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Order-(n +m) direct differentiation determination of design
sensitivity for constrained multibody dynamic systems

K.S. Anderson and Y. Hsu

Abstract With the complexity and large dimensional-
ity of many modern multibody dynamic applications, the
efficiency of the sensitivity evaluation methods used can
greatly impact the overall computation cost and as such
can greatly limit the usefulness of the sensitivity informa-
tion. Most current direct differentiation approaches suffer
from prohibitive computational cost, which may be as
great asO(n4+n2m2+nm3) (for systems with n general-
ized coordinates andm algebraic constraints). This paper
presents a concise and computationally efficient sensitiv-
ity analysis scheme to facilitate such sensitivity calcula-
tions. A unique feature of this scheme is its use of recur-
sive procedures to directly embed the algebraic constraint
relations in forming and simultaneously solving a mini-
mal set of equations. This results in far fewer operations
than more traditional, or so-called O(n), counterparts.
The algorithm determines the derivatives of generalized
accelerations in O(n+m) operations overall. The result-
ing equations are “exact” to integration accuracy and
enforce constraints exactly at both the velocity and accel-
eration levels.

Key words multibody dynamics, design optimization,
sensitivity analysis, recursive formulation

ak Matrix representation of acceleration of center of
mass k∗ in the Newtonian reference frame N .

akt Acceleration remainder term associated with
body k in N ; includes all terms of ak that are not
explicit in u̇’s.
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Ak The generalized acceleration matrix of body k in
N .

Ā̄ĀAk That portion of the generalized acceleration ma-
trix of body k inN that is explicit in the unknown
state derivatives u̇.

Akt That portion of the generalized acceleration ma-
trix of body k in N that is not explicit in the
unknown state derivatives u̇.

oiAk The generalized acceleration matrix of ki in refer-
ence frame 0i that is associatedwith closed-loop i.

oīĀĀAk That portion of the generalized acceleration ma-
trix of ki in 0i that is explicit in the unknown state
derivatives u̇.

oiAkt That portion of the generalized acceleration ma-
trix of ki in 0i that is not explicit in the unknown
state derivatives u̇.

C Invertible transformation matrix relating q̇ to u.
C k Direction cosine matrix relating the basis vectors

fixed in body k to those in proximal body Pr[k].
Dist[k] Distal body set associated with body k.
D Matrix used in relating q̇ to u and commonly as-

sociated with prescribed motions.
F k Recursive generalized force matrix for body k.
F̂̂F̂Fk Articulated body force associated with body k.
Ik/k

∗
Central inertia matrix of body k.

Ik Generalized inertia matrix of body k.
Î̂ÎIk Articulated body inertia matrix of body k, associ-

ated with acceleration Ā̄ĀAk.
oi
Î̂ÎIk Articulated body inertia matrix of body k, associ-

ated with acceleration
oīĀĀAk.

Î̂ÎIk;oi Articulated body inertia matrix of body k, associ-
ated with acceleration Ā̄ĀAoi .

k Index representing an arbitrary system body
k(global numbering).

ki Index representing an arbitrary body k within
closed-loop i (local loop numbering).

k∗ Center of mass of body k.
K Right-hand side of system equations of motion,

representing applied forces as well as centripetal
and coriolis portions of inertia forces.

m Total number of independent system constraints.
mi Total number of constraints associated with

closed-loop i.
M System mass matrix.
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Mk Matrix of terms associated with body k that
would be found on the diagonal of a partially tri-
angularized (decomposed) system mass matrix.

n Total number of system generalized coordinates.
ni Total number of generalized coordinates associ-

ated with i-th closed-loop constraint equations.
nL Total number of closed loops.
N Newtonian reference frame.
0i Base body (primary reference frame) of closed-

loop i
pi Body containing the highest independent degree

of freedom (local loop numbering) within closed-
loop i

P kr Partial velocity matrix for body k associated with
generalized speeds ur.

Pr[k] Proximal (parent) body set associated with body
k.

q The n×1 matrix of generalized coordinates used
to describe the configuration of the system.

q̇ The first time derivative of the system generalized
coordinates.

Rk Matrix representation of resultant of all noncon-
straint forces acting on body k.

S k Basis consistent shift matrix that converts the
system of forces acting through mass center of k
to an equivalent system acting through a point of
k instantaneously coincident with the mass center
of its proximal body Pr[k].

jS k Shift matrix that transforms a force system act-
ing through mass center of k to an equivalent sys-
tem acting through a point of k instantaneously
coincident with the mass center of body j.

t Time.
T k Local triangularization matrix associated with

body k.
u The system generalized speeds that characterize

the motion of the system.
u̇ System generalized accelerations to be deter-

mined and temporally integrated.
U Appropriately dimensioned identity matrix.
vk
∗

Velocity of the center of mass of body k in refer-
ence frameN .

vk
∗

r Partial velocity of the center of mass of body k in
reference frameN associated with ur.

vk
∗

t Velocity remainder term associated with the cen-
ter of mass of body k in reference frame N .

V k The generalized velocity matrix, which relates the
velocity of body k to reference frameN .

V̄̄V̄Vk Portion of the body k generalized velocity matrix
that is explicit in the generalized speeds u.

V kt Body k generalized velocity remainder term ma-
trix, which relates the velocity of body k to refer-
ence frame 0̃.

oiV k Generalized velocity matrix, which relates the
velocity of ki mass center to that of loop base
body 0i to reference frame 0i.

oiV̄̄V̄V k Portion of the generalized velocity matrix
oiV k,

which is explicit in the generalized speeds u.

oiVkt That portion of the generalized velocity matrix
oiV k that is not explicit in the generalized speeds
u.

αk Angular acceleration of body k in Newtonian ref-
erence frameN .

αkt Angular acceleration remainder terms of body k;
This represents all terms of αk that are not ex-
plicit in u̇’s.

δδδj Useful intermediate quantity associated with
recursive treatment of dependent generalized
speeds and associated state derivatives of the
closed loop under consideration.

∆∆∆ki Useful intermediate quantity associated with re-
cursive treatment of body ki of the closed loop
under consideration.

γγγk Position vector from body Pr[k] mass center to
body k mass center.

Γk Useful intermediate quantity associated with re-
cursive treatment of dependent degrees of free-
dom of body k within the closed loop under con-
sideration.

λλλ Lagrange multipliers.
τττki Useful intermediate quantity associated with re-

cursive treatment of body ki of the closed loop
under consideration.

Ξk Useful intermediate quantity associated with re-
cursive treatment of dependent degrees of free-
dom of body k within the closed loop under con-
sideration.

Φ Set ofm system algebraic constraint equations.
Φ,q System constraint Jacobian.
χχχp+j Useful intermediate quantity associated with

recursive treatment of dependent generalized
speeds and associated state derivatives p+ j of
the closed loop under consideration.

ωωωk Angular velocity of body k in reference frame N .
ωωωkr Partial angular velocity of body k in reference

frameN associated with ur.
ωωωkt Angular velocity remainder term associated with

body k in reference frameN .
ωωωk× Matrix equivalent to vector cross product ωωωk×.

1
Introduction

The theory of multibody dynamic systems has been used
in an ever broadening variety of applications and has
now become an essential element of the design and an-
alysis processes for many mechanical systems. Evidence
of this is seen in a very broad range of practical appli-
cations including robotics, biomechanics, molecular sys-
tems, electromechanics, spacecraft, and microscale dy-
namic devices. Within this context, multibody systems
are described by a finite number of interconnected rigid
and/or flexible bodies with chain, tree, or closed-loop ge-
ometric configurations moving under the influence of ap-
plied and constraint forces. The advancements realized in
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multibody dynamics modeling and analysis methods over
the past few decades have opened a new era of simulation-
and model-based engineering in the 21st century.
One of the profound needs exhibited in modern multi-

body dynamics applications is that of sensitivity analy-
sis. Sensitivity analysis requires evaluations of sensitiv-
ities of various multibody dynamics quantities with re-
spect to parameters and design variables p of interest.
These sensitivities can, in various forms, play import-
ant roles associated with multibody computational prob-
lems such as implicit integration schemes, design opti-
mization, linearized dynamics, optimal control, etc. Due
to the complexity of equations of motion, the determin-
ation of these sensitivity terms have traditionally been
regarded as a formidable (prohibitive) task. Significant
computational effort is required to reveal the implicit re-
lationships between system generalized accelerations and
design parameters (Haug and Arora 1979) and to solve for
sensitivities of generalized accelerations through explicit
formulation of sensitivity governing equations (Hsu 2000;
Tak 1990).
Resorting to a numerical finite difference approxima-

tion may represent a simple alternative. However, this
(perhaps the most broadly used technique) usually pos-
sesses some very undesired features. Specifically, numeri-
cal solutions are sensitive to the perturbation size (Bestle
and Eberhard 1992; Hsu and Anderson 2001); the opti-
mal perturbation size of a set of design variables differs
from that associated with generalized coordinates (Hsu
2000), and additional costs are necessary to determine the
perturbed effect of each variable (Bischof 1996).
Analytical methods do not suffer from these aforemen-

tioned undesirable characteristics. The adjoint variable
method (Bestle and Seybold 1992; Eberhard 1996; Haug
et al. 1984) and the direct differentiation method (Chang
and Nikravesh 1985; Jain and Rodriguez 1999; Serban
and Haug 1998; Tak 1990) are two such very competi-
tive approaches that may be applied in performing sen-
sitivity analysis. Additionally, the automatic differentia-
tion technique has also shown its potential in this regard
(Barthelemy and Hall 1995; Bischof 1996).
The adjoint variable method is a sophisticated ap-

proach that introduces a set of adjoint variables so as to
avoid explicit calculations of state sensitivities. Solving
a sequence of adjoint relationships yields the sensitivity
vector corresponding to the sensitivity of the perform-
ance criteria in terms of parameter variations. Unfortu-
nately, the implementation of the adjoint variablemethod
is often complicated and requires a significant amount
of I/O operations (Chang and Nikravesh 1985; Pagalday
and Aranburu 1996) due to the extremely large amount
of data, which must be stored, associated with all state
information for the entire forward problem simulation.
This I/O can severely hobble the performance (speed) of
the method for large-scale problems. Additionally, a pos-
sible source of error in this approach may arise from the
backward temporal integration required in solving for the
adjoint variables. This error can occur because the time

steps in the forward and backward integration will not
generally coincide when using variable step size temporal
integration schemes, so an interpolation model must then
be employed.
The direct differentiation method has received in-

creasing attention recently, with many researchers recon-
sidering its benefits and potential. This approach pos-
sesses many desired features in dealing with complex sen-
sitivity analysis: (1) it is arguably the most conceptually
straightforward method, being a direct application of the
differentiation chain rule; (2) it often offers higher numer-
ical stability than many competing approaches; (3) the
solution accuracy is insensitive to parameter perturba-
tion; (4) the general approach is easily adapted to prob-
lem structures; (5) the key quantities desired from the
analysis are directly available. Current implementations
of direct differentiation methods appearing in the litera-
ture (Chang and Nikravesh 1985; Dias and Pereira 1997;
Serban and Haug 1998) often involve Newton–Euler with
Cartesian coordinate formulations in forming the sensi-
tivity governing equations. Although this usage exhibits
ease of formulation for a highly constrained system, this
combination often suffers from the production of a dif-
ferential algebraic set of sensitivity equations that are of
high dimension, which can be prohibitively costly to pro-
duce and solve.
Formulating and subsequently solving these equations

may become the main source of computational burden
if the problem structures are not carefully exploited
or a brute force approach is adopted to compute state
derivatives. Specifically, a substantial amount of work is
needed to form the required state derivatives, which often
results in the phenomenon termed derivative swell, lead-
ing to an overall computational load as high as O(n4+
n2m2+nm3) (Hsu 2000) per member of p, where n is
the number of generalized coordinates used in an uncon-
strained problem and m is the number of independent
algebraic constraints to be enforced. Addressing the com-
putational efficiency, and thereby reducing the overall
computational cost associated with the sensitivity analy-
sis, represents perhaps the most important issue associ-
ated with the use of the direct differentiation approach.
This paper presents a novel first-order sensitivity an-

alysis algorithm that circumvents many of the drawbacks
exhibited in more conventional direct differentiation im-
plementations. Its foundation can in part be traced to
various recursive dynamic formulations (Anderson 1990;
Rosenthal 1990; Pradhan et al. 1997) that have demon-
strated numerical efficiency for large-scale dynamic for-
ward problem analysis and simulation. The developed
method provides a way to make sensitivity computations
analytically and numerically tractable through its state
space full recursive procedure, which directly embeds al-
gebraic constraint relations, simultaneously solving the
minimal set of first-order sensitivity equations as they are
being formed. The method presented herein will greatly
reduce computational inefficiency relative to alternative
“exact” first-order sensitivity approaches, particularly
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when applied to modestly and heavily constrained multi-
rigid-body dynamic systems involving a large number of
design parameters and/or generalized coordinates. The
algorithm is able to achieve a significantly improved bilin-
ear (state and design variables) O(n+m) computational
performance for each design variable pj in p. This rep-
resents a considerable computational savings relative to
that offered by more conventional implementations of dir-
ect differentiation for constrained systems that can yield
O(n4+n3m+n2m2+nm3) overall performance. Addi-
tionally, the presented algorithm delivers considerable
performance gains relative to the authors’ prior O(n)-
based sensitivity algorithms (Hsu and Anderson 2002)
that provided O(n+nm+nm2+m3) overall perform-
ance when applied to highly constrained systems. The
reduced overall computational cost of the presented algo-
rithm should offer considerable performance advantages
over competing methods, particularly when applied to
large-scale (n and/orm� 1) multibody electromechani-
cal dynamic systems.

2
Sensitivity problem formulations

Calculation of state sensitivities with respect to the de-
sired quantities (e.g., design or control variables) under
consideration represent perhaps the most arduous task
involved in sensitivity analysis. This is often due to the
implicit relationships that exist between state variables
and these parameters and the associated need for the ex-
traction of state information from the corresponding for-
ward problem analysis. For a general multibody system,
the system’s dynamic properties can be fully character-
ized by a set of n generalized coordinates q, the general-
ized speeds u, and the generalized accelerations u̇. In this
formulation, the generalized speeds (Kane and Levinson
1985) u are a user-specified invertible combination of the
q̇’s such that

q̇=C(q, t;p)u+D(q, t;p). (1)

Computation of values associated with the derivatives
of each of these generalized quantities with respect to the
parameters p are thus required. However, these deriva-
tives need not be performed independently since the rela-
tionships Eq. 1 and

dqr
dpj
=

t=τ∫

t=0

dq̇r
dpj

dt+
dqr
dpj

∣
∣
∣
∣
t=0

]

p

, (2)

dur
dpj
=

t=τ∫

t=0

du̇r
dpj

dt+
dur
dpj

∣
∣
∣
∣
t=0

]

p

, (3)

exist.
Equations 2 and 3 enable the total derivatives of

dqi/dpj and dui/dpj to be obtained from the temporal

integration of du̇i/dpj evaluated at the current design
point p. This property implies that the determination of
the derivatives used in the sensitivity analysis can now
be reduced to the problem of determining key values of
du̇i/dpj for the entire time interval of interest.
Production of this set of key quantities can be achieved

by considering a general form of the equations of motion

M(q, t;p) · u̇ + ΦT,q (q, t;p) ·λ=K(q,u, t;p) , (4)

Φ (q, t;p) = 0 , (5)

where matrixM(q, t;p) is often referred to as the sys-
tem mass matrix and matrixK(q,u, t;p) contains all ap-
plied forces as well as the inertia force terms associated
with coriolis and centripetal accelerations. The quantity
ΦΦΦ,q is the constraint Jacobian associated with the par-
tial derivative of them independent algebraic constraints
Eq. 5 with respect to q. In Eqs.4 and 5, some of the state
variables may be redundant. If a redundancy exists, then
generalized constraint “forces” λ must be applied to the
system equations of motion (Eq. 4) to enforce the alge-
braic constraint equations (Eq. 5).
Taking the first total derivative of Eqs. 4 and 5 with

respect to a nominal parameter pj and rearranging the
quantities yields

M,pj

du̇

dpj
=K,pj +K,qr

dqr
dpj
+K,ur

dur
dpj
−

(

M,pj +M,qr

dqr
dpj

)

u̇−

(

ΦT,q ·λ
)

,pj
−
(

ΦT,q ·λ
)

,qr

dqr
dpj

(6)

and

Φ,pj + Φ,qr
dqr
dpj

= 0 , (7)

where the use of a comma “,” indicates a partial deriva-
tive with respect to the indicated parameter, r= 1, . . . , n,
and summation is implied over the repeated index within
a term. Equations 6 and 7 are the governing equations
for yielding du̇/dpj in the first-order sensitivity analysis
of a constrained system. To solve for du̇/dpj , the sensi-
tivities of the Lagrange multiplier λ associated with the
constraint forces must be computed. This is performed
by first expressing du̇/dpj using Eq. 6 and then substi-
tuting this expression into Eq. 7 at the acceleration level,
yielding

dλ

dpj
=
[

Φ,qrM
−1ΦT,q

]−1
[

dΦ,qr
dpj

u̇+
dB

dpj
+

Φ,qrM
−1

(

dK
dpj
−
dM
dpj
u̇−
dΦT,q
dpj

λ

)]

, (8)

whereB contains all terms that are not explicit in u̇when
Eq. 5 is differentiated to generate constraint equations at
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the acceleration level. Substituting Eq. 8 into Eq. 6 pro-
duces the desired quantities du̇/dpj , namely,

du̇

dpj
= M−1

[

dK
dpj
−
dM
dpj
u̇−
dΦT,q
dpj

λ−ΦT,q
dλ

dpj

]

.

(9)

For any nominal quantity β involved in the above calcula-
tions, its total derivative is defined as

dβ

dpj
≡ β,pj +β,qr

dqr
dpj
+β,ur

dur
dpj

, (10)

where r = 1, . . . , n. The highest cost of forming Eqs. 8
and 9 is associated with dM/dpj, where O(n4) oper-
ations overall may be required for an O(n3)-based for-
mulation (Hsu and Anderson 2001). This cost is further
increased by O(n2) matrix multiplications, an O(n3) ex-
pense for the decomposition of the system mass matrix,
and additional O(n2m2+nm3) costs associated with the
enforcement of constraints. This results in a prohibitively
high computational effort of O(n4+n3+n2m2+nm3)
when using a direct differentiation method based on a tra-
ditionalO(n3) forward dynamics formulation. To circum-
vent these deficiencies, a more efficient strategy must be
developed. A new fully recursive dynamics formulation
that does not suffer from computational cost penalties for
either large numbers of system generalized coordinates n
or constraintsm offers a means to resolve these issues.

3
Recursive sensitivity analysis formulation

As was previously shown in Hsu and Anderson (2002),
a significant reduction in the overall computational ef-
fort associated with direct differentiation methods ap-
plied to multibody dynamic systems can be accomplished
through the use of efficient recursive formalisms. For
such formalisms, generalized coordinates that describe
the relative orientation and position of adjacent bodies
have thus far shown themselves to be well suited for the
generation of state space recursive relationships (Ander-
son 1990; Featherstone 1983; Hollerbach 1980; Rosenthal
1990). Similarly, recursive relationships that arise as part
of the sensitivity analysis can also be performed in a like,
very efficient, manner. Within this context, the key quan-
tities of state sensitivities are determined through a set
of procedures that are very much of the same form as
those used in the forward problem simulation. These pro-
cedures are: (i) A kinematic sweep in which all kinematic
quantities are determined involving both independent
and dependent generalized speeds; (ii) recursive elimi-
nation of redundant quantities at both the velocity and
acceleration level; (iii) a triangularization sweep in which
the equations of motion and governing sensitivity equa-

tions are effectively decomposed as they are formed; and
(iv) back substitution. In the following sections, each of
these principal topics will be discussed.

3.1
Mathematical preliminaries

To aid in the following mathematical development, con-
sider the notation associated with the description of an
arbitrary set of interconnected rigid bodies shown in
Fig. 1. For this system, proximal (parent) body Pr[k] is
connected to its child body k through joint-k, via joint
points k− and k+, which reside in bodies Pr[k] and k, re-
spectively. Similarly, the distal (child) bodies of body k
are given as members of the set of bodies Dist[k]. The
position vector s k locates joint-k relative to the mass cen-
ter of body Pr[k], while the position vector rk locates the
mass center of body k with respect to the outboard end of
this same joint. It will also prove convenient to describe
the position of child mass center k relative to proximal
mass center Pr[k] by the vector γγγ k. Finally, the general-
ized speeds uk to be used in the recursive relations are

u k = q̇ k (k = 1, 2, . . . , n) . (11)

Thus the angular velocity of any body k with respect
to the Newtonian reference frameN and the velocity of its
associated mass center k∗ may in turn be written in terms
of these generalized speeds as

ωωωk =
n∑

r=1

(
ωωωkr
)T
ur+ωωω

k
t (12)

and

vk
∗
=

n∑

r=1

vk
∗

r ur+v
k∗

t . (13)

In these expressions, ωωωkr and v
k∗

r are termed the r-th par-
tial angular velocity matrix of body k and the r-th partial

Fig. 1 A multibody system and associated set of subsystems
(subchains)
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velocity matrix of pointk∗ in N , respectively. These quan-
tities may be thought of as basis vectors for the space of
admissible system velocities and angular velocities, while
the associated generalized speeds are the velocity space
measure numbers. Additionally, the termsωωωkt and v

k∗

t ap-
pearing in Eqs. 12 and 13 are referred to as the angular
velocity remainder term matrix of body k and velocity re-
mainder term matrix of point k∗ in N , respectively.
With these quantities so defined, it is convenient to in-

troduce generalized (considering both rotation and trans-
lation) velocity, partial velocity, and velocity remainder
term matrices as

V k =

[
ωωωk

vk
∗

]

, P kr =

[
ωωωkr

vk
∗

r

]

, and Vkt =

[
ωωωkt

vk
∗

t

]

. (14)

With these matrices so defined, Eqs. 12 and 13) may be
represented by

V k = V̄̄V̄Vk+Vkt =
n∑

r=1

Pkrur+V
k
t . (15)

One can similarly express the generalized acceleration
matrix of an arbitrary body k as defined in previous works
(Anderson 1990, 1992) as

Ak =

[
Nαααk

Nak
∗

]

, (16)

where Ak may also be divided into two portions. One is
Ā̄ĀAk, which contains all terms that are explicit in the un-
known state derivatives of u̇, and the other is acceleration
remainder term Akt , which represent all of the other ac-
celeration terms, giving

Ak = Ā̄ĀAk+Akt . (17)

3.2
Kinematic relationships

With the generalized velocity, generalized acceleration,
and generalized acceleration remainder term matrices
represented in this manner, it is possible to compactly
represent the recursive relationships necessary for deter-
mining all system kinematic quantities (Anderson 1990,
1992; Hsu and Anderson 2001). Specifically,

V k =
[

(S k)T V̄̄V̄VPr[k]+Pkkuk
]

+Vkt , (18)

and

Ak =
[

(S k)T Ā̄ĀAPr[k]+Pkku̇k
]

+Akt , (19)

where

V kt = (S
k)TVPr[k]t +

[
simple expressions dependent

on joint type of k

]

,

(20)

and

Akt = (S
k)TAPr[k]t +

[
simple expressions involving

elements of Vk, rk, and sk

]

.

(21)

The quantityS k appearing in Eqs. 18–21 is the basis
consistent linear transformation matrix

S k =

[
C k C kγγγ k×

000 C k

]

6×6 .

(22)

Within this expression C k ≡ Pr[k]C k is the direction co-
sine matrix that relates the body k basis vectors to those
fixed in its parent body Pr[k], 000 are simply 3×3 zero ma-
trices, and γγγ k× is the skew symmetric matrix equivalent to
the vector cross product operation γγγk×. The transform-
ationSk converts a system of forces and moments acting
through the center of mass of k to an equivalent force sys-
tem, acting through a point of k that is instantaneously
coincident with the center of mass of Pr[k].
At this time, it is convenient to define the body k gen-

eralized inertia Ik and the body k generalized force F k

matrices

Ik =

[
Ik/k

∗
000

000 Mk

]

6×6

, (23)

F k = Fk−IkAkt +

[
ωωω k× I

k/k∗ ωωω k

000

]

6×1

. (24)

Within these expressions, Ik/k
∗
is the 3×3 central iner-

tia matrix of body k andMk is the diagonal translational
mass matrix of this same body. By comparison, the term
Fk represents the resultant force system of all moments
and forces acting on body k.

Kinematic term derivatives

To facilitate the sensitivity analysis, the total derivatives
associated with Eqs.20–24 are required. An examination
of these equations shows that they may be easily deter-
mined via the chain rule as

dVkt
dpj

=

(
d

dpj
S k
)T

VPr[k]t +
(
S k
)T d

dpj
VPr[k]t +

d

dpj

[
geometric expressions

local to k

]

(25)

dAkt
dpj

=

(
d

dpj
S k
)T

APr[k]t +
(
S k
)T d

dpj
APr[k]t +

d

dpj

[
expressions involving

terms from V kt

]

(26)
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dF k

dpj
=
d

dpj

(

Fk−IkAkt +

[
ωωω k× I

k/k∗ ωωω k

000

])

6×1

, (27)

with

dS k

dpj
=
d

dpj

[
C k C kγγγ k×
000 C k

]

. (28)

and

dI k

dpj
=
d

dpj




Ik/k

∗
0

0 Mk





6×6

. (29)

The derivatives of the inertia mass matrix I k and the
shifting matrixS k are strictly local quantities, being af-
fected only by body and/or joint k. These quantities can
be expressed as simple combinations of what this paper
terms derivative primitives. These derivative primitives
are the most basic form of derivative expression and are
as a rule simple in form, local in nature, and form the
basis on which all other derivative expressions can be
built.
FromEqs. 25–29 it is apparent that all indicated quan-

tities are either local to a specific body k and thus can be
easily determined at fixed cost or recursively determined
from previously ascertained quantities.

3.3
Enforcement of constraints

The primary computational efficiency gains associated
with the new algorithm presented here relative to other
so-called O(n) approaches (Hsu and Anderson 2002)
with respect to systems with closed loops are realized
through the manner in which the loops are treated and
the associated algebraic constraints enforced. In the au-
thors’ prior work, the constraints were enforced through
the application of unknown constraint forces and an
associated companion set of algebraic constraint equa-
tions. This prior approach was shown (Hsu and Anderson
2002) to determine first-order design sensitivities for gen-
eral constrained multi-rigid-body system in O(n+nm+
nm2+m3) operations overall per temporal integration
step. This represented a considerable improvement over
the O(n4+n2m2+nm3) performance generally realized
when using direct differentiation with more traditional
multibody formulations. Unfortunately, this O(n+nm+
nm2+m3) expense could still prove prohibitively high
in situations involving large-scale heavily constrained
systems, i.e., (m ∼ n, andm� 1). The goal is to fur-
ther significantly reduce this computational expense by
directly embedding the constraints in such a manner
that the calculations associated with dependent degrees
of freedom can be removed and many of the numerical
problems often associated with such system of differen-
tial algebraic equations avoided. This is accomplished by

using recursive loop closure relationships to eliminate de-
pendent velocity and acceleration coordinates from the
equations.
Consider an arbitrary i-th closed loop of a complex

multibody system, as indicated in Fig. 2. The process be-
gins by selecting a body of the closed loop that will act
as the subsystem’s primary reference frame. This body is
locally referred to as the loop base body and is given the
local body number 0i. This is most easily accomplished
by making the body that branches to form the closed loop
the loop’s base body. The bodies of this loop are then
locally numbered consecutively, up through body local
number ni−1, where ni is the number of bodies that form
this i-th closed loop, with the dependent coordinates de-
fined as those associated with the highest joint (body)
numbers. Body pi is then the highest numbered body
within the loop that can be fully described using only in-
dependent coordinates.
It can be shown (Stejskal and Valášek 1996; Ander-

son 2001a,b) that, proceeding as summarized above, it is
possible to describe all velocity and acceleration level un-
knowns associated with dependent variables in terms of
dependent variables. Specifically,

oiV̄̄V̄V k = Γk
oiV̄̄V̄V pi +Ξk

oiVnit , (30)

and

oīĀĀAk = Γk
oīĀĀApi +Ξk

oiAnit , (31)

where all velocity and acceleration terms indicated are
given relative to the primary loop reference frame fixed
in body 0i. The terms Γ

k and Ξk in Eqs. 30 and 31
and their derivatives with respect to pj are determined
through a chain of recursively determined intermediate
quantities

niSni =U ⇒ k−1Sni =S k kSni , (32)

Fig. 2 Local numbering scheme of generic loop
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τττni+1 =U

τττk =

[

τττk+1−
(
kSni

)T
P kk
(
∆k
)−1
(

P kk
)T
kSniτττk

]

(33)

∆k =
(

P kk
)T
kSniτττk+1(kSni)T P kk , (34)

χk =−P kk
(
∆k
)−1(
Pkk
)T kSniτττk+1 (35)

and

∆k =
(
kSni

)T
+χk

(
kSni

)T
, (36)

which yield for p < k ≤ ni

Γp =U , and Γk+1 =∆k+1Γk, (37)

and

Ξp =000 , and Ξk+1 =∆k+1Ξk+χχχk+1. (38)

The required derivatives of each of the intermediate
quantities defined by Eq. 32–38 are then determined by
simply applying the chain rule of differentiation to each of
these defining expressions. It is apparent from Eqs. 32–38
that the resulting expressions for these derivative terms
will be composed only of derivative terms that have been
previously evaluated and that are fixed in number (i.e.,
the number of these terms to be determined is the same
for each body).
These quantities are in turn used to construct values

for the generalized inertia and force matrices associated
with the virtual body pi, which has all the inertia and ap-
plied force information associated with bodies p through
ni implicitly embedded within it.
The resulting inertia and force matrices are given by

oi
Î̂ÎIpi =

mi∑

j=0

{(
Γpi+j

)T
I pi+j

(
0iS pi+j

)T
}

, (39)

Î̂ÎIpi;oi =
mi∑

j=0

{(
Γpi+j

)T
I pi+j Γpi+j

}

, (40)

and

F̂̂F̂Fpi =

mi∑

j=0

{(
Γpi+j

)T
F pi+j

}

+

mi∑

j=0

{(
Γpi+j

)T
I pi+j Ξpi+j

}
oiAnit , (41)

requiring O(
∑nL
i mi) =O(m) operations overall.

3.4
Triangularization of equations

It has been shown (Featherstone 1983; Rosenthal 1990;
Anderson 1990) that the use of relative generalized coor-
dinates allows the equations of motion to effectively be
triangularized, as part of an LU decomposition, as they
are formed. Indeed, F̃pi , as well as the inertia terms

oi
Î̂ÎIpi

and Î̂ÎIpi;oi (in association with
oīĀĀAk, the acceleration of k

with respect to loop reference frame 0i, and Ā̄ĀA0i , the ac-
celeration of 0i in the Newtonian reference frameN) may
be recursively triangularized in much the same manner as
with comparable terms in the standard state space O(n)
(Anderson 1990) algorithms for unconstrained systems.
Specifically, for 0i < k ≤ pi
(

P kk
)T [

Î̂ÎIk;oiĀ̄ĀA0i +
oi
Î̂ÎIk
oīĀĀAk+ F̃k

]

=000 , (42)

with the recursive relationships

Î̂ÎIk−1;oi = I k−1
(
oiS k−1

)T
+T k Î̂ÎIk;oi , (43)

oi
Î̂ÎIk−1 = Ik−1+T k

oi
Î̂ÎIk
(
S k
)T
, (44)

F̃̃F̃Fk−1 = Fk−1+T k F̃̃F̃Fk, (45)

where T k is our triangularization operation matrix

T k =S k
[

U−
oi
Î̂ÎIkPkk (Mk)

−1
(

P kk
)T
]

(46)

and

Mk =
(

P kk
)T oi

Î̂ÎIk Pkk. (47)

The process then continues recursively until body 0i is
reached, at which point

oīĀĀAoi =000 and the associated iner-
tia term are dropped. At this point, Î̂ÎIk;oi and F̃̃F̃Fk become
synonymous with Î̂ÎIk and F̂̂F̂Fk, respectively, for k = 0i. The
procedure then continues as with a totally unconstrained
system.
Recursively proceeding inward from the terminal bod-

ies pi to the system base body, one obtains a general tri-
angularization procedure to evaluate the total derivatives
associated with

oi
Î̂ÎIk, Î̂ÎIk;oi F̂̂F̂Fk, andMk, namely,

dÎ̂ÎIk;oi

dpj
=
d

dpj

[

I k
(
oiS k
)T
]

+
∑

l∈Dist[k]

d

dpj

[

T l Î̂ÎI l;oi
]

,

(48)

d
oi
Î̂ÎIk

dpj
=
dIk

dpj
+
∑

l∈Dist[k]

d

dpj

[

T l Î̂ÎI l;oi
(

S l
)T
]

,

(49)

F̃̃F̃Fk =
dF k

dpj
+
∑

l∈Dist[k]

d

dpj

(

T l F̃̃F̃F l
)

, (50)
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dMk

dpj
=
d

dpj

[

P kk
oi
Î̂ÎIk P kk

]

, (51)

and

dM−1
k

dpj
=M−1

k

dMk

dpj
M−1
k . (52)

An examination of Eqs. 48–52 clearly indicates that
matrix manipulations of known quantities are the sole
computations necessary to produce the required total
derivatives. This desirable property substantially reduces
the differentiation complexity encountered relative to
that of more traditional direct differentiation approaches.
Since the numbers of matrices involved are fixed for each
body, and their dimensions are also fixed (either 6×6 or
6×1), these matrix manipulations can be performed at
a fixed cost, which can be further reduced using special
matrix manipulation classes. The entire triangularization
procedure therefore leads to an efficient O(n−m) opera-
tion overall.
The key purpose of using the presented triangular-

ization procedure is to avoid explicitly formulating each
element ofM,K, and their associated derivatives. When
the recursive triangularization is accomplished, all off-
diagonal elements ofM are implicitly computed and em-
bedded in the values Mk. Proper manipulation (i.e.,
recursive back substitution) of these elements and the
modified K matrix generates the solutions for the sensi-
tivities of the generalized accelerations u̇i (i= 1, . . . , n).
Specifically, the generalized accelerations and their asso-
ciated sensitivities can be carried out in an orderly man-
ner through the equations

u̇̇u̇uk =M
−1
k

(

P kk
)T
[

F̃̃F̃Fk−Î̂ÎIk
(
kS k
)T
Ā̄ĀAPr[k]

]

, (53)

Ā̄ĀAk =
[

S kĀ̄ĀAPr[k]+Pkku̇̇u̇uk
]

, (54)

and

du̇̇u̇uk
dpj
=
d

dpj

{

M−1
k

(

Pkk
)T
[

F̃̃F̃Fk−Î̂ÎIk
(

S k
)T
Ā̄ĀAPr[k]

]}

,

dĀ̄ĀAk

dpj
=
d

dpj

{

S kĀ̄ĀAPr[k]+Pkku̇̇u̇uk
}

(55)

for the situation where k lies inboard of body 0i (i.e.
0< k ≤ 0i ). In this case Eqs. 53–55 may be applied recur-
sively as the sequence of calculations proceeds inward to
the system base body 0, where

Ā̄ĀA0 =000. (56)

For situations where the body k lies between bodies
0i and pi within a closed loop i (i.e., 0i < k ≤ pi ), these
back-substitution relations are modified to

u̇̇u̇uk =M
−1
k

(

P kk
)T (

F̂̂F̂Fk−
[

Î̂ÎIk;oiĀ̄ĀA0i+

oi
Î̂ÎIk
(

S k
)T oīĀĀAPr[k]

])

, (57)

oīĀĀAk =
(

S k
)T oīĀĀAPr[k]+Pkku̇k (58)

and

du̇̇u̇uk
dpj
=
d

dpj

{

M−1
k

(

P kk
)T
(

F̂̂F̂Fk−

[

Î̂ÎIk;oiĀ̄ĀA0i+

oi
Î̂ÎIk
(

S k
)T oīĀĀAPr[k]

])}

, (59)

d
oīĀĀAk

dpj
=
d

dpj

{(
S k
)T oīĀĀAPr[k]+Pkku̇k

}

. (60)

To this end, the key quantities du̇k/dpj in the first-
order sensitivity analysis are determined in a fully recur-
sive manner. Inspecting the back-substitution procedure
as indicated in Eqs. 53–60 one observes that neither the
number of terms nor the required number of operations
per state derivative increases as the procedures ensue.
This implies, again, that a constant number of opera-
tions is required to solve for du̇k/dpj as one moves re-
cursively from one generalized acceleration to the next.
Consequently, the back-substitution process yields O(n)
performance overall for one design variable. For an entire
p design variable, the proposed solution scheme is able to
achieve an O(pn) operation overall for obtaining all so-
lutions associated with the p sets of sensitivity governing
equations.

4
Examples

Three mechanical systems are presented that are used
to demonstrate and validate the presented algorithms. In
each of the cases presented, the system being considered
consists of identical interconnected bodies, with the sin-
gle design variable chosen to be the length of each body.
Defining the problems in this (albeit artificial) manner
represents a “worst case” (from the point of view of com-
putational expense) given that a change in this single
design variable will affect the kinematic and kinetic terms
associated with every body of each of these systems.

4.1
Simple chain system

The first case, a simple spatial unconstrained chain
system, is comprised of n identical uniform massive
rods, each connected to one another by single-degree-
of-freedom revolute joints. The sensitivity of the system
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kinetic energy to the above-described common length
design variable was then determined using the present
recursive algorithm as well as more traditional O(n3)
based algorithms. Figure 3 presents a comparison of the
CPU time required to determine this sensitivity using
each of these approaches. In the case of the O(n3)-based
approach (which actually produced O(n4) overall per-
formance), the equations of motion and sensitivity were
developed symbolically and then coded using efficient
coding practices in an effort to produce the best possible
performance given the underlying algorithm. It is clear
from Fig. 3 that for systems involving more than a few
unconstrained degrees of freedom n, the presented algo-
rithm is much faster. Indeed, for a system involving 12
generalized coordinates, the presented algorithmwas able
to determine the desired first-order sensitivity informa-
tion by a factor in excess of 4000 more quickly than the
traditional O(n3)-based aapproach.

Fig. 3 CPU time required for derivative operation by O(n)-
based and O(n3)-based methodologies

4.2
Simple closed chain system

The second case consists of the simple closed-loop sys-
tem shown in Fig. 4 involving a simple chain of identical
interconnected bodies constrained at each end. As with

Fig. 4 Schematic of closed-loop chain system

Fig. 5 Number of flops associated with forward problem
simulation and sensitivity determination of closed chain

case 1, each body consisted of a uniform massive rod. For
this closed chain case the computational cost in floating
point operations (flops) per function evaluation as a func-
tion of the number of bodies n is presented in Fig. 5 as
determined for the simulation and sensitivity problems.
This figure demonstrates that the computational cost as-
sociated with this “worst case” sensitivity analysis is lin-
ear in the number of generalized coordinates and roughly
twice as expensive as performing the forward problem
analysis.

4.3
Heavily constrained system

The final case consists of the heavily constrained system
of identical bodies connected in a ladder-type formation
as shown in Fig. 6. In the situation where all joints used
are two-degree-of-freedomHooke’s joints, the system of L
independent closed loops will involve N = 2L+1 bodies,
n = 2N = 4L+2 generalized coordinates, m = 4L inde-
pendent algebraic constraints, and only 2 degrees of free-
dom. This system represents a situation where previously
developed sensitivity algorithms are likely to pay a high
computational price both for the number of generalized
coordinates n and the number of algebraic constraintsm.
Figure 7 indicates the projected performance charac-

teristics for the analysis of such a heavily constrained
problem: (i) If the system constraints are not considered;
(ii) the system constraints are considered, but amore con-
ventional so-called O(n) approach is used; and (iii) the
O(n+m) algorithm presented here is used. Figure 7 in-
dicates that in situations such as this, where the number
of constraints m is of the same order as the number of
generalized coordinates n, then the so-called “order-n”
algorithms actually offer O(n3) performance and gener-
ally may not perform even as well as well-written O(n3)-
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Fig. 6 Schematic of heavily constrained system

Fig. 7 Projected CPU time required for forward problem
simulation of this system

based algorithms. However, the presented algorithm does
not pay such a price, being linear in both the number
of generalized coordinates n and the number of algebraic
constraintsm.

5
Conclusions

A fully recursive sensitivity analysis for modestly to heav-
ily constrained multi-rigid-body dynamic systems is pre-
sented. The use of recursive relationships coupled with
the local representations of dynamic quantities permits
a great reduction in the total number of matrix manip-
ulation and derivative operations required in performing
sensitivity analysis for complex multibody systems rela-
tive to that encountered in traditional direct differentia-
tion approaches. The presentedO(n)-based approach has
been shown to yield first-order sensitivity information in
at most O(n+m) operations overall. This represents a
significant improvement relative to the best performance
possible using more traditionalO(n3)-based dynamic for-
mations that would yield roughly O(n4+n2m2+nm3)
performance or previously developed low-order sensitiv-
ity algorithms offering O(n+nm+nm2+m3) perform-

ance when applied to the same pervasive design variable
example problems.
The present formulation is quite straightforward with

regard to both analytical formulation and numerical im-
plementation, making a general computer code easy to
develop and use. Further, the entire procedure can be
(and is best) performed simultaneously with the forward
dynamics problem, which avoids costly postprocessing
that would be associated with a totally separate sensi-
tivity analysis. This method is very well suited for sensi-
tivity analysis of large-scale multibody dynamic systems
and should perform extremely well relative to compet-
ing methods for systems where n and/or m is greater
than 5 or 6. Indeed, for more realistic choices of design
variables (i.e., variables that only directly affect a sin-
gle body or joint), the computational savings that can
be realized through the presented method and its local
derivative property (Hsu and Anderson 2001, 2002) are
even greater.
As such, the presented method presents a power-

ful, easily implementable approach that should now
make it possible to rigorously perform sensitivity analy-
sis on complex multibody dynamic systems that were
previously so large, complex, and expensive as to be
intractable.
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