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Reliability-based topology optimization

G. Kharmanda, N. Olhoff, A. Mohamed and M. Lemaire

Abstract The objective of this work is to integrate
reliability analysis into topology optimization problems.
The new model, in which we introduce reliability con-
straints into a deterministic topology optimization for-
mulation, is called Reliability-Based Topology Optimiza-
tion (RBTO). Several applications show the importance
of this integration. The application of the RBTO model
gives a different topology relative to deterministic top-
ology optimization. We also find that the RBTO model
yields structures that are more reliable than those pro-
duced by deterministic topology optimization (for the
same weight).

Key words reliability-based topology optimization,
reliability-based design optimization, reliability analysis,
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1
Introduction

Reliability-based optimization aims to define the best
compromise between cost and safety. One reliability-
based model is Reliability-Based Design Optimization
(RBDO), which allows structures to be designed. For the

Received: 25 October 2002
Published online: 23 December 2003
 Springer-Verlag 2003

G. Kharmanda1, N. Olhoff2,�, A. Mohamed3 and
M. Lemaire3

1 Faculty of Mechanical Engineering, Aleppo, Syria
e-mail: gh_kharmanda@hotmail.com
2 Institute of Mechanical Engineering, Aalborg University,
DK-9220, Aalborg East, Denmark
e-mail: no@ime.auc.dk
3 LaRAMA-IFMA/UBP, Campus de Clermont-Ferrand, BP
265, 63175 Aubiere, France
e-mail: alaa.mohamed@ifma.fr, maurice.lemaire@ifma.fr

Research carried out during the first author’s visit to the In-
stitute of Mechanical Engineering, Aalborg, November 2001 –
February 2002

RBDO model, the coupling between geometrical model-
ing, mechanical simulation, reliability analyses, and opti-
mization methods leads to very long computing times and
weak convergence stability. Traditionally, the solution of
the RBDO model is achieved by alternating reliability
and optimization iterations (sequential approach). This
approach leads to low numerical efficiency, which is dis-
advantageous for engineering applications on real struc-
tures. In order to avoid this difficulty, an efficient method
was proposed by Kharmanda et al. (2001a, 2002c), which
is called the hybrid (or concurrent) RBDO method. This
method is based on the simultaneous solution of the relia-
bility and the design optimization problem.
Furthermore, in the shape optimization case, when in-

tegrating the reliability analysis into the optimization of
geometrical shape variables, CAD model updating is ne-
cessary during the design phase. Then, the parametriza-
tion step allows the search directions of the optimization
process to be defined. Parameters defining points and di-
rections are chosen among the design variables that define
the geometry of the domain boundary. The shape opti-
mization process is directed by the information corres-
ponding to the geometrical boundary perturbation. The
structural geometry to be modified during the optimiza-
tion process can be defined by several descriptions, such
as Bezier, B-spline, or NURBS models (Kharmanda et al.
2002a,b). This model is called Reliability-Based Shape
Optimization (RBSO).
In deterministic topology optimization, the designer

aims to obtain the solution without taking into ac-
count the effects of uncertainties concerning geometry
and loading given by deterministic variables. The inte-
gration of the reliability or safety criteria into the top-
ology optimization presents a new type of optimization
called Reliability-Based Topology Optimization (RBTO)
(Kharmanda and Olhoff 2001b). The purpose of RBTO
is to take into account the randomness of the applied
loads and the description of the geometry. It also provides
the designer with several solutions. Using the RBTO
model, we obtain different topologies compared with the
deterministic topology optimization procedure. The re-
sulting topologies depend on the target reliability levels.
The shape optimization algorithm can be applied to bet-
ter control the solution. The resulting structures present
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a better volume/reliability ratio than the determinis-
tic ones. In this paper, we first present the reliability
analysis and the importance of its integration with the
topology optimization problem. The deterministic top-
ology optimization formulation and the RBTOmodel will
be presented next. The RBTO procedure will then be de-
tailed and several examples will show the applicability of
the new model. Some reliability-based topologies for dif-
ferent reliability levels will finally be presented as new
resulting topologies.

2
Reliability analysis

The design of structures and the prediction that they
function well lead to the verification of a number of rules
resulting from the knowledge of physical and mechanical
experience by designers and constructors. These rules ex-
plain the necessity to limit loading effects such as stresses
and displacements. Each rule represents an elementary
event and the occurrence of several events leads to a fail-
ure scenario. The objective is then to evaluate the fail-
ure probability corresponding to the occurrence of critical
failure modes.

2.1
Importance of safety criteria

In deterministic structural optimization, the designer
aims to reduce the construction cost without taking the
effects of uncertainties concerning materials, geometry,
and loading into account. In this way, the resulting opti-
mal configuration may represent a lower reliability level
and then lead to a higher failure rate. The balance be-
tween cost minimization and reliability maximization is
a great challenge to the designer. The interest in reliabil-
ity criteria in design optimization is to improve the reli-
ability level of the system without increasing its weight
significantly. But when integrating reliability into top-
ology optimization problems, the interest is to provide the
designer with several topologies by considering the ran-
domness of the main variables of the structure. In RBDO
models, we distinguish between two kinds of variables:

1) The design variables x, which are deterministic vari-
ables to be defined in order to optimize the design.
They represent the control parameters of the mechan-
ical system (e.g. dimensions, materials, loads) and
of the probabilistic model (e.g. means and standard-
deviations of the random variables);

2) The random variables y, which represent the struc-
tural uncertainties, identified by probabilistic distri-
butions. These variables can be geometrical dimen-
sions, material characteristics, or the applied external
loading. These two kinds of variables (x and y) can be
related by a probabilistic transformation.

However, in the RBTO model, the random and design
variables are not related, because the design variables x
are the densities of material of the discretization elem-
ents, while the random variables y are related to known
quantities. Hence, we have three kinds of variables:

1) The deterministic topology design variables x, which
are deterministic variables;

2) The random variables y, which represent the struc-
tural uncertainties, identified by probabilistic distri-
butions. These variables can be geometrical dimen-
sions, material characteristics, or the applied external
loading;

3) The normalized variables u, which relate the ran-
dom variables and their mean values and standard-
deviations.

2.2
Failure probability

In addition to the vector of deterministic variables x to
be used in the system design and optimization, the un-
certainties are modeled by a vector of stochastic physical
variables affecting the failure scenario. The knowledge of
these variables is not, at best, more than statistical in-
formation and we admit a representation in the form of
random variables. For a given design rule, the basic ran-
dom variables are defined by their joint probability dis-
tribution associated with some expected parameters; the
vector of random variables is denoted herein by Y, the
realizations of which are written as y. Safety is the state
in which the structure is able to fulfil all the functioning
requirements (e.g. strength and serviceability) for which
it is designed. To evaluate the failure probability with re-
spect to a chosen failure scenario, a limit state function
G(x,y) is defined by the condition of good functioning of
the structure. In Fig. 1, the limit between the state of
failure G(x,y)< 0 and the state of safety G(x,y)> 0
is known as the limit state surface G(x,y) = 0. The
failure probability is then calculated by

Pf = Pr [G (x,y)≤ 0] =

∫

G(x,y)≤0

fY(y) dy1 · · · dyn , (1)

wherePf is the failure probability, fY (y) is the joint dens-
ity function of the random variables Y, and Pr[.] is the
probability operator. The evaluation of the integral in (1)
is not easy, because it represents a very small quantity
and all the necessary information for the joint density
function are not available. For these reasons, the First
and Second Order Reliability Methods FORM/SORM
(Ditlevsen and Madsen 1996) were developed. They are
based on the reliability index concept, followed by an es-
timation of the failure probability. The invariant reliabil-
ity index β was introduced by Hasofer and Lind (1974),
who proposed working in the space of standard indepen-
dent Gaussian variables instead of the space of physical
variables.
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Fig. 1 Physical and normalized spaces

The transformation from the physical variables y to
the normalized variables u is given by

u= T (x, y) and y= T−1(x,u) .

The operator T (.) is called the probabilistic transform-
ation. In this standard space, the limit state function
takes the form

H(x,u)≡G(x,y) = 0 . (2)

In the FORM approximation, the failure probability is
simply evaluated by:

Pf ≈ Φ(−β) , (3)

where Φ(.) is the standard Gaussian cumulated function.
For practical engineering, (3) gives a sufficiently accurate
estimation of the failure probability.

2.3
Reliability evaluation

For a given failure scenario, the reliability index β is
evaluated by solving a constrained optimization problem
(Fig. 1).
The calculation of the reliability index can be realized

by the following form:

β =min
(√
uTu
)
subject to H(x,u) ≤ 0 . (4)

The solution of this problem is called the design point
P ∗, as illustrated in Fig. 1. When the mechanical model
is defined by numerical methods such as the finite element
method, the evaluation of the reliability implies a special
coupling procedure between both reliability and mechan-
ical models (Lemaire and Mohamed 2000).

3
Deterministic topology optimization

Deterministic topology optimization has a great impact
on the performance of structures, and the last decade
has seen an enormous interest in this important sub-area
of structural optimization (Bendsøe and Kikuchi 1988;
Bendsøe 1995; Olhoff et al. 1998; Rozvany 2000; Olhoff
2000; Rozvany and Olhoff 2000; Eschenauer and Olhoff
2001). For deterministic topologies, we can find several
approaches for solving topology optimization problems.
The homogenization approach was used in Bendsøe and
Kikuchi (1988), based on studies of the existence of so-
lutions. This approach has been adopted in many pa-
pers, but has the disadvantage that the determination
and the evaluation of optimal microstructures and their
orientations is cumbersome if not unresolved (for other
than compliance problems) and, furthermore, the result-
ing structures cannot be built since no definite length-
scale is associated with the microstructures. However,
the homogenization approach to topology optimization is
still important in the sense that it can provide bounds
on the theoretical performance of structures. A topology
optimization problem based on the homogenization ap-
proach, with the objective of minimizing the compliance
(thereby maximizing the integral structural stiffness),
subject to an upper bound on the volume, can be written
as

min L (w)

subject to ad (w, v) = L(v) for all v ∈H

and volume≤ V0 (5)

with

L(v) =

∫

Ω

f v dΩ+

∫

Γ

t v dΓ (6)

and

ad(w, v) =

∫

Ω

Cijkl(d)εij(w)εkl(v)dΩ , (7)

where f and t are, respectively, the body force and sur-
face traction, εij is the strain tensor, Cijkl is the effective
stiffness tensor of the microstructure cells, and H is the
set of kinematically admissible displacement fields. The
problem is defined on a fixed reference domain Ω and the
stiffness Cijkl depends on the design variables used.
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Fig. 2 Density variables in microstructure cells

For a so-called second-rank layering, such as the third
cell in Fig. 2, we have the relationship

Cijkl ≡ Cijkl(µ, γ, θ) , (8)

where µ and γ denote the dimensions of the layering and
θ is the rotation angle of the layering. The relation (8) can
be computed analytically and the volume is evaluated by

volume =

∫

Ω

(µ+γ−µγ)dΩ . (9)

Alternative microstructures such as square or rectangular
holes in square cells can also be used (such as the first two
cells in Fig. 2), the important feature being the possibil-
ity of having density values covering the full interval [0,1].
The optimization problem can now be solved either by
optimality criteria methods or by duality methods, where
the advantage is to take into account the fact that the
problem has just one constraint. The angle θ of layer ro-
tation is controlled via the results on the optimal rotation
of orthotropic materials as presented in Pedersen (1989,
1991) and Hassani and Hinton (1999).
Another approach is called the SIMP approach (Solid

Isotropic Microstructure with Penalty) or power-law ap-
proach (Bendsøe 1989; Zhou and Rozvany 1991; Mlejnek
1992). Here, material properties are assumed to be con-
stant within each element used to discretize the design
domain and the variables are the relative densities of
the elements. The material properties are modeled as the
relative material properties of the solid material. This
approach has been criticized, since it was argued that
no physical material exists with properties described by
the power-law interpolation. However, a recent paper by
Bendsøe and Sigmund (1999) proved that the power-law
approach is physically permissible as long as simple con-
ditions for the power are satisfied (e.g. p ≥ 3 for Pois-
son’s ratio equal to 1/3). To ensure the existence of solu-
tions, the power-law approach to topology optimization
has been applied to problems with multiple constraints,
multiple physics, and multiple materials.
A topology optimization problem based on the power-

law approach, in which the objective is to minimize com-
pliance, can be written as

min C(x) = qTKq=
N∑
e=1

(xe)
p
qTe k0qe

subject to
V (x)

V0
≤ f ,

Kq= F ,

0< xmin ≤ x≤ 1 , (10)

where q and F are the global displacement and force vec-
tors, respectively,K is the global stiffness matrix, qe and
k0 are the element displacement vector and stiffness ma-
trix, respectively, x is the vector of design variables, xmin
is a vector of minimum relative densities (non-zero to
avoid singularity), N is the number of elements to dis-
cretize the design domain, p is the penalization power,
V (x) and V0 are the material volume and design do-
main volume, respectively, and f is a prescribed upper
bound on the volume fraction. Whereas the solution of
the above-mentioned approaches is based on mathemati-
cal programming techniques and continuous design vari-
ables, a number of papers have appeared on solving the
topology optimization problem as an integer problem.
Beckers successfully solved large-scale compliance mini-
mization problems (Beckers 1999) using a dual-approach,
but other approaches based on genetic algorithms or
other heuristic approaches require thousands of function
evaluations even for a small number of elements and must
be considered impractical.

4
RBTO

Size, shape, and topology optimization problems address
different aspects of a structural design problem. In a typ-
ical sizing problem the goal may be to find the opti-
mal thickness distribution of a segmented linearly elas-
tic plate. The optimal thickness distribution minimizes
(or maximizes) a physical quantity such as the compli-
ance (external work), peak stress, deflection, etc., while
equilibrium and other constraints on the state and de-
sign variables are satisfied. The main feature of the sizing
problem is that the domain of the design model and state
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variables is known a priori and is fixed throughout the
optimization process.
On the other hand, in a shape optimization problem

the goal is to find the optimum shape of this domain,
that is, the shape problem is defined on a variable do-
main. Topology optimization of solid structures involves
the determination of features such as the number and lo-
cation of holes and the connectivity of the domain. The
layout problem that shall be defined in the following com-
bines several features of the traditional problems in struc-
tural design optimization (Bendsøe 1995). However, the
integration of the reliability analysis in each step of the
structural design optimization plays an important role by
considering the variability of the most sensitive variables.
This variability or randomness has to be considered in the
optimization processes in order to reduce the structural
weight in the uncritical regions and hence to produce
structures that are reliable and economic. The applied
loads are very often considered as random variables be-
cause they participate strongly in the failure or damage.
Similarly, the geometry and the materials can be mod-
eled as random variables. The purpose of reliability-based
layout optimization is to find the reliable and optimal
layout of a structure within a specified region. In the de-
terministic design optimization problem, the only known
quantities are the applied loads, the possible support con-
ditions, the volume of the structure to be constructed,
and possibly some additional design specifications such as
the location and size of prescribed holes. But the physical
size and shape and the connectivity of the structure are
unknown.
When introducing the reliability, the user chooses

some known quantities that will be random variables.
They are initially set to their mean values. Then they take
random realizations during the optimization process.

4.1
Formulation

The main difference between the deterministic topology
optimization procedure and the proposed RBTOmodel is
that the randomness (variability) of the most important
variables that exhibit a strong influence on the resulting
optimal topology is taken into account. The determinis-
tic topology problem allows for the prediction of the gross
shape of the body and it is possible to predict the place-
ment and shapes of holes in the structure. However, the
RBTO model leads to a different set of optimal topolo-
gies with respect to that produced by the deterministic
topology optimization procedure. In order to control the
topologies produced, a reliability index β (see Hasofer
and Lind 1974) is introduced with a normalized vector u.
In the case of a normal distribution, u is given by

uj =
yj−myj
σyj

, (11)

with

β =min
√
u21+ ...+u

2
j+ ...+u

2
J subject to G≤ 0 ,

where yj is the j-th random variable, with mean value
myj and standard-deviation σyj , and G is the limit state
function. J is the number of selected random variables.
In (11), the vector u defines the relationship between the
random variables and the design variables.
The RBTO problem consists of minimizing the com-

pliance subject to a given upper bound on the volume
of material and the reliability constraints. The mate-
rial density is used as a continuous design variable. The
RBTO formulation based on the homogenization ap-
proach can be expressed as

min L (w)

subject to β(u)≥ βt ,

ad (w, v, u) = L(v, u) for all v ∈H ,

volume≤ V0 , (12)

with

L(v, u) =

∫

Ω

f(u) v dΩ+

∫

Γ

t(u) v dΓ

and

ad(w, v, u) =

∫

Ω

Cijkl(d, u)εij(w, u)εkl(v)dΩ .

However, using the SIMP approach, the problem can be
written as

min C(x) = qTKq=
N∑
e=1

(xe)
p
qTe k0qe

subject to β(u)≥ βt ,

K(x,y,u) ·q(x,y,u) = F(y,u) ,

V (x,y,u)

V0
≤ f ,

0< xmin ≤ x≤ 1 , (13)

where β and βt are the reliability index of the system and
the target reliability index, respectively. (12) and (13)
define problems called Reliability-Based Topology Opti-
mization (RBTO) problems. For example, in (12) and
(13), the loading and the geometry play an important
role in the performance of the structure. Therefore, using
the RBTO model, we consider the dimensions and loads
as random variables. In this work, we apply the RBTO
formulation in (13) based on the SIMP approach. The de-
sign variables x are the densities of material in each of
the finite elements, while the random variables y are the
external loads and the geometric dimensions. Since the
volume fraction of the structure directly depends on the
geometric dimensions, it can be included in the set of se-
lected random variables.
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4.2
RBTO algorithm

Figure 3 presents the RBTO algorithm as a sequential
procedure that constitutes an iterative loop that is re-
peated until convergence. The RBTO model contains
three principal successive processes: sensitivity analysis,
reliability index evaluation, and the topology optimiza-
tion process. Each one of these processes is considered as
an independent loop that does not lead to a long com-
putational time relative to the deterministic topology op-

Fig. 3 RBTO procedure constituting an iterative loop that
is repeated until convergence

timization scheme. This procedure is more appropriate
than the coupled procedures used in the RBDO model,
which contains nested optimization and reliability loops.
In the RBDO field, several papers have studied the

integration of reliability analysis into optimization prob-
lems (Stevenson 1967; Moses 1977; Feng and Moses 1986;
Cheng et al. 1998). All the uncertain quantities can be
modeled as random variables, and two spaces (Fig. 1) are
required to carry out this integration. Hence, a lot of nu-
merical computations are required in the space of the ran-
dom variables in order to evaluate the system reliability.
Furthermore, the optimization process itself is executed
in the space of the design variables, which is determinis-
tic. Consequently, in order to search for an optimal struc-
ture, the design variables are repeatedly changed, and
each set of design variables corresponds to a new random
variable space, which then needs to be manipulated to
evaluate the structural reliability at that point. Because
too many repeated searches are needed in the above two
spaces, the computational time for such an optimization
is a big problem.
When applying the principle of this approach to top-

ology optimization, the problem becomes bigger because
the computational time will increase significantly and the
reliability analysis in each iteration of the topology op-
timization procedure will represent a very complex task.
Thus, we define a new different strategy, which implies
a coupling between the reliability analysis and the top-
ology design problem without increasing the computa-
tional time.
First, we propose a set of variables assembled in the

vector my, which will be called the mean variable vec-
tor, and which concerns the applied loads and geometry
of the structure. But, in order to select the most effi-
cient variables, we study the sensitivity of the objective
function with respect to the means of the proposed set
of variables. The selected variables are assembled in the
random variables vector y. Secondly, the reliability index
β is evaluated in satisfying the associated reliability con-
straint, and the resulting normalized vector u is used to
formulate the random variables vector y. Finally, using
the resulting vector y, we apply the SIMP approach to
obtain the new reliable and optimal topology (Fig. 3).

4.2.1
Sensitivity analysis

In general, reliability-based optimization can be consid-
ered as a multi-objective (or -constraint) optimization
because we have a principal objective function (cost, vol-
ume, etc.) and an associated one (reliability index or fail-
ure probability). In the case of our RBTO model, the
proposed variables that are random play an important
role in the reliability index function, but they do not nec-
essarily play the same role in the compliance function.
Therefore, it is necessary to find the sensitivity of the

compliance function with respect to the chosen variables.
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Furthermore, the signs of the resulting gradients show
the influence of each variable (negative or positive) on
the objective function. The sensitivity analysis step can
then improve the performance of the structure during
the optimization process in order to yield a more reliable
structure.
The sensitivity of the compliance with respect to the

chosen means my of the geometry and applied loads
can be calculated by several methods. The simplest one
is the finite difference approach, e.g. considering that
∆myj
myj

= 0.01.

Using the classical finite difference approach, we can
write

∂C

∂myj
=
∆C

∆myj
=
C
(
myj +∆myi

)
−C
(
myj

)

∆myj
. (14)

(14) is very simple to implement to provide the new set of
selected variables.

4.2.2
Reliability index evaluation

The evaluation of the reliability index β can be carried
out by a particular optimization procedure. This index
is the minimum distance between the limit state and the
origin in the normalized space (Fig. 1). The problem is
given by

β =min d(u) =
√∑

u2j subject to β(u)≥ βt . (15)

During the optimization procedure, we can analytically
provide the derivative of the distance d with respect to uj
by

∂d

∂uj
=
uj

d(u)
. (16)

The resulting vector u of the problem in (15) will be used
to evaluate the random vector y by using (11) with the
standard deviations given by σyj = 0.1×myj and by con-
sidering that uj has the same sign as the corresponding
gradient ∂C/∂myj .

4.2.3
Topology optimization procedure

After satisfying the reliability constraints and determin-
ing the vector of the random variables, we call the top-
ology optimization procedure with a new set of known
quantities. The resulting optimal topology principally de-
pends on the reliability index value. This procedure sat-
isfies the other constraints but with consideration of the
randomness of the principal variables of the structure.
Figure 3 shows the different steps of the algorithm of the
new Reliability-Based Topology Optimization model.

5
Applications

In order to illustrate the functioning and the importance
of the proposed new model, we apply the deterministic
topology optimization procedure and the RBTOmodel to
several examples shown in Figs. 4a, 5a, 6a, and 7a. The
first and the second examples represent aMBB-beam (see
Olhoff et al. 1991) and a cantilever beam under a sin-
gle external load (Figs. 4a and 5a, respectively). The
third example is a cantilever beam with two load-cases
(Fig. 6a), and the fourth example represents a cantilever
beam with a prescribed hole (Fig. 7a). The objective of
the following presentation is to show now the difference

Fig. 4 Example 1, topology optimization and RBTO of
the MBB-beam: (a) full design domain, (b) half design do-
main with symmetry boundary conditions, (c) resulting deter-
ministic topology optimized beam, and (d) resulting RBTO
structure



302

Fig. 5 Example 2, topology optimization of a cantilever
beam: (a) design domain, (b) deterministic topology opti-
mized beam, and (c) corresponding reliability-based topology

between the deterministic topologies and those obtained
by the proposed new model.

5.1
Topology optimization approach

Sigmund (2001) presented a compact Matlab implemen-
tation of the deterministic topology optimization code for
compliance minimization of statically loaded structures.
This Matlab code can be downloaded from the web-

site http://www.topopt.dtu.dk. A number of simplifica-
tions are introduced to facilitate the implementation in
Matlab. First, the design domain is assumed to be rectan-
gular and discretized by square finite elements. This way
the numbering of elements and nodes is simple (column
by column starting in the upper left corner), and the as-
pect ratio of the structure is given by the ratio of elements
in the horizontal and the vertical direction. A topology
optimization problem based on the SIMP approach is im-
plemented using (10). The optimization problem is solved
by the use of a standard optimality criteria method. The
main program is called from the Matlab prompt by the
line

top(nelx,nely,volfrac,penal,rmin) ,

where nelx and nely are the numbers of elements in the
horizontal and vertical directions, respectively, volfrac is

Fig. 6 Example 3, topology optimization of a cantilever
beam with two load-cases: (a) design domain, (b) determin-
istic topology optimized beam, and (c) optimized beam with
RBTO model using two load-cases

the volume fraction, penal is the penalization power, and
rmin is the filter size (divided by element size). Fig-
ures 4c, 5b, 6b, and 7b show the resulting deterministic
topologies obtained by this code and with the data pre-
sented in Table 1.

5.2
RBTO approach

In order to implement the RBTO model, we decided to
create a new subroutine integrating the reliability con-
straint into a standard topology optimization program.
For simplicity, we used the Matlab code written by Sig-
mund (2001). The main RBTO program is called from the
Matlab prompt by the line

RBTO(nelx,nely,volfrac,penal,rmin,Bet) ,

where Bet is the target reliability level (or the variabil-
ity measure). This subroutine, which is given in the Ap-
pendix, provides the optimal normalized vector u in sat-
isfying the reliability constraint β ≥ βt. It also calculates
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Fig. 7 Example 4, topology optimization of a cantilever
beam with a prescribed hole: (a) design domain, (b) determin-
istic topology optimized beam, and (c) optimized beam with
RBTO model

the corresponding normalized variables that concern the
numbers of elements as integers. Finally, in order to sat-
isfy the other constraints, K(x,y,u)q(x,y,u) = F(y,u)
and V (x,y,u)/V0 ≤ f , with a new set of known quanti-
ties (geometry and loads), it calls the topology optimiza-
tion subroutine top() in adding the force as a new known
quantity on several lines:

Line 02 has to be replaced by:

top(nelx,nely,volfrac,penal,rmin,newF) ;

Line 12 has to be replaced by:

[U]= FE(nelx,nely,x,penal,newF) ;

Line 66 has to be replaced by:

function[U]= FE(nelx,nely,x,penal,newF) ;

Line 79 has to be replaced by:

F(2,1) = newF .

In order to apply the described approach (Fig. 3), the
geometry of the structure and the applied loads are first
considered as the proposed set of variables. This set con-
tains the number of elements used to discretize the design
domain in the horizontal and vertical directions (nelx and

Table 1 Input and output values for the deterministic
topologies

Example 1 2 3 4

nelx 60 32 30 45

nely 20 20 30 30

volfrac 0.5 0.4 0.4 0.5

penal 3.0 3.0 3.0 3.0

rmin 1.5 1.2 1.2 1.5

Compliance 203.3061 57.3492 61.2880 52.1080

nely), the volume fraction (volfrac), the filter size (rmin),
and the applied load (F ). The vector of mean values
is thenmy = [mF mnelx mnely mvolfrac mrmin]. In order
to introduce the reliability analysis, we have to take into
account the influence of these mean values by evaluating
the sensitivity of the compliance with respect to each of
these variables.

5.2.1
Gradient evaluation

Table 2 provides the sensitivity of the compliance with re-
spect to all the proposed mean values. We find that the
filter size (rmin) has the least influence on the compli-
ance. This result leads us to eliminate this variable from
the means set. Furthermore, it is clear from this table
that the gradients with respect to the means (mnely) and
(mvolfrac) are negative, which means that the number of
elements in the vertical direction and the volume frac-
tion have a positive influence on the structural perform-
ance (when increasing these two values, we obtain a stiffer
structure). On the other hand, the gradients with respect
to the mean values (mF ) and (mnelx ) are positive. There-
fore, when increasing these values, the compliance will
increase (negative influence).

Table 2 Compliance sensitivities with respect to the pro-
posed set

Example 1 2 3 4

∂C/∂mF 408.90 115.48 123.14 140.00

∂C/∂mnelx 519.26 118.39 77.68 55.91

∂C/∂mnely −465.05 −110.11 −77.21 −52.07

∂C/∂mvolfrac −345.62 −139.70 −161.05 −56.32

∂C/∂mrmin 18.76 7.29 9.06 2.32

5.2.2
β calculation

From the sensitivity analysis step, we can consider that
the component uj of the normalized vector has the same
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Table 3 The normalized values, the reliability index, and the
resulting objective function for RBTO

Example 1 2 3 4

uF 1.886 1.869 1.801 1.801

unelx 1.833 1.875 2.000 2.000

unely −2.000 −2.000 −2.000 −2.000

uvolfrac −1.886 −1.869 −1.801 −1.801

β 3.805 3.808 3.806 3.806

Compliance 980.2142 248.3102 240.7449 187.0253

sign as the corresponding gradient ∂C/∂myj . Table 3 pro-
vides the normalized vector and the reliability index in
considering the target reliability index βt = 3.8. For sim-
plicity, we consider herein the limit state function as a lin-
ear combination of the random variables.

5.2.3
Topology optimization approach

When calling the program RBTO( ), we consider the
same input values of nelx, nely, volfrac, penal , and rmin,
as presented in Table 1, but the input target reliabil-
ity level has to be introduced (for these four examples:
Bet= 3.8). After having evaluated the normalized vector
u, we compute the new values of the selected random vari-
able vector y = [F nelx nely volfrac] using (11) and con-
sidering the standard-deviations σyj = 0.1myj .
Finally, in order to apply the topology optimization

based on the SIMP approach (13), the program RBTO( )
will call the topology optimization code top( ), with a new
set of values (data), that corresponds to the selected ran-
dom variable vector y. Figures 4d, 5c, 6c, and 7(c) show
the optimal topologies based on the usage of the RBTO
algorithm. It is clear that the reliability-based topolo-
gies and their resulting compliance values are different
from those obtained by the deterministic cases (see Ta-
bles 1 and 3). In order to show the importance of this
study, we can apply a design optimization procedure to
both reliability-based topologies and the deterministic
ones under similar conditions.

5.3
Importance of the RBTO model

For the topology optimization, many efficient numeri-
cal methods have been developed and applied to differ-
ent kinds of structures. But for RBTO problems, the
coupling between mechanical modeling, reliability analy-
sis and topology optimization represents a very complex
task when applying the same classical procedure as of
the RBDO model, especially for the first iterations. For
the beam structure illustrated in Fig. 4a, when consid-
ering a half beam, the first and second iterations are

Fig. 8 First and second iterations for the first example
(Fig. 4)

presented in Fig. 8. In this case, it is very difficult to
analyze the reliability level at each iteration because the
structure topology changes significantly between the it-
erations and this necessitates a very high computational
time.
In general an optimized topology with rugged surfaces

is not appropriate for use in industry, but needs to be
post-processed using shape or size optimization. When
applying the classical procedure of reliability-based op-
timization, if we obtain a structure that satisfies the re-
liability constraint and is similar to that presented in
Fig. 8 (iteration 2), it is difficult to identify the form of
the structure. The presented RBTO model does not need
a lot of time and it is easy to implement. Furthermore,
the resulting forms of the reliability-based topologies can
easily be identified (Figs. 4d, 5c, 6c, and 7c).
In order to demonstrate the importance of the integra-

tion of reliability constraints into the deterministic top-
ology optimization, we consider the results of one of the
examples (Fig. 5) as truss structures (discrete models).
We now calculate analytically the bar areas of the struc-
tures obtained by Deterministic Design Optimization and
Reliability-Based Design Optimization, respectively. The
truss structures are illustrated in Fig. 9. Figure 9a shows
the optimal topology when using the deterministic pro-
cedure and Fig. 9b presents the topology when integrat-
ing the reliability in the topology procedure (RBTO).
The structure is loaded by a vertical force F. The mean
value of this force is mF = 8KN, the safety factor is

Fig. 9 Truss models for (Fig. 5): (a) deterministic topology
and (b) reliability-based topology
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Fig. 10 Resulting topologies for different reliability levels

Sf = 1.25, and the allowable stress is σw = 235MPa. The
dimensions and the angles in the figure are:L= 1000mm,
H = 875mm, α= 45◦, and β = 30◦.
For the deterministic design, the structural volume of

the deterministic topology is Vc = 132367mm
3, but when

introducing the reliability the structure volume will only
be V = 114325mm3. The weight reduction is thus

WR= 1−
V

Vc
= 13.6% . (17)

This example shows that the new topology reduces the
structural weight by 13.6% for the same conditions. This
result means that the introduction of the reliability an-
alysis during the topology optimization reduces the struc-
tural weight when using a shape optimization module (for
deterministic design). Now if we consider that the force is
the only random variable, according to the normal distri-
bution law, we can evaluate the reliability of the structure
by calculating the normalized variable

u=
F −mF
σF

, (18)

and when applying (18) in considering that the standard-
deviation σF = 0.1mF , we then obtain

β = |u|= 2.5 .

However, for the Reliability-Based Design Optimiza-
tion model, when considering a simple case of one random
variable (the applied force F ) and the target reliabil-
ity level βt = 3.0, we have u = 3.0 and then from (18),
F = 10.4KN.
For the same example, if we replace F = 10KN by

F = 10.4KN, and seeing that the relation of the stress
σ =N/A is linear, the structural volume of the determin-
istic topology procedure is V RBDOc = 137662mm3. But
when the reliability is introduced, the structural volume
becomes V RBDO = 118898mm3 while, at the same time,
the compliance increases. The weight reduction is 13.6%,
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the same as the deterministic one. This reduction demon-
strates the importance of the reliability in the topology
optimization. This importance can also be verified when
considering shape and size optimization for determinis-
tic optimization as well as for reliability-based optimiza-
tion. In Fig. 10, the reader can see different topologies
for different reliability levels of the four Examples 1–4 in
Figs. 4–7.

6
Conclusion

The proposed Reliability-Based Topology Optimization
(RBTO) model aims to consider randomness (variabil-
ity) of the most important quantities of a structure, such
as the geometry and the applied loads. The coupling be-
tween the reliability analysis and the topology optimiza-
tion is carried out by the use of a particular optimization
procedure. The importance of the RBTO model is in re-
ducing the weight of structures for the same conditions.
This weight reduction manifests itself in deterministic de-
sign optimization as well as in reliability-based design
optimization. The first advantage of the RBTO model
is that the resulting optimal topologies are more reli-
able than the deterministic topologies for the same weight
of the structure (but associated with larger compliance
values). The second advantage is that RBTO presents
a new strategy for generating different topologies subject
to different target reliability levels. This work can be ex-
tended to different topology optimization methods, such
as the homogenization approach. It is also possible to im-
plement new limit state functions in order to take into ac-
count the randomness of compliance, densities, and elem-
ent dimensions.
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Appendix:
Matlab code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%RELIABILITY-BASED TOPOLOGY OPTIMIZATION%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function RBTO(nelx,nely,volfrac,penal,rmin,Bet);

U= [3. 3. −3.−3.];

oldnelx= nelx; oldnely= nely;

d= sqrt(U(1) 2+U(2) 2+U(2) 2+U(3) 2);

lop= 0; lops= 0;

lp= 0; mi= 0;

diff = d−Bet;

% % START ITERATION % %

alpha= 1.;

while diff > 0.01

lp= lp + 1;

[Z] = [U ];

dDdU= [U(1)/d U(2)/d U(2)/d U(3)/d];

[U]= [U]−alpha*[dDdU];

d= sqrt(U(1) 2+U(2) 2+U(2) 2+U(3) 2);

if d <Bet;

[U]= [Z]; alpha= alpha/2;

else

alpha= alpha;

end

d= sqrt(U(1) 2+U(2) 2+U(2) 2+U(3) 2); diff= d−Bet;

dDdU= [U(1)/d U(2)/d U(2)/d U(3)/d];

end

mnelx= nelx * (1+0.1*U(2));

while mnelx−nelx>= 1

lop= lop + 1;

nelx= nelx + 1;

end

if mnelx−nelx>= 0.5
nelx= nelx + 1;

end

mnely= nely * (1+0.1*U(2));

while nely−mnely>= 1

lops= lops + 1;

nely= nely−1;

end

if nely−mnely>= 0.5

nely= nely−1;

end

U = [3. (nelx-oldnelx)/0.1/oldnelx (nely-oldnely)/0.1/oldnely

−3.];

d= sqrt(U(1) 2+U(2) 2+U(2) 2+U(3) 2); diff = d−Bet;

dDdU= [U(1)/d 0.0 0.0 U(3)/d];

alpha= 1.;

while diff> 0.01

lp= lp + 1;

[Z] = [U ];

dDdU= [U(1)/d 0.0 0.0 U(3)/d];

[U]= [U]-alpha*[dDdU];

d= sqrt(U(1) 2+U(2) 2+U(2) 2+U(3) 2);

if d < Bet;

[U]= [Z]; alpha = alpha/2;

else

alpha= alpha;

end

d= sqrt(U(1) 2+U(2) 2+U(2) 2+U(3) 2); diff = d−Bet;

dDdU= [U(1)/d 0.0 0.0 U(3)/d];

end

newF=−1 *(1+0.1*U(1));

volfrac= volfrac * (1+0.1*U(3));

disp([’ For Beta= ’sprintf(’%2.3f ’,d)])

disp([’ U(1)= ’ sprintf(’%2.3f ’,U(1)) ...

’ U(2)= ’ sprintf(’%2.3f ’,U(2)) ...

’ U(2)= ’ sprintf(’%2.3f ’,U(2)) ...

’ U(3)= ’ sprintf(’%2.3f ’,U(3))])

%CALL OF TOPOLOGY OPTIMIZATION FUNCTION%

top(nelx,nely,volfrac,penal,rmin,newF);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


