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Multidisciplinary optimization of a transport aircraft wing using
particle swarm optimization�

G. Venter and J. Sobieszczanski-Sobieski

Abstract The purpose of this paper is to demonstrate
the application of particle swarm optimization to a re-
alistic multidisciplinary optimization test problem. The
paper’s new contributions to multidisciplinary optimiza-
tion are the application of a new algorithm for deal-
ing with the unique challenges associated with multidis-
ciplinary optimization problems, and recommendations
for the utilization of the algorithm in future multidisci-
plinary optimization applications. The selected example
is a bi-level optimization problem that demonstrates se-
vere numerical noise and has a combination of continu-
ous and discrete design variables. The use of traditional
gradient-based optimization algorithms is thus not prac-
tical. The numerical results presented indicate that the
particle swarm optimization algorithm is able to reliably
find the optimum design for the problem presented. The
algorithm is capable of dealing with the unique challenges
posed by multidisciplinary optimization, as well as the
numerical noise and discrete variables present in the cur-
rent example problem.
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1
Introduction

Particle Swarm Optimization (PSO) is a recent addition
to a growing collection of non-gradient based, proba-
bilistic search algorithms. Some examples of well-known
and widely used algorithms include genetic algorithms
(e.g., Michalewicz andDasgupta 1997), which model Dar-
win’s principle of the survival of the fittest, and simulated
annealing (e.g., Nemhauser and Wolsey 1988), which
models the equilibrium of large numbers of atoms dur-
ing an annealing process. Although this class of algo-
rithms typically requires many more function evaluations
than comparable gradient-based algorithms, they do pro-
vide the designer with several attractive characteristics
and have attracted much interest in recent years. For
example, these algorithms are generally easy to imple-
ment, can efficiently make use of large numbers of parallel
processors, do not require continuity of response func-
tions, and are better suited to finding global or near-
global solutions. Although these non-gradient-based al-
gorithms provide the designer with several advantages,
they should be applied with care. Due to their high com-
putational cost these algorithms should only be used
when a gradient-based algorithm is not a viable alter-
native, such as for integer/discrete and discontinuous
problems.
Many non-gradient-based search algorithms are based

on some natural phenomena and PSO is no exception.
Particle swarm optimization is based on a simplified so-
cial model that is closely tied to swarming theory and
was first introduced byKennedy and Eberhart (1995) and
Eberhart and Kennedy (1995). A physical analogy might
be a school of fish that is adapting to its environment.
In this analogy each fish makes use of its own memory,
as well as knowledge gained by the school as a whole, to
efficiently adapt to its environment. Although the PSO
algorithm has been applied to a wide range of engineer-
ing problems in the literature, few structural and, espe-
cially, multidisciplinary applications are known. Exam-
ples include those of Fourie and Groenwold, who applied
the algorithm to structural shape and sizing (Fourie and
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Groenwold 2000) and to topology optimization (Fourie
and Groenwold 2001) problems.
The authors have investigated the basic PSO algo-

rithm and applied the algorithm to the minimum weight
design of a ten design variable cantilevered beam problem
with integer/design variables (Venter and Sobieszczanski-
Sobieski 2002). The algorithm studied include a con-
vergence criterion, dealing with constrained and in-
teger/discrete problems and automatic adjustment of
the problem parameters during the optimization. The
present work will build on this previous effort and apply
the PSO algorithm to the multidisciplinary optimiza-
tion of a typical transport aircraft wing. The example
considered here makes use of a bi-level approach to per-
form the system level optimization of an aircraft for
maximum range, accounting for the trade-off between
the aerodynamic drag and the structural weight. In this
formulation the aerodynamic optimization is performed
at the system level and the structural optimization is
considered as a sub-problem at the discipline level. The
example problem includes discrete design variables for
which function evaluations can be performed only at spe-
cific discrete points, and for which no gradient informa-
tion exists between the possible discrete values. Discrete
design variables of this type can be referred to as “tru-
ly” discrete design variables. The motivation for using
PSO in the present design problem is the presence of these
“truly” discrete design variables and severe numerical
noise, which make the use of a gradient-based optimizer
impractical.

2
Particle swarm optimization algorithm

Particle swarm optimization is based on the social be-
havior that a population of individuals adapts to its en-
vironment by returning to promising regions that have
previously been discovered (Kennedy and Spears 1998).
This adaptation to the environment is a stochastic pro-
cess that depends on both the memory of each individual
as well as the knowledge gained by the population.

2.1
Basic algorithm

In the numerical implementation of this simplified so-
cial model, the population is referred to as a swarm and
each individual as a particle. The numerical implementa-
tion repeatedly updates the position of each particle over
a time period to simulate the adaptation of the swarm to
the environment. The position of each particle is updated
using the current position, a velocity vector, and a time
increment. The process can be outlined as follows:

1. Create an initial swarm, with a random distribution
and random initial velocities.

2. Calculate a velocity vector for each particle, using the
particle’s memory and the knowledge gained by the
swarm.

3. Update the position of each particle, using its velocity
vector and previous position.

4. Go to Step 2 and repeat until convergence.

The new position of each particle at iteration k+1 is
calculated from

xik+1 = x
i
k+v

i
k+1∆t , (1)

where xik+1 is the position of particle i at iteration k+1,
vik+1 is the corresponding velocity vector, and ∆t is the
time step value. Throughout the present work a unit time
step is used.
The velocity vector of each particle can be obtained

from one of many different formulations, depending
on the particular PSO algorithm under consideration.
In their previous work, the authors examined different
schemes for calculating the velocity vector and identi-
fied the scheme introduced by Shi and Eberhart (1998) as
a good candidate. This formulation is widely used in the
literature and is given by

vik+1 = wv
i
k+ c1r1

(
pi−xik

)

∆t
+ c2r2

(
pgk−x

i
k

)

∆t
. (2)

In (2) r1 and r2 are random numbers between 0 and 1, p
i

is the best position found by particle i so far, and pgk is the
best position in the swarm at time k. Again, a unit time
step (∆t) is used throughout the present work. There are
three problem-dependent parameters, the inertia of the
particle (w), and two “trust” parameters, c1 and c2. The
inertia controls the exploration properties of the algo-
rithm, with larger values facilitating a more global behav-
ior and smaller values facilitating a more local behavior.
The trust parameters indicate how much confidence the
particle has in itself (c1) and how much confidence it has
in the swarm (c2).
The initial swarm is generally created with all par-

ticles randomly distributed throughout the design space,
each with a random initial velocity vector. In the present
work, (3) and (4) are used to obtain the random initial
position and velocity vectors,

xi0 = xmin+ r3 (xmax−xmin) , (3)

vi0 =
xmin+ r4 (xmax−xmin)

∆t
. (4)

In (3) and (4), r3 and r4 are random numbers between 0
and 1, xmin is the vector of lower bounds, and xmax is the
vector of upper bounds for the design variables.

2.2
Implementation details

The PSO algorithm implemented by the authors is dis-
cussed in detail in Venter and Sobieszczanski-Sobieski
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(2002). Only the implementation details applicable to the
current example problem will be briefly discussed here.

1. Convergence Criterion

A simple convergence criterion is used. Changes in the
objective function are monitored for a specified num-
ber of consecutive design iterations. If the maximum
change in the objective function is less than a prede-
fined allowable change, convergence is assumed.

2. Problem Parameters
Constant trust parameter values of c1 = 1.5 and
c2 = 2.5 are used. This setup puts slightly more trust
in the group than in the individual particle. The iner-
tia weight w is adjusted dynamically throughout the
optimization. The value is adjusted based on the coef-
ficient of variation of the objective function values for
a 20% subset of best particles. If the coefficient of vari-
ation falls below a specified threshold value (1.0 in the
present work), the w value is reduced using

wk+1 = wkfw , (5)

where fw is a constant between 0 and 1. Smaller
fw values result in a more dramatic reduction in w,
which in turn result in a more local search. In the
present work fw = 0.975 is used, resulting in a PSO
algorithm with a fairly global search characteris-
tic. A starting value of w = 1.4 is used to initially
accommodate a more global search and is dynami-
cally reduced to no less than w = 0.35. The idea is
to terminate the PSO algorithm with a more local
search.

3. Dealing with Violated Design Points

When dealing with constrained optimization prob-
lems, particles with violated constraints require spe-
cial attention. The authors introduced a new enhance-
ment to the basic PSO, based on the idea of usable,
feasible directions (e.g., Vanderplaats 1999). That is,
a direction that would reduce the objective function
while pointing back to the feasible region of the design
space. The enhancement modifies the velocity vector
(2) for particles with one or more violated constraints,
by re-setting the velocity vector of particle i at itera-
tion k to zero. The velocity vector at iteration k+1 is
obtained from

vik+1 = c1r1

(
pi−xik

)

∆t
+ c2r2

(
pgk−x

i
k

)

∆t
. (6)

The velocity of particle i at iteration k+1 is thus only
influenced by the best point found so far for that par-
ticle and the current best point in the swarm. If both
these best points are feasible, the new velocity vec-
tor will point back to a feasible region of the design
space. Otherwise, the new velocity vector will point to
a region of the design space that resulted in smaller
constraint violations. The result is to have the violated
particle move back towards the feasible region, or at

least a less violated region, of the design space in the
next design iteration.
Although the system level optimization problem for
which the PSO algorithm is applied is an uncon-
strained problem in the present work, the above modi-
fication is still useful for design points that have a new
position xik+1 outside the design variable bounds. The
position of these points are reset to the closest bound
to avoid analyzing any points outside the specified
design space, and the velocity vector is modified as
shown in (6).

4. Craziness Operator

To avoid premature convergence of the PSO algo-
rithm, additional randomness is introduced using
a craziness operator. The craziness operator acts simi-
larly to the mutation operator in genetic algorithms.
The craziness operator used here changes both the
position and the velocity vector of affected particles.
The position of the particles are changed randomly,
while the velocity vector of each modified particle is
reset to only the second term of (2) as shown in

vik+1 = c1r1

(
pi−xik

)

∆t
. (7)

The particles that will be affected are identified using
the coefficient of variation for the objective function
values of all particles, at the end of each design itera-
tion. If the coefficient of variation falls below a prede-
fined threshold value, it is assumed that the swarm is
becoming too uniform. In this case, particles that are
located far from the center of the swarm are identified,
using the standard deviation of the position coordi-
nates of the particles. Particles that are located more
than two standard deviations from the center of the
swarm are subjected to the craziness operator. In the
present work, a coefficient of variation threshold value
of 0.1 is used.

3
MDO formulation

Multidisciplinary design optimization can be described
as a methodology for the design of systems in which in-
teraction between several disciplines is considered and
there are design variables that directly affect more than
one of the disciplines. Multidisciplinary design optimiza-
tion problems typically have increased computational
requirements and organizational complexity compared
with single discipline optimization. Many different ap-
proaches have been proposed to deal with these ad-
ditional challenges, with Sobieszczanski-Sobieski and
Haftka (1996) providing a survey of developments in
aerospace design.
The added computational burden is associated with

an increase in the number of design variables, since vari-
ables from the different disciplines are now considered at
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the same time. The organizational complexity is related
to the coupling of different discipline level software into
a single software system. The complexity of the interac-
tion between the disciplines varies greatly from applica-
tion to application, but is generally not just a straightfor-
ward transfer of data.
In the present work the multidisciplinary design of

a typical transport aircraft wing is considered. Here the
goal is to simultaneously optimize aerodynamic drag and
structural weight, similarly to the problem introduced
by Garcelon et al. (1999). The aerodynamic analysis is
simplified by specifying a “reasonable” pressure distri-
bution in the chord-wise and span-wise directions of the
wing. This simplified aerodynamic analysis is coupled
with a commercially available finite element structural
analysis code, GENESIS (Vanderplaats 2001). Although
the aerodynamic analysis is simplified, the data transfer
between the aerodynamic and the structural disciplines
is non-trivial. First the aerodynamic analysis provides
a pressure distribution that is converted to concentrated
nodal forces for the structural analysis. The resulting
structural deformations, in turn, influence the aerody-
namic pressure distribution, resulting in a circular depen-
dence between the two disciplines. Additionally, changes
in the aerodynamic design variables, like the aspect ratio
and depth-to-chord ratio, affect the structural finite elem-
ent model.
A two-level approach similar to that proposed by

Garcelon et al. (1999) is used here. The system-level op-
timization manipulates the overall wing geometry and
operates on the discrete structural variables, which in-
clude the number of ribs and spars and the type of wing
cover construction. The continuous variables within each
type of construction are allocated to the structural sub-
optimization. By using this bi-level approach the organi-
zational and computational burden associated with the
problem is significantly reduced. First interactions be-
tween the two disciplines are isolated. Second, the bi-level
approach allows for simplified initial analysis tools, for ex-
ample, the aerodynamic analysis used here, which may
be replaced by a more detailed analysis at a later time.
Third, it is possible to take advantage of state-of-the-art
software at the discipline level. For example, GENESIS
makes use of advanced approximation concepts to re-
duce the computational effort for structural optimization
problems. By using GENESIS to perform the structural
optimization as a sub-problem, the overall computational
cost is reduced.

3.1
Outline of optimization process

The bi-level approach used here considers the aerody-
namic optimization at the system level, at which the
goal is to maximize the range. This is an unconstrained
problem. The structural optimization is done as a sub-
problem at the discipline level. The goal is to minimize

the weight of the wing, subject to stress and local buck-
ling constraints. Note that reducing the structural weight
is equivalent to increasing the range, and thus a con-
sistent objective is used at both levels of the proposed
approach. The approach may be summarized as follows:

1. Initialize all the design variables.
2. Update the structural finite element model according
to the current values of the system level design vari-
ables.

3. Calculate the aerodynamic pressure distribution and
convert to concentrated nodal forces applied to the
wing finite element model.

4. Use GENESIS to solve the structural sub-problem
based on the current aerodynamic loads.

5. Calculate the aerodynamic drag.
6. Calculate the range.
7. Use PSO to change the system level design variables
and go back to Step 2 until convergence.

4
MDO example problem

The PSO algorithm is applied to the multidisciplinary de-
sign of a typical long-range transport aircraft wing in the
Boeing 767 class, similar to that of Garcelon et al. (1999).
Two independent load cases are considered, a 3.75G ma-
neuver and a −1.5G maneuver. The wing is optimized
relative to a reference wing with properties summarized
in Table 1. Note that the wing area (S), the take off
gross weight (TOGW ), the root chord to tip chord ratio
(ct/cr), and the sweep angle (p) are all assumed to be
constant.

Table 1 Reference wing properties

Parameter Value

Span (bref) 120 ft
Root Chord (crref) 0.5 ft
Drag (Dref) 4000 lbs
Range (Rref) 5000 n. mi.

Area (S) 2100 ft2

Take off Gross Weight (TOGW ) 300000 lbs
Aspect Ratio (Aref) 6.8571
(h/c)ref Ratio 0.12

ct/cr Ratio 0.4
Sweep (p) 25/120

4.1
System level optimization

The aerodynamic optimization is performed at the sys-
tem level. The goal of the system level optimization is to
maximize the range of the wing by changing the aspect
ratio (A), the depth-to-chord ratio (h/c), the number of
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internal spars, the number of internal ribs, and the type
of wing cover construction. The system level optimization
problem is thus an unconstrained problem with five de-
sign variables, three of which are discrete variables.
The range is calculated using the simplified Breguet

formula, which does not account for the required fuel re-
serve,

R= Cr
L

D
ln

(
TOGW

Wc+Wp+Wopt

)
, (8)

where R is the range, L is the lift, D is the total drag,Wc
is the non-structural weight, Wp is the payload weight,
Wopt is the structural weight, and Cr is a constant. The
take-off gross weight TOGW includes all the weight com-
ponents TOGW =Wc+Wp+Wopt+Wf , where Wf is
the fuel weight. In the present work, a structural sub-
optimization of the reference wing generatesWopt and the
range of the reference wing (5000 n. mi.) is used to ob-
tain a Cr value of 155.81. The following assumptions are
maintained: Wc = 0.48 TOGW and Wp = 0.13 TOGW .
Additionally, the lift (L) must equal the TOGW , which
is considered constant in the present work. With these as-
sumptions, the range formula is simplified as

R= Cr
TOGW

D
ln

(
TOGW

0.61 TOGW +Wopt

)
. (9)

The expression in (9) represents the system level objec-
tive function for the aerodynamic optimization and con-
sists of two designable components: D and Wopt. Wopt is
the weight from the structural sub-optimization problem
factored by 1.3 to account for structural non-optimum
weight and D is the total drag obtained from the aerody-
namic analysis. The structural sub-optimization problem
and the aerodynamic analysis are discussed in more detail
in the following sections.
The finite element model of the wing-box for the ref-

erence wing with three spars and nine ribs is shown in
Fig. 1. For the present design problem the front and back

Fig. 1 Reference wing-box structural finite element model

spars and the ribs at the root and tip of the wing are al-
ways present. However, the internal spar is optional (the
number of internal spars is allowed to vary between zero
and one) and the number of internal ribs is allowed to
vary between zero and seven. The rib spacing (Srib) is
a constant and equal to Srib = bref/(Nrib_max+1), where
Nrib_max = 7 is the maximum number of allowable inter-
nal ribs. The internal ribs are always placed from the
root out, observing the rib spacing Srib, with the number
of internal ribs obtained from the corresponding discrete
system level design variable. Additionally, the construc-
tion of the upper and lower wing covers are selected from
either a sandwich or a hat-stiffened construction.

4.2
Structural sub-optimization

For the structural sub-optimization problem, a simplified
finite element model is used to model the wing-box. The
wing-box model consists only of shell elements and, for
simplicity, the spar and rib caps are not modeled. It is as-
sumed that the wing-box is manufactured from aluminum
with a density of 0.1 lb/in3, an allowable tensile strength
of 50 ksi, and an allowable compression strength of 25 ksi.
The reference finite element mesh used in the analysis is
shown in Fig. 1 and consists of 72 nodes and 72 shell elem-
ents. During the system level optimization, the number of
finite elements used to model the wing-box varies between
50 and 72 depending on the number of internal spars and
ribs for the current configuration. The nodes shown on
the leading and trailing edges of Fig. 1 are non-structural
and are included only to transfer aerodynamic loads from
the aerodynamic analysis to the structural analysis. The
load transfer is done using rigid elements that do not add
stiffness to the finite element model.
The goal of the structural sub-optimization problem is

to minimize the weight of the wing-box by changing the
thickness values of the shell elements, subject to allowable
stress and local buckling constraints. The number of de-
sign variables in the structural sub-optimization problem
depends on the number of internal spars and ribs and the
upper and lower wing cover construction selected at the
system level. The spars and ribs are modeled as aluminum
panels with a single thickness design variable per panel.
All three spars between the same two ribs share the same
thickness design variable. Similarly, a single design vari-
able is used to design the thickness of each rib. There is
thus a maximum of eight design variables for designing
the spar thickness and eight design variables for designing
the rib thickness.
The top and bottom wing cover panels are designed

on a per panel basis, with each panel constrained by two
spars and two ribs. There is a maximum of 16 panels for
the top wing cover of the wing-box and 16 panels for the
bottom wing cover of the wing-box. A typical wing cover
panel with positive force directions, orientation, and di-
mensions is shown in Fig. 2. In the model each cover panel
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Fig. 2 Typical wing cover panel

is represented by a single quadrilateral element if the in-
ternal spar and all seven internal ribs are present. If the
number of internal spars and/or ribs is reduced, some
cover panels are represented by more than one quadrilat-
eral element.
The number of design variables used to design each

panel depends on the selected construction. For the sand-
wich construction there are two design variables for each
panel, as shown in Fig. 3. The design variables are the
thickness of the wing cover t and the thickness of the
core tc. There is thus a maximum of 80 structural sub-
optimization design variables when considering the sand-
wich construction, which corresponds to 16 spar and rib
thickness design variables and 64 top and bottom wing
cover design variables. The core density is assumed to be
1.736×10−3 lb/in3.
For the hat-stiffened construction there are six design

variables for each panel, as illustrated in Fig. 4. The de-
sign variables are the number of hat stiffeners per panel
n, the thickness of the wing cover t1, the thickness of the
stiffener t2, and the dimensions of the stiffener, d2, d3,

Fig. 3 Sandwich construction

Fig. 4 Hat-stiffened construction

and d4. The number of stiffeners per panel is currently as-
sumed to be a continuous variable that can be rounded
to the next highest number in the final design. There
is thus a maximum of 208 structural sub-optimization
design variables when considering the hat-stiffened con-
struction, which corresponds to the 16 spar and rib thick-
ness design variables and 192 top and bottom wing cover
design variables.
The structural sub-optimization problem is subject to

both stress and local buckling constraints. Each elem-
ent is subject to maximum Von Mises stress constraints
at both the upper and lower surfaces. The local buck-
ling constraints are applied to each upper and lower wing
cover panel. For the sandwich construction (see Fig. 3)
the local buckling equations are summarized by

σ1

σcr
−1≤ 0 , (10)

τ12

τcr
−1≤ 0 , (11)

σ1

σcr
+

(
τ12

τcr

)2
−1≤ 0 , (12)

where

σ1 =
N1

2t
, σcr = k

3.60 E

(b/teq)
2 ,

τ12 =
N12

2t
, τcr = k

4.85 E

(b/teq)
2 ,

teq =
(
6t (tc+ t)

2
+2t3

)1/3
. (13)

In (13), k is an additional safety factor that guards
against delamination of the core from the face sheets.
A safety factor of k = 4.0 is used throughout the present
work.
For the hat-stiffened construction (see Fig. 4) the local

buckling equations are summarized by

N1d1

Pcr
−1≤ 0 , (14)

σ1

σcr2
−1≤ 0 , (15)

σ1

σcr3
−1≤ 0 , (16)

σ1

σcr4
−1≤ 0 , (17)

τ12

τcr2
−1≤ 0 , (18)

σ1

σcr2
+

(
τ12

τcr2

)2
−1≤ 0 , (19)
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where

Pcr =
π2EIZZ

a2
, w = d1−d3−d4 ,

σ1 =
N1

teq
, σcr2 =

3.60 E

(w/t1)
2 ,

σcr3 =
3.60 E

(d2/t2)
2 , σcr4 =

3.60 E

(d3/t2)
2 ,

τ12 =
N12

t1
, τcr2 =

4.85 E

(w/t1)
2 ,

teq = t1+nt2

(
2d2+d3+2d4

b

)
. (20)

The aerodynamic loads are applied as nodal forces
to the bottom surface nodes only, including the non-
structural leading and trailing edge nodes. The normal-
ized span-wise and chord-wise assumed pressure distribu-
tions are shown in Figs. 5 and 6.
The aerodynamic pressure distributions are converted

to concentrated nodal forces, accounting for the areas as-
sociated with each node, using

Fi,j = Cf LPj CPi Si,j , (21)

where i is the line number of the node and j is the chord
number of the node according to Fig. 7. Additionally, Cf
is the wing load, which is 143 lb/sf for the current wing,
LPj is the span-wise pressure distribution value based on
the line number from Fig. 6, and CPi is the chord-wise
pressure distribution based on the chord number from

1.0
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0.8

0.7
0.6
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0.15 0.05

Fig. 5 Normalized span-wise pressure distribution

0.4

1.0 1.0

0.5

0.25

Fig. 6 Normalized chord-wise pressure distribution

Fig. 7 Wing structural design regions

Fig. 5. The area associated with each node is represented
by Si,j . The actual nodal forces are obtained by multiply-
ing the forces from (21) by a factor equal to the G value of
the maneuver. For the 3.75 Gmaneuver, this factor is 3.75
and for the −1.5 G maneuver, the factor is −1.5.
An important note regarding (21) should be made

here. The aerodynamic nodal forces are influenced by the
deformation of the wing. In the present work this interac-
tion is not accounted for. Instead it is assumed that the
wing will be built to a jig-shape that off-sets the deforma-
tion due to the aerodynamic loads.

4.3
Aerodynamic analysis

The aerodynamic analysis is used to obtain the total drag
required to calculate the range at the system level, using
(9). A simplified drag calculation is used with the total
drag (D) for the current wing, calculated based on the
total drag of the reference wing (Dref). The calculation
consists of the induced drag (DI), the wave drag (Dw),
and a constant fraction of the original drag, given by

D =DI +Dw+CdtDref , (22)

where Cdt is a constant and is assumed to be 0.4 in the
present work. The total drag of the reference wing is
Dref = 40000 lb.
The induced drag depends on the aspect ratio of the

current wing (A) relative to the aspect ratio of the refer-
ence wing (Aref) as

DI = CdiDref
Aref

A
. (23)

Cdi is a constant and is assumed equal to 0.4 in the
present work. The wave drag depends on the frontal area
of the wing as projected on the streamline direction. The
frontal area depends on the span and the mean height of
the wing as

Sh = b
(hr+ht)

2
, (24)
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where Sh is the frontal area, b is the span, and hr and
ht are the height at the root and the tip of the wing, re-
spectively. The wave drag is then obtained relative to the
reference wing using

Dw = CdwDref
Sh

Shref
, (25)

where Cdw is a constant assumed equal to 0.2 in the
present work, Sh is the frontal area of the current wing,
and Shref is the frontal area of the reference wing.

4.4
Geometric issues

The system level design variables include the aspect ratio
and depth-to-chord ratio for a wing with constant area
and sweep. These two design variables determine the
nodal coordinates of the structural model through basic
geometrical relationships. The Y -coordinate (see Fig. 1)
is obtained from

Yi,j = Yi,j ref

(
b

bref

)
, (26)

where i and j represents the line and chord numbers re-
spectively as before (see Fig. 7), Yi,j represents the Y -
coordinate for nodes in the current model, and Yi,j ref
represents the corresponding Y -coordinate in the refer-
ence model. The newX-coordinate depends on the sweep
p and is obtained from

Xi,j = (Xi,j ref−p Yi,j ref)

(
cr

crref

)
+p Yi,j , (27)

where cr is the root chord length of the current wing and
crref is the root chord length of the reference wing. Fi-
nally, the Z-coordinate is obtained from

Zi,j = Zi,j ref

(
cr

crref

)(
h/c

(h/c)ref

)

, (28)

where h/c is the depth-to-chord ratio of the current wing
and (h/c)ref is the depth-to-chord ratio of the reference
wing.

5
Results

The PSO algorithmwas used to solve the system level op-
timization. This is an unconstrained problem that aims to
maximize the range of the wing by changing the aspect
ratio, the depth-to-chord ratio, the number of internal
spars, the number of internal ribs, and the wing cover con-
struction. The PSO parameters used to solve the problem
are summarized in Table 2. These parameters were se-
lected from previous work by the authors (Venter and
Sobieszczanski-Sobieski 2002) and no attempt was made

Table 2 PSO parameters

Parameter Value

Number of particles 100
Initial inertia weight, w 1.4
Trust parameter 1, c1 1.50
Trust parameter 2, c2 2.50

to fine tune the algorithm to the current example prob-
lem. The main emphasis of the present work was not to
fine tune the PSO algorithm to a specific example prob-
lem, but rather to investigate the utility of the PSO algo-
rithm in a multidisciplinary optimization environment.
Due to the stochastic nature of the algorithm, the op-

timization was repeated ten times, each using a different
random seed, resulting in a different initial population.
For each repetition the best, worst, mean, and standard
deviation of both the best objective and the number of
function evaluations to convergence were recorded.
The statistical results for the ten repetitions are sum-

marized in Table 3. From Table 3 it is clear that the re-
sults are well converged between the ten independent rep-
etitions with a standard deviation of only 19 n. mi. for
the mean range of 5328.5 n. mi. However, this robustness
comes at a fairly high average cost of 9660 analyses per
optimization for the five-design-variable system-level op-
timization problem. Part of this high cost is due to the
characteristics of the algorithm itself, but part of it is re-
lated to the PSO parameters used. In particular it seems
that the convergence criterion used is too strict. For con-
vergence, the objective function had to change less than
0.1% in 5 consecutive iterations.
The best design point found from the ten repetitions

is summarized in Table 4. The optimizer increased the
range by increasing the aspect ratio of the reference wing
by 34.7%, while decreasing the h/c ratio by 10.8%. Ad-
ditionally, the internal spar is removed and the number
of internal ribs is reduced from 7 to 4, while the hat-
stiffened construction is preferred. These changes result
in a longer, thinner wing with a 6.9% increase in range
to 5343.6 n. mi. Note that the structural sub-optimization
problem was also performed for the reference wing, so
that the reference wing represents the optimum wing for
the reference aspect ratio and depth-to-chord ratio.
The spar and rib configuration for the optimum wing

is shown in Fig. 8. As mentioned previously, the inter-

Table 3 Cost and objective function (range) statistics

Cost Range
(# Fn. Eval.) (n. mi.)

Mean 9660 5328.5
StdDev 1826 19.0
Best 6700 5343.6
Worst 13300 5276.3
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Table 4 Optimum design point

Parameter Optimum Reference

Range (n. mi.) 5343.6 5000.0
Aspect ratio 9.2360 6.8571
h/c ratio 0.1071 0.1200
Internal spars 0 1
Internal ribs 4 7
Construction Hat-Stiffened –

nal ribs are added from the root to the tip of the wing,
while preserving the original rib spacing. The ribs are
absent along the long outer wing segment because the op-
timization procedure finds that they are not needed for
anti-buckling support. Of course, in a realistic wing-box,
such a long segment without ribs might not be acceptable
because the ribs are also needed to support the wing cover
panels, acting as plates loaded by the aerodynamic pres-
sure. However, this effect was not modeled and therefore
could not affect the course of the optimization.
The PSO algorithm successfully dealt with the dis-

crete design variables. All ten optimization runs resulted
in the same values for all the discrete design variables
with only small changes in the aspect and depth-to-
chord ratios. The PSO algorithm also successfully dealt
with any spurious local minima that may exist as a re-
sult of numerical noise. To illustrate the numerical noise
present in the current example problem, it was decided
to change the aspect ratio from 5.0 to 10.0 with incre-
ments of 0.125 while fixing all the remaining system level
design variables at their optimum values from Table 4.
Each range calculation consisted of a structural sub-
optimization that may introduce numerical noise. The
range of the aspect ratio was selected to include both the
reference and optimum designs. The results of the numer-
ical noise study are shown graphically in Fig. 9.
From Fig. 9 it is clear that the aspect ratio has a sig-

nificant impact on the range and that the reference de-

Fig. 8 Spar and rib configuration for optimum wing-box
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Fig. 9 Range vs. aspect ratio

sign represents a good design, hence the fairly small im-
provement found by the PSO algorithm. However, Fig. 9
also illustrates the severe numerical noise associated with
this design problem. The data include three data points
(A = 6.0, A = 6.125, and A = 6.5) for which the struc-
tural sub-optimization could not find a feasible solution.
The remaining numerical noise is a result of incomplete
convergence in the sub-optimization. Although one could
reduce the numerical noise in the present example by forc-
ing more strict convergence in the sub-optimization prob-
lem (GENESIS was run with all default values), a bi-level
multidisciplinary optimization problem will in general be
subject to numerical noise. In the present example the nu-
merical noise is so severe that a gradient-based optimizer
would have a difficult time finding the true optimum de-
sign point without being trapped in a spurious local min-
imum. However, the PSO algorithm was able to overcome
this numerical noise and reliably find the same optimum
design point starting with ten different initial swarms.

6
Computational cost

Computational cost is always a concern when using a non-
gradient-based optimization algorithm. As shown in the
present work, this class of algorithms provide the designer
with many desirable features, but requires many more
function evaluations compared with traditional gradient-
based optimization algorithms.
A useful measure of the computational cost is to com-

pare the cost of using the PSO algorithm against that
of a gradient-based algorithm. For the present example
problem, a single PSO run required an average of 9660
analyses to converge (see Table 3). To estimate the com-
putational cost associated with a gradient-based algo-
rithm, one needs to explicitly deal with the discrete de-
sign variables present in the current example problem,
since no meaningful gradient information exist for these
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variables. There are three discrete design variables at the
system level (the number of internal spars, the number
of internal ribs, and the wing cover construction type),
which results in a total of 49 possible combinations.When
using a gradient-based algorithm, it is possible to do
a separate optimization for each of these combinations.
The result is 49 independent optimization runs, each with
two system level design variables that are continuous (the
aspect ratio and the depth-to-chord ratio of the wing).
For each sub-optimization problem, consisting of two con-
tinuous system level design variables, the number of re-
quired function analyses can be estimated by assuming
3 analyses for each one-dimensional search, 2 analyses
for the finite difference gradient calculations, and roughly
5 design iterations for convergence. This process would
provide a rough estimate of 25 analyses to solve a single
sub-optimization problem and a total cost of 1225 ana-
lyses to complete a single optimization run.
If one compares the estimated cost of a gradient-based

optimization algorithm with the average cost of the PSO
algorithm, it would seem that a gradient-based algorithm
is better suited to solving the example problem presented
here. However, it is not a fair comparison to consider only
the number of function evaluations. First, the PSO al-
gorithm was not tuned to the specific example problem
and thus provides an upper bound to the PSO computa-
tional cost. Second, andmore importantly, is the presence
of severe numerical noise (see Fig. 9). The PSO algo-
rithm was demonstrated to effectively and robustly deal
with the presence of this numerical noise. In contrast,
a gradient-based algorithmwould not be able to deal with
the numerical noise present in the current example prob-
lem and could easily be trapped in spurious local minima,
resulting in false convergence. Third, the implementation
of the proposed gradient-based optimization scheme con-
sisting of 49 sub-optimization problems would place an
additional burden on the designer. Finally, as the number
of discrete combinations increase, either by adding dis-
crete design variables or by having a larger set of discrete
values for each design variable, it would quickly become
infeasible to follow the “all-combinations gradient-based
approach” outlined here. In contrast, the PSO algorithm
only searches a small subset of all the possible discrete
combinations, making the algorithm more attractive for
larger numbers of discrete combinations.
Most non-gradient-based algorithms parallelize well,

resulting in a dramatic reduction of the overall time re-
quired to complete an optimization run. When consid-
ering the computational cost of these algorithms, it is
thus important to also look at the ability of using large
numbers of concurrent processors. For the present ex-
ample, in which a swarm size of 100 particles was used,
the PSO algorithm requires an average of 96.6 design
iterations to converge. If 100 processors were available,
the average time to complete a single PSO optimization
would be equivalent to the real time of 96.6 analyses.
Of course, the proposed scheme for solving this problem
using a gradient-based algorithm can also be parallelized

by running each of the 49 optimization runs on a separate
processor. In this case a single optimization, consisting of
49 sub-optimization runs, would be completed in the real
time of 25 analyses.

7
Conclusions

The results presented clearly illustrate the usefulness of
the PSO algorithm in a bi-level multidisciplinary opti-
mization environment. The PSO algorithm is able to re-
liably find the same optimum design point, despite the
presence of discrete variables and severe numerical noise.
Although using the PSO algorithm is more expensive
than a gradient-based implementation, the advantages of
directly dealing with the discrete design variables and
the severe numerical noise present in the current example
problem, makes the PSO algorithm an attractive alterna-
tive. For problems with a larger number of discrete combi-
nations, the PSO algorithm should be a more appropriate
choice than a gradient-based implementation similar to
that proposed in Sect. 6. Additionally, exploiting a large
number of concurrent processors could dramatically re-
duce the overall computational time required to complete
the PSO optimization. A future investigation into the
PSO parameters, specifically those related to the conver-
gence criterion, and their influence on the efficiency of the
algorithm, would be appropriate.
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