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Efficient optimization of a noise transfer function by
modification of a shell structure geometry – Part I: Theory�

S. Marburg

Abstract In the early stages of vehicle body devel-
opment trends for the acoustic behaviour of the whole
vehicle are, on the one hand, of great importance, but
difficult to achieve. Geometry based, parametric model
descriptions and optimization techniques enable the en-
gineer to find out these trends. This paper starts with
a review of structural acoustic sensitivity analysis and
optimization. Then, the noise transfer function includ-
ing structural harmonic analysis, acoustic influence coef-
ficients and their coupling is described. This is followed
by some remarks on the optimization process, discussing
objective functions, useful design parameters and opti-
mization techniques. Finally, a section on sensitivity an-
alysis presents a numerical and a semianalytic method. In
the case of small design modifications the sensitivity cal-
culation mainly reduces to the well-known semianalytic
calculation of harmonic displacement sensitivities. Part II
presents the design optimization of a sedan dashboard.

Key words structural acoustics, noise transfer func-
tion, sound pressure level, acoustic influence coefficients,
geometry optimization, semianalytic sensitivity analysis

1
Introduction

Acoustic behaviour inside the cabin is becoming more
and more of a challenge for the car manufacturer. To find
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out trends in the early stages of body development seems
to be an important task since during this period the de-
sign of the panels is created. Hardly any changes can be
included once the body has been designed.

On this topic, related publications either provide fully
coupled (structure fluid interaction model) noise trans-
fer functions (e.g. Yashiro et al. 1985), or noise transfer
functions based on the one way structure fluid coupling
model described later (e.g. Suzuki 1989). In other related
work, structural transfer functions are applied to quantify
acoustic behaviour (e.g. Giebeler and Booz 1994).

There are a number of articles on general sensitiv-
ity calculation of structural and acoustic analysis. For
sensitivity calculation in structural analysis we refer to
a review paper by Haftka and Adelman (1989). An ex-
tensive numeric study was provided by Kibsgaard (1992).
Structural optimization with respect to acoustic proper-
ties, i.e. the adaptation of natural frequencies to certain
requirements is found in the review paper by Grandhi
(1993). Hinton et al. (1995) applied shape optimization
techniques to obtain optimal shell geometry and thick-
ness distribution with the objective of a maximized fun-
damental frequency of structures. Modal sensitivity an-
alysis of the fully coupled structural acoustic system has
been accomplished by Ma and Hagiwara (1991a). Acous-
tic sensitivity analysis is reported by Bernhard (1985),
Kane et al. (1991), Cunefare and Koopmann (1992) or
Meric (1996). These papers mainly consider sensitiv-
ity analysis for the Helmholtz equation using special
finite or boundary element formulations. In his disser-
tation, Hibinger (1998) described techniques for mini-
mization of structure-borne noise levels. Moreover, he
maximized eigenfrequencies and included mass restric-
tions while using plate and shell thicknesses and ribs
as parameters. Experimental verification was provided
for the example of two plates perpendicular to each
other.

Structural and acoustic optimization of noise trans-
fer functions has been carried out by many authors.
However, there are some papers that indicate optimiza-
tion methods whereby the optimization is carried out



52

using certain trial and error methods, also combined with
suitable measurements for identification of sources (see,
for example Eichlseder and Dannbauer 1994; Mühlmeier
et al. 1994). Vehicle interior noise was decreased by ap-
plication of a suitable sensitivity analysis in the papers
by Hagiwara et al. (1991), Ma and Hagiwara (1991b).
The fully coupled structural acoustic system was solved.
They used the plate thicknesses as design parameters.
Lamancusa (1993) and Belegundu et al. (1994) investi-
gated and optimized rectangular plates and their radi-
ation characteristics. Design parameters were stepped
plate thicknesses and the radiated sound power was used
as the objective function. Hambric (1995) and Hambric
(1996) described optimization techniques and an opti-
mization code that may be used to reduce noise. They
calculated sensitivities by global finite differences. The
design parameters mainly included shell thickness, mate-
rial loss factors or stiffening ribs. Pal and Hagiwara (1994)
provided a fully coupled structural acoustic noise trans-
fer function optimization by modal sensitivity analysis.
Furthermore, as the modal characteristics of the fluid
domain did not change during the optimization process
they had to calculate the fluid modes only once in a first
step. Again, the design parameter was a plate thickness.
Christensen et al. (1998) reviewed analysis and optimiza-
tion techniques in structural acoustics. Another recent
paper by Christensen and Olhoff (1998) presents an ap-
plication to the finding of the shape of a loudspeaker di-
aphragm. As the objective function a desired directivity
pattern is used whereas the shape of the axisymmetric
diaphragm shell is defined by eight parameters forming
a quadratic B-spline spanned by nine points. Marburg
et al. (1997a) and Marburg et al. (1997b) illustrate the
power of design optimization for real geometries for a ve-
hicle roof.

In some cases, where the geometry of a shell was mo-
dified in an optimization process, unexpected high im-
provements of the noise radiation or the noise transfer
functions were observed and described. This is mainly
due to the great influence of the shell curvature on the
shell stiffness.

This first part of the articles aims to present a metho-
dology to calculate a noise transfer function and creates
an objective function that may be used as a valuation
criterion of a certain model. The discussion of fast opti-
mization procedures is closely linked with the definition
of parameters and an efficient sensitivity analysis. As
this methodology deals with the modification of a model
a realistic model is required. It is not the target of this
paper to explain modelling and validation. These parts
will be presupposed for this article although they obvi-
ously require most expenditure of manual and computa-
tional work.

Part II of this paper presents the application of the
above methodology to the shell model of a vehicle dash-
board. The choice of parameters and their constraints will
be discussed as well as the objective function. Finally, the
new design and vibrational behaviour is illustrated.

2
Noise transfer function

2.1
General considerations

In this article, the noise transfer function is calculated
as the sound pressure level at a certain fluid field point
due to a force excitation at the surrounding structure.
This is illustrated for the special case of interior noise pro-
blems of a vehicle cabin in Fig. 1. It is mentioned that this
consideration mainly focuses on interior problems since
for exterior problems in structural acoustics it is more
sensible to use the radiated sound power due to a force ex-
citation as the noise transfer function (Christensen et al.
1998).
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Fig. 1 Vehicle body and cabin compartment: Noise transfer
function, i.e. sound pressure level pL at the drivers ear due to
force excitation f(x, ω) (20) and (21)

The calculation procedure consists of three parts, the
structural harmonic analysis, the acoustic harmonic ana-
lysis and the coupling of both. A one-way-model for the
structure-fluid-interaction is applied. This model con-
tains the fluid excitation by the structure but struc-
tural excitation by the fluid is not included. This type of
structure-fluid-interaction is reasonable for vehicle body
applications since the structure consists of certain heavy
material – often steel – and the fluid – air – is light.
For application of a light structure or/and a heavy fluid
a structure-fluid-interaction in both directions should be
preferred.

Most interesting for the following considerations is the
time harmonic case. For this reason, we consider that
all time-dependent functions F (x, t) are time-harmonic
functions where the spatial variable x and the time vari-
able t are separated as

F (x, t) = f(x) eiωt . (1)

In this equation ω is the circular frequency and i the
imaginary unit where i2 =−1.

2.2
Structural analysis

Discretizing a shell structure into finite elements and in-
troducing the above time dependency, the equations of
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motion yield the well-known system of linear complex
equations of the harmonic analysis (cf. Bathe 1982)

A(ω)u(ω) = f(ω) , (2)

where u and f describe the column matrices containing
the nodal displacement vectors and the nodal excitation
force vectors; A is the global system matrix of finite ele-
ments more commonly known as the dynamic stiffness
matrix given by

A(ω) =K+ iωB−ω2M . (3)

In (3) the matrices K, B and M represent the (static)
stiffness matrix, the damping matrix and the mass ma-
trix.

A simple inversion of the dynamic stiffness matrix pro-
vides the nodal displacement vectors formally written as

u(ω) =A−1(ω)f(ω) . (4)

Time derivation of the nodal displacement vector u
leads to the nodal velocity vector v as

v(ω) = i ωu(ω) . (5)

The nodal particle velocity of the shell structure vs is
defined as the normal component of the nodal velocity
vector given by

vs(ω) = n ·v(ω) = iωn ·u(ω) . (6)

Assembling the components of the nodal normal vectors
n into a matrix N, the column matrix of the structural
particle velocity is written in terms of the nodal displace-
ments by

vs(ω) = iωNu(ω) , (7)

and in terms of the force excitation and the system pro-
perties as

vs(ω) = iωNA
−1(ω)f(ω) . (8)

The nodal particle velocity is then used as a coefficient of
the Robin boundary condition in acoustic analysis.

2.3
Acoustic analysis

The acoustic analysis is reduced to the calculation of dis-
crete and continuous acoustic influence coefficients also
known as sensitivities. These influence coefficients were
first calculated by Ishiyama et al. (1988). A more detailed
discussion of their determination and their application
are given by Marburg (1996) and Marburg et al. (1997a).
One possible method to determine discrete and continu-
ous acoustic influence coefficients, b(ω) and β(ω) is briefly
reviewed in the following.

To solve the boundary value problem for the harmonic
wave equation – the Helmholtz equation – the surface of
the considered fluid-filled cabin is discretized into bound-
ary elements. Applying a boundary collocation method,
a linear system of equations as

H(ω)p(ω) =G(ω)vf (ω) (9)

is found. The nodal values of the sound pressure p and
these of the fluid’s particle velocity vf correspond to
the Dirichlet and Neumann acoustic boundary data. The
global system matrices G and H are well-known from
boundary element analysis. The sound pressure pi at
a point inside the cabin – in this article mostly called
the interior point or the driver’s ear – is calculated in
terms of column matrices g and h and their scalar mul-
tiplication with the boundary data u and vf . We find
pi as

pi(ω) = g
T (ω)vf (ω)−h

T (ω)p(ω) . (10)

In a further step one has to incorporate the Robin boun-
dary condition, the so-called admittance formulation
(cf. Suzuki 1989) into (9) and (10). It is locally given
by

vf (ω)− vs(ω) = Y (ω)p(ω) . (11)

The coefficient Y denotes the acoustic boundary ad-
mittance. The diagonal matrix Y contains the nodal
values of the boundary admittance. Thus, (9) changes
into

[H(ω)−G(ω)Y(ω)]p(ω) =G(ω)vs(ω) , (12)

and for (10) we obtain

pi(ω) = g
T (ω)vs(ω)−

[
hT (ω)−gT (ω)Y(ω)

]
p(ω) . (13)

Substitution of p in (13) by isolating p in (12) the sound
pressure at the internal point is found to be (omitting
ω-dependence)

pi =
{
gT −

[
hT −gTY

]
[H−GY]−1G

}
vs , (14)

which can be written in short form as

pi(ω) = b
T (ω)vs(ω) . (15)

The discrete influence coefficients bk represent the solu-
tion of the acoustic boundary value problem for just
one internal point excluding the particle velocity as
a boundary condition. Furthermore, they account for the
sound pressure sensitivity at the internal point with re-
spect to a structural vibration at a certain mesh point.
The nodal product of bkvk provides the contribution of
the mesh point k to the sound pressure at the internal
point.

As these influence coefficients are discrete they are
not suited for visualization or for mesh interpolation and



54

transformation. For this reason, it is useful to transform
them into continuous influence coefficients β on behalf of
the relation

pi(ω) = b
T (ω)vs(ω) =

∫
Γ

β(ω)vs(ω) dΓ , (16)

where Γ represents the fluid’s surface. Furthermore, the
continuous data on the right-hand side of (16), β and
vs, are substituted by shape functions ϕj , i.e. piecewise
formulated polynomials (Lagrangian polynomials), and
nodal values. For the particle velocity, the column matrix
vs contains the same nodal values as on the left-hand side
of (16). The nodal values of the continuous influence coef-
ficients are assembled in βββ. We can write

bT (ω)vs(ω) = βββ
T (ω)

∫
Γ

ΦTΦdΓ vs(ω) , (17)

where the column matrix Φ contains the shape functions
ϕj . Introducing a sparse symmetric matrixΘ as

Θik =

∫
Γ

ϕi(x)ϕk(x) dΓ (x) , (18)

we are able to transform discrete into continuous influ-
ence coefficients

βββ(ω) =Θ−1b(ω) , (19)

and continuous into discrete influence coefficients by

b(ω) =Θβββ(ω) . (20)

As mentioned above, the calculation of acoustic influence
coefficients is independent from the solution of the struc-
tural boundary value problem.

2.4
Coupling of structure and fluid model

The separate solution of structural and acoustic ana-
lysis enables us to use different meshes for both. Since
we mainly consider vehicle interior noise problems, we
deal with the problem that the fluid mesh may be much
coarser then the mesh of the shell structure of the body.
Applying (16) to the coarse boundary element mesh
of the fluid continuous influence coefficients can be de-
termined. Extracting the continuous coefficients at the
nodes of the more detailed mesh of the structure one can
find the discrete coefficients by multiplying them by Θs
where Θs is now assembled for the fine mesh. Applying
these discrete influence coefficients to the detailed mesh
of the structure we can express the sound pressure at the
internal point due to a specified force excitation by sub-
stituting vs, (15) by (8). This yields

pi(ω) = iωb
T (ω)NA−1(ω)f(ω) . (21)

In this equation, b is the column matrix of the discrete
acoustic influence coefficients of the fine structural mesh.
The main objective of our investigation is the decrease
of the noise inside a cabin. The perceived loudness of
sound (in the required frequency domain≤ 200Hz) is vir-
tually proportional to the logarithmic sound pressure. For
that, the transformation of the noise transfer function
into a sound pressure level p

L
is useful. This leads to

p
L
(ω) = L {pi(ω)}= 20 log10

(
|pi(ω)|

p0

)
. (22)

The reference sound pressure is given by p0 = 2 ·10−5 Pa.
The unit of p

L
is dB.

Herein, the sound pressure level at the internal point
due to a force excitation, (22) with the substitution of pi
from (21), is called the noise transfer function. An illus-
tration is given by Fig. 1 for the special case of a vehicle
cabin compartment.

3
Optimization process

3.1
Objective function

As the sound pressure level still depends on the frequency
an integral criterion over the whole frequency domain is
required. A solution that meets both mathematical and
technical interests is the following averaging

F =
1

ωmax−ωmin

ωmax∫
ωmin

Φ
{
p
L
(ω)
}
dω . (23)

The operator Φ{} applied to p
L
represents a kind of

a weighting function. An example for this weighting func-
tion is

Φ
{
p
L

}
=

{(
p
L
−p

Ref

)n
for p

L
> p

Ref

0 for p
L
≤ p

Ref
.

(24)

The exponent n controls the type of average. For n = 1
(24) leads to the mean value where only values higher
than a certain reference level p

Ref
are taken into account.

Similarly, for n= 2 this form provides the squared mean
value.

The major advantage of the n = 2 form is that high
level peaks are higher valued than low level parts of the
function. This helps to reduce these high level peaks dur-
ing an optimization procedure and avoids deep valleys as
compensation of high peaks.

The choice of the reference level p
Ref

meets technical
requirements as values below are not considered. So they
cannot be overvalued. On the other hand, a reference level
higher than the sound pressure level minimum destroys
the C1 continuity of function F in (23).
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3.2
Design parameters

A parametric description of the geometry requires the in-
troduction of design parameters. The parameters used
here are assembled into the vector ϑϑϑ. Moreover, all pa-
rameters describe the position of single keypoints , which
is a similar definition to that in the paper by Chris-
tensen and Olhoff (1998) and the same that was used
by Marburg et al. (1997a) and Marburg et al. (1997b).
A whole set of keypoints – only some of them have para-
metric coordinates – defines the complete geometry of
a shell structure since they are connected by (interpo-
lated) lines and areas are interpolated between the lines.
Meshing of areas provides the finite element mesh that
consists of nodes and elements. An illustration of the ef-
fect of a parameter modification is given in Fig. 2. The
sketch shows the position vectors of certain keypoints P1
and P3. Modification of design parameter ϑ3 only effects
the position of P3. The connecting line is interpolated by
cubic splines. Consequently, this line is modified as well
as the interpolated areas not shown in this figure.

Highly efficient sensitivity analysis and thus, a fast op-
timization process require some presumptions concerning
the parameters. These are the following.

(a) It is presumed that all the modification of the geo-
metry of the shell structure are small with respect to
the fluid’s wave length.

(b) It is presumed that all the modification of the geo-
metry of the shell structure are small with respect to
the shell structure size.

(c) It is presumed that the modification mainly shifts the
surface shell in its normal direction.

(d) It is presumed that the modification does not effect
the force excitation of the structure.

All these presuppositions and their conclusions sim-
plify the sensitivity analysis and the optimization process.

Assumption (a) leads to the conclusion that the dis-
crete acoustic influence coefficients do not depend on the
parameter set

∂b

∂ϑϑϑ
=000 . (25)

That means, that the discrete influence coefficients are
calculated only once. They can be used for each optimiza-
tion step. However, this requires a constant topology of
the mesh of the structure during the whole optimization
process. If this cannot be ensured one can start with the
continuous influence coefficients of the coarser fluid mesh
and extract them at the new fine mesh. The new discrete
influence coefficients are then determined by (20).

Consequence of the assumptions (b) and (c) is that the
normal vectors do not depend on the parameter set

∂N

∂ϑϑϑ
=000 , (26)
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Fig. 2 Illustration of parametrically defined keypoint pos-
itions and effect of single parameter modification to line cur-
vature

whereas the assumption (d) formulates the excitation
force independence of the parameters as

∂f

∂ϑϑϑ
=000 . (27)

Hence, the objective function F in terms of the par-
ameter set ϑϑϑ can be written as

F (ϑϑϑ) =
1

ωmax−ωmin

ωmax∫
ωmin

Φ
{
p
L
(ω,ϑϑϑ)

}
dω , (28)

with the substitution

p
L
(ω) = 20 log10

(∣∣iωbT (ω)NA−1(ω,ϑϑϑ)f(ω)∣∣
p0

)
. (29)

As the reader should now be familiar with the depen-
dencies on ω it will not be explicitly mentioned in the
following sections.

3.3
Optimization strategy

There is no optimum optimization strategy for every op-
timization problem. So one has to look for an appropri-
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ate one. As this article deals with rather complex and
nonlinear dependencies between parameters and objec-
tive functions a technique that combines both stochastic
and deterministic algorithms is required. One possibility
is to use both a random iteration and the know-how of
the engineers for finding suitable initial parameter vec-
tors. In the publications on structural acoustic optimiza-
tion mostly gradient based techniques were reported to
decrease noise transfer functions or radiated noise (Chris-
tensen and Olhoff 1998; Hambric 1995; Pal and Hagiwara
1994).

The objective function covers a whole frequency do-
main. Within this domain the number of vibration modes
can easily reach 200 and more. For that reason and be-
cause of rather complicated shell geometries it is difficult
to estimate an useful initial parameter set. Thus random
iterations and reasonable trials should complement each
other.

The crucial part in optimization is the first order or
gradient method. This method requires sensitivities for
calculation of the gradient which is the subject of the fol-
lowing section. This gradient approximation is followed
by a line search algorithm in order to provide a new refe-
rence value. Most important in the first-order method is
the step size for the numeric sensitivity analysis and for
the line search algorithm. The step size in the sensitivity
analysis must be at least of such a size that the sensitiv-
ities are not overly influenced by round off errors and it
must be small enough that linearization around a refer-
ence point is still acceptable. The interval may be really
small or (in some cases) may not exist. The latter case
would require special treatment of the parameter. One
possibility is to exclude this parameter from the optimiza-
tion process at least for some loops.

Finally, concerning optimization must be mentioned
that for most technical applications it is not necessary
to find the optimum. Mainly, one looks for significant
improvements of the noise transfer function resulting
in a decrease of the objective function (28). The actual
search for the optimum is probably most inefficient for
technical problems where as many as 10 to 50 or even
more parameters have to be optimized.

4
Sensitivity analysis

4.1
Finite differences numerically determined

The most simple way of calculating sensitivities is the
numerical determination of finite differences. The sensi-
tivity of the objective function F with respect to a single
parameter ϑk can be written by

∂F (ϑk)

∂ϑk
=
F (ϑk+∆ϑk)−F (ϑk)

∆ϑk
+O

(
∆ϑk

∂2F

∂ϑ2k

)
.

(30)

Reducing this approximation to the difference quotient
(30) changes into

∂F (ϑk)

∂ϑk
≈
∆F (ϑk)

∆ϑk
=
F (ϑk+∆ϑk)−F (ϑk)

∆ϑk
. (31)

As the objective function F (ϑϑϑ) is a strongly nonlinear
function calculation of sensitivities using (31) may pos-
sibly lead to cumbersome and unexpected results. These
effects may be consequences of unsuitably chosen step
sizes ∆ϑk. However, they can hardly be avoided in the
case of a strongly nonlinear objective function. Neverthe-
less, the risk of cumbersome results in sensitivity analysis
via global finite differences may be decreased by an im-
proved step size control or by using a three point approx-
imation. Then, the derivative is

∂F (ϑk)

∂ϑk
=
F (ϑk+∆ϑk)−F (ϑk−∆ϑk)

2∆ϑk
+

O

[
(∆ϑk)

2 ∂
3F

∂ϑ3k

]
. (32)

Although (32) requires only two calculations of F , the
value of F (ϑk) is still required as a reference value for the
line search algorithm in optimization.

This type of approximation of differentiation can be
very easily applied to commercial computer codes since
the sensitivity calculation may be independently carried
out only by modifying a single parameter. Although ma-
thematically not correct one can easily calculate sensitiv-
ities for C0 continuous objective functions.

However, this implies that form parameters the noise
transfer function, (21), has to be calculated m+1 times
for a sensitivity analysis applying (30) and 2m+1 times
when using (32). Even with all the simplifications, (25)
to (27), one has to carry out the structural analysis, (4).
For large scale problems, e.g. geometry optimization of
a whole vehicle body, it is necessary to find much more
efficient procedures for sensitivity analysis. One of these
will be described in the following.

4.2
More efficient semianalytic sensitivity analysis

A more efficient method of sensitivity analysis is known
as the semianalytic method (see for example Haftka and
Adelman 1989; Kibsgaard 1992). For that, the calculation
of sensitivities of the structural displacements is based on
implicit differentiation of the linear system of equations
(2). The derivative of (2) with respect to one design pa-
rameter ϑk is given by

∂A

∂ϑk
u+A

∂u

∂ϑk
=
∂f

∂ϑk
. (33)

Recalling the assumption that the excitation force vector
does not depend on the parameters, (27) and rearrange-
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ment of (33) produce a linear system of equations

A
∂u

∂ϑk
=−

∂A

∂ϑk
u , (34)

that has the same system matrix as (2). The only diffe-
rence is the load vector on the right hand side. However,
if (2) is solved by modal superposition one can use the
same modes for the solution of (34). Because this method
is really a numeric method which applies some algebraic
transformations in a reasonable way, it was called semi-
analytic. Formally, the sensitivities of the structural dis-
placements can be written as

∂u

∂ϑk
=−A−1

∂A

∂ϑk
u . (35)

Splitting matrixA into its components, (3), yields

∂A

∂ϑk
=
∂K

∂ϑk
+ iω

∂B

∂ϑk
−ω2

∂M

∂ϑk
. (36)

As we assume a parameter independent modal damping
the term including B in (36) vanishes. Obviously, it fol-
lows from the presumptions made in the previous section
that the sensitivity of the mass matrix is much smaller
than that of the stiffness matrix as the curvature geom-
etry essentially controls the shell stiffness where a small
modification of the curvature hardly effects mass and in-
ertia properties. However, the mass matrix derivative is
multiplied by ω2. For a frequency of 200Hz this factor is
greater than 106! So even small modifications in the mass
matrix may significantly influence the sensitivity of the
dynamic stiffness matrix. Simplified, we formulate

∂A

∂ϑk
=
∂K

∂ϑk
−ω2

∂M

∂ϑk
. (37)

Note, that the sensitivity of A is real since the damping
matrix is excluded.

Analytic differentiation of the objective function F re-
duces to the differentiation of function Φ with respect to
ϑk as

∂F (ϑk)

∂ϑk
=

1

ωmax−ωmin

ωmax∫
ωmin

∂Φ
{
p
L
(ϑk)

}
∂ϑk

dω . (38)

Since analytic differentiation of Φ requires a C1 continu-
ity the bottom line in (24) is skipped for the following
considerations. So Φ is reduced to

Φ
{
p
L
(ϑk)

}
=
[
p
L
(ϑk)−p

Ref

]n
, (39)

and its derivative yields

∂Φ
{
p
L
(ϑk)

}
∂ϑk

= n
[
p
L
(ϑk)−p

Ref

]n−1 ∂p
L
(ϑk)

∂ϑk
. (40)

Thus, the sensitivity analysis of the objective function re-
quires differentiation of the sound pressure level.

Returning to (29) and introducing the substitutions
(skipping ϑk-dependencies)

c1 =
10

ln 10
, c2 =

iω

p0
,

and

p̃i = b
TNA−1f = bTNu , (41)

an equivalent form of that equation is found to be

p
L
=
c1

2
ln [c2 |p̃i(ϑk)|] . (42)

Further, this is equivalent to

p
L
= c1 ln

[
c2 |p̃i(ϑk)|

2
]
=

c1 ln
{
c2
[
R2 〈p̃i(ϑk)〉+I

2 〈p̃i(ϑk)〉
]}
, (43)

where R〈p̃i〉 and I 〈p̃i〉 represent real and imaginary
parts of p̃i, respectively. After differentiating (43) with re-
spect to ϑk the constant c2 vanishes. We find

∂p
L

∂ϑk
=

2c1

R〈p̃i(ϑk)〉
∂R〈p̃i(ϑk)〉

∂ϑk
+I 〈p̃i(ϑk)〉

∂I 〈p̃i(ϑk)〉

∂ϑk

R2 〈p̃i(ϑk)〉+I2 〈p̃i(ϑk)〉
(44)

Because ϑk is a real parameter the identities of

∂R〈p̃i(ϑk)〉

∂ϑk
=R

〈
∂p̃i(ϑk)

∂ϑk

〉

and

∂I 〈p̃i(ϑk)〉

∂ϑk
= I

〈
∂p̃i(ϑk)

∂ϑk

〉
(45)

hold. The differentiation of p̃i with respect to ϑk can be
written as

∂p̃i(ϑk)

∂ϑk
= bTN

∂u(ϑk)

∂ϑk
, (46)

where the sensitivity of u is given in (35).
Summarizing the semianalytic sensitivity analysis,

the sensitivity vector is calculated by the following equa-
tion and its substitutions (skipping dependencies)

∂F

∂ϑϑϑ
=

1

ωmax−ωmin

ωmax∫
ωmin

{
n
[
p
L
−p

Ref

]n−1 ∂p
L

∂ϑϑϑ

}
dω ,

(47)

∂p
L

∂ϑϑϑ
=

20

ln 10

R
〈
p̃i

〉
R
〈
p̃′i

〉
+I

〈
p̃i

〉
I
〈
p̃′i

〉
R2
〈
p̃i

〉
+I2

〈
p̃i

〉 , (48)
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p̃i = b
TNu , (49)

p̃′i =
∂p̃i

∂ϑk
= bTN

∂u

∂ϑk
, (50)

and

∂u

∂ϑϑϑ
=−A−1

[
∂K

∂ϑϑϑ
−ω2

∂M

∂ϑϑϑ

]
u . (51)

The derivatives of matrices K and M with respect to
a single parameter ϑk are approximated either similar to
sensitivity of F in (31)

∂K

∂ϑk
≈
K(ϑk+∆ϑk)−K(ϑk)

∆ϑk
,

and

∂M

∂ϑk
≈
M(ϑk+∆ϑk)−M(ϑk)

∆ϑk
, (52)

or based on the type of equation (32) and skipping the
error term

∂K

∂ϑk
≈
K(ϑk+∆ϑk)−K(ϑk−∆ϑk)

2∆ϑk
,

and

∂M

∂ϑk
≈
M(ϑk+∆ϑk)−M(ϑk−∆ϑk)

2∆ϑk
. (53)

The step size for each parameter ϑk in the set ϑϑϑ may be
different.

In the set of equations (47)–(53), (49) probably ap-
pears computationally most costly. Although (48) looks
complicated it is a simple combination of scalar complex
values.

5
Summary

A review of structural acoustic optimization concepts
in the Introduction was followed by the formulation of
a noise transfer function. This function describes the
sound pressure level at a certain field point due to
a force excitation of the structure. The use of acous-
tic influence coefficients as the solution of the acoustic
boundary value problem and the assumption of rather
small design modifications simplify the optimization pro-
cess and the sensitivity analysis. Thus, the well-known
semianalytic method was adapted to sensitivity analy-
sis of the sound pressure level at certain fluid field
points.

The second part of this paper describes the design op-
timization of a sedan dashboard. Parameter studies and
different choices of objective functions are discussed as
well as the optimization strategy from an engineering
point of view.
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