techniques used for multi-objective problems are
presented.

6.1
Single-objective problems

A brief overview of the fundamentals of genetic algo-
rithms is given in this section. The reader is referred to
Goldberg (1989), Davis (1991), and Marler and Arora
(2003) for details. Genetic algorithms for single-objective
problems are composed of several steps. The first step in
the implementation of the algorithm is to decide on an en-
coding scheme, which determines the form in which the
design variables will be manipulated. Encoding is the pro-
cess of translating a real design vector (chromosome) into
a genetic string, which is typically composed of binary
numbers. Although binary encoding is the most common
approach, Gen andCheng (1997)mention real number en-
coding for constrained problems, and integer encoding for
combinatorial problems. After the details of the encoding
process are determined, an initial population of designs is
randomly generated. Given a population of designs, three
basic operations are applied: reproduction, crossover , and
mutation.
“Reproduction” is somewhat of a misnomer, and it

would be more accurate to use the term selection or sur-
vival . Nonetheless, it involves selecting design vectors
from the current generation to be used in the next gen-
eration, and whether or not a design is selected depends

on its fitness value. Fitness, which is determined by a fit-
ness function, is an indication of how desirable a design
is in terms of surviving into the next generation. The se-
lection probability represents the chance for survival and
is proportional to a design’s fitness value. A roulette wheel
approach is commonly used in the selection process in
which a random number is generated and compared with
the selection probability of each member of the popula-
tion. The details of the process are outlined in Gen and
Cheng (1997).
Once a new generation of designs is determined,

crossover is conducted as a means to introduce variations
into the population of designs. Crossover is the process
of combining or mixing two different designs. Although
there are many approaches for performing crossover
(Goldberg 1989; Gen and Cheng 1997), the most com-
mon is the one-cut-point method . A cut point position
on a design’s genetic string is randomly determined and
marks the point at which two parent designs split. The
children are new members of the population. Selecting
how many or what percentage of designs crossover and at
what points the crossover operation occurs, is part of the
heuristic nature of genetic algorithms.
The next operation, which also is used to introduce

variations into the population, is mutation. It is a ran-
dom process that entails altering part of a design’s genetic
string. In the case of binary encoding, a bit (a digit in a bi-
nary number) is switched from zero to one or vice versa.
Mutation plays a secondary role in the operation of ge-
netic algorithms (Goldberg and Samtani 1986). However,
reproduction and crossover alone can lose genetic mate-
rial (potentially beneficial values of specific design vector
components). Gen and Cheng (1997) discuss the sensitiv-
ity of genetic algorithms to the heuristic mutation rate.

6.2
Multi-objective problems

The primary questions when developing genetic algo-
rithms for multi-objective problems are how to evaluate
fitness, how to determine which potential solution points
should be passed on to the next generation, and how to in-
corporate the idea of Pareto optimality. The approaches
that are described in this subsection collectively address
these issues. Different techniques are discussed that serve
as potential ingredients in a genetic multi-objective opti-
mization algorithm. In accordance with much of the lit-
erature onmulti-objective genetic algorithms, constraints
are not addressed directly. It is assumed that a penalty
approach is used to treat constraints.
Vector evaluated genetic algorithm (VEGA)
Schaffer (1985) presents one of the first treatments

of multi-objective genetic algorithms, although he only
considers unconstrained problems. The general idea be-
hind Schaffer’s approach, called the vector evaluated ge-
netic algorithm (VEGA), involves producing smaller sub-
sets of the original population, or sub-populations, within
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a given generation. One sub-population is created by eval-
uating one objective function at a time rather than ag-
gregating all of the functions. The selection process is
composed of a series of computational loops, and during
each loop, the fitness of each member of the population is
evaluated using a single objective function. Then, certain
members of the population are selected and passed on to
the next generation, using the stochastic selection pro-
cesses discussed earlier. This selection process is repeated
for each objective function. Consequently, for a problem
with k objectives, k sub-populations are created, each
with η/k members, where η is the population size. The
resultant sub-populations are then shuffled together to
yield a new complete population.
This process is based on the idea that the minimum

of a single objective function is a Pareto optimal point
(assuming the minimum is unique). Such minima gener-
ally define the vertices of the Pareto optimal set. Conse-
quently, Schaffer’s method does not necessarily yield an
even distribution of Pareto optimal points. Solutions in
a given generation tend to cluster around individual func-
tion minima, giving rise to the evolution of species, where
a species is a class of organisms with common attributes.
Schaffer proposes two possible, though not completely ef-
fective, solutions. He suggests that non-dominated points
in each generation receive a “heuristic selection prefer-
ence.” In addition, crossbreeding is encouraged among
species (different sub-populations).
Shuffling all of the sub-populations into one popula-

tion is paramount to determining fitness using a weighted
sum of the objective functions (Richardson et al. 1989;
Fonseca and Fleming 1993). However, considering only
one objective function at a time is comparable to setting
all but one of the weights to zero. The vector of weights
represents a search direction in the criterion space, and
if only one component of the vector is non-zero, then
only orthogonal search directions, parallel to the axes of
the criterion space, are used (Murata et al. 1996). Such
a process can be relatively ineffective. Goldberg (1989),
Fonseca and Fleming (1993), and Srinivas and Deb (1995)
provide detailed explanations and critiques of Schaffer’s
ideas.
Ranking
A class of alternatives to VEGA involves giving each

member of a population a rank based on whether or not
it is dominated (Goldberg 1989; Fonseca and Fleming
1993; Srinivas and Deb 1995; Cheng and Li 1998). Fitness
then is based on a design’s rank within a population. The
means of determining rank and assigning fitness values
associated with rank may vary from method to method,
but the general approach is common as described below.
For a given population, the objective functions are

evaluated at each point. All non-dominated points receive
a rank of one. Determining whether a point is dominated
or not (performing a non-dominated check) entails com-
paring the vector of objective function values at the point
to the vector at all other points. Then, the points with
a rank of one are temporarily removed from considera-

tion, and the points that are non-dominated relative to
the remaining group are given a rank of two. This pro-
cess is repeated until all points are ranked. Those points
with the lowest rank have the highest fitness value. That
is, fitness is determined such that it is inversely propor-
tional to the rank. This may be done using any of several
methods (Fonseca and Fleming 1993; Srinivas and Deb
1995; Cheng and Li 1998; Narayanan and Azarm 1999).
Belegundu et al. (1994) suggest discarding points with
higher ranks and immigrating new randomly generated
points.
Pareto-set filter
It is possible to have a Pareto optimal point in a par-

ticular generation that does not survive into the next
generation. In response to this condition, Cheng and Li
(1997) propose the use of a Pareto-set filter , which is
described as follows. The algorithm stores two sets of so-
lutions: a current population and a filter . The filter is
called an approximate Pareto set , and it provides an ap-
proximation of the theoretical Pareto optimal set. With
each generation, points with a rank of one are saved in the
filter. When new points from subsequent generations are
added to the filter, they are subjected to a non-dominated
check within the filter, and the dominated points are dis-
carded. The capacity of the filter is typically set to the size
of the population. When the filter is full, points at a mini-
mum distance from other points are discarded in order to
maintain an even distribution of Pareto optimal points.
The filter eventually converges on the true Pareto optimal
set.
Ishibuchi andMurata (1996), andMurata et al. (1996)

use a similar procedure called an elitist strategy, which
functions independent of rank. As with the Pareto-set
filter, two sets of solutions are stored: a current popula-
tion and a tentative set of non-dominated solutions , which
is an approximate Pareto set. With each generation, all
points in the current population that are not dominated
by any points in the tentative set are added to the set.
Then, dominated points in the set are discarded. After
crossover and mutation operations are applied, a user-
specified number of points from the tentative set are re-
introduced into the current population. These points are
called elite points . In addition, the k solutions with the
best values for each objective function can be regarded as
elite points and preserved for the next generation (Mu-
rata et al. 1996).
Tournament selection
Horn et al. (1994) develop the tournament selection

technique for the selection process, which proceeds as fol-
lows. Two points, called candidate points , are randomly
selected from the current population. These candidate
points compete for survival in the next generation. A sep-
arate set of points called a tournament set or comparison
set is also randomly compiled. The candidate points are
then compared with each member of the tournament set.
If there is only one candidate that is non-dominated rela-
tive to the tournament set, that candidate is selected to
be in the next generation. However, if there is no pref-
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erence between candidates, or when there is a tie, fit-
ness sharing (explained in the next paragraph) is used
to select a candidate. The user specifies the size of the
tournament set as a percentage of the total population.
Consequently, the size of the tournament set imposes the
degree of difficulty in surviving, which is called the domi-
nation pressure. An insufficient number of Pareto optimal
points will be found if the tournament size is too small,
and premature convergence may result if the tournament
size is too large (Srinivas and Deb 1995).
Niche techniques
A niche in genetic algorithms is a group of points

that are close to each other, typically in the criterion
space. Niche techniques (also called niche schemes or
niche-formation methods) are methods for ensuring that
a population does not converge to a niche, i.e., a limited
number of Pareto points. Thus, these techniques foster
an even spread of points (in the criterion space). Genetic
multi-objective algorithms tend to create a limited num-
ber of niches; they converge to or cluster around a limited
set of Pareto points. This phenomenon is known as ge-
netic drift (or population drift), and niche techniques
force the development of multiple niches while limiting
the growth of any single niche.
Fitness sharing is a common niche technique the ba-

sic idea of which is to penalize the fitness of points in
crowded areas, thus reducing the probability of their sur-
vival to the next generation (Goldberg and Richardson
1987; Deb 1989; Srinivas and Deb 1995). The fitness of
a given point is divided by a constant that is proportional
to the number of other points within a specified distance
in the criterion space. In this way, the fitness of all the
points in a niche is shared in some sense, thus the term
“fitness sharing”.
In reference to tournament selection, when two candi-

dates are both either non-dominated or dominated, the
most fit candidate is the one with the least number of
individuals surrounding it (within a specified distance
in the criterion space). This is called equivalence class
sharing.
Cheng and Li (1998) present a technique in which off-

spring replace a parent if the offspring have higher fitness
values. Then, children always have characteristics that
are equivalent or superior to those of their parents and,
in a sense remain close to their parents’ position, avoid-
ing drift. This approach does not necessarily mimic na-
ture, but it can add to the effectiveness of the algorithm.
Cavicchio (1970) refers to this approach as preselection.
Narayana and Azarm (1999) present a method in

which a limit is placed on the Euclidean distance in
the criterion space between points (parents) that are se-
lected for crossover. If the distance is too small, then the
parents are not selected for crossover. In addition, the
authors suggest that only non-dominated points (points
with a rank of 1) be evaluated for constraint violation.
Those points that violate constraints then receive a fit-
ness penalty, which is imposed by reassigning their rank
to be a large number (e.g., the population size η).

Husbands (1994) demonstrates the use of co-evolutio-
nary genetic algorithms for multi-objective optimiza-
tion, focusing specifically on the application to job shop
scheduling problems. With such algorithms, each mem-
ber of the population is allowed to conduct the crossover
operation only with individuals in their own local neigh-
borhood, which is defined in terms of a Gaussian distri-
bution over distance from the individual (Hillis 1990).
Neighborhoods overlap. Selection is based on ranking,
and offspring replace individuals from their parents’
neighborhood.
Additional techniques
Osyczka and Kundu (1996) develop an algorithm that

determines fitness based on the Euclidean distance in the
criterion space, between a point in the current population
and each point in the approximate Pareto set. In con-
junction with the elitist strategy, Ishibuchi and Murata
(1996) and Murata et al. (1996) use methods for selec-
tion that are based on a weighted-sum objective function.
Kursawe (1991) also presents a weighted-sum selection
process using discrete weights of zero or one. Gen and
Liu (1995) propose a method for selection based on con-
strained preemptive goal programming. Schaumann et al.
(1998) develop the idea of a Pareto fitness function with
which Pareto optimal designs have a fitness of one or
greater, and non-Pareto optimal designs have a fitness be-
tween zero and one.
Applications
There are many potential applications for genetic

multi-objective optimization algorithms. For example,
Belegundu et al. (1994) use them to design an airfoil
and a laminated ceramic composite. The airfoil problem
is based on the work of Kielb and Kaza (1983), and it
involves maximizing the torsional flutter margin while
minimizing the torsional resonant amplitude. The ratio of
bending frequency to torsion frequency and the location
of the center of gravity provide the two design variables,
which are subject to limits. With the ceramic compos-
ite problem, the material cost and tensile stress in the
core are minimized with stress constraints and limits on
the design variables. Six design variables represent the
thickness of different layers and the volume fractions.
Schaumann et al. (1998) apply genetic algorithms to

the optimization of a reinforced concrete structure and to
an urban planning problem. With the concrete structure,
the material cost and construction time are minimized.
112 design variables are used to represent the dimen-
sions of 217 structural members. 98 additional variables
are used to represent the number of workers needed to
form the structural elements and to represent the delay
in construction time. Constraints are imposed to limit the
amount of steel reinforcement in each structural mem-
ber. The urban planning problem involves minimizing the
traffic travel time, minimizing the cost, and minimizing
the change in land use. Constraints are used to limit hous-
ing capacity and to insure housing for five income brack-
ets. 130 discrete design variables are used to represent
how different land zones are used. 25 additional discrete
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variables are used to represent street characteristics (2-
lane collector, 3-lane arterial, etc.).

6.3
Discussion

Genetic multi-objective algorithms provide an approach
for a posteriori articulation of preferences; they are in-
tended for depicting the complete Pareto optimal set. In
this sense, they provide an alternative to the methods
discussed in Sect. 4. There, the methods determine one
Pareto point at a time, and each point requires the so-
lution of a single-objective optimization problem. Alter-
natively, genetic multi-objective algorithms do not re-
quire solving a sequence of single-objective problems. In
addition, these algorithms are relatively robust, which
has led some researchers to combine them with gradient-
based methods (Poloni et al. 2000; Coverstone-Carroll
et al. 2000). Such hybrid approaches can reduce the com-
putational burden of the genetic algorithms.
An attractive feature of multi-objective genetic algo-

rithms is the use of a population of potential solution
points, which is similar to the idea of a Pareto optimal set.
However, Pareto optimality is not a concept embedded in
the fundamentals of genetic algorithms. It has no obvi-
ous correlation to the natural origins of genetic methods.
Consequently, it is possible with certain multi-objective
genetic algorithms that a Pareto optimal solution may
be born and then, by chance, die out. This is typically
avoided by independently storing Pareto optimal solu-
tions as they arise. In fact, the use of an approximate
Pareto set is central to many multi-objective genetic al-
gorithms. However, the non-domination checks that are
necessary to update an approximate Pareto set can be
expensive. Nonetheless, such checks are inherent in most
ranking procedures, and devices such as Pareto-set filters
require additional checks. An elitist strategy, however, in-
corporates non-domination checks without ranking and
consequently can be less expensive.
The Pareto fitness function and the tournament selec-

tion approach can be relatively efficient methods of incor-
porating into fitness a point’s non-dominated tendencies.
However, in exchange for relative efficiency, such methods
do not involve an approximate Pareto set and run the
risk of having Pareto optimal solutions appear in one gen-
eration and not in the next. Consequently, one has two
paradigms for genetic multi-objective optimization algo-
rithms: 1) search for and store Pareto optimal points (sep-
arate from the general population) that surface with each
generation, or 2) have the general population develop di-
rectly into an approximation of the Pareto optimal set.
Methods that involve an approximate Pareto set, such as
the elitist strategy in conjunction with the weighted sum,
tend to fall into the first paradigm (Ishibuchi and Murata
1996;Murata et al. 1996). Use of a Pareto fitness function,
methods that incorporate ranking, and tournament selec-
tion (with fitness sharing), tend to fall into the second

paradigm. There may be some blending of the methods,
as is the case with the Pareto-set filter (applied to points
with a rank of one).

7
Summary and conclusions

7.1
Summary

A survey of predominant, continuous, and nonlinear
multi-objective optimization methods is presented. Fun-
damental concepts are discussed in the context of the
criterion space and the design space. Seemingly different
methods and terminology are consolidated and related
with commentary on their strengths and weaknesses.
The significant characteristics of the primary methods

are summarized in Table 1. Each approach is listed along
with its corresponding subsection in the survey. It is in-
dicated whether or not the method is a scalarization
method and whether or not the method requires a utopia
point. In many instances, determining a utopia point is
optional, because it is potentially expensive. However,
for the sake of consistent comparison, it is assumed that
when possible, the utopia point is used, as this typic-
ally improves the quality of the solutions. It is indicated
whether or not each method provides a necessary and/or
sufficient condition for Pareto optimality. If a particular
formulation is neither necessary nor sufficient for Pareto
optimality, or if it is unknown whether a formulation is
necessary or sufficient, then it is indicated whether or not
determining Pareto optimal solutions is at all possible. A
“*” indicates caveats in classifications. For instance, min-
imizing the weighted global criterion shown in (9) and
(11), referred to as weighted global criterion II in the
table, is necessary for Pareto optimality. However, its per-
formance depends on the value of the exponent p, and it
does not provide a practical means of obtaining all of the
Pareto optimal points.
The programming complexity (PC), software use

complexity (SUC), and computational complexity (CC)
are rated on a scale of zero to five, five being the most
complex. Programming complexity refers to the process
of programming an algorithm, whereas software use com-
plexity concerns the actual use of an algorithm once it has
been coded. Computational complexity provides a gen-
eral indication of how demanding the algorithm is com-
putationally. However, this is not a formal reflection of
efficiency or convergence properties. In fact, the efficiency
of many of the methods depends on the number of objec-
tive functions being evaluated and on the optimization
engine being used. The preference articulation potential
(PAP) indicates a method’s capacity for preference in-
formation, as discussed in Sect. 3.10. This characteristic
is also rated on a scale of zero to five, five indicating the
greatest capacity. All of the methods for a posteriori ar-
ticulation receive a high score in this category, as the
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Table 1 Summary of primary methods

Survey Scalar Possible Necessary Sufficient Utopia PC SUC CC PAP

Section Method Pareto for for Point (0 to 5) (0 to 5) (0 to 5) (0 to 5)

Opt. Pareto Pareto

Opt. Opt.

A
P
ri
o
ri
A
rt
ic
u
la
ti
o
n

o
f
P
re
fe
re
n
ce
s

Wtd. Global Critn. I 3.1 x F.W. x x 0 1 1 2

Wtd. Global Critn. II 3.1 x x* x x 0 1 1 2

Weighted Sum 3.2 x x 0 1 0 1

Lexicographic 3.3 x 2 1 2 1

Weighted Min-Max 3.4 x x-weak x 1 1 2 1

Exponential Weighted 3.5 x x x 0 1 0 1

Weighted Product 3.6 x F.W. x 0 1 1 1

Goal Programming 3.7 x 1 1 2 1

Bounded Obj. Fnc. 3.8 x 1 1 1 1

Physical Programming 3.9 x x x 3 3 1 4

A
P
o
st
er
io
ri

A
rt
ic
u
la
ti
o
n Physical Programming 4.1 x x x 4 1 – 5*

NBI 4.2 x x 2 1 – 5*

Normal Constraint 4.3 x x x 2 1 – 5*

Genetic 6.2 x 5 1 – 5*

N
o
A
rt
ic
u
la
ti
o
n

o
f
P
re
fe
re
n
ce
s

Global Criterion 5.1

Achievement Fnc. 5.1 x x x 0 1 0 0

Compromise Fnc. 5.1 x x x 0 1 1 0

Objective Sum 5.1 x x 0 0 0 0

Min-Max 5.1 x x-weak x 1 0 2 0

Nash Arbitration 5.2 x F.W. x 0 1 1 0

Objective Product 5.2 x x x 0 0 1 0

decision-maker incorporates preferences exactly, by di-
rectly selecting a specific solution point. However, this
is effective only with a limited number of objectives. Al-
though these ratings are subjective, they give a general
relative indication of performance.
In Table 1, the term genetic refers to genetic multi-

objective algorithms. This approach receives a particu-
larly high rating for programming complexity, and this is
based on the assumption that it requires the development
of a new code. However, in recent years, some codes for
genetic multi-objective optimization have become avail-
able on the Internet. Of course, the use of pre-existing
codes reduces implementation complexity significantly.
Genetic algorithms can require one to set several heuristic
parameters and this process is not necessarily straight-
forward; it may require significant experience. However,
some codes allow this process to be invisible to the user.
Then, genetic multi-objective algorithms are relatively
easy to use.
The symbol F.W. indicates that there is potential for

future work. In such cases, classification of a method is

not available in the current literature. The symbol x-weak
indicates weak Pareto optimality.

7.2
Concluding remarks

(1) In general, multi-objective optimization requires
more computational effort than single-objective
optimization. Unless preferences are irrelevant or
completely understood, solution of several single-
objective problems may be necessary to obtain an
acceptable final solution.

(2) Solutions obtained with no articulation of prefer-
ences are arbitrary relative to the Pareto optimal
set. In this class of methods, the objective sum
method is one of the most computationally effi-
cient, easy-to-use, and common approaches. Conse-
quently, it provides a benchmark approach to multi-
objective optimization.
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(3) Methods with a priori articulation of preferences re-
quire the user to specify preferences only in terms
of objective functions. Alternatively, methods with
a posteriori articulation of preferences allow the user
to view potential solutions in the criterion space
and/or in the design space, and to select an accept-
able solution.

(4) Selection of a specific scalarization method for a pri-
ori articulation of preferences, which allows one to
design a utility function, depends on the type of
preferences that the decision-maker wishes to artic-
ulate and on the amount of preference-information
that the decision-maker has.

(5) The results of methods with a posteriori articulation
of preferences, i.e. the Pareto optimal set, are typ-
ically depicted in the criterion space. Consequently,
much literature addresses the issue of providing an
even spread of points in the criterion space. This
is a consequence of the tendency to make decisions
based on objectives or criteria. However, similar
points in the criterion space may correspond to dis-
tinctly different points in the design space. Thus,
when possible, solutions in the design space should
be used to complement solutions in the criterion
space.

(6) In terms of CPU time, methods with a posteri-
ori articulation of preferences are less efficient than
methods with a priori articulation of preferences.
Since only one solution is selected, the time spent in
determining other Pareto optimal points is wasted.
In addition, regardless of the method being used,
presenting the Pareto optimal set clearly can be
a formidable task.

(7) Genetic multi-objective algorithms provide a rela-
tively new approach for a posteriori articulation of
preferences. Depending on the application, these
methods can be effective in obtaining the Pareto op-
timal set.

(8) Most multi-objective optimization algorithms are
beholden to the efficiency of the optimization engine
(single-objective optimization algorithm). There-
fore, it is important to select an efficient single-
objective optimization algorithm and associated
software.

(9) Even an approximate determination of utopia points
can be expensive, particularly when there are many
objective functions. If CPU time is an issue, utopia
points should be avoided. Unattainable aspiration
points provide a reasonable substitution.

(10) Formulations that entail additional constraints,
such as Tchebycheff methods, require additional
constraint gradients, which can be expensive. These
approaches should be avoided if CPU time is
limited.

(11) Vector methods, such as the lexicographic method,
require the solution of a sequence of problems and
tend to require more CPU time than scalarization
methods.
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Baier, H. 1977: Über Algorithmen zur Ermittlung und Charak-
terisierung Pareto-optimaler Lösungen bei Entwurfsaufgaben
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