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Structural design using Cellular Automata for eigenvalue
problems

M.M. Abdalla and Z. Gürdal

Abstract Cellular Automata (CA) is an emerging
paradigm for the analysis and design of complex systems.
Recently, it has been successfully applied to structural de-
sign. In this work, an algorithm for designing structures
for eigenvalue requirements is presented. The proposed
algorithm, being fully local in nature, lends itself to CA-
type implementation. To illustrate the effectiveness of
the proposed approach, the design of Euler–Bernoulli
columns for a prescribed buckling load is considered.
Excellent agreement between the CA results and exact
solutions is obtained. A more complex column design
problem with local constraints is also considered, and
the CA design is compared to the design obtained using
a state-of-the-art structural optimization software.

Key words structural optimization, eigenvalues, cellu-
lar automata

1
Introduction

The use of the Cellular Automata (CA) paradigm is
emerging as a powerful approach to the analysis and de-
sign of complex systems (Wolfram 1994). CA uses a lat-
tice of regularly spaced cells to model physical phenom-
ena. Each cell contains all the information needed to up-
date its state. This information includes both field vari-
ables (e.g., displacements or stresses) as well as local de-
sign variables (e.g., local cross section area or thickness).
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The only external information to the cell comes directly
from adjacent cells, which along with the cell itself form
a neighborhood. By limiting computations to neighbor-
hoods and using identical update rules for cell variables in
the entire lattice, CA proves to be an inherently parallel
algorithm.Moreover, since both field and design variables
can be simultaneously updated, CA allows combined an-
alysis and design. This greatly reduces the amount of
computations required to reach an improved design.
Recently the CA concept has been successfully ap-

plied to structural design. Topology design using the fi-
nite element for global analysis and CA local rules for
design is considered in Kita and Toyoda (2000). The
design rules are obtained through the formulation of
a local optimization problem. In truss design, consid-
ered in Gürdal and Tatting (2000), equilibrium equations
at each truss joint (CA cell) are used as local update
rules along with fully stressed design formulation for the
update of cross section areas. CA is demonstrated to
be superior to current finite-element-based optimization
technology, especially when geometric nonlinearities are
included. Continuum modeling and topology optimiza-
tion have been attempted in Tatting and Gürdal (2000).
The two-dimensional continuum is reduced to an equiva-
lent truss representation to which the equilibrium update
rules of Gürdal and Tatting (2000) are applicable and
the von Mises stress is used for updating the thickness.
However, the equivalence between the truss and the con-
tinuum structure is exact only for Poisson’s ratio equal to
one third. In this paper, an energy approach to the deriva-
tion of local equilibrium update rules is used, allowing for
greater flexibility.
The main objective of this paper is to demonstrate

the use of CA for the design of continuum structures
for a specified eigenvalue. This important class of prob-
lems includes the design of structures for a given buck-
ling load or natural frequency. Although the proposed
method is general enough to solve more complex con-
tinuum problems, the paper specifically addresses the de-
sign of Euler–Bernoulli columns against buckling. Exten-
sion of the present work to multidimensional problem is
a straightforward task.
Historically, two major approaches to the solution of

the column buckling design problem can be identified.
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The first approach is based on the continuous optimality
criteria method and employs the calculus of variations. In
this approach, the continuous distribution of cross section
area is the unknown to be determined, and the moment of
inertia of the cross section is assumed to be proportional
to the area raised to a fixed power. Both geometrically
constrained (designs with minimum area constraint) and
geometrically unconstrained problems are considered in
the literature for various boundary conditions. When the
optimality conditions (a set of integrodifferential equa-
tions) cannot be analytically solved, some numerical ap-
proximation method is employed such as the finite elem-
ent method (Szyszkowski et al. 1989). Although this ap-
proach leads to analytic solutions and considerable in-
sight into the buckling design problem (Gajewski and
Zyczkowski 1989), it is not generally used in practice be-
cause of the limited freedom in the choice of the type of
column cross section and the difficulty of incorporating
local constraints.
The second traditional approach, which is generally

used for practical problems, is based on mathematical op-
timization. The column is divided into a number of finite
elements, and the cross section area and moment of iner-
tia (or other geometric dimensions) of each element are
used as design variables. The problem is formulated as a
mathematical programming problem, and classical opti-
mization methods (Haftka and Gürdal 1993) are used to
find the optimal solution. When attacked in this manner,
eigenvalue design problems require a repetitive determin-
ation of eigenvalues of a potentially large system of equa-
tions within an outer loop of a design optimization formu-
lation. When a large number of structural properties are
used as design variables, this formulation is computation-
ally intensive. For that reason, approximation method-
ologies (Canfield 1993) are frequently employed to reduce
the required number of eigenvalue evaluations. Simultan-
eous analysis and design (SAND), as used in Shin et al.
(1988) for buckling design, attempts to simultaneously
solve the finite element equations and the mathematical
optimization problem. Although SAND obviates the need
for nesting design and analysis, it tends to produce large
nonlinear systems that are difficult to solve.
More recently, novel approaches to eigenvalue de-

sign problems have been introduced. A genetic algorithm
(GA) is used for buckling design of columns in Ishida and
Sugiyama (1995). The use of GA does not seem to in-
troduce much computational savings since it is not well
suited for problems with large numbers of continuous
variables.
CA, by its combined local analysis and design ap-

proach, circumvents the inefficiency noted above by ar-
riving at an improved design while simultaneously per-
forming analysis. The algorithm presented here does not
require the determination of eigenvalues or eigenvectors,
thus potentially providing large savings in computational
time. Massively parallel implementation, which is natu-
rally consistent with the CA paradigm, is expected to
improve computational efficiency in the future.

2
Eigenvalue requirement design algorithm

The generic equations governing the structure are as-
sumed to be of the form:

L(d)u= λH(d)u, (1)

where L, H are operators and λ is a given eigenvalue.
u represents the dependent (field) variables, while d rep-
resents the design variables; both are assumed to be de-
fined over the domain of the problemΩ.
The operators L and H can be selected to describe

structural problems in one, two, or three space dimen-
sions. Proper selection of these operators depends on the
structural theory being used. At this point they are left
completely arbitrary.
To excite the system represented by Eq. 1, a fictitious

source term f may be introduced to the right-hand side of
Eq. 1 to give

L(d)u= λH(d)u+ f . (2)

Local to each point in the structure, a stress measure
σ(u,d) is assumed to be defined in terms of the design
and field variables. Also defined is a strength measure,
S(d). The weight of the structure (objective function to
be minimized) is assumed to be represented in integral
form as:

W =

∫

Ω

ρ(d) dΩ, (3)

where ρ(d) is a pointwise defined density measure. The
iterative algorithm for the solution of both the field and
design variables is:

Algorithm

1. Initialize d, f , and u.
2. Solve the problem (at the k+1 iteration):

L
(
dk
)
uk+1 = λH

(
dk
)
uk+ fk, (4)

where
{
fk
}∞
k=1
is such that

lim
k→∞

fk = 0.

This determines a new distribution of the field vari-
ables.

3. At each point solve the optimization problem:

Minimize: ρ
(
dk+1

)

Subject to:

σ
(
uk+1,dk

)
≤ S
(
dk+1

)
, g
(
dk+1

)
≤ 0,

where g(d) are pointwise defined side constraints.
4. Return to step 2 and repeat until convergence is
achieved.
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When local update rules are used in step 2, the algo-
rithm becomes completely local in nature and thus com-
pletely consistent with the CA paradigm.

2.1
Example

To demonstrate the design algorithm in its simplest form,
a single degree of freedom system is considered. Figure 1
depicts the system where a rigid pole of length L is hinged
at the bottom and supported by two identical springs of
stiffness K at its tip. The objective is to find the correct
design of the springs to avoid instability under the speci-
fied compressive load P . The equilibrium equation for the
system takes the form:

2K Lθ︸ ︷︷ ︸
Lu

= P︸︷︷︸
λ

θ︸︷︷︸
Hu

+ f︸︷︷︸
f

, (5)

where the field variable is the pole rotation θ. It follows
directly from Eq. 5 that the critical value of the spring
stiffness is Kcr = P/(2L).
To formulate the problem in the terms introduced ear-

lier, the stress measure is taken as the force in the spring
σ =K Lθ and the strength measure is assumed to be pro-
portional to the cross section area of the spring S = SoA.
The spring stiffness is also proportional to the spring area
A used as the design variable (i.e., K = C A , where C is
a constant). With these definitions, step 2 of the design
algorithm takes the form

2Kk Lθk+1 = P θk+fk. (6)

Solving for θk+1 and simplifying we obtain:

θk+1 =
Kcr

Kk
θk+ f̃k, (7)

Fig. 1 A rigid pole supported by springs under compression

where f̃k = fk/(2Kk L) , and step 3 takes the form

Minimize: Ak+1.

Subject to: Kk Lθk+1 ≤ SoA
k+1.

The solution of this local optimization problem is simply:

Ak+1 =Kk Lθk/So. (8)

From Eq. 7 we see that for Kk <Kcr (underdesign)
the response is accentuated , while for Kk >Kcr (overde-
sign) the response is attenuated . This is the key point in
the algorithm. Since the response of an underdesign is ac-
centuated, the stress measure increases, and in the next
design step the stiffness of the design is also increased, as
seen from Eq. 8. The reverse happens when we have an
overdesign. The net effect is that the algorithm converges
to the correct stiffness to support the load.
Note that the introduction of a fictitious load f is

not necessary for the algorithm to work. The only con-
sequence of eliminating f altogether is that the solution
procedure cannot be started from the undeflected pos-
ition θ = 0. Figure 2 shows the convergence of the algo-
rithm for this simple case.

Fig. 2 Convergence of spring stiffness

3
Buckling design of columns

To illustrate the algorithm’s ability to deal with practi-
cal problems, elastic column design for a specified buck-
ling load is considered. Buckling design refers to finding
the optimal material distribution of the column so that
a given compressive load is supported without losing sta-
bility while minimizing the total volume of the column
material. The governing equation is

d2

dx2

(
EI(d)

d2w

dx2

)
=−P

d2w

dx2
+p(x), 0≤ x≤ L, (9)
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where x is a coordinate along the column axis, E is
Young’s modulus of the column material, and I is the mo-
ment of inertia of the cross section that is assumed to
be symmetric. Buckling in the plane of symmetry is ex-
clusively considered. The dependent variable w(x) is the
lateral displacement, and p(x) is a fictitious distributed
load corresponding to f in Eq. 2. The stress measure is
taken to be the bending moment defined by

M(x) =EI
d2w

dx2
, (10)

and the strength measure is taken as the maximum al-
lowable stress Sall multiplied by the section modulus Z
defined by

Z =
I

z
, (11)

where z is the perpendicular distance between the ex-
treme point of the cross section and the neutral axis. The
weight of the column is given by

W =

L∫

0

A(x) dx; (12)

thus the density measure is the cross section area A(x).
In the absence of side constraints, the solution of the

cell-level optimization problem is fully stressed; this gives
the design update rule as

I

z
=
M

Sall
. (13)

3.1
Equilibrium update rules

Derivation of cell-level local update rules for field vari-
ables is a key step of any CA implementation. Each cell
should be capable of finding its deformation state for
any given deformation state of its neighbors. For column
design, we obtain the update rules by discretizing the
governing equation Eq. 9. The domain of the solution is
divided into a number of cells. The beam cross section
is assumed to be constant over each cell, and the field
variables are associated with the midpoint of each cell as
shown in Fig. 3. The field variables are bending displace-
ment and rotation, u= (w, θ). The neighborhood of each
cell comprises the cell itself (C) and two neighbors, called
left (L) and right (R) neighbors. The displacement field is
considered to be of the form

w = wiH1(ξ)+h θiH2(ξ)+wj H3(ξ)+h θjH4(ξ), (14)

where Hi are hermitian interpolation functions, ξ = x/h
is a nondimensional independent variable, and h is the
lattice spacing. The displacement field is constructed in
the form of Eq. 14 for the four different segments of the

Fig. 3 Cell neighborhood. • cell variables, ◦ auxiliary vari-
ables

control volume indicated by the dashed lines in Fig. 3 by
introducing two auxiliary sets of cell variables associated
with the middle left (ML) and the middle right (MR)
points. Thus, the kinematic variables are

q=
(
uC uML uMR

)
(15)

and the neighbor displacements are

p=
(
uL uR

)
. (16)

The equilibrium equation (Eq. 9) is equivalent to the min-
imization of the total potential energy inside the control
volume. The resulting equations are

K ·q= Kg ·q+Cg ·p−C ·p+ fex, (17)

where the stiffness and geometric matricesK andKg are
given by

K=
∂2Φ

∂q∂q
, Kg =

∂2Φg

∂q∂q
, (18)

and the clamp matrices C and Cg are given by

C=
∂2Φ

∂p∂q
, Cg =

∂2Φg

∂p∂q
, (19)

where the strain energies Φ and Φg are given by

Φ=

∫

Ωc

EI

(
d2w

dx2

)2
dx , (20)

Φg = P

∫

Ωc

(
dw

dx

)2
dx, (21)

where Ωc is the cell control volume. The external load
vector fex represents the effect of p(x). Since p(x) is ar-
bitrarily chosen, the load vector is assumed to consist of
a concentrated force and couple at each cell, thus:

fex =
(
F M 0 0 0 0

)
. (22)

Since the external load at the auxiliary points is zero,
equilibrium equations enable the elimination of the vari-
ables associated with these neighbors. This process is
similar to static condensation.We start by partitioningK
andC as
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K=




K11 K12 K13

KT12 K22 0

KT13 0 K33


 (23)

and

C=




C1

C2

C3




(24)

with similar partitions for Kg and Cg. The auxiliary vari-
ables are thus eliminated as

uML =−K
−1
22 ·
(
KT12 ·uC+C2 ·p

)
, (25)

uMR =−K
−1
33 ·
(
KT13 ·uC+C3 ·p

)
. (26)

This form of condensation neglects the geometric matrix
contributions at the intermediate neighbors. This is de-
liberately done to make the geometric terms appear only
as forcing terms. The consistent reduced equations of the
system take the form

K̃ ·uC = K̃g ·uC+C̃g ·p− C̃ ·p+ f̃ex, (27)

where

K̃= K11−K12 ·K
−1
22 ·K

T
12−K13 ·K

−1
33 ·K

T
13 , (28)

K̃g = Kg11 +K12 ·K
−1
22 ·Kg22 ·K

−1
22 ·K

T
12+

K13 ·K
−1
33 ·Kg33 ·K

−1
33 ·K

T
13−Kg12 ·K

−1
22 ·K

T
12−

K12 ·K
−1
22 ·K

T
g12
−Kg13 ·K

−1
33 ·K

T
13−

K13 ·K
−1
33 ·K

T
g13
, (29)

C̃= C1−K12 ·K
−1
22 ·C1−K13 ·K

−1
33 ·C3 , (30)

C̃g = Cg1+K12 ·K
−1
22 ·Kg22 ·K

−1
22 ·C2+

K13 ·K
−1
33 ·Kg33 ·K

−1
33 ·C3−Kg12 ·K

−1
22 ·C2−

K12 ·K
−1
22 ·Cg2 −Kg13 ·K

−1
33 ·C3−

K13 ·K
−1
33 ·Cg3 , (31)

and

f̃ex =
(
F M

)
. (32)

Thus, after simplification the equilibrium relations for
a cell, written exclusively in terms of its left and right
neighbors, take the form

8EIC
h3

[
S11 −S12

−S12 S22

]
·

{
wC

h θC

}
=

{
F̃

M̃

}
, (33)

where

S11 = 12 [c (1+ c)+2 d (d−1)+d (28+15 c)]

S12 = 3 (a− b) (3+ c+11 d)

S22 = c (7+ c)+d (196+21 c)+2 d (d−1) (34)

a=EIL/EIC , b=EIR/EIC , (35)

c= a+ b, d= a b (36)

F̃ = F +Fg+Fe , M̃ = (M +Mg+Me)/h (37)

Fe =
8EIC
h3
[ 6 g1(a)wL+h g2(a) θL+6 g1(b)wR−

h g2(b) θR ] (38)

Me =−
8EIC
h3
[ g3(a)wL−h g1(a) θL− g3(b)wR−

h g1(b) θR ] (39)

Fg = P̃1 [ f2(a)wC −h f3(a) θC−f2(a)wL−

h f4(a) θL ]+ P̃2 [ f2(b)wC +h f3(b) θC −

f2(b)wR+h f4(b) θR ] , (40)

Mg =−P̃1 [ f3(a)wC −h f5(a) θC −f3(a)wL−

h f6(a) θL ]+ P̃2 [ f3(b)wC +h f5(b) θC −

f3(b)wR−h f6(b) θR ] , (41)

P̃1 =
P

30 f21 (a)h
, P̃2 =

P

30 f21 (b)h
, (42)

and

f1(r) = 1+14 r+ r
2

f2(r) = 72
(
1+12 r+102 r2+12 r3+ r4

)

f3(r) = 3
(
13+24 r+234 r2−16 r3+ r4

)

f4(r) = 3
(
1−16 r+234 r2+24 r3+13 r4

)

f5(r) = 2
(
19+86 r+380 r2+26 r3+ r4

)

f6(r) =
(
1−100 r−58 r2−100 r3+ r4

)

g1(r) = 2 r (1+ r)/f1(r)

g2(r) = 3 r(1+3 r)/f1(r)

g3(r) = 3 r(3+ r)/f1(r). (43)
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When the applied axial load is not uniform (e.g., buck-
ling of a column under its own weight) or design de-
pendent (e.g., statically indeterminate frames), an ad-
ditional axial degree of freedom can be added and up-
dated using the axial equilibrium equation. In this paper,
only columns with uniform applied compressive load are
considered.

3.2
CA design algorithm

The equilibrium update rules of the previous section rep-
resent a discretization of the structural operators in Eq. 9.
The next step in implementing the design algorithm is
to calculate the stress measure, which will be used for
the design update rule. Since boundary conditions are ap-
plied at the middle point of a cell, the bending moment
is calculated at the endpoints of the cell to avoid numeri-
cal difficulties at free or hinged boundary conditions. The
bending moment at the two ends of the cell is given by

ML =
EIL

f1(a)h2
(24 (a−1)wC−4 (a−5)h θC−

24 (a−1)wL−4 (5 a−1) θL) , (44)

Fig. 4 Flow chart of the column design algorithm

MR =
EIR

f1(b)h2
(24 (b−1)wC+4 (b−5)h θC−

24 (b−1)wR+4 (5 b−1)h θR). (45)

Thus, the stress measure is given by

Mmax =max {|ML|, |MR|}. (46)

For geometrically similar cross sections, the design rule
Eq. 13 simplifies to

A= k

(
Mmax

Sall

)3/2
, (47)

where A is the area of the cross section and k is a con-
stant that depends on the shape of the cross section (e.g.,
square, circular, ... etc.).
The flow chart of the design algorithm is shown in

Fig. 4. Three nested loops can be identified. The inner-
most loop consists of cell-by-cell displacement (field vari-
ables) updates using Eq. 33. This loop is embedded in
an intermediate loop in which the design is updated cell-
by-cell using Eq. 13. Throughout these computations the
loads (F , M , Fg and Mg) are kept fixed. The outermost
loop comprises updating the local loads and checking
for convergence. In our implementation, the inner loops
are iterated a fixed number of times to reach a reason-
able equilibrium distribution before updating the design.
It was also found that underrelaxation of the geometric
loads (Fg and Mg) is necessary. The amount of underre-
laxation depends on the particular problem and bound-
ary conditions.

4
Numerical examples

The following examples demonstrate the ability of the CA
methodology to design continuum structures with con-
straints on eigenvalues. The examples cover a number
of support conditions with and without geometric con-
straints.

4.1
Clamped-free column

First, we consider a clamped-free column. Following Tad-
jbakhsh and Keller (1962), we impose no minimum area
constraint. The cross sections are assumed to be square,
so that geometric similarity is satisfied. Figure 5 shows
the normalized analytical optimal area distribution as
compared to the CA design using 30 cells. The agree-
ment is excellent except near the tip, where the cross
section area vanishes and the analytic solution is singu-
lar. This is further illustrated in Fig. 6, which compares
the mode shapes of the CA prediction (ten cells) and the
analytically determined mode shape. The NASTRAN fi-
nite element simulation of the CA design is also shown;
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Fig. 5 Clamped-free column; area distribution of the opti-
mal column. – Analytic solution, ◦ CA solution for 30 cells

Fig. 6 Clamped-free column; mode shape for the optimal
design. – Analytic solution, −− CA solution for 10 cells,
• NASTRAN simulation of the CA design

Fig. 7 Clamped-free column; design improvement vs. num-
ber of cells

it gives identical results to the CA predictions. Figure 7
depicts percentage weight saving (compared to uniform
column design) using CA as the number of cells is var-

ied. It is clear that, as the number of cells increases, the
CA design approaches the theoretical maximum weight
saving.

4.2
Simply supported column

The second example is a simply supported column with
a minimum area constraint. The exact solution of Trahair
and Booker (1970) is applicable to this case. A column
of length L = 1m made of aluminum (Young’s modu-
lus E = 70GPa and maximum prebuckling stress Sall =
270MPa) is designed to support a 500 kN compressive
load. The cross sections are assumed to be square to
maintain geometric similarity postulated in the analytic
derivation. Due to symmetry, only half of the beam was
discretized using ten cells. Figure 8 depicts the analytic
and CA normalized area distributions. The CA design
tends to add more material toward the pinned end and re-
duce the maximum cross section area below the analytic
prediction. This is because of the coarse lattice used. The
volume of the CA design is within 0.3% of the analytic
optimal solution.

Fig. 8 Simply supported column; area distribution of the op-
timal column. – Analytic solution, ◦ CA solution for 10 cells

4.3
Clamped-clamped column

The third example is a clamped-clamped column. This
problem was proclaimed solved in Tadjbakhsh and Keller
(1962), but it was found later that this solution actually
maximizes the second buckling mode and hence is not
optimal. The actual optimum is bimodal as reported in
Olhoff and Rasmussen (1977), meaning that the first two
buckling modes have the same critical value. The column
is discretized using 41 cells. The converged CA area dis-
tribution is plotted against the exact analytic solution of
Olhoff and Rasmussen (1977) Fig. 9. The CA design is
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Fig. 9 Clamped-clamped column; area distribution of the
optimal column. – Analytic solution, ◦ CA solution for 41 cells

only 1% heavier than the analytic solution. A finite elem-
ent analysis of the CA design using NASTRAN reveals
that the critical load for the second buckling mode is only
3% higher than the first mode. The CA algorithm can-
not handle bimodal optima without modification since
it considers one mode only. For that reason, further re-
finement of the lattice causes the CA design to devi-
ate from the bimodal optimum, following the symmet-
ric mode (which becomes the second mode rather than
the first). However, for practical purposes, the CA de-
sign is seen to approximate the bimodal optimum quite
well.

4.4
Clamped-free column with manufacturing constraints

All the previous examples assume the cross sections are
geometrically similar. This artificial restriction is re-
moved in this final example. Consider a clamped-free

Fig. 10 Design domain with manufacturing constraints

column of rectangular cross section of height H and
widthW . The column length is 1 m and is made of alu-
minum (Young’s modulus E = 70 GPa) and designed to
support a 500 kN compressive load. The following manu-
facturing constraints are imposed:

H ≥Hmin, W ≥Wmin, and H ≤RW, (48)

where Hmin = 5 cm, Wmin = 5 cm, and the maximum al-
lowable aspect ratio R= 10.
The fully stressed condition (Eq. 13) evaluates to one

of the following design points (see the sketch in Fig. 10
for the design domain arrangement for two different cases
depending on the value ofMmax):

H =

(
6Mmax
Wmin Sall

)1/2
, W =Wmin (49)

H =

(
6RMmax
Sall

)1/3
, W =H/R (50)

W =

(
6Mmax
H2min Sall

)
, H =Hmin. (51)

Another candidate solution is:

W =Wmin, H =Hmin. (52)

Of the feasible candidate solutions the one with minimum
area is chosen.
Since to the authors’ knowledge no analytic solution

exists for this problem, the CA design is compared to
the design obtained from traditional finite-element-based
software GENESIS (Vandeplaats Research & Develop-
ment 1998). The column is divided into 10 cells for the CA

Table 1 CA vs. GENESIS designs (dimensions in cm)

CA GENESIS

Cell H W H W

1† 14.402 1.440 14.635 1.468

2† 14.402 1.440 14.687 1.473

3† 14.283 1.428 14.444 1.449

4† 14.040 1.404 14.078 1.412

5† 13.659 1.366 13.605 1.365

6† 13.116 1.312 13.004 1.304

7† 12.364 1.236 12.178 1.221

8† 11.313 1.131 10.959 1.099

9‡ 9.631 1.000 9.385 1.000

10‡ 5.731 1.000 5.168 1.000

†Aspect ratio constraint active.
‡Minimum width constraint active
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Fig. 11 Clamped-free column; 3D view of CA design

design and 21 elements for GENESIS linked to only 20
design variables to correspond directly to the CA model.
Table 1 contains the results of both methods and indi-
cates the active constraints. The total volume of the CA
design, shown in Fig. 11, is 1640.7 cm3 as compared to
1640 cm3 for GENESIS design. The agreement is satisfac-
tory between the two designs, and they predict the same
active constraints.

5
Conclusion

An algorithm based on local rules for both analysis and
design is proposed to solve structural design problems
with eigenvalue requirements. The local nature of the al-
gorithms lends it to Cellular Automata (CA)-type imple-
mentation. This gives the algorithm the benefit of being
easily implemented on parallel architectures. To demon-
strate the ability of the algorithm to handle practical
problems, column design for buckling is considered. The
numerical examples show that the CA design algorithm
converges to the analytic optimum for columns made of
geometrically similar cross sections, with and without ge-
ometric constraints. A design example with manufactur-
ing constraints is also considered, and the CA design com-
pares very favorably to the design determined through
classical optimization coupled to finite element analysis.
Although the algorithm is not yet implemented on par-
allel architecture, considerable savings can be gained by
parallel implementation for large problems.
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