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Stochastic optimization of acoustic response – a numerical and
experimental comparison

M. Tinnsten, P. Carlsson and M. Jonsson

Abstract The objective of the work presented is to
compare results from numerical optimization with ex-
perimental data and to highlight and discuss the differ-
ences between two fundamentally different optimization
methods. The problem domain is minimization of acous-
tic emission and the structure used in the work is a closed
cylinder with forced vibration of one end. The optimiza-
tion method used in this paper is simulated annealing
(SA), a stochastic method. The results are compared with
those from a gradient-based method used on the same
structure in an earlier paper (see Tinnsten 2000).
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1
Introduction

It is possible to change the characteristics of the sound
emanating from a vibrating structure by changing struc-
tural design variables such as geometric dimensions,
shell thickness, material parameters, and, for fiber re-
inforced material, fiber orientation. Of course, changes
to one or more of these variables will result in changes
to other structural characteristics. If we consider a me-
chanical structure, two very important quantities to
have control over are stiffness and strength, but there
are also other quantities that it is important to know
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and to be able to control, for example sound emis-
sion, productivity, functionality, environmental effects
and so on. To find the best design, i.e. the one that
satisfies all the demands is a question of optimization.
This often requires a multidisciplinary approach i.e. an-
alytical tools from different disciplines must be used in
concert.
A typical problem formulation could be to minimize

the structural weight whilst the sound intensity in cer-
tain domains and the maximum stress in the structure
do not exceed some given value. A thorough discussion
of the formulation of optimization problems involving
acoustic response is given by Christensen et al. (1998a,b).
The search for the optimum solution can be performed in
many different ways. A common approach is to use math-
ematical programming techniques. These techniques were
used for an earlier analysis of the structure under inves-
tigation in the present work (see Tinnsten 2000). Here,
a gradient-based method called MMA (see Svanberg
1987, 1993) was used to achieve optimization.
Another method, which is conceptually quite differ-

ent from the mathematical programming techniques, is
to optimize using some form of natural selection pro-
cess. One such technique is the simulated annealing, SA,
a stochastic method based on the simulation of metal
(or solids) annealing (see Kirkpatrick et al. 1983; Corana
et al. 1987).
Annealing is the physical process of heating up a solid

and then cooling it down slowly. The slow and controlled
cooling of the solid ensures proper solidification with
a highly ordered crystalline state. At high temperature
the atoms in the heated material have high energies and
more freedom to arrange themselves. Annealing results in
a material with an atom arrangement that corresponds to
the lowest internal energy.
There are many other optimization methods, such as

genetic algorithms, neural networks and so on, which are
based on natural selection of solutions to achieve an opti-
mum. In this paper, simulated annealing is used as the op-
timization algorithm and results from this compared with
experimental results and with results from the gradient-
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based (first-order in this case) mathematical program-
ming technique MMA that has been used with great suc-
cess for a variety of problems (see Esping 1995; Tinnsten
2000; Carlsson 2000).
In order to calculate acoustic-related quantities, such

as sound intensity in an open or closed domain, a code
based on the boundary element method (BEM) has been
developed (see Tinnsten 1994; Tinnsten et al. 1998).
The BEM code is linked together with a modified ver-
sion of the finite element code FEMP (see Nilsson and
Oldenburg 1983) and the simulated annealing optimiza-
tion algorithm (see Goffe et al. 1994) to achieve an acous-
tic optimization program, which incorporates structural
design changes in an automatic fashion.
There are many optional ways with which to change

the sound field emanating from a vibrating structure.
Discrete masses, with respect to weight and location,
can equally well be used as optimization variables (Con-
stants et al. 1998; St. Pierre and Koopmann 1995; Chris-
tensen et al. 1998a,b). In shell structures the thickness
can serve as variable (Belegundu et al. 1994; Lamancusa
and Eschenauer 1994; Tinnsten 2000). Optimization in-
volving fiber-reinforcedmaterials offers several additional
variables. For instance, the fiber direction can be fixed
and the volume fraction between fiber and matrix varied
(Lamancusa and Eschenauer 1994) or the volume fraction
can be constant and the fiber direction chosen as a vari-
able (Tinnsten et al. 1998). In this paper, the thickness
variation in one boundary surface of a shell structure is
used as the variable.

2
Problem definition

In order to, as far as possible, eliminate problems asso-
ciated with geometrical complexity, a simple geometry is
chosen for the comparison between numerical and experi-
mental results. The optimization analysis was performed
on a structure in the form of a cylinder with top and bot-
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Fig. 1 Structure used in the numerical calculations

tom plates (see Fig. 1). This is the same structure and has
the same geometrical dimensions as that used in an earlier
investigation (see Tinnsten 2000).
For the numerical calculations, diameterD = 200mm

and height H = 100mm, were used. The initial thick-
ness t was the same over the entire surface and taken as
3mm. The structure consists of two materials; the cylin-
drical wall was of steel, and the top and bottom plate
were of aluminum with Young’s modulus E = 70GPa,
Poisson’s ratio ν = 0.3, and density ρ = 2750 kg/m3.
The cylindrical wall and the bottom plate are much
stiffer than the top plate and are therefore modelled
as rigid in the numerical analysis. The top plate is ex-
cited with a harmonic force applied perpendicular to
the surface at its centre. The optimization problem is
formulated as:

minimize I(x)

such that w(x)−w ≤ 0 ,

xj ≤ xj ≤ xj ; j = 1, J .
(1)

That is, minimize the sound intensity I(x) perpendicu-
lar to the top surface in such a way that the structural
weight w(x) does not exceed the upper limit w, where
xj are the design variables with lower limit xj and upper
limit xj .
Simulated annealing is a nongradient (zeroth-order)

stochastic optimization technique based on random eval-
uation of the objective function in such a way that
transitions away from a local minimum are possible.
Although the method usually requires a large num-
ber of function evaluations to find the optimum de-
sign, it will find the global optimum with a high prob-
ability even for problems with numerous local min-
ima (see Corana et al. 1987). Starting from an initial
point, the algorithm takes a step, for each variable in
turn, and then evaluates the function. When minimiz-
ing a function, any downhill step may be accepted and
the process repeats from this new point. Uphill moves
may be accepted; the decision whether to do this be-
ing made by the Metropolis criteria (see Metropolis
et al. 1953). The criteria uses T (the temperature ac-
cording to the analogy with annealing of metal) and
the size of the uphill move in a probabilistic manner.
The larger the value of T and the smaller the increase
of the objective function is, the more likely it is that
move will be accepted. As the optimization process pro-
ceeds, the length of the step and the “temperature”
decline and the algorithm closes in on the global opti-
mum. The simulated annealing method solves uncon-
strained problems, that is problems with no behavior
constraints (side constraints are of course allowed).When
behaviour constraints are present an equivalent uncon-
strained objective function must be formulated. This can
be achieved by using the concept of penalty functions and
the transformed problem formulation can be stated as
follows:
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minimize I(x)+P ·Ψ [w(x)−w)] ,

x≤ xj ≤ xj ; j = 1, J , (2)

where P is the penalty parameter and Ψ the penalty func-
tion defined as:

Ψ(Z) = 〈Z〉2 , (3)

〈Z〉=

{
Z if Z > 0

0 if Z ≤ 0
. (4)

The parameter T is very important if SA is to be
used successfully since it influence the step length over
which the algorithm searches for optima. A small ini-
tial T can give a step length that may be to small and
thus not enough of the function is evaluated. The param-
eter P (penalty parameter) in the transformed problem
formulation is also important since a small value of P
might cause violation of the constraint. The optimiza-
tion process was carried out using the points discussed
above for the case where the top plate edge was clamped.
The objective function, the sound intensity perpendicu-
lar to the top plate, was computed at a single point above
the top plate located at (7, 7, 100mm) in the coordinate
system given in Fig. 1. The structure was discretized in
a symmetric manner with constant triangular elements as
shown in Fig. 2.

Fig. 2 Discretization of the top plate

As can be seen in Fig. 2, the nodes are located at 6 dif-
ferent radii on the top plate; R = 0, 20, 40, 60, 80, and
100mm. For manufacturing purposes the plate thickness
must be constant at any given radius, but can vary over
different radii. The design variables are thus the thick-
nesses at the different radii, i.e. variable one is the thick-
ness at the centre, variable two at radiusR= 20mm, vari-
able three at radius R = 40mm, and so on. This means
that the optimization problem has six variables (J = 6).

20 20 20 20 20
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Fig. 3 Axisymmetric figure of top plate with design vari-
ables. Dimensions in [mm]

Figure 3 shows an axisymmetric picture of the top plate
together with the design variable x1−x6.

3
Experimental setup

In order to allow comparison with the numerical calcula-
tions, experiments on the structure were performed. The
experimental setup is sketched in Fig. 4.
The experimental setup consisted of: an impedance

head (1) B&K type 8001 measuring force and accelera-
tion; a vibrator (2) model 200 (Ling Dynamic System);
a steel cylinder (3) with outer diameter 204mm, height
350mm, and thickness of material 9.5mm; an aluminum
top plate (4), with initial thickness of 3 mm, and optimum
thickness according to Table 1 and Fig. 5; foam rubber (5)
with a thickness of 70mm; a soft insulating mat (6), with
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Fig. 4 Experimental setup. 1: Impedance head. 2: Vibra-
tor. 3: Steel cylinder. 4: Aluminum top plate. 5: Foam rub-
ber. 6: Soft insulating mat. 7: Thick aluminum bottom plate.
8: Heavy coach work mat
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a thickness of approximately 50mm; an aluminum bot-
tom plate (7), with thickness 10mm; and a heavy coach
work mat (8), with thickness 4 mm, glued to the steel
cylinder. The remaining empty space in the steel cylinder
was filled with a lightweight, woolly damping material.
The impedance head was joined to the center of the top
plate mechanically (screwed) and calibrated using a B&K
4291. The force and acceleration signals were amplified
with B&K 2635 before entering the dual channel FFT
analyzer B&K 2032. The intensity was measured perpen-

Table 1 Values of objective function, variables and weight

Variables on objective function, variables and weight

variables initial optimal

x1 [mm] 3.0 9.3
x2 [mm] 3.0 10.0
x3 [mm] 3.0 2.1
x4 [mm] 3.0 2.0
x5 [mm] 3.0 2.0
x6 [mm] 3.0 2.0

weight, w [kg] 0.259 0.245
weight reduction 5.5
∆w [%]

objective function 109.7 91.0
intensity, I [dB]

intensity reduction 18.7
∆I [dB]

9.9
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Point where the sound
intensity is measured and
calculated.

Initial thickness distribution.

Thickness distribution at optimum.

Fig. 5 Axisymmetric figure of top plate showing the thick-
ness profile following the optimization process. All dimensions
in [mm]

dicular to the top plate at a specified point. The intensity
probe used was a B&K 3519, calibrated using a B&K
3541. The signal from the intensity probe was amplified
with a B&K 2804 before entering the 16-channel meas-
urement system (LMS CADA-X with a HP Paragon front
end).
In the numerical analysis the edge of the top plate

was assumed to be clamped and to simulate this in the
experimental setup, the edge was glued with epoxy ce-
ment to the end face of the top of the steel cylinder. The
intensity measurements were performed with two bound-
ary conditions: one with initial thickness (3 mm) and one
with optimal thickness of the top plate, according to the
numerical result given in Table 1 achieved by simulated
annealing.

4
Results

4.1
Numerical results

For the purposes of optimization the cylindrical wall and
the bottom plate were modelled as rigid, i.e. the only
moving part in the model was the top plate. Due to the
discretization, illustrated in Fig. 2, the model of the top
plate is not axisymmetric. The normal velocity for the
BEM element at the top plate was determined from the
response analysis in the FEM code, for all other elements
in the model the normal velocity was given as zero. The
excitation force was harmonic, perpendicular to the top
plate with an amplitude of 2.0 N, applied at the centre
of the surface. In the response analysis, the edge of the
top plate was modelled as clamped. Proportional damp-
ing was included in the analysis as [C] = α× [K] and the
damping factor α taken as 1.0×10−5. The frequency of
the exciting force was 700Hz, and the intensity calcu-
lated at the point (7, 7, 100mm). A weight increase of
10% was allowed. The initial thickness t of the top plate
had the constant value of 3 mm (constant distribution)
and the lower and upper limit for the plate thickness was
2mm and 10mm, respectively. All of the above are the
same as the conditions given in work reported earlier (see
Tinnsten 2000).
Following optimization, the sound intensity decreased

from an initial value of 109.7 dB to 91.0 dB (∆I =
18.7 dB). The weight decreased from initially 0.259 kg
to 0.245 kg. The thickness distribution (being shown in
Fig. 5), the weight decrease and the value of the objective
function for the initial state and at the optimum reached
are given in Table 1.

4.2
Experimental results

The excitation force was harmonic with an amplitude
of 2.0 N and a frequency of 700Hz. The intensity was
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measured perpendicular to the axisymmetric top plate,
100mm above it (z = 100mm in Fig. 1, and offset some
9.9mm from the centre axis, according to Figs. 1 and 5.
The intensity was measured at three points, with approxi-
mately 120 degrees separation, at a radius of 9.9mm;
the mean value of these measurements was then used for
comparison with the results from the numerical analy-
sis. The results from the measurements are presented in
Table 2.

Table 2 Measured intensity at radius, r= 9.9 mm, according
to Figs. 1 and 5

Measured instensity

intensity (experimental) [dB]

point R initial optimal
[mm] thickness thickness

1 9.9 111.2 87.2
2 9.9 111.3 87.3
3 9.9 111.3 87.2
Imean 111.3 87.2
∆Imean 24.1

5
Discussion and conclusions

The optimization problem was to minimize the sound in-
tensity at a specified point such that the weight of the
top plate did not increase by more than 10% from its ini-
tial value. A comparison of numerical and experimental
results was performed.
The comparison of measured and numerical results is

presented in Table 3.

Table 3 Comparison between numerical and experimen-
tal results. 1)Intensity calculated by numerical analysis.
2)Measured intensity in the experiments. 3)Difference be-
tween numerical and measured intensity

Intensity Initial Optimal
[dB]

1Inum 109.7 91.0
2Iexp 111.3 87.2
3Inum− Iexp −1.6 3.8

Proportional damping was included in the analysis as
[C] = α× [K]. The top plate was assumed to be lightly
damped and the damping factor α taken as 1.0×10−5.
The damping factor had the greatest influence on the
plate at it’s initial thickness. Increasing the damping
factor from 1.0× 10−5 to 2.0× 10−5 gave a decrease in
intensity of 2.2 dB for the initial geometry and of 0.2 dB
for optimal geometry. In the numerical analysis, the edge

of the top plate was clamped. To simulate this in the
experiment the edge of the top plate was glued to the
end face on the top of the steel cylinder with epoxy ce-
ment. This does not, however, give an absolutely clamped
boundary condition. Nevertheless, since the distribution
of the epoxy cement was distributed over approximately
2–3mm in the radial direction the boundary condi-
tion is assumed to simulate a clamped condition quite
well.
In the numerical analysis the only moving part of the

model is the top plate. During the experiments the sound
intensity parallel and perpendicular to the steel cylinder
were measured. The levels were insignificantly low and
are therefore not considered to contribute to the sound
intensity measured above the top plate. Another differ-
ence between the model used for the numerical analy-
sis and the actual structure is the hole at the center of
the top plate in the actual structure, which was used to
screw the impedance head to the top plate. This hole
was not present in the numerical analysis. With a diam-
eter of 5 mm and the estimated decrease of plate stiffness
approximately 2.5% the hole was assumed to have in-
significant influence on the results. There is also a slight
difference in the geometry of the top plate between the
numerical analysis and the experimental study. While
the top plate is not axisymmetric in the numerical ana-
lysis due to the discretization into constant elements it
is in the experimental study. This difference is depen-
dent up on manufacturing demands and may influence
the response.
It is interesting to compare the numerical results from

this investigation with the numerical results from the ear-
lier paper (see Tinnsten 2000), where a gradient-based
optimization method (MMA) was used. In Table 4 the
numerical values obtained with the two optimization
methods are presented. The initial thickness (starting
values for the variables) was in both cases 3 mm. The
thickness distribution at optimum for the two methods is
also shown in Fig. 6.

Table 4 Values on objective function, weight and variables
at optimum for the two methods, MMA and simulated anneal-
ing (SA)

Variables on objective function and variables at optimum

variables MMA SA

x1 [mm] 2.0 9.3
x2 [mm] 10.0 10.0
x3 [mm] 5.3 2.1
x4 [mm] 2.0 2.0
x5 [mm] 2.0 2.0
x6 [mm] 2.0 2.0

weight, w [kg] 0.285 0.245

objective function 95.0 91.0
intensity, I [dB]
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Optimal thickness distribution obtained with
a gradient based optimization method.

Optimal thickness distribution obtained with
the simulated annealing method.

Fig. 6 Optimum thickness distribution for (a) MMA and (b)
simulated annealing (SA)

The comparison shows that simulated annealing
reached an optimum where the intensity (the objec-
tive function) was 4.0 dB lower and the weight was ap-
proximately 14% lower than that achieved with MMA.
A possible explanation for this difference is that MMA
got trapped at a local minimum. Gradient methods are,
in general, more efficient than the nongradient (zeroth-
order) methods which only use the function values to
obtain an optimum. For problems with local minima, gra-
dient methods can converge at one of these and it is neces-
sary to check the solution by selecting different starting
values for the design variables and then comparing the
solutions. Starting MMA with the initial variable values;
x1 = 9.3, x2 = 10.0, x3 = 2.1, and x4 = x5 = x6 = 2.0mm
(optimal variable values achieved with SA) it converged
to an even better solution. The objective function re-
mained at 91.0 dB and the weight was further reduced
to 0.241 kg. The computational time for the analysis
using simulated annealing was approximately twice that
required for MMA. The small difference in the experi-
mental results, 112.4 dB in the earlier paper (see Tinnsten
2000) and 111.3 dB in the present paper, obtained for the
two investigations shows that the experiment was quite
reproducible.

6
Future considerations

Optimization routines that use the function values (ob-
jective and constraint) and their derivatives in order
to obtain an optimum design are, in general, more ef-
ficient than the nongradient (zeroth-order) methods,
such as simulated annealing which use only function
values to obtain an optimum. In problems with local
minima, however, the gradient methods can converge at

one of these and it is necessary to check the solution
by selecting different starting values for the design vari-
ables and then comparing the solutions. Future work
will involve further testing of optimization techniques
that are able to escape from local minimum points. An-
other tempting idea is to mix gradient and nongradient
methods in an “intelligent” manner in order to benefit
the strengths of the different algorithms in the same op-
timization process. This could be done using distributed
computers/processors and will be examined in future
work.
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