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Structural shape and topology optimization in a level-set-based
framework of region representation

X. Wang, M.Y. Wang and D. Guo

Abstract In this paper we present a new framework to
approach the problem of structural shape and topology
optimization. We use a level-set method as a region repre-
sentation with a moving boundary model. As a boundary
optimization problem, the structural boundary descrip-
tion is implicitly embedded in a scalar function as its “iso-
surfaces.” Such level-set models are flexible in handling
complex topological changes and are concise in describ-
ing the material regions of the structure. Furthermore, by
using a simple Hamilton–Jacobi convection equation, the
movement of the implicit moving boundaries of the struc-
ture is driven by a transformation of the objective and the
constraints into a speed function that defines the level-
set propagation. The result is a 3D structural optimiza-
tion technique that demonstrates outstanding flexibility
in handling topological changes, the fidelity of boundary
representation, and the degree of automation, compar-
ing favorably with other methods in the literature based
on explicit boundary variation or homogenization. We
present two numerical techniques of conjugate mapping
and variational regularization for further enhancement of
the level-set computation, in addition to the use of effi-
cient up-wind schemes. The method is tested with several
examples of a linear elastic structure that are widely re-
ported in the topology optimization literature.
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1
Introduction

In this paper we address the problem of shape and top-
ology optimization of a linearly elastic structure to meet
a design objective and to satisfy certain constraints. The
problem is formulated in a level-set framework in which
the design domain is described by a structural bound-
ary that is embedded in a scalar function of higher di-
mensionality. As a level set or an “iso-contour” of the
embedding function (also called the level-set function),
the boundary is implicitly described without the need of
an explicit representation. The optimization process is
captured by a Hamilton–Jacobi-type partial differential
equation (PDE) that governs the dynamic movement of
the embedding function and hence changes in the struc-
tural boundary in accordance with the design objective
and the constraints. While the shape and connectivity
(i.e., topology) of the boundary may undergo drastic
changes, the level-set function remains simple in its top-
ology. Therefore, by a direct and efficient computation
in the embedding space, the design boundaries can be
tracked to a required level of accuracy, yielding an opti-
mal structure in both shape and topology. The level-set
models are referred to as a region representation and they
can easily represent complex boundaries that can form
holes, split into multiple pieces, or merge with others to
form a single one. Based on the concept of propagation
of the level-set interface, an optimization algorithm is de-
rived from the shape sensitivity and the variations of the
level-set embedded boundary.
Boundary-based shape optimization has been a major

method for structural design (Rozvany 1989; Sokolowski
1992). In essence, the design domain is directly repre-
sented by its boundary, and a set of design variables di-
rectly controls the exterior and interior boundary shapes,
for example, through the control points of B-splines.
Based on a boundary shape sensitivity analysis, neces-
sary boundary variations for the optimality conditions
would provide the foundation of an optimization tech-
nique (Sokolowski 1992). It is a direct approach and it
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is concise in the sense that the geometric boundary of
the structure is expressed explicitly. Therefore, it gener-
ally allows more explicit representation of any features
to be incorporated in the design. A major limitation of
an explicit boundary representation, however, is that the
connectivity of the boundary, or the topology of the struc-
ture, is fixed . A conventional boundary-based approach is
not capable of handling topological changes for structural
optimization (Bendsoe 1977; Rozvany 1988).
Perhaps with the major motivation of overcoming the

fixed-topology limitation, various other techniques and
approaches have been developed during the past decade.
As the state-of-the-art, homogenization-based methods
have become the main approach to structural optimiza-
tion (Allaire 1997; Bendsoe 1988, 1989, 1993, 1997, 1999),
in which a material model with micro-scale voids is intro-
duced and the topology optimization problem is defined
by seeking the optimal porosity of such a porous medium
using one of the optimality criteria. By transforming the
difficult topology design problem into a relatively easier
“sizing” problem, the homogenization technique is capa-
ble of producing internal holes without prior knowledge
of their existence. That is, it offers a tool for simultan-
eous shape and topology optimization. A number of vari-
ations of the homogenization method have been inves-
tigated to deal with these issues by penalizing interme-
diate densities, the “solid isotropic material with penal-
ization” (SIMP) approach, in particular, for its concep-
tual and practical simplicity (Bendsoe 1989; Rozvany and
Zhou 1991; Rozvany et al. 1992; Mlejnek 1992; Rozvany
2001). Material properties are assumed constant within
each element used to discretize the design domain and the
design variables are the element densities. The material
properties are modeled to be proportional to the relative
material density raised to some power. The power-law-
based approach to topology optimization has been widely
applied to problems with multiple constraints, multiple
physics, and multiple materials (Bendsoe 1997; Bulman
2001; Diaz 1992; Rozvany 2001; Sigmund 2000, 2001;
Suzuki 1991).
However, the homogenization method may not yield

the intended results for some objectives in the mathemat-
ical modeling of structural design. It often produces de-
signs with infinitesimal pores in the materials that make
the structure not feasible. Further, numerical instabili-
ties may introduce “non-physical” artifacts in the results
andmake the designs sensitive to variations in the loading
(Bendsoe 1997; Bulman 2001; Rozvany 2001). Numerical
instability and computational complexity remain major
difficulties and are encountered in every realistic appli-
cation. In our view, the root of these problems may well
be related to the very reason for its success in other re-
spects: its elimination of the boundary description. By
treating the optimization problem as a material distribu-
tion problem, the homogenization-based approach (or the
SIMP method) has fundamentally changed the nature of
the problem. While there exist no geometric boundaries
in the problem domain, there is no boundary connectiv-

ity to deal with; thus, there are no topological changes
in a fundamental sense. In the end, the designer must
interpret the resulting material distribution and extract
a boundary and topological description, which is essential
for obvious reasons (Lin 2000). These fundamental issues
are still argued in the literature (Bendsoe 1999; Rozvany
2001).
Another class of approaches is essentially based on an

evolutionary strategy called “evolutionary structural op-
timization” (ESO), which focuses on local consequences
but not on the global optimum. It is typically computa-
tionally expensive since it has to rely on a “greedy-type”
algorithm. A simple method of this class of optimiza-
tion has been proposed by Xie and Steven (Xie 1997),
which is based on the concept of gradually removing ma-
terial to achieve an optimal design. The method was de-
veloped for various problems of structural optimization
including stress considerations, frequency optimization,
and stiffness constraints. A similar approach called “re-
verse adaptivity” was proposed by Reynolds et al. (1999),
in which a fixed percentage of relatively under-stressed
material is removed to find approximately fully stressed
structures. Essentially, both evolutionary structural op-
timization and reverse adaptivity are homotopy methods
based on so-called material “hard kills”. In reverse adap-
tivity, finite element meshes near the boundary during
the design procedure are refined to reduce computational
costs or increase resolution.
Another approach is called the “bubble method”, pro-

posed by Eschenauer and Schumacher (Eschenauer 1994;
Eschenauer 1997). In the method, so-called characteristic
functions of the stresses, strains, and displacements are
employed to determine the placement or insertion of holes
of known shape at optimal positions in the structure, thus
modifying the structural topology in a prescribed fash-
ion. In this case, the design for a given topology is settled
before its further changes.
Adopting the same principle of redesigning the struc-

ture based on the stress distribution in the current design,
another approach was developed by Sethian and Wieg-
mann (2000) with a focus on the resolution of the bound-
aries. The boundaries are allowed to move according to
the stresses on the boundaries. A level-set method is em-
ployed for tracking the motion of the structural bound-
aries under a speed function and in the presence of po-
tential topological changes. An explicit jump immersed
interface method is used for computing the solution of
the elliptic problem in complex geometries without using
meshes. The approach is also an evolutionary one. The
principal idea is to remove material in regions of low
stress and to add material in regions of high stress. A re-
moval rate is established representing a percentage of
the maximal initial stress below which material may be
eliminated, and above which material should be added.
The removal rate determines the closed stress contours
along which new holes are cut and also the velocity of the
boundary motion. The biggest benefit of this approach
is that it is easier to add material (with some sub-grid
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resolution) at hole boundaries with high stress than on
a triangulated finite-element mesh. This approach seeks
to improve design by making more efficient use of the
material.
In our point of view, a boundary-based method with

the capability of handling topology changes has the most
promising potential. Boundary representations are al-
ways essential for design descriptions and for design au-
tomation with CAD and CAE systems. A major contri-
bution of our work presented in this paper is the capa-
bility to capture topological changes with a region rep-
resentation based on level-set methods. In our approach
presented here, the structural boundaries are viewed as
moving during the optimization process – interior bound-
aries (or holes) may merge with each other or with the
exterior boundary and new holes may be created. The
shape and topology optimization is carried out as a mov-
ing front of the level sets driven by the dynamics of the
interior region under optimization conditions.

2
The optimization problem

In this paper we use a linear elastic structure to describe
the problem of structural optimization. Conceptually, the
approach presented here would apply to a general struc-
ture model. Let Ω ⊆ Rn (n = 2 or 3) be an open and
bounded set occupied by a linear isotropic elastic struc-
ture. The boundary of Ω consists of three parts: Γ = ∂Ω=
Γd∪Γu∪Γt, with Dirichlet boundary conditions on Γu
and Neumann boundary conditions on Γt. It is assumed
that Γd is traction free. The displacement field in Ω is the
unique solution of the linear elastic system

−div σ(u) = p in Ω ,

u= u0 on Γu ,

σ(u)N = τ on Γt , (1)

where the strain tensor ε and the stress tensor σ at any
point x ∈ Ω are given in the usual form as

σij(u) =Eijklεkl(u) ,

εij(u) =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (2)

with Eijkl the elasticity tensor, u0 the prescribed dis-
placement on Γu, τ the boundary traction force applied
on Γt, p representing the applied body forces, and N the
outward normal to the boundary.
The general problem of structure optimization is spec-

ified as

Minimize
Ω

J(u) =

∫
Ω

F (u)dΩ

subject to
∫
Ω

Eijklεij(u)εkl(v)dΩ =

∫
Ω

pvdΩ+

∫
Γt

τvdΓ, for all v ∈ U ,

u= u0 on Γu ,∫
Ω

dΩ≤ Vmax . (3)

Here, the linear elastic equilibrium equation is written in
a weak variation form, with U denoting the space of kine-
matically admissible displacement fields. The inequality
describes the limit on the amount of material in terms
of the maximum admissible volume Vmax of the design
domain. The goal of structural optimization is to mini-
mize the objective function J(u) for a specific physical
or geometric type described by F (u). This is a stan-
dard notion of structural optimization (Bendsoe 1997;
Sokolowski 1992).

3
Region models via level sets

Shape optimization is a general approach to the problem
at hand. It is based on an analysis of shape sensitivity
in terms of variations of the structural boundary. Stan-
dard procedures are well documented in the literature
for obtaining the set of necessary conditions to be satis-
fied by an optimal solution (see, for example, Sokolowski
1992). A key concept in such an analysis is the “speed
function” VN of the optimality condition associated with
a small variation in the boundary shape in the normal di-
rectionN . In general, it is necessary that

VN (x) = 0 (4)

everywhere on the design boundary Γd of the optimal
structure. Physically, this indicates that the mutual en-
ergy form of the elastic structure reaches a constant value
on Γd (Sokolowski 1992). In most shape optimization ap-
plications, directly solving this optimality equation is not
possible. One general technique of shape optimization is
to solve the ordinary differential equation

dx

dt
= VN (x) (5)

with given initial boundary shape. The auxiliary vari-
able t is denoted as the time-marching parameter. This
is also known as the Lagrangian formulation of bound-
ary propagation.When the steady state of this equation is
achieved (i.e., dx/dt= 0), the optimality condition is also
achieved and, hence, an optimal shape of the structure is
obtained. This is the well-known gradient descent method
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and there exist a large number of algorithms (Rozvany
1988; Sokolowski 1992).
In this conventional boundary-based method, the

moving boundary is usually discretized with a set of de-
sign variables directly controlling the exterior and interior
boundaries. The discrete design variables can be com-
puted iteratively with an optimization algorithm and
a finite element analysis. This often requires the con-
struction of a new discrete model of the structure, or
re-meshing, after each iteration. These issues have been
extensively studied and there are well-established numer-
ical methods and software systems for boundary shape
design of structures (Sokolowski 1992). However, all of
these methods utilize an explicit boundary representation
and the boundary changes can be accomplished only if
the connectivity of the boundaries does not change. In
other words, they all have a severe limitation that only
a structure of fixed topology can be optimized. For this
reason, a boundary-based optimization has often been
referred to as shape optimization. Topology changes in
a structure mean that a boundary can “split” into pieces
to form multiple boundaries or “holes”. Conversely, sev-
eral distinct boundaries may merge to make a single
boundary. These changes provide the greatest challenge
in a boundary-based approach to structural optimization.
As opposed to tracking the structural boundary with

the Lagrangian formulation of (5), we suggest using an
implicit function Φ(x) both to represent the boundary
and to optimize it, as was originally developed for curve
and surface evolution (Osher 1988; Sethian 1999). The
change of the implicit function Φ(x) is governed by the
simple convection equation

∂Φ(x, t)

∂t
+∇Φ(x, t) ·V (x) = 0 , (6)

where V (x) defines the “velocity” of each point on the
boundary. This is also known as the Eulerian formula-
tion of the boundary propagation, since the boundary is
captured by the implicit function Φ(x) here. The velocity
field V (x) comes from an important concept of embed-
ding the structural surface boundary as an iso-surface of
the implicit function, Φ :Rn �→R, such that

Γ = {x : Φ(x) = k} , (7)

where k is the iso-value and is arbitrary, and x is a point
in space on Φ. In other words, x is the set of points in Rn

that composes the k-th iso-surface of Φ.The embedding Φ
of (n+1) dimensions can be specified in any specific form,
for example, as a regular sampling on a rectilinear grid.
A process of structural optimization can be described by
letting the level-set function dynamically change in time.
Thus, the dynamic model is expressed as

Γ(t) = {x(t) : Φ (x(t), t) = k} . (8)

By differentiating both sides of (8) with respect to time
and applying the chain rule, we obtain the so-called
Hamilton–Jacobi equation

∂Φ(x, t)

∂t
+∇Φ(x, t)

dx

dt
= 0 . (9)

This equation defines an initial-value problem for the
time-dependent function Φ. In this level-set model,
dx/dt is the velocity vector for shape optimization,
dx/dt= V (x). Thus, the optimal boundary is expressed
as the solution of the partial differential equation on Φ:

∂Φ(x)

∂t
=−∇Φ(x)

dx

dt
≡−∇Φ(x) ·V (x) . (10)

Furthermore, the local sign of Φ(x) can be used to de-
fine the inside and outside regions of the boundary such
that

Φ(x) > 0 ∀x ∈ Ω\∂Ω ,

Φ(x) = 0 ∀x ∈ ∂Ω ,

Φ(x)< 0 ∀x ∈Ω\Ω . (11)

The local unit normal to the surfaceN is given as

N =−
∇Φ

|∇Φ|

(
where |∇Φ|=

√
∇Φ ·∇Φ

)
. (12)

Since the tangential components of V vanish in (10), it
can be written as

∂Φ(x)

∂t
= VN |∇Φ(x)| . (13)

This is known as the level set equation (Osher 1988;
Sethian 1999). As in (5), the normal velocity VN is related
to the sensitivity of the shape to the boundary variation
and depends the objective of the optimization.
This formulation with level-set models has two ma-

jor theoretical and practical advantages over conventional
explicit boundary models, especially in the context of
topology optimization. First, level-set models are topo-
logically flexible. The scalar function Φ is defined to al-
ways have a simple topology; complicated surface shapes
are implicitly represented by the level sets of Φ. The
boundary shape representation is as general as the under-
lying physical theory. More importantly, the representa-
tion does not rely on any kind of explicit parameteriza-
tion, along with no direct specification of the topology of
the structure. These capabilities would allow the bound-
ary models to easily change the structural topology while
undergoing optimization in that they can form holes,
split to form multiple boundaries, or merge with other
boundaries to form a single surface. There is no need
to re-parameterize the model as it undergoes significant
changes in shape, in contrast to conventional boundary
shape design (Sethian 1999). Further, the models can
incorporate a large number of degrees of freedom and
a number of numerical techniques have been developed
(Osher 1988; Osher 2001; Sethian 1999) to make the ini-
tial value problem of (12) computationally robust and
efficient. In fact, in the general case of a three-dimensional
solid structure, the computational complexity can be
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made proportional to the surface area of the structure
rather than the size of its volume. We shall describe the
details of the numerical computation of our proposed ap-
proach in the later sections.
Within this region model framework, our original

problem of structural optimization (3) is described in
terms of the level-set model as follows. We define a larger,
fixed reference domain Ω such that it fully contains
the structure being optimized, Ω, i.e., Ω ⊆ Ω. As de-
scribed in (8), the boundary surface ∂Ω is implicitly
defined as an iso-surface of the embedding Φ(x) such that
Γ =

{
x : x ∈ Ω, Φ(x) = 0

}
. Here we use the convention

that k = 0. The inside and outside regions of the geo-
metric model are shown in Fig. 1 for a two-dimensional
structure. In this case, the boundary curves are embedded
in the three-dimensional function Φ(x) with a fixed top-
ology. The surface of the embedding function may move
up and down on a fixed coordinate system without ever
altering its topology. The structural boundary curves em-
bedded on Φ(x) can undergo drastic topological changes.
However, there is no need to directly track these struc-
tural topological changes. The boundary optimization
is implemented with the motion of Φ(x), and the topo-
logical changes in the boundary are discovered when the
corresponding level set is computed.
With the level-set models, we can describe the opti-

mal design problem in terms of the scalar function Φ. It is
more convenient to use the Heaviside function H and the
Dirac delta function δ, defined as

The design domain Ω and its embedding domain Ω .

The embedding function ( )xΦ and the level set model Γ .

Fig. 1 The design domains and the boundary embedding
with a level-set model

H(Φ) =

{
1 if Φ≥ 0

0 if Φ< 0
and δ(Φ) =

dH

dΦ
. (14)

Therefore, the optimization problem is nowwritten as fol-
lows:

Minimize
Φ

J(u,Φ) =

∫

Ω

F (u)H(Φ)dΩ

subject to

a(u, v,Φ) = L(v,Φ) for all v ∈ U ,

u= u0 on Γu ,

V (Φ) =

∫

Ω

H(Φ)dΩ≤ Vmax , (15)

where

a(u, v,Φ) =

∫

Ω

Eijklεij(u)εkl(v)H(Φ)dΩ ,

L(v,Φ) =

∫

Ω

pvH(Φ)dΩ+

∫

Ω

τvδ(Φ) |∇Φ|dΩ (16)

are the energy bilinear form and the load linear form re-
spectively, and V (Φ) defines the volume of the structure.

4
Shape sensitivity and optimality conditions

With the formulation of (15), we are now ready to derive
the necessary optimality conditions for the construction
of an optimization procedure. The principal guideline for
the optimization process is to move the design boundary
represented by the level-set model according to its shape
sensitivity with respect of the motion of the embedding
function Φ, as shown in Fig. 1b. The key development of
our application of the level-set methods here is to find an
appropriate “speed function” VN in (13) such that it will
drive the design boundary into the optimum shape based
on the given objective function and the constraint. The
speed function must be expressed in terms of the level-
set function Φ and must be linked to the derivative of the
objective function with respect to the level-set variation.
A highlight of our approach presented here is to bridge
the well-established methods of shape sensitivity analy-
sis (Sokolowski 1992) with the powerful methods of level
sets (Osher 1988; Sethian 1999) to fulfill our goal of gen-
eral structural optimization within the implicit boundary
framework.
Using the standard Lagrangian multiplier method, we

construct another objective function J̄(u,Φ) and obtain
a completely equivalent problem to the original optimiza-
tion problem (15) as follows:
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Minimize
Φ

J(u,Φ) = J(u,Φ)+λ+ · (V (Φ)−Vmax)

subject to

a(u, v,Φ) = L(v,Φ) , u|∂Du = u0 for all v ∈ U ,

λ+ · (V (Φ)−Vmax) = 0 ,

λ+ ≥ 0 . (17)

Here, λ+ is the Lagrange multiplier and the last two con-
straints define a complementarity condition: When the
inequality V (Φ) < Vmax is true, then λ+ = 0; otherwise,
when V (Φ) = Vmax, λ+ > 0. In order to derive the shape
sensitivity, we follow the well-known approach of Mu-
rat and Simon (see, e.g., Allaire 2002; Sokolowski 1992).
Thus, we define a perturbation of the optimal domain Ω0

as

Ω = (I+ψ)Ω0 , (18)

with ψ representing the perturbation vector field. The
shape derivative of J̄(u,Φ) at Ω0 is then defined as the
Fréchet derivative. This is a well-defined notion and it is
derived in full detail in (Wang et al. 2003), with
〈
dJ̄(u,Φ)

dΦ
, ψ

〉
=

∫

Ω

δ(Φ) (β (u,w,Φ)+λ+)ψdΩ +

∫

∂Ω

δ(Φ)

|∇Φ|

∂Φ

∂N
ψdΓ , (19)

wherew represents the adjoint displacement in the conju-
gate equation

a(v, w,Φ) = 〈Ju(u,Φ), v〉 ≡

∫

Ω

∂F (u)

∂u
vH(Φ)dΩ ,

w|∂Γu = 0 ∀v ∈ U , (20)

and

β(u,w,Φ) = F (u)+pw− τwκ−Eijklεij(u)εkl(w) , (21)

with κ=∇· (∇Φ/|∇Φ|) being the mean curvature of the
level-set surface. Thus, the Kuhn–Tucker condition of the
optimal solution becomes

β(u,w,Φ)+λ+|∂Ω = 0 ,

λ+ · (V (Φ)−Vmax) = 0 ,

λ+ ≥ 0 . (22)

We can then construct the speed function VN (x) from the
following equations:

VN (x) =−β (u,w,Φ)−λ+ ,

λ+ =−

∫

∂Ω

β (u,w,Φ) dΓ

/∫

∂Ω

dΓ . (23)

This speed function VN (x) essentially represents a non-
local version of the exact shape sensitivity (19). It serves
in the Hamilton–Jacobi equation for a gradient descent
solution for the structural optimization:

∂Φ

∂t
= VN |∇Φ| and

∂Φ

∂N

∣∣∣∣
∂Ω

= 0 . (24)

The reader is referred to Wang et al. (2003) for a detailed
proof of this derivation. Finally, we can describe our opti-
mization algorithm as an iterative process as follows:

Main Algorithm:

Step 1: Initialize the level-set function Φ (x, 0) at t = 0,
corresponding to an initial design Ω in terms of
its boundary Γ.

Step 2: Compute the displacement field u and the adjoint
displacement field w through the linear elastic
system.

Step 3: Calculate the “speed function” VN (x) for x on
the surface Φ(x) along the normal direction
N(x).

Step 4: Solve the level set (24) to update the embedding
function Φ(x, t).

Step 5: Check whether a termination condition is satis-
fied. If the condition is met, then a convergent
solution has been found. Otherwise, repeat Steps
2 through 5 until convergence. The termination
condition is defined as
∫

Ω

|VN (x)| δ(Φ) |∇Φ| dΩ ≤ γ ,

where γ is a specified error limit.

5
Level-set computations

There are a number of computational issues that are im-
portant to the proposed level-set method. At first glance,
the technique seems to be expensive. By embedding the
structural boundary as the level set of a higher dimen-
sional function, a boundary curve of a two-dimensional
problem is transformed into a surface, while a boundary
surface of a general 3D solid has to be treated as a vol-
umetric object. However, the level-set embedding is only
defined at the particular zero set Φ(x, t) = 0.This fact has
been exploited to develop highly efficient algorithms that
reduce the computational complexity back to the physi-
cal level of the structural boundary (Breen 2001; Sethian
1999). Further, a set of highly accurate and robust numer-
ical algorithms has been developed for a discrete solution
of the PDE of (24) (Osher 1988; Osher 2001; Peng 1999).
In this section, we briefly describe some of the key as-
pects in the numerical implementation of the level-set
method. In next section we present several developments
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to further improve the computational speed, numerical
accuracy and reliability.

5.1
Approximation of the level-set function

In the algorithm presented here, the geometric boundary
of the structure under optimization is described as the
zero level set of Φ(x, t) = 0. In its numerical implemen-
tation, the embedding function Φ may be represented in
any convenient form. It is often described as a rectan-
gular sampling on a rectilinear grid of x over Ω (Osher
1988). Conventional interpolation functions may be used
on a set of grid nodes, such as

Φ(x, t) =
∑
i

Φi(t)Ni(x) , (25)

where φi(t) are the nodal values of the level-set function
and Ni(x) describe the standard interpolation functions.
The nodal values are updated during the optimization
procedure (Wang et al. 2003).
In general, the linear elastic equation (10) may be

solved by a finite element method. In the numerical im-
plementation, functions δ(Φ) and H(Φ) have to be ap-
proximated with a first-order accurate smoothed version
such as defined in (Osher 1988, 2001). We use the follow-
ing version (Wang et al. 2003):

H(Φ) =



3

4

(
Φ

ξ
−
Φ3

3ξ3

) 0 Φ<−ξ

+
1

2
− ξ ≤ Φ< ξ

1 Φ≥ ξ

, (26)

where ξ is a parameter of choice to determine the size of
the bandwidth of numerical smoothing. We found that
a good value of ξ is between 0.5 and 0.7 times the mini-
mum grid width ∆min.

5.2
Up-wind computation schemes

The discrete solution to the Hamilton–Jacobi equation
(24) is computed by using finite differences over dis-
crete time steps and on a discrete grid over the level-set
function. A highly robust and accurate computational
method was developed by Osher and Sethian (1988) to
address the problem of overshooting. Based on the notion
of weak solutions and entropy limits, a so-called “up-wind
scheme” is proposed to solve (24) with the following up-
date equation:

φn+1ijk = φ
n
ijk −∆t

[
max(VNij , 0)∇

++min(VNij , 0)∇
−
]
,

(27)

with

∇+ =

[
max

(
D−xijk, 0

)2
+min

(
D+xijk, 0

)2
+

max
(
D−yijk, 0

)2
+min

(
D+yijk, 0

)2
+

max
(
D−zijk, 0

)2
+min

(
D+zijk, 0

)2]1/2
,

∇− =

[
max

(
D+xijk, 0

)2
+min

(
D−xijk, 0

)2
+

max
(
D+yijk, 0

)2
+min

(
D−yijk, 0

)2
+

max
(
D+zijk, 0

)2
+min

(
D−zijk, 0

)2]1/ .2

Here, ∆t is the time step, and D±xijk , D
±y
ijk , and D

±z
ijk are

the respective forward and back difference operators in
the three dimensions of x ∈ R3 for a general 3D solid. In
addition, the time steps ∆t must be limited to ensure
the stability of the up-wind scheme (27). The Courant–
Friedrichs–Lewy (CFL) condition requires ∆t to satisfy
∆t max |VNijk | ≤∆min, where ∆min =min (∆x,∆y,∆z)
stands for the minimum grid space among the three di-
mensions (Osher 1988). Furthermore, in order to obtain
highly accurate numerical results, the level-set function
Φ(x, t) is often initialized as the signed distance function
and to satisfy the Eikonal equation

|∇Φ(x, t)|= 1 . (28)

The first-order scheme is well known for its numer-
ical stability. However, it is highly diffusive. It can be
made higher order through a total-variation-diminishing
(TVD) Runge–Kutta scheme (Shu 1988). A second-order
method in time is given by Sethian (1999) as



φ̃n+1ijk = φ
n
ijk−∆t

[
max

(
V nNijk

, 0
)
∇n++min

(
V nNijk

, 0
)
∇n−

]

φn+1ijk = φ
n
ijk−

∆t

2



max
(
V nNij

, 0
)
∇n++min

(
V nNijk

, 0
)
∇n−+

max

(
Ṽ n+1N

ijk
, 0

)
∇̃n+1+min

(
Ṽ n+1Nijk

, 0
)
∇̃n+1



,

(29)

where ṼN is evaluated with the temporary value φ̃ijk. In
addition, higher order space schemes for the space quan-
tities ∇+ and ∇− for the discrete approximation can
be constructed with an essentially non-oscillatory (ENO)
interpolation as fully described by Sethian (1999) and
Shu and Osher (1988). Here, we shall omit their details
for brevity. We have implemented these so-called “high-
resolution” schemes and found that they are indeed more
accurate than the first-order scheme as claimed in the
literature.

5.3
Local schemes of level-set computation

The up-wind solutions produce the motion of level-set
models over the entire range of the embedding, i.e., for
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all values of Φ in (24). Since the optimum structural
boundary is defined to be a single model, i.e., at k = 0,
the calculation of solutions over the entire range of iso-
values is unnecessary. This forms the basis for “narrow-
band” schemes that solve (24) in a narrow band of the
grid nodes that surround the level set of interest (Sethian
1999, 2000). While the up-wind scheme makes the level-
set method numerically robust, the narrow-band scheme
makes its computational complexity proportional to the
boundary area of the structure being optimized rather
than the size of the volume in which it is embedded. We
reported the use of the narrow-band scheme in an ear-
lier implementation of the level-set method inWang et al.
(2003).
Another an efficient method has been developed in

Peng (1999) by making the embedding function Φ a dis-
tance function. Then, while the function Φ is maintained
as a signed distance function, a local computation of the
level set requires updates of only those points for which
Φ≈ 0. This local computation scheme is even simpler and
more efficient. It has been shown that this method has
a formal complexity of O(N) in the 2D case and O(N2)
in the 3D solid case, where N is the size of the spatial
grid in each direction of the level set (Peng 1999). In other
words, the complexity of the level-set model computa-
tion remains at the level of its physical dimension, not of
the higher dimension of its embedding function. This ad-
vantage makes the local level-set method attractive from
a practical standpoint.

5.4
Velocity extension and re-initialization of the
level-set function

In the level-set formulation, we need the normal velocity
VN in a neighborhood of the design boundary or the zero
level set Γ(t). As suggested by Sethian (1999), the most
natural way to extend VN off the design boundary is to
let the velocity VN be constant along the curve normal to
Γ(t) such that

∇VN ·∇Φ= 0 . (30)

This leads to the following hyperbolic partial differential
equation:

∂VN

∂t
+S(Φ)

∇Φ

|∇Φ|
·∇VN = 0 , (31)

where S(Φ) is the signature function of Φ defined as

S(Φ) =




−1 if Φ< 0

0 if Φ = 0

+1 if Φ> 0

.

(32)

In order to increase the regularity, S(Φ) may be approx-
imated by Φ/

√
Φ2+∆2min. Accurate and robust numeri-

cal schemes, such as the first-order up-wind method, exist
to compute discrete solutions to the partial differential
equation of velocity extensions (Peng 1999). For simpli-
city of the presentation, the reader is referred to Osher
(2001) and Peng (1999) for detailed formulae.
Another important consideration in the local compu-

tation of zero level sets is re-initialization of the level-set
function (Sethian 1999). In most cases, it is impossible
to prevent Φ(x, t) from deviating away from a signed dis-
tance function. Flat or steep regions may develop as the
boundary moves, rendering computation of the normal
vector, normal velocity, and curvature at the places in-
accurate. This would result in inaccurate design bound-
aries. For numerical reasons, the level-set function needs
to be resurrected to be close to a signed distance func-
tion from time to time (Peng 1999; Sethian 1999). We
use another PDE-based method for this purpose by solv-
ing the following Hamilton–Jacobi equation to its steady
state:

∂Φ

∂t
= S(Φ0)(1−|∇Φ|) , (33)

which results in the desired signed distance function of
S(·) (Sethian 1999). This approach allows us to avoid
finding the design boundary explicitly. As reported in the
literature, a first-order discrete time up-wind scheme with
a second-order essentially non-oscillatory (ENO) discrete
space scheme would again yield good results (Osher 2001;
Shu and Osher 1988).

5.5
Curvature discretizion

In the numerical implementation of a three-dimensional
case, we need to approximate the normalN and the mean
curvature κ=∇·N of the surface boundary:

N =−
∇Φ

|∇Φ|
=−




Φx
/√
Φ2x+Φ

2
y+Φ

2
z

Φy
/√
Φ2x+Φ

2
y+Φ

2
z

Φz
/√
Φ2x+Φ

2
y+Φ

2
z



,

(34)

κ=−

(
Φ2y+Φ

2
z

)
Φxx+

(
Φ2x+Φ

2
z

)
Φyy+

(
Φ2x+Φ

2
y

)
Φzz−

2ΦxΦyΦxy−2ΦyΦzΦyz−2ΦzΦxΦzx(
Φ2x+Φ

2
y+Φ

2
z

)1.5
(35)

We compute the value of κ at grid points neighboring the
zero level set and then interpolate its value on the design
boundary whenever it is needed. In the discrete compu-
tation, κ,Φx,Φy,Φz,Φxx,Φyy, and Φzz are all discretized
by central difference, given as
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(φxy)ijk =
φi+1j+1k −φi+1j−1k−φi−1j+1k+φi−1j−1k

4∆x∆y
,

(φyz)ijk =
φij+1k+1−φij+1k−1−φij−1k+1+φij−1k−1

4∆y∆z
,

(φzx)ijk =
φi+1jk+1−φi−1jk+1−φi+1jk−1+φi−1jk−1

4∆z∆x
.

(36)

In order to enhance the robustness of the algorithm, we
further confine the scope of the mean curvature as follows:

κijk =min (∆min,max (κijk,−∆min)) . (37)

This means that the minimum approximate value of the
level-set curvature is stipulated as the minimum grid
width.

5.6
Recovery of the level sets

In the level-set-based framework presented here, the ge-
ometric boundary of the structure under optimization is
implicitly described as the zero level set of Φ(x, t) = 0.
There is no need to explicitly recover the boundary un-
til the end of the optimization. There exist many tech-
niques in most of the popular scientific software systems
to compute iso-curves and iso-surfaces, essentially 2D and
3D level sets. For example, it is often convenient to de-
scribe the embedding function Φ as a rectangular sam-
pling on a rectilinear grid of x over Ω (Sethian 1999).
Then, the well-known marching-cubes technique in com-
puter graphics can be directly applied to compute the
zero level set of the optimal solution.

6
Enhancements of level-set evolution

In this section we present two enhancements to further
improve the computational speed, numerical accuracy,
and reliability.

6.1
Conjugate mapping of the moving velocity

It is well known that the gradient descent method is
not particularly efficient in the family of optimization
methods. A significant improvement is to modify the
gradient descent direction by a positive definite matrix
approximating the Hessian matrix, namely, the conju-
gate gradient method. As for the infinite-dimensional
problem (15), it is difficult to construct such a similar
function. Here we present a heuristic method aimed at
improving the descent direction according the problem
characteristics. The basic idea is to increase the difference
of the velocity along the moving boundary while keep-

ing the objective function descent. As a result, the speed
of convergence of the PDE-based optimization will be in-
creased.
This heuristic idea requires us to define a conjugate

mapping function f(·) that satisfies the following condi-
tions:

1) f is continuous and closed in the tangential space T
of the active constraint: f (r) ∈ C0 and f (r) ∈ T for
∀r ∈ T .

2) f is an odd function: f (−r) =−f (r) .
3) f is a non-decreasing function: f ′ (r)≥ 0 .

It is not trivial to find a function satisfying these con-
ditions. Here, we use the following procedure. First, we
choose a nonlinear function F (r) that satisfies conditions
(b) and (c). Then, we let F (r) project on the tangential

Fig. 2 A conjugate mapping function for the velocity field
function

Fig. 3 Weighting function for fairing and smoothing the level
sets
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space T of the active constraint. Thus, a conjugate map-
ping function is constructed as follows:

f(Vn) = F (Vn)−µ for Vn ∈ T , (38)

where µ is the average of the velocity function F (Vn)
along the entire design boundary Γ. As derived by Wang
et al. (2003) in detail, it is given as

µ=

∫

∂Ω

F (Vn)dΓ

/∫

∂Ω

dΓ . (39)

With this nonlinear mapping function, the Hamilton–
Jacobi equation (24) can be modified as

Fig. 4 A Michell-type structure with fixed–simple supports.
(a) Initial design. (b)–(g) Intermediate results. (h) Final
solution

∂Φ

∂t
= f(Vn) |∇Φ| ,

∂Φ

∂N

∣∣∣∣
Γ

= 0 . (40)

It can also be shown that the PDE generates a gra-
dient descent solution to the problem of optimization
(17) as the original PDE (24) such that dJ(u,Φ)/dt≤ 0.
A proof essentially follows the proof for the original PDE
(24) as presented in our earlier work (Wang et al. 2003).
We shall omit the details here. It is also trivial to show
that f(r) is an odd function due to the fact that F (r) sat-
isfies condition (b). However, function f(r) constructed
by using (30) is not assured to fulfill condition (c). When
this happens, the conjugate mapping of the velocity func-
tion may have a negative effect on the speed of conver-
gence.
In our numerical implementation, we have used the

following function F (r) as illustrated in Fig. 2:

F (r) = r

(
1−α

2
+
1+α

2
|r|

)
, (41)

where α is a constant. In our numerical experience with
examples to be presented in the next section, we have
found that this nonlinear mapping improves the comput-
ing efficiency significantly (by 2–3 times) compared with
the direct gradient descent method.

6.2
Variational regularization of the level sets

During the course of shape optimization with the level-
set models, it is possible that the boundary may not be
able to maintain a certain level of smoothness due to
numerical errors of the discrete solutions. It is highly de-
sirable that the irregularities be removed to enhance the

Fig. 5 The changes in the mean compliance and the volume
of the structure with iteration for the example in Fig. 4
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Fig. 6 A Michell-type structure with fixed–fixed supports.
(a) Initial design. (b)–(g) Intermediate results. (h) Final
solution

fidelity of the level sets, while the meaningful disconti-
nuities in the boundary representing topological changes
are kept. This is similar to the problem of “denoising” in
image processing (Sapiro 2001; Sethian 1999). This func-
tion can be easily incorporated into the implicit boundary
framework, again due to the flexibility of the level-set
methods.
The regularization problem is defined as a variational

problem (Sapiro 2001).We introduce a weighted length or
area of the level set, namely,

ES(Φ) =

∫
Γ

I(x)dΓ =

∫

Ω

I(x)δ(Φ) |∇Φ| dΩ , (42)

where I(x) > 0 corresponds to a Riemman metric. Thus,
the objective function of the optimization problem (15) is
modified as

J(u,Φ) =

∫

Ω

F (u)H(Φ)dΩ+ES(Φ) . (43)

Again, taking the Fréchet derivative of this objective
function with respect to Φ as in the original case, we ob-
tain the gradient of the new objective function (43) at the
zero level sets as follows:

β(u,w,Φ) = β(u,w,Φ)−∇·

(
I(x)

∇Φ

|∇Φ|

)
=

β(u,w,Φ)− I(x)∇·

(
∇Φ

|∇Φ|

)
. (44)

This corresponds to the total variation including reg-
ularization. The reason to use this variation form is
straightforward. Here, the term ∇· (∇Φ/|∇Φ|) is the
mean curvature κ of the level set. It is well known that
a surface moving in its normal direction with the mean
curvature as the velocity, also called the mean curva-
ture flow, converges to the minimal surface. The mean
curvature flow is also interpreted in the literature as an
anisotropic diffusion (Sapiro 2001), and it diffuses only
in the tangential direction of the surface. Therefore, the
regularization term in (42) plays a role in fairing the level
sets only without any effect on their normal motion.
The regularization variation of (42) may be replaced

by the so-called weighted total variation energy (Osher
2001; Sapiro 2001)

ETV (Φ) =

∫

D

I(x) |∇Φ| dΩ , (45)

with I(x) being regarded as the weighting coefficients. By
deriving the Fréchet derivative for ETV (Φ) with respect
to Φ, we will obtain the same gradient of the objective

Fig. 7 The changes in the mean compliance and the volume
of the structure with iteration for the example in Fig. 6
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Fig. 8 A Michell-type structure with fixed–simple supports
and multiple loads P1 = 30 N and P2 = 15 N. (a) Initial design.
(b)–(g) Intermediate results. (h) Final solution

function as (44). Thus, the variational regularization de-
veloped here can also be used to reduce the total variation
of the level sets.
The geometric metric I(x) is chosen according to the

following criteria: (1) The regularization term in (44)
should not have any significant influence on the process of
optimization defined by the velocity function VN (x). (2)
As the level set moves to approach the optimum, the reg-
ularization must be enhanced gradually so as to obtain
a smoothing or fairing of the structure boundary. In this
study, we use the geometric metric as follows:

I(x) =
c1

1+ c2V 2N (x)
, (46)

where c1 and c2 are two positive constants used to shape
the weighting function as shown in Fig. 3.

Fig. 9 The changes in the mean compliance and the volume
of the structure with iteration for the example in Fig. 8

Fig. 10 AMichell-type structure with fixed–simple supports
and multiple loads P1 = 30 N and P2 =30 N. (a) Initial design.
(b)–(g) Intermediate results. (h) Final solution
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Fig. 11 AMichell-type structure with fixed–simple supports
and multiple loads P1 = 20 N and P2 = 40 N. (a) Initial design.
(b)–(g) Intermediate results. (h) Final solution

7
Numerical examples

In this section we present several examples of struc-
tural optimization obtained with the proposed algorithm
and implementation. The optimization problem of choice
is the mean compliance problem that has been widely
studied in the relevant literature (e.g., Bendsoe 1997;
Rozvany 1988). The objective function of the problem is
the strain energy of the structure with a material volume
constraint, i.e.,

J(u) =

∫
D

Eijklεij(u)εkl(u)dΩ . (47)

For all examples, the material used is steel with amod-
ulus of elasticity of 200GPa and a Poisson’s ratio of
v = 0.3. For clarity in presentation, the examples are in
2D under plane-stress conditions.

7.1
Michell-type structures

A Michell-type structure is first considered with a sin-
gle load. A rectangular design domain of length L and
height H with a ratio of L : H = 12 : 6 is loaded verti-
cally at the center point of its bottom with P = 30N as
shown in Fig. 4. The left bottom corner of the beam is
fixed, while it is simply supported at the right bottom
corner. A volume ratio of 0.3 is considered. The initial
design and some intermediate and the final optimization
results are shown in Fig. 4. The final optimum solution is
nearly identical to what other researchers have obtained
by using a homogenization-based method (see Bendsoe
1997; Rozvany 1988). A mesh of 62× 122 quadrilateral
elements is used for the finite element analysis, and the
numerical width ξ for the approximate Heaviside function
is chosen to be 0.7 times the grid width.
In the example, 72 holes are uniformly distributed

in the initial design as shown, representing an original

Fig. 12 A Michell-type structure with fixed–fixed supports
and multiple loads P1 = 30 N and P2 =15 N. (a) Initial design.
(b)–(g) Intermediate results. (h) Final solution
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Fig. 13 Amid-point loaded beam (MBB beam) with fixed–simple supports and a volume ratio of 0.355. (a) Initial design. (b)–(g)
Intermediate results. (h) Final solution

Fig. 14 Amid-point loaded beam (MBB beam) with fixed–simple supports and a volume ratio of 0.35. (a) Initial design. (b)–(g)
Intermediate results. (h) Final solution
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Fig. 15 The first Michell truss example. (a) Initial design. (b)–(g) Intermediate results. (h) Final solution

perforated structure. During the process of optimiza-
tion, many of these holes merge, yielding “Swiss-cheese”
structures during iteration. Many of the “Swiss-cheese”
holes are gradually “gobbled up” by the level-set pro-
cessing. In the intermediate steps, some pieces of the
structure may also break off to become separated. How-
ever, they eventually evolve to disappear, since they
are physically meaningless. This illustrates the flexibil-
ity and power of the level-set model in handling dras-
tic topological changes. The convergence of the opti-
mization process is shown with the changes with itera-
tion of the objective function and the structure volume
in Fig. 5.
The second example is similar to the first example, ex-

cept that the right bottom corner support is also fixed
and its volume ratio is 0.2. The initial design and some in-
termediate and the final optimization results are shown in

Fig. 6 and the changes of the objective function and the
structure volume with iteration are shown in Fig. 7.

7.2
Michell-type structures with multiple loads

A Michell-type structure is now considered with multiple
loads at its bottom as shown in Fig. 8. The volume ratio
is 0.3. Again, the mesh of 62× 122 quadrilateral elem-
ents is used for FEM analysis. In Fig. 8, the structure has
a fixed and a simple support at the bottom corners with
P1 = 30N and P2 = 15N. The initial design and some in-
termediate and the final optimization results are shown.
Changes in the mean compliance and the body volume
during iterations of the optimization are shown in Fig. 9.
Figures 10–11 show the initial design and some intermedi-
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ate and the final optimization results for three more cases
of different values of loads of the example.
The third example of the Michell-type structure is

similar to the example of Fig. 8, except that the supports
are both of fixed type. The volume ratio is 0.3, and the
loads are P1 = 30N and P2 = 15N. The optimization re-
sults are shown in Fig. 12.

7.3
MBB beams

This example is said to be related to a problem of de-
signing a floor panel of a passenger airplane, in Ger-
many known as Messerschmitt–Bolkow–Blohm (MBB)
beams. The floor panel is loaded with a concentrated
vertical force P = 80N at the center of the top edge. It
has a fixed support and a simple support at its bottom
corners respectively. The design domain has a length-to-
height ratio of 24 : 4. We use 56×165 quadrilateral elem-
ents to model a half of the structure, due to the geometric
symmetry. The numerical width ξ of the Heaviside func-
tion is taken as 0.5 times the grid width.
In Fig. 13 the volume ratio is specified to be 0.355, and

the optimization results are shown. In Fig. 14, the vol-
ume ratio is slightly less than 0.35. As shown, the optimal
design has a different topology with a smaller number of
holes compared with the optimal design of Fig. 13 for the
slightly higher volume ratio of 0.355.

7.4
The Michell trusses

The problem of Michell truss optimization is presented
here. The design domain is shown in Fig. 15. An optimum
structure is to be designed to transfer a vertical force to
the circular fixed support. A force P = 20N is applied to
the middle of the right side. A mesh of 112×82 quadrilat-
eral elements is used, the volume ratio is constrained to
be 0.165, and the numerical width ξ is specified to be 0.5
times the minimum grid width. The optimization results
of the example are shown in Fig. 15. Another example
of the Michell truss is shown in Fig. 16 with a different
boundary condition and the same load of P = 20N. The
volume ratio is constrained at 0.2. The FEM analysis uses
a mesh of 86×86 quadrilateral elements.

7.5
Cantilever beams

A cantilever beam of ratio 3.2 : 2 is loaded vertically at
the center of its free end with a force of 80 N as shown in
Fig. 17. A volume ratio constraint of 0.25 is considered.
The design domain is discretized using 22× 34 quadri-
lateral elements. Two different values of ξ are used for
the smoothing of Heaviside function. The optimization
results are shown in Figs. 17 and 18.

In Fig. 17, ξ = 1.0 is used. This means that the
smoothing width for the Heaviside function is equal to
the minimum grid width of the finite elements. In Fig. 18,
a tighter width is used, ξ = 0.75. From the figures it is ev-
ident that both optimization processes arrive at the same
final optimal solution, starting with the same initial de-
sign as shown. However, these two processes undertake
different intermediate steps or optimization paths.
It is interesting to point out that in Fig. 18, with

the tighter numerical width, an intermediate solution
(Fig. 18e) is achieved. This intermediate design is very
similar to optimal solutions that are often reported in the
literature, especially those obtained with a homogeniza-
tion (or SIMP) approach. In our process of optimization
based on the level-set models, the shape of the struc-
ture continues to evolve to approach to the final result
shown in Fig. 18h. The final solution has a very different
topology from the intermediate solution, with a slight im-
provement in the mean compliance. This case shows that

Fig. 16 The second Michell truss example. (a) Initial design.
(b)–(g) Intermediate results. (h) Final solution
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the problem of optimal topology may become very sensi-
tive and multiple solutions may exist.

7.6
Computational time

Based on the numerical examples presented above, we
further discuss the computational performance of the
level-set-based method described above. There are two
major computational tasks in the course of optimization.
The first is the physical problem of the linear elastostatic
system of the solid structure. The underlying field equa-
tions are solved with the finite element method. The sec-
ond task is the computation of the movements of the level
sets to describe the changes in structural shape. For the
examples that are examined, we found that it generally
takes 80–250 iterations for an accurate optimal solution.
The use of the nonlinear mapping of the velocity func-
tion can reduce the iteration number by about 2.5 times
when compared with a direct use of the velocity function
as reported in our earlier work (Wang et al. 2003).

Fig. 17 The first cantilever example with ξ = 1.0. (a) Initial
design. (b)–(g) Intermediate results. (h) Final solution

Fig. 18 The second cantilever example with ξ = 0.75. (a) Ini-
tial design. (b)–(g) Intermediate results. (h) Final solution

Table 1 Comparison of the computing time for the can-
tilever beam examples

Element Number 9184 2772 1364 748

FEA Time (s) 45.93 8.232 3.618 1.952

Level Set Time (s) 0.659 0.113 0.054 0.030

Level Set / Total 1.41% 1.35% 1.47% 1.51%

Furthermore, it is experienced that the FEM analy-
sis takes the major portion of the total computational
time and the level-set updating uses only a small fraction.
For the cantilever beam example, Table 1 tabulates the
CPU time (in seconds) used in each iteration for the tasks
of the level-set updates and the FEM analysis for four
different mesh sizes. It shows that the level-set computa-
tion takes between 1.35% to 1.51% of the total computing
time. Clearly, the level-set method shows its high effi-
ciency. It also shows that the local level-set computation
method employed has a computing behavior of the linear
complexity, as predicted.
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8
Conclusions

We have presented a region framework for structural
shape and topology optimization based on the level-
set methods. As a boundary optimization problem, the
structure is implicitly represented with a level-set model
that is embedded in a scalar function. The dynamics of
the level-set function is governed by a simple Hamilton–
Jacobi convection equation. The movement of the moving
boundaries of the structure is driven by a transformation
of the objective and the constraints into a speed function
that defines the level-set propagation. The result is a 3D
structural optimization technique that demonstrates out-
standing flexibility in handling topological changes, the
fidelity of boundary representation, and the degree of au-
tomation, comparing favorably with other methods in the
literature based on explicit boundary variation or homog-
enization.
A number of numerical techniques for an efficient

and robust implementation of the proposed method are
described, including using a local computation scheme
to keep the computational complexity linear with the
complexity of the physical boundary of the structure,
while a second-order discrete method based on the TVD
Runge–Kutta scheme is used for accurate and stable
numerical solution. We have developed two techniques
for further enhancement of the level-set computations.
A technique of conjugate velocity mapping is described to
substantially increase computational efficiency from the
conventional gradient descent method for a faster conver-
gence. The concept of variational regularization with an
anisotropic diffusion of the mean curvature flow is utilized
to maintain the boundary smoothness without sacrificing
its fidelity to topology. The proposed approach is tested
with several examples of mean compliance optimization
of a linear elastic structure, as they have been widely ana-
lyzed in the literature. The approach can certainly be
applied to other problems of structural optimization in-
volving multi-materials (Wang and Wang 2003).
The work presented in this paper is by no means com-

plete. Our current algorithm is capable of creating new
holes only from the Dirichlet boundary as reported by
Allaire (2002), Wang et al. (2003), and Wang and Wang
(2003). The creation process is typically slow. The level-
set models are at ease in handling topological changes
of merging or canceling holes. Therefore, the algorithm
described here is efficient in performing topology opti-
mization if a number of holes exist in the initial design.
An immediate need is to develop a technique for the cre-
ation of holes as they are needed. In fact, the concept of
“topological derivatives” has been discussed in the liter-
ature recently (Sokolowski 1999), and it seems to have
a close connection with the concept of the “characteristic
function” of the bubble method (Eschenauer 1994, 1997;
Lewinski 1999). Thus, its application would add a sig-
nificant “nucleation” capability to the level-set-based im-
plicit moving boundary framework. It is foreseeable that

our proposed optimization system based on this frame-
work would able to generate, split, merge, or diminish
holes or cavities within the structure as well as to move
the interior and exterior boundaries to ultimately achieve
an optimal design. Our preliminary investigation in this
direction is promising and we shall report our complete
results separately.
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