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Topology optimization of continuum structures
with material failure constraints

J.T. Pereira, E.A. Fancello and C.S. Barcellos

Abstract This work presents an efficient strategy for
dealing with topology optimization associated with the
problem of mass minimization under material failure con-
straints. Although this problem characterizes one of the
oldest mechanical requirements in structural design, only
a few works dealing with this subject are found in the
literature. Several reasons explain this situation, among
them the numerical difficulties introduced by the usually
large number of stress constraints. The original formula-
tion of the topological problem (existence/non-existence
of material) is partially relaxed by following the SIMP
(Solid Isotropic Microstructure with Penalization) ap-
proach and using a continuous density field ρ as the de-
sign variable. The finite element approximation is used
to solve the equilibrium problem, as well as to control ρ
through nodal parameters. The formulation accepts any
failure criterion written in terms of stress and/or strain
invariants. The whole minimization problem is solved by
combining an augmented Lagrangian technique for the
stress constraints and a trust-region box-type algorithm
for dealing with side constraints (0< ρmin ≤ ρ≤ 1). Nu-
merical results show the efficiency of the proposed ap-
proach in terms of computational costs as well as sat-
isfaction of material failure constraints. It is also pos-
sible to see that the final designs define quite different
shapes from the ones obtained in classical compliance
problems.
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1
Introduction

Design is a key aspect of any marketing concept in which
products must change and improve their capabilities to fit
customer needs. This paradigm has led to the shortening
of design and production cycles in order to maintain com-
petitiveness in a very aggressive business environment.

On the other hand, from a more holistic point of view,
social constraints have recently oriented the production
of material goods in accordance with ecological precepts,
which has also stimulated the re-design and optimization
of current products.

As a consequence of this scenario, optimization has
received increasing attention and has taken an import-
ant place in the activities of designers. This fact can be
easily appreciated if one considers the great number of
commercial analysis software packages equipped with op-
timization modules.

Topological optimization is probably one of the newest
features incorporated in these tools. Its ability to suggest
initial drawings and conceptual designs has attracted the
attention of designers, and it is presently a fertile area of
research.

The specific problem of minimizing flexibility for
a given amount of material, widely known as the Com-
pliance Problem, occupies more than 90% of the research
work in topology optimization of mechanical devices.
The reasons for this focus stem from the mathematical
properties of the problem to the historical trends of its
development. However, despite its well-developed math-
ematical background and its numerical properties, this
problem is not necessarily representative of the most fre-
quent requirements for practical applications. One of the
most intuitive questions in mechanical design is still the
following: what is the lightest design that operates with-
out material failure? This objective can be written in
short as

Minimize Mass
Subject to : F (σ (x))≤ 0 , ∀ x ∈Ω .

(1)

The material failure function F depends on the stress
field σ (x) and strain field ε (x), and all of them are de-
fined in an original domain Ω.
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A large set of questions then arises:What does a mate-
rial constraint physically mean in a topological problem?
How should it be written? Should this constraint be local
in a strict sense (pointwise)? It is more or less obvious
that, if not pointwise, some kind of local evaluation of
failure should be performed, which will generate an ap-
preciable number of discrete constraints in the equivalent
numerical problem. This is one of several important dif-
ferences between this and the compliance problems and
probably constitutes one of the reasons for the small num-
ber of works dealing with this kind of problem in the
literature.

2
A brief review

A problem that is similar to the present one is called
the Fully Stressed Design (FSD) approach. Its main as-
sumption is the existence of a design for which all mate-
rial points have their stress-based failure constraint satu-
rated. In this case, an optimality condition may be writ-
ten. Initially applied to frame structures this approach
was also extended to 2D problems (Cursi and Pagnaco
1995; Novotny et al. 1998).

Evolutionary Structural Optimization (ESO) is also
a FSD-like approach, whose principles may be found in
the works of Querin et al. (1998). It is based on the idea of
removing material from low-stressed regions and adding
material in the opposite case, and it is for this reason that
the algorithm is called bidirectional. The same authors
call a variation of this idea an additive algorithm (Querin
et al. 2000). An initial design, formed by a small num-
ber of elements “grows” by an element addition process
guided by the minimization of a performance function
(Performance Index) given by

PI =
1

PL

∫
σvM dΩ ,

where σvM is the von Mises effective stress field, P is
a representative force of the external load and L a charac-
teristic dimension of the model.

Returning to statement (1), some authors use as the
failure material constraint a p-norm of the von Mises
stress field:

∥∥∥∥ σvMσadm

∥∥∥∥
Lp(Ω)

=

[∫ (
σvM

σadm

)p

dΩ

]1/p
, (2)

where σadm is the admissible von Mises stress. Yang and
Chuang (1994), Park (1995) and Yang and Chen (1996)
considered as the objective function a linear combination
of the internal strain energy and the above functional. All
of them are based on microstructure designs of the SIMP
(Solid Isotropic Microstructure with Penalization) type
(Bendsøe 1995).

Shim and Manoochehri (1997) treated the problem
(2) through Simulated Annealing based also on the elim-
ination/readmission of elements in a FE mesh, as well
as using discrete optimization techniques (Shim and
Manoocheri 1998).

A classical nonlinear programming approach can be
found in the work of Duysinx and Bendsøe (1998) and
Duysinx and Sigmund (1998), in which the SIMP ap-
proach and a stress failure constraint was chosen to solve
problem (1). The large-scale optimization problem was
solved through the convex approximation and dual algo-
rithms. In Duysinx (1998) the same approach was used
to point out the different optimal designs obtained for
materials with different failure criteria on traction and
compression.

From a quite different approach, Stolpe and Svan-
berg (2001) used integer programming of the form 0-1
to solve problem (1). The original problem was rewritten
as an equivalent linear sub-problem that was solved with
branch-and-bound and branch and cut methods.

The present work formulates problem (1) following
the same approach as that proposed by Duysinx and
Bendsøe (1998). The formalism is just re-arranged in
order to allow a general expression for material failure
constraints (and derivatives) written in terms of the prin-
cipal invariants of the Cauchy stress σ. Within this for-
mulation the existence of singular optima is eliminated
by using the ε-regularization proposed by Cheng and Guo
(1997).

The numerical treatment is, however, different from
the former work. The augmented Lagrangian technique is
used to deal with local stress constraints, while the lim-
its on the design variable, the density ρ, are solved with
a trust-region box-type algorithm. This approach is in ac-
cordance with that adopted for the stress constraints at
the formulation level, in which the regularization parame-
ter ε weakens this constraint. Each local stress constraint
is, in the present work, included as a penalization term
in the cost function, “weighted” by a Lagrangian multi-
plier. Moreover, this approach produces a huge reduction
of computational costs when derivatives of the problem
are needed. For a given design, the gradient of the objec-
tive function is obtained using adjoint sensitivity analysis
at just the cost of a back-substitution procedure and some
integration effort. This choice allows the use of a large
number of local stress constraints and, therefore, refined
meshes.

The checkerboard phenomenon is controlled by a sim-
ple penalization term on the density gradient. This tech-
nique was proposed by Pereira (2001) following the ideas
of gradient constraints from Petersson and Sigmund
(1998) and Borrvall and Petersson (2001). Work was also
published simultaneously by Borrvall (2001), in which the
former penalization is found, and a complete theoretical
and numerical discussion about this issue is given.

In order to maintain a unified notation and make the
paper easily comprehensible, Sect. 3 is used to state biefly
the basic formulation of the problem.
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Section 4 equates this expression to the augmented
Lagrangian approach. Section 5 shows the analytical sen-
sitivity analysis of the final Lagrangian functional, while
Sect. 6 presents operational details and choices of the
finite element approximation of displacements, stresses
and density fields. The nonlinear optimization algorithm
is described in Sect. 7. Finally, Sects. 8 and 9 present a set
of numerical results in which the efficiency, advantages
and difficulties of the proposed approach are discussed.

3
Formulation of the problem

LetΩ be an open domain with boundary ∂Ω belonging to
the physical space Rn (n = 1, 2, 3). A material body oc-
cupies the domain Ωm, included in Ω. The complement
of Ωm in Ω is denoted by Ωv and represents void spaces
(Fig. 1). It is also assumed that the boundary of Ωm is
smooth enough and contains the part ∂ΩN of ∂Ω where
a traction t is applied (t ∈H−1/2 (∂Ω;Rn)). Classical lin-
ear elasticity is assumed to be a good representation of
the body behavior. Thus, a set of constitutive, kinematic
and equilibrium equations relate the constitutive elastic-
ity tensor D, the stress tensor σ ∈ L2 (Ωm;Rn×n), the
deformation tensor ε ∈ L2 (Ωm;Rn×n) and the displace-
ment vector u ∈H1 (Ωm;Rn) as follows:

σ =Dε ,

ε=∇Su=
1

2

(
∇u+∇Tu

)
, (3)

div (σ) = 0 ∀ x ∈Ωm .

The following boundary conditions also apply:

σ n= t̄ ∀ x ∈ ∂ΩN ⊂ (∂Ωm∩∂Ω) ,

σ n= 0 ∀ x ∈ ∂ΩF := ∂Ωm\ (∂ΩN ∪∂ΩD) , (4)

u= ū ∀ x ∈ ∂ΩD ⊂ (∂Ωm∩∂Ω) .

Fig. 1 Geometric definitions of a domain composed of solid
and voids

The weighted-residual method applied to (3)–(4)
leads to the classical variational expression in which the
equilibrium displacements u ∈ U satisfy the equation:

B (u,v) = l (v) ∀ v ∈ V , (5)

whereB (·, ·) :U×V →R is a symmetric bilinear form, l :
V →R is a linear functional associated with the external
loads, U and V are the kinematic admissible fields of the
displacements and variations, respectively.

It is well known in the literature that formulating (1)
as a problem of existence or non-existence of material
(i.e., using characteristic functions) leads to an ill-posed
problem and a minimum may not exist. A possible way
of circumventing this inconvenience is including interme-
diate values between solid (ρ = 1) and voids (ρ = 0) by
using “porous materials” (Bendsøe and Kikuchi 1988).
Among several possible choices, this work uses the SIMP
(Solid Isotropic Microstructure with Penalty) approach
(Bendsøe and Sigmund 1999). Taking the relative density
0≤ ρ≤ 1 as the design variable, the constitutive behavior
of the microstructure is described by relating the elas-
ticity tensor Dρ with the elasticity tensor of the solid
materialD0 as follows:

Dρ = fD (ρ)D0 = ρpD0 . (6)

With these assumptions in hand, the original problem
may be written as a new one stated as

Problem P1:

Min
ρ∈L∞(Ω;(0,1))

m (ρ) = ρ0

∫
Ω

ρ (x) dΩ , (7)

Subject to : ρ (x)F (σ (x))≤ 0 a.e. in Ω .

3.1
Material failure criterion

A material failure criterion will denote, in this context,
a function capable of identifying how far a material point
submitted to a quasi-static stress state is from failure.
Failure may signify yielding for a ductile material or crack
initiation in a fragile one. It can be stated as

F (σij , k1, k2, . . . ) = 0 , (8)

where the parameters k1, k2, . . . , are experimentally ob-
tained for each material. It is assumed that failure does
not occur if F (σ)≤ 0.

Due to its applicability to a wide class of metallic ma-
terials and to its simplicity, the vonMises failure criterion
is one of the mostly used frequent expressions, and is
given by

FvM (σ) =
σvM

σadm
−1 , (9)
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where σadm is the material yielding stress and σvM is the
effective von Mises stress, computed as

σ2vM =
1

2

[
(σ11−σ22)

2
+(σ22−σ33)

2
+(σ33−σ11)

2
]
+

3
(
σ212+σ

2
23+σ

2
31

)
.

Nevertheless, this work is not restricted to this particu-
lar expression and the general formulation applies to any
criterion that can be written as a function of the stress or
strain tensor, defined generically as in (9).

Now it is necessary to define an appropriate failure cri-
terion for the fictitious microstructure. A proposition was
discussed by Duysinx and Bendsøe (1998) and the main
features are summarized here. Homogenized stresses are
related to homogenized deformations (brackets are used
to emphasize homogenized average values), through (6),
by

〈σ (x)〉=Dρ 〈ε (x)〉= fD (ρ)D0 〈ε (x)〉 , (10)

which is the relationship used in the equilibrium problem.
However, local stresses within a cell are assumed to take
values greater than the average value 〈σ (x)〉, say,

σ (x) =
1

fσ (ρ)
〈σ (x)〉 , 0≤ fσ (ρ)≤ 1 . (11)

Proposing that fD (ρ) = fσ (ρ) and substituting (10) into
(11), it is found that local stresses are related to homog-
enized deformations through the original (solid material)
elasticity tensor:

σ (x) =D0 〈ε (x)〉 . (12)

This relationship has important consequences for the be-
havior of the problem. It means that if homogenized
deformations remain finite, local stresses (used in the
failure criterion) also remain finite. On the other hand,
when the density goes to zero, high deformations may
occur due to the low stiffness and, large, although fi-
nite, local stresses are obtained, as shown in (12). As
a consequence, local constraints saturate and lock the
material-removal process. This is known as the Stress
Singularity Phenomenon, initially found by Sved and Gi-
nos (1968) in truss optimization problems. Later, Cheng
and Jiang (1992) and Cheng and Guo (1997), showed
the same event occurs in continuous problems. A fre-
quent strategy adopted by many authors involves relax-
ing the stress constraints (Cheng and Guo 1997; Kirsch
1990), which allows stresses to take higher values when
the density goes to zero and satisfies the original con-
straint for solid material. Then, constraints are trans-
formed in{
gσ (x)≡ ρ (x)F (σ (x))− ε (1−ρ (x))≤ 0 , a.e. in Ω ,

0< ε2 ≤ ρmin ≤ ρ (x)≤ 1 , ∀ x ∈Ω ,
(13)

where ε is a relaxation parameter. Taking this proposition
into consideration, the problem is rewritten as

Problem P2 :

Min
ρ∈Kρ(Ω)

m (ρ) = ρ0

∫
Ω

ρ (x) dΩ , (14)

Subject to : gσ (x)≤ 0 a.e. in Ω ,

whereKρ (Ω) is the design space of density fields:

Kρ (Ω) =
{
ρ | ρ ∈ L∞ (Ω) , 0< ε2 ≤ ρmin ≤ ρ (x)≤ 1

}
.

3.2
Checkerboard regularization

Several alternatives to mitigate the checkerboard phe-
nomenon are available in literature. A group of them are
based on the idea of imposing appropriate constraints on
the design set in order to obtain a closed subset and,
consequently, turn the problem into a well-posed one.
This can be done by imposing a local limit on the gra-
dient components, computed as the difference in dens-
ity between adjacent elements divided by the distance
between them (Bendsøe 1995; Petersson and Sigmund
1998). Others are based on limiting the domain solution
perimeter (Haber et al. 1995; Petersson 1999). A quite
elegant solution is discussed by Borrvall and Petersson
(2001). Using an isotropic microstructure approach, the
volume of intermediate material is penalized by a func-
tional. Proof of the existence of the solution is also shown.
The present work uses a relatively different approach pro-
posed by Pereira (2001), which introduces a limit for the
gradient norm through penalization. A concomitant work
of Borvall (2001) presents this strategy and a complete
theoretical discussion about restrictions on the design
space.

Thus, the new expression of the problem is the follow-
ing:

Min
ρ∈W1,2(Ω)

m (ρ) =

∫
Ω

ρ dΩ (15)

Subject to :




|∇ρ|2L2(Ω) ≤ C |Ω| ,

0< ρmin ≤ ρ (x)≤ 1 ,

gσ (x)≤ 0 a.e. in Ω .

Clearly, problem (15) includes a single global constraint
on the density gradient. Many procedures for solving
problem (15) may be chosen. Considering penalization
and a positive parameter rρ, the new objective functional
can be written as
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Min
ρ∈W1,2

ρ (Ω)

m (ρ) =

∫
Ω

ρ dΩ+
1

2
rρ

∫
Ω

fρ (ρ) dΩ +

rm

∫
Ω

fm (ρ) dΩ (16)

Subject to : gσ (x)≤ 0 a.e. in Ω ,

where fρ (ρ) = (∇ρ)T (∇ρ), fm (ρ) = ρ(1−ρ), and

W 1,2
ρ (Ω) =

{
ρ | ρ ∈W 1,2 (Ω) ; 0< ρmin ≤ ρ(x) ≤ 1 ,

∀ x ∈Ω} .

The function fm (ρ) in (16) is included in order to intro-
duce an explicit penalization at the intermediate densi-
ties. Although different functions may be used, this one
is chosen by many authors. The constant rm ≥ 0 is the
associated penalization factor.

4
Solution by the augmented Lagrangian method

Due to its local nature, material failure constraints in
(16) may be compared with plasticity-type constraints or
unilateral contact constraints. Moreover, the Augmented
Lagrangian (AL) technique has proven to be an efficient
approach for solving the last type of problems. Initial
computations show that the present formulation is very
sensitive to stress constraints. Due to this, the augmented
Lagrangian method was chosen in an effort to stabilize
the optimization process through appropriate choices of
penalization factors as well as schemes for updating La-
grangian multipliers. Following the classical procedure
(Bertsekas 1996), the augmented Lagrangian functional
is defined for this problem as

$ (ρ;λ, r) =m (ρ)+mσ (ρ;λ, r)

=m (ρ)+

∫
Ω

Mσ (ρ;λ, r) dΩ , (17)

Mσ (ρ;λ, r) =

1

r
max

{
gσ (ρ, σ)

[
rλ+

1

2
gσ (ρ, σ)

]
; −

(rλ)
2

2

}
, (18)

where λ ∈ L2 (Ω) is a multiplier function and r > 0 is the
penalization parameter. This approach leads to a pro-
cedure based on a sequence of optimization subproblems;
given a Lagrange multiplier field λk ∈ L2 (Ω) and a pe-
nalization factor rk > 0, the following box minimization
problem is solved:

Min
ρ∈W1,2

ρ (Ω)

$
(
ρ;λk, rk

)
. (19)

Once this subproblem is solved, the Lagrange multiplier
field λk as well as the penalization factor rk are conve-
niently updated (Bertsekas 1996):

λk+1 =max

{
λk+

1

2
gσ(ρ, σ); 0

}
, (20)

rk+1 =
rk

t
t > 1 . (21)

5
Sensitivity analysis

Classical first-order optimization algorithms need infor-
mation about functional values and their derivatives. In
this case, the gradient of the objective functional (19) for
fixed and known values of λk and rk is needed. The func-
tional $ (ρ;λ, r) in (17) has two different terms. The first
one, m (ρ), depending only on the density field ρ and its
derivative, is given straightforwardly by

ṁ (ρ) [y] =

∫
Ω

[
1+ rm

dfm (ρ)

dρ
+
1

2
rρ
dfρ (ρ)

dρ

]
y dΩ , (22)

where y is a variation of ρ. On the other hand, the second
term, mσ (ρ;λ, r), is implicitly dependent on ρ, and its
derivative implies the differentiation of the stress field σ.
To this end, continuum sensitivity analysis is used, in par-
ticular the adjoint method (Haug et al. 1986). Thus, the
total Gateaux derivative of mσ

(
ρ;λk, rk

)
for a direction

y takes the from

ṁσ

(
ρ;λk, rk

)
[y] =

m′σ
(
ρ;λk, rk

)
[y]−B′ (u,ua) [y]+ l

′ (ua) [y] , (23)

where the notation (·) ′[y] represents the partial (Gateaux)
derivative of the functional (·) relative to the explicit de-
pendence of ρ in direction y. All terms on the RHS. are
evaluated at the current displacement u and at the ad-
joint solution ua related to the adjoint problem discussed
next in Sect. 5.1.

The first term on the RHS of (23) consists basically
of the partial derivative of the function gσ (ρ, σ) in (18),
keeping σ fixed. Thus, considering (13) and the symbol
〈(·)〉+ =max [(·) ; 0], we have

∂gσ (ρ, σ)

∂ρ
y =

∂

∂ρ
[ρF (σ)+ ε (ρ−1)] y

= [F (σ)+ ε] y , (24)

and then,

m′σ
(
ρ;λk, rk

)
[y] =

∫
Ω

∂Mσ

(
ρ;λk, rk

)
∂ρ

y dΩ =

∫
Ω

{
1

rk
[F (σ)+ ε]

〈
gσ (ρ, σ)+ r

kλk
〉+}

y dΩ . (25)
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The second term on the RHS of (23) is given by the
partial (Gateaux) derivative of B, considering real dis-
placements u and adjoint solution ua fixed:

B′ (u,ua) [y] = lim
t→0

[
Bρ+ty (u,ua)−Bρ (u,ua)

t

]
=


 d
dt

∫
Ω

fD(ρ+ ty)
[
D0
(
∇Su

)
·
(
∇Sua

)]
dΩ



t=0

=

∫
Ω

qρ(q−1)
[
σ0 ·∇

Sua
]
y dΩ , (26)

where the last expression is obtained from (5): fD(ρ) = ρ
q

and the notation σ0 ≡D0∇Su is used. It is worth em-
phasizing that, once the fields u and ua are obtained,
(26) allows the computation of the partial derivative of B
through a simple integration over the subdomain defined
by the support of the variation function y ∈W 1,2

ρ (Ω),
usually associated with a small groups of elements.

If it is assumed (for simplicity sake) that external
loads do not depend on the density distribution (no body
forces are considered), then the third term on the RHS of
(23) is null.

Finally, the total derivative of mσ is obtained by sub-
stituting (25) and (26) into (23). The next paragraphs are
dedicated to detailing the evaluation of the adjoint solu-
tion ua.

5.1
Adjoint problem

In the general case, the second and third terms on the
RHS of (23) depend on the solutionua of the following ad-
joint variational problem:

Find ua ∈ V , such that

B (ua,v) =

∫
Ω

(
∂Mσ

∂∇Su
∇Sv

)
dΩ , ∀ v ∈ V . (27)

The functionMσ in (18) depends on the stress field σ and,
consequently, on the linear deformation tensor ∇Su. Its
derivative in (27) is obtained as

∂Mσ

∂∇Su
=

1

rk
∂gσ (ρ, σ)

∂∇Su

〈
gσ (x)+ r

kλk
〉+

. (28)

Appendix A shows that the derivative of gσ may be writ-
ten as (A.5)

∂gε (ρ, σ)

∂∇Su
= ρHσ , (29)

where Hσ is a second-order tensor obtained explicitly
from the material failure criterion evaluated at the cur-
rent stress state σ. Then, the final expression of the
derivative ofMσ is

∂Mσ

∂∇Su
=
ρ

rk
〈
gσ (x)+ r

kλk
〉+
Hσ . (30)

It is important to emphasize that, for a given stress
state, the directional derivative ofMσ is computed using
the same expression for any differentiable material failure
function, with the only exceptions being the scalars B1,
B2, andB3 (Appendix A), which are explicitly dependent
on the failure function F (σ). A simple substitution of this
last derivative into (27) completes the load term of the
variational adjoint problem. Moreover, the bilinear form
Bρ (·, ·) is the same as that of the physical problem and,
consequently, the numerical solution of ua uses the same
stiffness matrix as the one used to obtain u.

6
Discretization

Although the proposed approach has no theoretical lim-
itations for 3D problems, numerical tests were initially
performed in two dimensions.

Different element types may be used to solve the
boundary value problem. Most works use equal-sized
quadrilateral elements due to the computational savings,
since the element stiffness matrix is partially calculated
only once. Higher order elements result in better perform-
ance for the checkerboard phenomenon but the computa-
tional cost increases. Discontinuous density fields are also
a frequent choice in literature.

In this work, the three-node Lagrangian element was
used to solve the boundary value problem as well as to
define a continuous density field controlled by nodal pa-
rameters, which play the role of design variables here.
This choice was guided by the double purpose of hav-
ing a smoother boundary representation than that with
quadrilateral elements as well as a mesh refinement flexi-
bility if needed. Several other elements were tested, even
higher orders elements, in order to stabilize the checker-
board. However all of them were much more expensive
and inefficient when compared with the simple penal-
ization functional. It must be noticed that the number
of elements in linear-triangle meshes is about twice the
number of nodes. Thus, nodal design variables represent
half the number of element design variables. Furthermore,
a continuous density field is in accordancewith the formu-
lation proposed.

Numerical integration was performed with only one
integration point at the center of the triangle, the same
place where stresses and the failure criterion were evalu-
ated.

To complete this section it is important to summa-
rize the main characteristics of the present proposal: The
number of design variables equals the number of nodes
and, consequently, the number of side constraints asso-
ciated to design variables is twice the number of nodes.
Finally, the number of stress constraints is equal to the
number of elements.
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7
Numerical algorithm

The numerical solution of the problem follows the regular
procedure of the augmented Lagrangian method and it is
executed in two stages. The first one is the external loop,
in which each iteration consists of defining a Lagrange
multiplier vector λk, a penalization factor for stress con-
straints rk and solving the minimization of the objective
functional $

(
ρ;λk, rk

)
subject to side constraints, ρ ∈D,

D = {ρ ∈Rn | 0< ρmin ≤ ρi ≤ 1} . These steps are listed
below:

External Loop

1. Define k = 0, ηk, rm, rρ, λ
k and rk;

2. Minimize the functional $
(
ρ;λk, rk

)
, ρ ∈ D;

3. Verify convergence within a tolerance ηk;
4. Update ηk, λk and rk;
5. k = k+1, Return to Step 2.

The second stage is the internal problem 2 in which the
functional $ is minimized for fixed values of λk, rk:

min
ρ∈D

$(ρ) . (31)

To solve this problem a nonlinear trust-region algorithm
proposed by Friedlander et al. (1994) and generalized by
Bielschowsky et al. (1997) is used. We present here the
outline of the algorithm, but a complete description is
found in the references given. The algorithm is based on
the minimization, at each inner iteration j, of a quadratic
subproblemQj defined on a trust-region of size∆j :

Qj(s) = $(ρ j)+ sT∇$(ρ j)+
1

2
sTBjs , s= ρ−ρ j ,

sj = arg min
s∈Rn

{Qj(s) |
(
ρj + s

)
∈ D and ‖s‖ ≤∆j} ,

where Bj ∈Rn×n is an approximation of ∇2$(ρ j). An
adaptive strategy based on the quality of the approxi-
mated subproblem that modifies the size of the trust re-
gion to accelerate convergence is also used. To this end,
the quotient µj is computed using

µj =
$(ρ j)−$(ρ j+ sj)

Qk(0)−Qk(ρ j)
. (32)

If µj is near unity, it means that the quadratic function is
a good approximation within the box limits ∆j and the
box may be increased. Otherwise, it should be reduced.
The basic algorithm of the trust region can be written as
follows:

Internal Loop

1. Define Deltaj ∈ (0,∆max) , Bj ∈Rn×n, ρ j ∈ D;
2. Define the Quadratic Subproblem (QS):

Qj(s) = $(ρ j)+ sT∇$(ρj)+
1

2
sTBjs;

3. Minimize the QS:
sj = arg min

s∈Rn
{Qj(s) |

(
ρ j + s

)
∈ D , ‖s‖ ≤∆j};

4. Compute quotient µj ;
5. Compute the new trust region size∆j :

a. If µj < 1
4 , then ∆j+1 = 1

4∆
j ;

b. if 14 ≤ µ
j ≤ 34 , then ∆j+1 =∆j ;

c. if µj > 3
4 , then ∆j+1 min (2∆k, ∆max) ;

6. Update the design:
a. if µj > µ̄, then ρ j+1 = ρ j + sj ;
b. if µj ≤ µ̄, then ρ j+1 = ρ j ;

7. j = j+1, Return to Step 2.

In order to solve the minimization of a quadratic func-
tion within the box constraints in Step 3, an active set
algorithm is used, which generates a sequence of points
on a face of the polytope until a minimizer of the objec-
tive function on that face or a point on the boundary is
reached. In the first case the iteration is allowed to leave
the current face and the algorithm continues working on
a face of higher dimension. The present results were ob-
tained with an implementation of this algorithm, called
BOX-QUACAN, parametrically adapted to this problem.

8
Numerical results

In order to analyze the performance of the proposed
approach, several examples are shown. Many of them
present comparisons between the present approach and
the classical compliance approach (Bendsøe and Kikuchi
1988). In the last case, stress constraints are substituted
by a unique mass constraint.

Before detailing each example, it is worth commenting
on the influence of parameters like ηk, rm, rρ, λ

k and rk

on the numerical results.
The penalization of the checkerboard parameter rρ

has a strong influence on the topological complexity. This
fact is clearly seen in the example in Sect. 8.3, in which
different values of rρ were used. The bigger the parameter
the simpler the topology with a rough boundary defin-
ition obtained. Moreover, it was noted that very small
values of rρ were enough to prevent the checkerboard phe-
nomenon. Most of the examples were run with rρ = 0.001.
The parameter rm is used to penalize intermediate den-
sities. If we require the penalized density function ρ+
rmfm(ρ) to have a negative derivative for every ρ, the
value of rm must be less than unity. Most of the examples
were run with rm = 0.95. In spite of this, it was noted that
the influence of this parameter is smaller than that of rρ
or ε. The penalization of the stress constraint rk changes
at each iteration of the augmented Lagrangian sequence.
In the present implementation, it goes from rk = 1 to
a lower limit of rk = 10−4 (note in (13) that penaliza-
tion is proportional to the inverse of rk). The Lagrangian
multiplier λk is automatically updated by the algorithm.
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Cheng and Guo (1998) state a limit of ε2 ≤ ρmin in order
to avoid singular points. Most of the examples here were
run with ε2 = ρmin = 0.01. As the elasticity tensor is pro-
portional to ρ3, the Young modulus for a minimum dens-
ity is 10−6 times smaller than that for a solid material.
The example in Sect. 8.2 shows the influence of ε on the
results. The behavior is in accordance with the nature
of this parameter: the constraints are weakened for posi-
tive values of epsilon. Thus, more robust designs are ob-
tained for smaller values of ε and vice versa. Moreover,
convergence is easier for greater values of ε. Finally, ηk

represents the tolerance for convergence in the external
loop of the augmented Lagrangian. The variation of the
objective function, the step-size and satisfaction of stress
constraints are tested. Convergence occurs if∥∥ρk+1−ρk∥∥≤ 10−3

√
n

and∣∣$ (ρk+1;λk+1, rk+1)−$
(
ρk;λk, rk

)∣∣≤ 10−4 ‖Ω‖ ,

where n is the number of design variables and ‖Ω‖ =
meas(Ω) .

Most computations converged within the range of 30
to 90 augmented Lagrangian iterations. However, the last
3
4 of the total iterations were dedicated the “fine-tuning”,
in which stress constraints are satisfied.

8.1
Bar in traction and flexion

This example discusses the case of a bar that is submit-
ted to two different loads: a simple traction and a bending
moment due to a linear distribution of stress along the
right vertical boundary (see Fig. 2). The domain is de-
composed in two regions. The right side is fixed, while the
left one is optimized.

For the first case, the traction is set to t= 30 Pa while
σadm = 60Pa. Symmetry conditions are used. The mesh
has 1510 nodes and 2868 elements. The optimal solution
has, on its left side, the design of a bar whose transverse
section is half the size of the original one and it is fully
stressed, as expected (Figs. 4 and 5). The design of the
right side is enforced to follows the flux of stresses due to
the traction along the complete unmodified section. This
transition is clearly not fully stressed.

The second load case is a distribution of normal stress
from t = 30 Pa at the bottom line to t = −30 Pa at the
top line. A minimum mass problem is run subject to
a σadm = 35 Pa. Figure 6 shows the final design in which
the material is concentrated at the “flanges” as expected.
Figures 7 and 8 show the ε-relaxed failure function and
σx distribution respectively. It is possible to see that the
constraints are satisfied within a small error. However,
saturation only occurs for the top and bottom lines of the
solid body. Figure 8 clearly shows that the stresses σx go
from a maximum value at the bottom of 35 Pa to −35 Pa

Fig. 2 Bar in traction and flexion

Fig. 3 Bar in traction and flexion: FEM mesh

Fig. 4 Traction load case: final density

Fig. 5 Traction load case: ε-relaxed failure function

Fig. 6 Bending load case: final density
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Fig. 7 Bending load case: ε-relaxed failure function

Fig. 8 Bending load case. Stress component σx

at the top. Further elimination of material, even in non-
saturated regions will produce a violation of constraints
elsewhere. In other words, the local minimum obtained
does not satisfy the fully-stressed design conditions. The
material and geometric parameters were the following:
E = 100.0Pa; ν = 0.3; t= 30.0 Pa .

8.2
L-shaped domain

This example investigates the behavior of the proposed
approach in an initial domain containing a stress singular-
ity. Figure 9 shows the model clamped on its top bound-
ary and loaded by a vertical resultant force P . The initial
parameters were the following:
E = 100 Pa; ν = 0.3; σadm = 42.42Pa; L = 1.0m; rρ =
0.001m2; rm = 0.95; P = 1.0 N.

The mesh is properly refined on the singular vertex
(Fig. 10) having 2722 nodes and 5218 elements. Three
different cases were run to verify the influence of the re-
laxation parameter on results: ε= 1.0, 0.1, 0.05. The final
designs for each case are shown in Figs. 11, 12 and 13.
It is possible to see that better-defined and more robust
designs are obtained for smaller values of ε, which is in
accordance with the characteristic of ε: high values of ε al-
low high values of stresses at intermediate densities and
consequently lighter designs are obtained. Moreover, the
rounded boundary on the singular corner becomes more
accentuated as ε decreases andmakes this point more sen-
sitive to high stresses.

The minimum compliance was also computed. In
order to make it comparable with previous results, the fi-
nal mass for ε= 0.1 was used as the upper bound for the
minimum compliance approach. The final design is shown

Fig. 9 L-shaped domain: model

Fig. 10 L-shaped domain: FEM mesh

Fig. 11 Minimum mass approach: final density for ε= 1.0
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Fig. 12 Minimum mass approach: final density for ε= 0.1

Fig. 13 Minimum mass approach: final density for ε= 0.05

Fig. 14 Minimum compliance approach

in Fig. 14. It is possible to see that the minimum mass
formulation is able to capture localized stresses and also
to avoid high stress concentrations with a well-defined
rounded boundary on the singular corner. On the other
hand, the compliance formulation seeks the maximum
transverse section in order to obtain maximum stiffness,
no matter how much the stress values rise. Figures 15
and 16 show the ε-relaxed failure constraint for both
cases, and Table 1 gives a summary of final values for

Fig. 15 Minimum mass approach: ε-relaxed failure function
for ε= 0.1

Fig. 16 Minimum compliance approach: ε-relaxed failure
function

Table 1 Comparison of formulations

Approach Fρ (ρ) Mass Compl. Time

(Nm) (min)

Mass 0.0903 0.3608 2.0374 100

Compliance 0.1189 0.3608 1.6571 15
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mass, compliance and computational times. This problem
has already been investigated by Duysinx and Bendsøe
(1998) and the final designs are comparable to the present
ones. However, rougher meshes were used and the singu-
larity could not be properly captured.

8.3
MBB-beam

The MBB-beam (Messerschmitt-Bolkow-Blohm GmbH;
Payten et al. 1998; Bulman et al. 2001) is one of the classic
benchmarks of topology optimization. It consists of a sim-
ply supported beam, loaded with a vertical force centered
on its top boundary (Fig. 17). The inital parameters were
the following:
E = 21MPa; ν = 0.3; σadm = 17.8 kPa;
L= 1.0m; ∆L= 0.2m; rρ = 0.002m2;
rm = 0.95; P = 2.0 kN.

Due to symmetry conditions, only half of the domain
is meshed with 2923 nodes and 5614 elements (Fig. 18).
Once again, both formulations, minimum mass and min-
imum compliance were tested. The final mass obtained
with the first formulation was used as the upper bound in
the mass constraint of the compliance problem. The final
designs are shown in Figs. 19 and 20, while the ε-relaxed
failure distributions are given in Figs. 21 and 22. Some re-
marks can be made from the analysis of those figures. It

Fig. 17 MBB-beam: model

Fig. 18 MBB-beam: FEM mesh

Fig. 19 Minimum mass approach: final density

is possible to see that identical topologies were obtained,
but the shapes and sections of the internal bars are quite
different. It is also possible to see that the boundaries
of the minimum mass solution present more “gray” re-
gions than those from the compliance result. Moreover,
these gray regions usually appear near junctions, in an ef-
fort to alleviate stress concentrations. On the other hand,
the compliance solution give failure stresses of up to 70%
higher than the admissible value, while the minimum
mass solution shows numerical errors only 0, 012% higher
than the admissible value.

In order to perform the sensitivity analysis of the pe-
nalization functional for the checkerboard phenomenon,
the same problem and a new refined mesh with 5159
nodes and 10010 elements were used (Fig. 23). Three dif-
ferent values of the penalization factor were tested: rρ =
0.0001, rρ = 0.001 and rρ = 0.01. Figures 24, 25 and 26
show the final results for the minimum mass approach,
while Figs. 27, 28 and 29 show the solutions for the com-

Fig. 20 Minimum compliance approach: final density

Fig. 21 Minimum mass approach: ε-relaxed failure function

Fig. 22 Minimum compliance approach: ε-relaxed failure
function

Fig. 23 MBB-beam: refined mesh
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pliance approach. Table 2 summarizes the final results for
each case. It can clearly be seen that there is a strong
dependence of the final topology on this parameter. As
expected, low values of penalization lead to a complex fi-
nal topology together with a clean boundary definition.
Opposite to this, simpler topologies and wide gray regions

Fig. 24 Minimum mass approach: final density for rρ =
0.0001

Fig. 25 Minimum mass approach: final density for rρ =
0.001

Fig. 26 Minimum mass approach: final density for rρ = 0.01

Fig. 27 Minimum compliance approach: final density for
rρ = 0.0001

Fig. 28 Minimum compliance approach: final density for
rρ = 0.001

Fig. 29 Minimum compliance approach: final density for
rρ = 0.01

Table 2 MBB-beam: Sensitivity analysis of factor rρ

Approach rρ Mass Compl. Time

(Nm) (min)

Mass 0.0001 1.2172 2.3795 410

Mass 0.0010 1.2691 2.3771 336

Mass 0.0100 1.6621 2.3280 240

Compliance 0.010 1.5000 1.7642 180

Compliance 0.100 1.5000 2.0151 150

Compliance 1.000 1.5000 3.0762 52

are obtained for higher values of rρ, which is even capable
of making the design invalid (as can be seen for rρ = 0.01).
It is also clear that simpler designs are associated with
lower computational times.

8.4
Michell’s structure

This is another classic case in topology compliance op-
timization. It was proposed by A.G.M. Michell (Michell
1904). It consists of a plate with clamping conditions on
an internal circular boundary and loaded by a vertical
force P on its right boundary (Figure 30 shows the me-
chanical problem). The present example has as a goal
the emphasis of the checkerboard phenomenon in the
minimum mass approach using a SIMP material. Two
cases were tested; first, no penalization was used (rρ =
0.0) and second, a penalization factor of rρ = 0.03mm2

Fig. 30 Michell ’s problem: model
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Fig. 31 Final density for rρ = 0.0

Fig. 32 Final density for rρ = 0.03

was included. The initial operating parameters were the
following:

E = 100.0N/mm2; ν = 0.3; σadm = 0.60N/mm2

P = 1.0 N; Lx1 = 15mm; Lx2 = 40mm; Ly = 40mm;

φ= 20mm; rm = 0.95.

Amesh of 3038 nodes and 5799 elements was chosen. If no
regularization is included, a clear checkerboard appears
(Fig. 31). On the other hand, Fig. 32 shows the solution
for rρ = 0.03.

8.5
Anisotropic failure criterion

This example discusses results obtained when an aniso-
tropic failure criterion is used. The mechanical case is
shown in Fig. 33, in which a rectangular plate is sub-
mitted to a shear force at its bottom boundary while it
is clamped on its top boundary. A mesh of 2222 nodes
and 4242 elements gives the initial domain (Fig. 34). The
problem was solved with the Raghava criterion (Raghava
et al. 1973) with a quotient between the admissible values
of compression and traction of s= σcomp/σtra = 3.0. The
final density distribution, ε-relaxed failure function and
the failure function itself are show in Figs. 35, 36 and 37
respectively. It is clear that the bar submitted to traction
is the one with the thicker final design. On the other hand,

a fully stressed design was not reached; the right bar is
submitted to a stress level lower than admissible, while
the left one is completely saturated. This is a clear case in
which stiffness is needed in one region of the structure in
order to avoid material failure in the other region. One
must note that this case is not equivalent to that of two
1D-bars because of the clamped nodes and fixed thick-

Fig. 33 Anisotropic failure criterion: model

Fig. 34 Anisotropic failure criterion: FEM mesh

Fig. 35 Final density field

Fig. 36 ε-relaxed failure function

Fig. 37 Failure function without relaxation
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ness. The left bar is submitted to traction and bending
efforts simultaneously and its behavior is similar to that
of the first example: outer fibers of the left bar are more
tractioned (saturated) than inner fibers (not saturated).
Thus, the local minimum obtained indicates that it is
more convenient to maintain an unsaturated thin right
bar than using more material on the left bar to support
bending stresses.

Another important issue is the difference between the
ε-relaxed constraint (Fig. 36) and the constraint with-
out relaxation (Fig. 37). Real failure is reached at points
with almost no material, which is in accordance with
the formulation. The operational parameters were the
following:

E = 100.0N/m2; ν = 0.3; L= 1.0m;

P = 1.0 N; σtra = 2.5N/m2; σcomp = 7.5 N/m2;

s=
σcomp

σtra
= 3.0; rm = 0.80; rρ = 0.001m2.

8.6
Eye-bar

This last example deals with a practical problem of
finding the optimal design for an eye-bar belonging to
an eye-bar-chain of a suspended bridge (see Fig. 38). The
mechanical problem and mesh are sketched in Figs. 39
and 40. A distributed pressure tn whose value depends on
the coordinate θ is applied on the internal surface of the
eye:

tn (θ) = 2 pmáx



θ

π
, if 0≤ θ ≤

π

2
,

1−
θ

π
, if

π

2
< θ ≤ π .

The operating parameters were:

E = 210000MPa; ν = 0.3; rm = 0.95;

rρ = 0.001mm2; Lx = 800mm; Ly = 1651mm;

Fig. 38 Eye bar chain of Hercilio Luz bridge in Florianópolis,
Brazil

Fig. 39 Eye-bar: model

Lφ = 451mm; ∆L= 254mm; φ= 292mm;

h= 50.8mm; pmáx = 21802MPa; σadm = 440MPa.

Due to symmetry conditions, only half of the geom-
etry is meshed with 2395 nodes and 4546 elements. The
solution is obtained with a mass reduction of 63.33%
(Fig. 41). Final design is not likely to be easily foreseen
by mechanical intuitive process. In order to avoid bend-
ing stresses, the transverse section at both sides of the
hole is smaller than at the symmetry plane, while an
horizontal bar helps to avoid bending. The ε-relaxed fail-
ure function remains below zero within numerical error.
(Fig. 42).

Fig. 40 Eye-bar: mesh
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Fig. 41 Final density field

Fig. 42 ε-relaxed failure function

9
Concluding remarks

This work shows a formulation for the topological opti-
mization of structures. The objective is the minimization
of the mass constrained by a material failure criterion.

The SIMP approach is chosen and a continuous dens-
ity field is used as the design variable. The material failure

constraint field is numerically treated by an augmented
Lagrangian algorithm associated with a Lagrange mul-
tiplier vector whose dimension is equal to the number
of integration points over the domain (in the present
implementation, stress evaluation points coincide with
the integration points at each element). Within this ap-
proach, gradient computation is obtained at the simple
cost of a back substitution and domain integration. Some
concluding remarks may be drawn from this experience:

1. Final designs with good geometric representations
were obtained, in general with small gray regions,
which facilitates post-processing operations.

2. The failure ε-relaxed criterion is (numerically) satis-
fied everywhere in the mesh, and final designs show
smooth boundaries, therefore avoiding stress concen-
trations.

3. Beginning with identical initial conditions and using
the same final mass, the stress-based formulation
drives to quite different designs to those obtained with
the compliance formulation.

4. The stress formulation is associated with a compu-
tational effort up to 10 times greater than the effort
expended for the compliance problem. The first reason
is the great difference in the nature and in the number
of constraints of both problems. Despite this, reason-
ably low computational times were obtained on simple
personal computers, which encourages further appli-
cations.

5. The checkerboard phenomenon also appears in the
present formulation based on the SIMP approach.
However, the procedure used, based on a simple pe-
nalization function associated with the gradient of the
density field, is found to be an efficient and low cost
inhibitor of the checkerboard phenomenon.

6. As ρmin always remains greater than zero during the
whole mathematical programming process, the stress
singularity phenomenon is still a strong challenge,
even with the use of ε-relaxed constraints.

Finally, it is worth mentioning that a formulation based
on the concept of a pointwise material failure constraint
is not free from criticism. Stress concentrations occur
mainly at well-defined boundaries, which do not naturally
appear in homogenization-based approaches with inter-
mediate densities. Thus, local high stress concentrations
may remain “invisible” in some cases. In spite of this,
the example in Sect. 8.2 shows that the formulation is
sensitive to local high stresses and is capable of avoid-
ing them. Moreover, the last criticism also applies to the
compliance-based approach, whose designs need to sat-
isfy some failure criterion for practical purposes. Within
this context, the present approach seems to define more
adequate designs than the former formulations when ma-
terial failure criteria are imposed.
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Appendix:
Gradient of the ε-relaxed function constraint

It is a usual approach in elastoplasticity to write the fail-
ure function of any isotropic material F (σ) as

F (I1, J2, J3, k1, k2, . . . ) = 0 , (A.1)

where k1 and k2, are material parameters, and I1, J2 and
J3 are the three invariants of the stress tensor σ given by

I1 = σkk , J2 =
1

2
SijSij , J3 =

1

3
SijSjkSki .

The tensor S denotes the deviatoric stresses and is
given by Sij = σij−

1
3σkkδij , δij being the Kronecker ten-

sor.
The derivative of the ε-relaxed constraint (13) related

to the symmetric displacement gradient ∇Su may be
written using the chain rule as

∂gε (ρ, σ)

∂∇Su
= ρ

∂F
(
σ
(
∇Su

))
∂∇Su

= ρ
∂F (σ)

∂σ

∂σ

∂∇Su
. (A.2)

As shown by Chen and Han (1988), the derivative of the
failure function on the stress space may be expressed in
the following simplified form:

∂F (σ)

∂σij
=
∂F (σ)

∂I1

∂I1

∂σij
+
∂F (σ)

∂J2

∂J2

∂σij
+
∂F (σ)

∂J3

∂J3

∂σij
(A.3)

= B1δij +B2Sij +B3tij ,

where the second-order tensor t is given by tij = SikSkj−
2
3J2δij . Note that once the current stress state σ is given,
the scalars B1, B2 and B3 are easily obtained from the
explicit failure function:

B1 =
∂F

∂I1
, B2 =

∂F

∂J2
, B3 =

∂F

∂J3
. (A.4)

To complete the RHS of (A.2), it is necessary to compute

∂σ

∂∇Su
=

∂

∂∇Su

(
D0∇Su

)
=D0 .

Combining this result with (A.3) the following expression
is obtained:

∂gε (ρ, σ)

∂∇Su
= ρHσ , (A.5)

whereHσ is a second-order symmetric tensor given by

Hσ
ij = 2G

[
(1+ν)

(1−2ν)
B1δij +B2Sij +B3tij

]
. (A.6)


