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Approximating the Pareto curve to help solve biobjective design
problems

G. Fadel and Y. Li

Abstract When faced with multiple objectives, design-
ers have to find ways to combine these objectives to find
the solution that satisfies acceptable trade-off levels. In
this paper, we present a methodology based on approx-
imating the Pareto set of biobjective problems and pre-
senting these trade-off graphs to the designer to facilitate
decisions on trade-off. Once a solution is selected from
the approximated set, the designer can select to either
set a target on one or both objectives and use one of two
methods to find the sought after solution. The paper de-
tails the methodology and applies it to three structural
problems of increasing complexity, showing that the pro-
cedure provides also useful feedback even in the case of
nonconvex Pareto sets.

Key words multi-objective optimization, Pareto-set,
trade-off decisions, approximation, trusses

1
Introduction

The design process is in large part, a process of mak-
ing decisions. The decisions are made based on the na-
ture of the product, its potential market, its features, its
cost, and other relevant issues. Furthermore, at differ-
ent design stages, different decisions are called for. Re-
searchers are currently investigating this critical aspect of
the design process. They often use techniques developed
in economics and mathematical sciences to learn how to
deal with multi-objective or multi-criteria problems (in
this paper both words are interchangeably used). Typic-
ally, decision making is the process of selecting a possible
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course from all the possible available alternatives. For
most problems, the decision-maker (DM) wants to attain
more than one objective or goal in selecting the results
(or the course of action). When considering multiple ob-
jectives, the optimization process must include ways to
combine those objectives, that is to find a certain super-
objective function such that the results of this optimiza-
tion problem with the super-objective function can sat-
isfy the decision-maker’s or the customer’s preferences.
Traditionally, one approach for solving the multi-

objective problem consists in using weights to combine
the objective functions together to form the following
problem:

minimize
k∑
i=1

wifi(x)

subject to

g i(x)≤= 0; i= 1, 2, . . . ,m ,

x= [x1, x2, · · · , xn] ∈ X⊂Rn .

Usually, the weights are normalized so that their sum
is equal to one. Initially and most commonly, a linear
weighted method is used; the weights are assigned ac-
cording to the relative importance of the objective func-
tions. Once this weighting is imposed, the problem reverts
to a single objective optimization problem that may be
readily solved using traditional optimization techniques
(Athan and Papalambros 1996).
Another commonly used method is to rank the rela-

tive importance of each objective function, optimize the
most important objective function, put some predeter-
mined acceptable values for all other objective functions,
and append them to the constraint set of the optimization
problem.
Both of the above formulations can be used to solve

the multi-objective problem, many more have been sug-
gested and used (Boychuk and Ovchinnikov 1973; Haimes
and Chankong 1983; Keeney and Raiffa 1999; Das and



281

Dennis 1997), and each is suitable for certain kinds of
problems. The weighting method for instance is not indi-
cated for nonconvex problems since in such a case, it can
only find a subset of the Pareto points on the Pareto fron-
tier (Koski 1985; Athan and Papalambros 1996;Messac et
al. 2000). The ε-constraint method is similar to the sec-
ond method described above, various constraints are set,
and the Pareto points are generated. Goal programming
attempts to reach targets for all the objectives simultan-
eously (Stadler 1988; Stadler and Dauer 1993; Li 1999).
In all these cases, the solution obtained may not be

the best or the most satisfactory to the designer. Fur-
thermore in many methods, the Decision-Maker (DM)
needs to determine some weight for each objective func-
tion before the problem can be solved ( a priori). In most
cases there is not enough information to establish a set of
weights which leads to “optimal” results. Some methods
also put the burden on the designer to decide early on,
on the “acceptable levels” of the various criteria. Other
methods such as the physical programming method of
Messac (1996) require the designer to establish ranges of
desirability levels for the individual criteria.
Recent advances in design theory and decision based

design resulted in a regain in popularity of multicrite-
ria decision making in academic circles and in industry.
Many researchers have recognized that decision based
design involves multiple and often conflicting objec-
tives (e.g. mass, stiffness, stress, deformation, stability in
a structural problem) and should be treated in a multiob-
jective framework (Eschenauer 1992; Stadler and Dauer
1993). Others contend that a single objective should drive
design, that of utility, and that all other “objectives”
should be folded into that objective using a methodol-
ogy such as the multi–attribute utility. In either case,
knowledge about the trade-off issues will help formulate
a preference and is thus a needed exercise.
The approach presented below applies to bicriteria op-

timization problems (BCOPs). As such it is restricted in
application. However, the designer can use the method to
approach a multi-criteria problem considering two objec-
tives at a time (but may not necessarily reach the “best”
solution). A generalization to more than two criteria is
currently under investigation.

2
Methodology

The proposed methodology is based on approximating
the biobjective Pareto set. For this approximation, the
hyper-ellipse method described by Li and Fadel (1998) is
used. Thus, the bicriteria or biobjective optimization pro-
gramming problems can be solved as follows.

1. Formulate the problem as a BCOP problem

min

{
f1(x)

f2(x)

s.t. gj(x)≤ 0 , j = 1, 2, . . . ,m ,

x= [x1, x2, . . . , xn] ∈ X⊂Rn . (1)

2. Solve each objective independently, obtaining the
ideal solution of each problem.
Let x∗∗1 and x

∗∗
2 be the solutions of the above two sin-

gle objective optimization problems and let fmin1 =
f1(x

∗∗
1 ), f

max
1 = f1(x

∗∗
2 ), f

min
2 = f2(x

∗∗
2 ), and f

max
2 =

f2(x
∗∗
1 ). These four values form two points in the ob-

jective space, (fmin1 ; fmax2 ) and (fmax1 ; fmin2 ),

min fi(x) i= 1, 2 ,

s.t. gj(x)≤ 0 , j = 1, 2, . . . ,m ,

x= [x1, x2, . . . , xn] ∈ X⊂Rn . (2)

3. Using engineering judgement, select a suitable weight
w for one of the objectives. Solve the following prob-
lem for the third point needed to determine the hyper-
ellipse:

min wf1(x)+ (1−w)f2(x) ,

s.t. gj(x)≤ 0 , j = 1, 2, . . . ,m ,

x= [x1, x2, · · · , xn] ∈ X⊂Rn . (3)

Let the solution be x∗∗3 . The third point in the objec-
tive space is [f1(x

∗∗
3 ); f2(x

∗∗
3 )] or f1, f2.

4. Using the three points obtained above, construct the
hyper-ellipse(

f1−fmin1
fmax1 −fmin1

)ν
+

(
f2−fmin2

fmax2 −fmin2

)ν
= 1 ,

or(
f1−fmax1

fmin1 −fmax1

)ν
+

(
f2−fmax2

fmin2 −fmax2

)ν
= 1 . (4)

The exponent ν needs to be solved iteratively.
5. Present the approximated Pareto set (the hyper-ell-
ipse) to the decision-maker. Obtain the DM’s pref-
erence in terms of the objective function value(s).
Usually the results from optimization are normalized
during the optimization process. The decision-maker
might encounter some difficulty to understand the
meaning of the normalized objective function values.
So the approximation curve presented to the DM
should be in its original scale. After the preference in-
formation (in the original scale) is obtained, it must be
normalized before the procedure continues.

6. According to the DM’s preference information, the fol-
lowing procedure can be used to obtain the values of
the design variables.

(a) If one of the objective function values is given,
(f∗1 for instance), the ε-constrained method (Lie-
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berman 1991; Li 1999), can be used to solve for the
other objective function value and the values of the
design variables. The given function value is used
as the constraint for the corresponding objective
function, ε1 = f∗1

min f2(x) ,

s.t. gj(x)≤ 0 , j = 1, 2, . . . ,m ,

f1(x)≤ ε1 ,

x= [x1, x2, . . . , xn] ∈ X⊂Rn . (5)

(b) If both of the objective function values are given,
f∗1 and f

∗
2, goal programming (Charnes and Cooper

1977) can be used to solve for values of the devi-
ation variables and the values of the design vari-
ables. The given function values are served as goals
in the goal programming procedure.
Let b1 = f∗1 and b2 = f∗2 , the following equations
will yield the desired results:

min

∣∣∣∣∣∣
k∑
j=1

(
d−j +d+j

)p∣∣∣∣∣∣
1/p

, p≥ 1 ,

s.t. gi(x) ≤ 0 , i= 1, 2, . . .m ,

fj(x)+d−j −d
+
j = bj , j = 1, 2 ,

d−j d+j ≥ 0 , ∀j ,

d−j ·d
+
j = 0 , ∀j . (6)

The parameter p can be set according to the na-
ture of the problem. Usually, p= 1 or 2. If unsure,
let p= 1.

7. If the DM is not satisfied with the solution from step
6, repeat step 5 with other limits. Otherwise, the
decision-making procedure ends.

Note that in the decision-making procedure, the ap-
proximated Pareto solution is provided to the decision-
maker to make trade-off decisions. The decision-maker
can obtain the value of the other objective when the first
one is fixed. The approximation error is eliminated after
the final optimization process.
The hyper-ellipse approximation of the Pareto set pro-

vides the decision-maker with a graphical illustration of
the trade-off decisions and thus facilitates this process.
This approximation of the Pareto curve also gives the
sensitivity information of the objectives with respect to
each other. This sensitivity information further helps the
DM to make trade-off decisions. For example, if the value
of the sensitivity derivative |df2/df1| is very small, this
means that at this point, any change of f1 causes little

change of f2. Point A in Fig. 1 is one such point. One the
other hand, point A is a good choice when the minimum
of f 2 is desired. This point gives a relatively small value
of f 2 while keeping the other objective function f 1 rela-
tively small.

Fig. 1 Trade-off decision based on the Pareto curve

3
Applications

The degree of complexity of engineering applications
varies greatly depending on the nature and the disci-
pline of the application. Some applications are unsolvable
without certain degrees of simplification. The truss prob-
lems are typical structural optimization problems. The
degree of complexity of the truss problems depends on
the number of bars and on the topology of the structure.
By selecting the number of bars and designing the top-
ology of the structure, the degree of complexity can be
easily controlled. These problems are commonly used as
examples in the optimization literature to verify the ef-
fectiveness and usability of new algorithms and methods
without losing any generality. In the following section,
three truss problems are discussed. The decision-making
procedure presented earlier is applied to those applica-
tions. The results are analyzed in detail.

3.1
Two-bar truss problem

Consider the two-bar problem described by Chen (1995)
and shown in Fig. 2. This structure consists of two bars.
The truss members are pipes with average diameter d and
thickness T in order to reduce the total weight. The com-
monly encountered formulation of this problem is to min-
imize the total weight (volume) of the structure subject
to some stress constraint. This problem is statically de-
terminate. All the internal forces and displacements can
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Fig. 2 The two-bar truss problem

be easily solved analytically. If there is a desire that both
the volume and the normal stress be minimized, the prob-
lem has two criteria. To maintain integrity, the problem is
restated below.
Let the design variable x1 = d and x2 =H, d is the

average diameter of the truss member andH is the height
of the structure, the volume can be obtained using the
following equation:

V =Π
(
R2− r2

)√
B2+H2 ≈

2ΠdT
√
B2+H2 = 2Πdx1

√
B2+x22 . (7)

The two-bar truss problem the normal stress can be
obtained as

σ =
S

A
=

F

2ΠdTH

√
B2+H2 =

F

2Πdx1x2

√
B2+x22 .

(8)

Here, S is the internal force of the corresponding truss
member. The constraints are applied to the maximum
normal stress constraint

σ ≤ σallowable , σ ≤ σcritical ,

where σallowable is the allowable normal stress, σcritical
is the critical buckling stress of the truss member. The
two-bar truss problem is formulated as a bicriteria opti-
mization problem

min f1(x1, x2) = V , f2(x1, x2) = σ

s.t. g1(x1, x2) =
σcritical

σ
−1≤ 0 ,

g2(x1, x2) =
σ

σallowable
−1≤ 0 ,

1≤ x1 ≤ 100 , 10≤ x2 ≤ 1000 , (9)

The constant data used in the two-bar truss problem
are shown in Table 1.

Table 1 Data for the two-bar truss problem

External Force F = 150 KN

Normal stress limit [σallowable] = 400 N/mm
2

Thickness of the cross–section T =R− r = 2.5 mm

Half width of the structure B = 750 mm

Elastic modulus E = 210000 N/mm2

Upper and lower bound of x1 1≤ x1 ≤ 100 mm

Upper and lower bound of x2 10≤ x2 ≤ 1000 mm

There are two design variables, two objective func-
tions, and two constraints in this problem. The objective
functions and the constraints are nonlinear. Before ap-
plying the proposed decision making procedure to this
example, a detailed analysis of the problem is carried out
in the next section. The results of this analysis are used to
verify the output of the decision making procedure, and
hence to validate the correctness of the proposed decision
making procedure.

3.1.1
Analysis of the two-bar truss problem

Since there are only two design variables in this prob-
lem, the feasible regions in the design space and objective
space can be presented graphically. They are shown in
Fig. 3a and b, respectively. Figure 3a shows that the feas-
ible region in the design space is not convex. Using the
detection technique introduced by Fadel et al. (2002), we
solve the problem using the Tchebycheff method and the
weighting method at the two end points of the Pareto
curve and at the equal weight point. The results of the
process are listed in Table 2. The objective function
values at the equal weight point are almost the same.
This means that the Pareto curve at the equal weight
point and in its neighbourhood is convex (in the objective
space). The Tchebycheff method is used to generate the
complete Pareto set. To verify the results of the Tcheby-
cheff method (Tind and Wiecek 1997), the ε-constranint
method and the weighting method are also used indepen-
dently. The Pareto curves obtained by the three methods
are almost identical. The results of all three methods are
also plotted in Fig. 3a and b.
Figure 3b shows that the Pareto curve of the two-

bar truss problem seems convex in the objective space
although the feasible region in the design space is non-
convex and some of the Pareto points fall on a nonconvex
constraint. This also verifies the results of the detection
process. Figure 3a also shows that the super-objective
function achieves some of its optimal points inside the
feasible region in the design space. Table 3 lists the results
from the weighting method. The ε-constraintmethod and
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Table 2 Detection of the convexity of the two-bar truss problem

Tchebycheff method
w1 w2 x1 x2 f1 f2

1 0.00 1.00 41.53950 999.20378 0.8152107×106 0.28743834×103

2 0.50 0.50 39.17829 792.01668 0.67127526×106 0.33568100×103

3 1.00 0.00 33.87399 745.03459 0.56250306×106 0.40000665×103

Weighting method
w1 w2 x1 x2 f1 f2

1 0.00 1.00 41.54967 1000.0000 0.81582589×106 0.28728556×103

2 0.50 0.50 39.28917 803.10857 0.67816173×106 0.33255607×103

3 1.00 0.00 33.77161 749.58723 0.56250767×106 0.39999461×103

Table 3 Optimization results of the two-bar truss problem (by the weighting method)

w1 w2 x1 x2 f1 f2

0.00 1.00 41.54967 1000.00000 815825.8887662 287.2855633
0.05 0.95 41.54967 1000.00000 815825.8887210 287.2855633
0.10 0.90 41.54967 1000.00000 815825.8886665 287.2855633
0.15 0.85 41.54967 1000.00000 815825.8503783 287.2855768
0.20 0.80 41.54967 1000.00000 815825.8502940 287.2855768
0.25 0.75 41.54967 1000.00000 815825.8501842 287.2855769
0.30 0.70 41.54967 1000.00000 815825.8500357 287.2855769
0.35 0.65 41.54873 999.92559 815768.4712083 287.2997982
0.40 0.60 40.74618 935.26429 767305.5039425 300.4080951
0.45 0.55 39.93229 864.67003 717968.4032924 316.5613972
0.50 0.50 39.28917 803.10857 678161.7286385 332.5560718
0.55 0.45 38.54059 752.14324 643035.6335318 349.9042733
0.60 0.40 34.86203 749.78767 580747.5511613 387.4316966
0.65 0.35 33.77163 749.58660 562507.6839597 399.9945967
0.70 0.30 33.77162 749.58692 562507.6759235 399.9946023
0.75 0.25 33.77162 749.58705 562507.6727267 399.9946046
0.80 0.20 33.77162 749.58712 562507.6710112 399.9946058
0.85 0.15 33.77162 749.58717 562507.6699404 399.9946065
0.90 0.10 33.77162 749.58719 562507.6692088 399.9946070
0.95 0.05 33.77162 749.58722 562507.6686772 399.9946074
1.00 0.00 33.77161 749.58723 562507.6682733 399.9946077

Table 4 Points used to construct the hyper-ellipse for the 2-bar problem

w1 w2 x1 x2 f1 f2

1 0.00 1.00 41.53950 999.20378 815210.6799793 287.4383361
2 0.50 0.50 39.17830 792.01668 671275.2554480 335.6810005
3 1.00 0.00 33.87399 745.03459 562503.0589894 400.0066494

ν = 1.2350

the Tchebycheff method are used to verify the results
of the weighting method. These results are listed in the
Table 13.
The next step approximates the Pareto set obtained

above using the hyper-ellipse. In order to generate more

points to verify the approximation of the hyper-ellipse,
the Tchebycheff method is used. Table 4 shows the points
used to generate the hyper-ellipse and the parameter of
the hyper-ellipse. Figure 4 shows the Pareto set of the
two-bar truss problem and its approximation. Table 5
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Table 5 Results of the approximation using hyper-ellipse

w1 f∗1 w2 f∗2 f2 (f∗2 - f2)/f
∗
2

1 0.00 815210.68 1.00 287.43834 287.43834 0.00000000

2 0.05 794697.43 0.95 292.72267 291.55652 0.00398380
3 0.10 776169.69 0.90 297.84850 296.60606 0.00417139

4 0.15 759552.82 0.85 302.75730 301.72564 0.00340753

5 0.20 744342.80 0.80 307.51198 306.80613 0.00229537

6 0.25 701673.99 0.75 322.72476 322.79524 −0.00021838
7 0.30 717303.81 0.70 316.80347 316.65408 0.00047157

8 0.35 705004.36 0.65 321.42537 321.45953 −0.00010627
9 0.40 693350.88 0.60 326.09740 326.19802 −0.00030856
10 0.45 682180.33 0.55 330.85132 330.91195 −0.00018326
11 0.50 671275.26 0.50 335.68100 335.68100 0.00000000

12 0.55 660998.62 0.45 340.59972 340.33320 0.00078249

13 0.60 650407.11 0.40 345.95156 345.29820 0.00188859
14 0.65 640177.33 0.35 351.46631 350.27061 0.00340206

15 0.70 629866.65 0.30 357.21861 355.47602 0.00487822

16 0.75 619413.82 0.25 363.24668 360.97706 0.00624815

17 0.80 608759.61 0.20 369.60639 366.85474 0.00744479

18 0.85 597834.49 0.15 376.36088 373.22999 0.00831883

19 0.90 586556.49 0.10 383.59735 380.30312 0.00858772
20 0.95 573144.37 0.05 397.12185 389.77231 0.01850701

21 1.00 562503.06 0.00 400.00665 400.00665 0.00000000

lists the results of the approximation and its relative error
at different points.
Note that the maximum error in the above table is due

to numerical error in computation. The point that has
the greatest error (which can be clearly seen in Fig. 3b
is a runaway point in the Tchebycheff method1. Apart
from this point, the greatest relative error is 0.859%. This
scale of error is well within acceptable levels in engineer-
ing applications.
Having analysed the two-bar truss problem in detail,

the proposed decision making procedure is applied to this
problem in the next section.

3.1.2
Application of the decision making procedure

Following the steps of the proposed procedure, the two-
bar problem can be analysed as follows.

1. Formulate the two-bar problem as a bicriteria opti-
mization problem.
The problem has been formulated earlier (9).

2. Set w 1 = 1 and w 1 = 0 to obtain the ideal points for
objectives f 1 and f 2 respectively.
Obtain the value of fmin1 , fmax1 ,fmin2 , andfmax2

3. Calculate the third point. Use equal weights to obtain
the third point needed to construct the hyper-ellipse.
Set w1 = w2 = 0.5 and solve (3) for f

∗
1 and f∗2 The

values for the three points are listed in Table 5.

1 Note that the weights in the weighting method can only
generate distinct Pareto points in the interval [0.35,0.65]

4. Construct the hyper-ellipse.
Using the three points obtained in the previous step
solve the hyper-ellipse equation (4) for the value of the
exponent ν. For the two-bar truss problem, ν = 1.235.
The approximation of the Pareto set can be expressed
as(

f1−815210.68

562503.06−815210.68

)1.235
+

(
f2−400.00

287.44−400.00

)1.235
= 1 . (10)

5. Present the approximation of the Pareto set to the
decision-maker, and obtain the preferred objective
function value(s).

6. Depending on the number of values obtained, proceed
to step a or b.

(a) If the engineer (decision-maker) wishes to fix
one preferred objective function value, the ε-
constrained method can be used to formulate (1)
as a single objective optimization problem.
Assuming the engineer wants to limits the total
volume to 700000mm3, the normal stress σ will be
about 320N/mm2 according to the approximated
Pareto curve (the hyper-ellipse). To evaluate the
design variables, set f1 = 700000, and using the
ε-constraint method (5), the design variables are
obtained

x1 = 39.6398 , x2 = 837.464 ,

f1 = 699999.99 , f2 = 323.38 .
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Fig. 3 Pareto set of the two-bar truss problem. (a) Pareto
points in the design space, (b) Pareto points in the objective
space

The solution of this problem is the preferred solu-
tion for the BCOP and hence, is the solution of the
two-bar truss problem.

(b) If the engineer wishes to target two objective func-
tion values, the goal programming method can be
used to obtain the values of the design variables
and those of the deviation variables at the pre-
ferred point.
Assuming the engineer wants the volume of the
structure to be around (less than) 650000mm3

and the normal stress around 350N/mm2, a goal
programming formulation can be set. Let the goals
be b1 = 650000 and b2 = 350, (6) yields

x1 = 38.1824 , x2 = 766.148 , f1 = 643, 034.82 ,

f2 = 349.98 .

Because both of the objective function values are
specified, generally it is not possible to achieve both
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Optimization Results
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Fig. 4 The approximation of the two-bar truss problem

goals simultaneously. The goal programming method
tries to achieve both goals, and the final results have
an under- or an over-achievement. Since the objec-
tive functions are normalized inside the program,
the under- or over-achievement is a relative measure,
which indicates how far the final results are from
the goals. The goals achieved here are not exactly
what the DM specified, they have 0.027 and 0.000068
under-achievement for objective 1 and objective 2
respectively.

7. Assuming the decision-maker is satisfied with the re-
sults, the decision-making process ends.
As mentioned before, although the optimization pro-
cedure requires that the objective functions be nor-
malized, the approximated Pareto curve presented to
the DM must be in its original scale. The normal-
ized data may have no meaning to the DM. After the
preference information is obtained, it must be normal-
ized so that it can be used in the final optimization
process.

3.2
Three-bar truss problem

According to Koski (1985), the three-bar truss is a non-
convex example of the bicriteria optimization problem

min f1(x) =
3∑
i=1

xi , f2(x) = 0.75 δx+0.25 δy ,

s.t. gi(x) =
Ni

xi
− [σi]≤ 0, i= 1, . . . , 3 ,

10≤ xi ≤ 200 , i= 1, . . . , 3 , (11)

Figure 5 shows the structure of the three-bar truss prob-
lem.
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Here xi is the cross-sectional area of the truss mem-
ber i which serves as design variable; x= (x1, x2, x3); δx
and δy are the horizontal and vertical displacements of
the node 1 in Fig. 5; Ni is the internal force of the i-th
truss member.
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Fig. 5 The three-bar truss problem

Since the three-bar truss problem is a statically inde-
terminate problem, Ni can be solved using a finite elem-
ent package or an analytical method; [σi] is the maximal
allowable normal stress of the i-th truss member; [σi] is
a constant.
All the constant values used to solve the problem are

listed in Table 6. Objective function f1(x) is the volume
of the structure. Objective function f2(x) is an arbitrary
weighted sum of the displacements of node 1 selected by
the designer.
Constraint gi(x) is the stress constraint of the i-th

truss member.

Table 6 Data for the three-bar truss problem

External Force F = 20 KN

Normal stress limit [σmax] = 200 N/mm
2

Height of the structure L = 1000 mm

Elastic modulus E = 200000 N/mm2

Lower bound of xi xi = 10mm2

Upper bound of xi xi = 200 mm2

3.2.1
Analysis of the three-bar problem

Since there are three design variables in this problem, it
is hard to display the feasible region in the design space
graphically. The detection technique is used to probe the
convexity of the Pareto curve at the equal weight point.
Different methods are used to solve this problem in order
to verify the results. Figure 6 shows the results obtained
by different methods.
Figure 6 shows that the Pareto set of the three-bar

truss problem is a nonconvex set. Also this set consists
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Fig. 6 Pareto points of the three-bar truss problem

of two disconnected parts when using the discretization
selected. The best approximation of this kind of Pareto
set is to approximate each part of the Pareto set sepa-
rately. To do this, much more information is needed. In
real engineering problems, the luxury of having the real
Pareto set is not affordable. Knowing that the Pareto set
is nonconvex is considered a big advantage. In this case,
one hyper-ellipse is used to approximate the entire Pareto
set. As said in the decision making procedure section, the
approximation error will be eliminated after the final op-
timization run.

Table 7 Pareto points used to construct the hyper-ellipse

Tchebycheff method
w1 w2 x1 x2 x3 f1 f2

0.00 1.00 199.998 200.000 200.000 882839.3266 0.6746
0.50 0.50 10.000 41.450 187.836 431264.7500 0.8875
1.00 0.00 10.000 46.680 112.496 285814.0504 1.5494

ν = 2.4844

ε-constraint method
w1 w2 x1 x2 x3 f1 f2

0.00 1.00 199.646 200.000 200.000 881942.3255 0.6753
10.000 43.097 153.730 365006.9594 1.1100

1.00 0.00 10.000 46.705 112.641 286353.7980 1.5458

ν = 2.0143

weighting method
w1 w2 x1 x2 x3 f1 f2

0.00 1.00 200.000 200.000 200.000 882442.7076 0.6751
0.50 0.50 10.000 40.965 200.000 454706.8598 0.8262
1.00 0.00 10.000 46.362 112.454 285637.2426 1.5479

ν = 2.7219
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Fig. 7 a–c Approximation of the Pareto set of the three-bar truss problem

To approximate the Pareto set of this problem, the
extreme points of the Pareto set need to be calculated.
These are obtained by solving each objective in turn as
a single objective optimization problem. The equal weight
point is used to generate the third point. Using the three
points in the objective space, the hyper-ellipse is con-
structed. The results are listed in Table 7. Figure 7 shows
the Pareto set and its approximation in the objective
space.

3.3
Application of the decision making procedure

Applying the decision-making procedure to the three-bar
truss problem, the following steps are carried out.

1. Formulate the three-bar truss problem as a bicriteria
optimization problem (11).

2. Obtain the extreme points of the Pareto. The results
are listed in Table 8.

3. Calculate the third point.
Since the Pareto set is a nonconvex set, the ε-
constraint method is used to solve this problem. Be-
cause there is no extra information to help select the
third point, a point where fz is the middle of the range
used to obtain the third point (Table 7).

4. Construct the hyper-ellipse.
Using results from Table 7, solve the hyper-ellipse
equation (4) for the value of the exponent ν. Using the
data obtained by the ε-constraint method, ν = 2.0143.
The hyper-ellipse, which is the approximation of the
Pareto set, can be expressed as
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(
f1−285814.04

882839.33−285814.04

)2.0143
+

(
f2−0.67

1.55−0.67

)2.0143
= 1 . (12)

5. Present the approximation of the Pareto set to the
decision-maker.

6. Obtain the preferred objective function value.
7. Depending on the number of values obtained, proceed
to step a or b.
(a) If one objective function value is specified, the

ε-constrained method (5) is used to formulate
the problem as a single objective optimization
problem.
Assuming that the designer wants to limit the
combined displacement at node 1 to 0.9mm after
balancing between the volume (weight) and the
displacement. Through the hyper-ellipse equa-
tion, the volume is around 5×105mm3.
Using the ε-constraint method, set ε2 = 0.9 and
solve the following single objective optimization
problem:

min f1(x) =
3∑
i=1

xi ,

s.t. f2(x) = 0.75 δx+0.25 δy ≤ ε2 ,

gi(x) =
Ni

xi
− [σi]≤ 0 , i= 1, . . . , 3 ,

10≤ xi ≤ 200 , i= 1, . . . , 3 , (13)

Solving the above problem, we obtain

x1 = 10.0000 , x2 = 41.4545 , x3 = 187.175 ,

f1 = 430320.2412 , f2 = 0.9000 .

Since the approximation for this problem has rela-
tively big errors, the DMmay not be satisfied with
this solution. The volume could be far from the al-
lowed value. So the DM re-specifies the allowable
displacement at node 1 to be 0.83mm.
Set ε2 = 0.83, solve (13)

x1 = 10.0000 x2 = 41.2174 x3 = 198.9340 ,

f1 = 453624.4606 , f2 = 0.8300 .

This is the preferred solution of the designer
(DM).

(b) If the decision-maker sets two objective function
values, the goal programming method is used to
obtain the values of the design variables and those

of the deviation variables at the preferred loca-
tion. Assuming the engineer wants both the vol-
ume of the structure at 4.5×105mm3 and the dis-
placement at 8.5mm, a goal programming formu-
lation (6) can be set with the goals b1 = 4.5×105

and b2 = 8.5 and yields

x1 = 17.9401 , x2 = 40.2693 , x3 = 195.9840 ,

f1 = 457607.55 , f2 = 0.8504 .

The results from goal programming display some
over-achievement for the two objectives. This can
be seen from the figure of the approximating curve
(Fig. 7b), part of the actual Pareto set is at the
left side of the hyper-ellipse. The points on this
part yield a better solution than the points on the
hyper-ellipse.

3.4
Ten-bar truss problem

The ten-bar truss problem described by Haftka and
Gurdal (1993) is another commonly used example in op-
timization research. The common use of the example is
to use the areas of the ten truss members as design vari-
ables, and as the objective, to minimize the total weight
(or volume). Figure 8 shows the structure of this prob-
lem. Equation (14) gives the formulation of the commonly
used single objective optimization formulation,

min
10∑
i=1

xi ,

s.t. gi(x) =
Ni

xi
− [σi]≤ 0 , i= 1 , . . . , 10 ,

0.1≤ xi ≤ 30 , i= 1, . . . , 10 , (14)

where xi are the i-th bar’s cross–sectional areas. They
serve as design variables; Ni are the internal forces of the
i-th truss members. The problem is a second–order static-
ally indeterminate problem;Ni can be solved numerically
by the finite element method or analytically by solving
the statically indeterminate problem; [σi] is the max-
imum allowable stress without failure.
Because the ten-bar truss problem is a classical opti-

mization problem, it is meaningful to convert it to a mul-
tiple criteria optimization problem. The first step is to
convert it into a bicriteria optimization problem. The
first objective remains the weight (volume) of the struc-
ture, which needs to be minimized. The second objective,
a classical constraint, is to minimize the vertical displace-
ment at node 2 (see Fig. 8). Minimizing the total volume
of the structure results in decreasing the cross-sectional
areas of each truss member (or of some of them). These
cross-sectional areas are the design variables of this prob-
lem. To minimize the displacement, the stiffness of the
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Fig. 8 The ten-bar truss problem

structure must be increased. This means that the cross-
sectional areas must be increased because the topology
of the structure is predetermined. So the two objectives
conflict with each other, and the bicriteria optimization
problem can be formulated as follows:

min f1(x) =
10∑
i=1

xi , f2(x) = δ5 ,

s.t. gi(x) =
Ni

xi
− [σi]≤ 0 , i= 1, . . . , 10 ,

0.1≤ xi ≤ 30 , i= 1, . . . , 10 , (15)

where δ5 is the vertical displacement at node 2 in Fig. 8,
δ5 is a complex function of the design variables x; x and
Ni are the same as in (14); Ni can be solved by the fi-
nite element method or by the analytical method. Table 8
shows the data used to solve this problem.

Table 8 Data for the ten-bar truss problem

External Force P = 100 Kips
Normal stress limit [σmax ] = 25 ksi
Height of the structure l = 360 in
Elastic modulus E = 30000 ksi
Lower and upper bounds of xi 0.1 ≤ xi ≤30 in
initial point xi = 5.0 in

3.4.1
Analysis of the ten-bar truss problem

The first objective function (the total volume of the truss
structure) in (15) is a linear function of the design vari-
ables. The second objective function (the displacement)
is a nonlinear objective function of the design variables.
The problem has ten design variables, this makes it hard
to solve analytically by hand. On the other hand, it is

not big enough to use commercial FEM packages, because
the time needed to initialize the software package is much
more than what is needed to solve the problem. A pro-
cedure was written by the authors to solve this problem
analytically and to generate the FORTRAN code auto-
matically. This procedure was written in MAPLE and is
available from the authors.
Also because the ten-bar truss problem has ten design

variables, it is impossible to graph the feasible region in
the design space. To verify the results, different optimiza-
tion techniques are used to solve the problem, including
the weighting method, the ε-constraint method, and the
Tchebycheff method.

3.4.2
The weighting method

Using the weighting method, the bicriteria ten-bar truss
problem becomes

min w1f1(x)+w2f2 ,

s.t. gi(x) =
Ni

xi
− [σi]≤ 0 , i= 1, . . . , 10 ,

xi ≥ 0 , i= 1, . . . , 10 ,

w1+w2 = 1 , wi ≥ 0 , i= 1, 2 , (16)

where f1(x) and f2(x) are the objective functions, as de-
fined in (15); w1 and w2 are the weights.
All other variables are as described in (15).
The optimization program DOT (Design Optimiza-

tion Tool Vanderplaats, Miura & Associates 1993) is used
to optimize the ten-bar truss problem. In order to get the
Pareto set of the problem by varying the weights associ-
ated with each objective, the objective functions need to
be normalized. This is very important in this problem, be-
cause the order of magnitude of the total volume is 106

while that of the displacement is less than 10. The natural
normalization method presented by Lieberman (1991) is
used in this approach.
The design variables, the objective function values as

well as the corresponding weights are listed in Table 9.
Using a step size of 1/20 to change the weight in (16),

the weighting method yields a set of Pareto points, which
are listed in Table 10.
In Table 10, the data shows that at the end of

the Pareto curve where f1 approaches its minimum,
the derivative of the curve does not approach infin-
ity. The function values change little when the weights
change. The indifference line of the weighting method
(w1f1+w2f2= C) rotates around the end point of the
Pareto curve. This can be seen in Fig. 9. In order to avoid
computational difficulties, the weighted sum of the two
normalized objectives is multiplied by 100. The numerical
difficulties are discussed in Sect. 4.
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Table 9 Extreme points of the ten-bar truss problem

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 30.00 30.00 30.00 30.00 0.10 30.00 30.00 30.00 30.00 30.00
2 7.94 0.10 8.06 3.95 0.10 0.10 5.74 5.57 5.57 0.10

fmin fmax

1 15936.56 115114.75
2 1.303 7.197
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Fig. 9 The approximation of the ten-bar truss problem

Table 10 Results obtained by the weighting method

w1 w2 f1 f2

1 0.00 1.00 115114.75238804 1.30340166

2 0.05 0.95 101267.03121038 1.33408506

3 0.10 0.90 89860.30947274 1.38624019

4 0.15 0.85 67121.73043662 1.53263072

5 0.20 0.80 65388.58623101 1.55553372

6 0.25 0.75 64432.38994589 1.57232872

7 0.30 0.70 60431.79083217 1.66581196

8 0.35 0.65 55615.28192718 1.80353889

9 0.40 0.60 51166.82895283 1.96176915

10 0.45 0.55 46860.45841514 2.15229851

11 0.50 0.50 42346.20767985 2.39515314

12 0.55 0.45 38521.28678384 2.64739800

13 0.60 0.40 33212.90573230 3.10031070

14 0.65 0.35 31058.18066569 3.32422562

15 0.70 0.30 28224.93416848 3.67805761

16 0.75 0.25 25859.35577662 4.04043420

17 0.80 0.20 22642.28442690 4.68492560

18 0.85 0.15 19506.17643098 5.56498305

19 0.90 0.10 16709.08192602 6.75024377

20 0.95 0.05 15937.43385672 7.19650367

21 1.00 0.00 15936.56260077 7.19692994

To verify the results obtainedby the weightingmethod,
the Tchebycheff and e-constraint methods are used to
solve this problem. The results are listed in Tables 15 and
16 and in Fig. 9.
From the data in Table 10 and Fig. 10, it seems clear

that the ten-bar truss problem has a convex Pareto curve.
It is mentioned in many citations (e.g. Haftka and Gurdal
1993) that most of the structural optimization problems
are nonconvex, but since the results of the three methods
show near identical points, the problem can be assumed
to be convex (Fadel et al. 2002).
After analysing the Pareto set of the ten-bar truss

problem, the next step is to approximate it using the
hyper-ellipse to further validate the proposed method-
ology.
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Fig. 10 Approximation of the Pareto curve of the ten-bar
truss

4
Approximation of the Pareto curve of the ten-bar
problem

To approximate the Pareto set of the ten-bar truss prob-
lem, three points are needed to construct the hyper-
ellipse. The two extreme points of the Pareto set are
obtained in the normalization process, the third point
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Table 11 Parameters of the hyper-ellipse to approximate the Pareto curve of the ten-bar truss problem

w1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1.0 7.94 0.10 8.06 3.95 0.10 0.10 5.74 5.57 5.57 0.10
2 0.0 30.00 30.00 30.00 30.00 0.10 30.00 30.00 30.00 30.00 30.00
3 0.5 24.80 0.10 19.39 12.89 0.10 0.10 6.92 17.21 18.37 0.10

f min f max f 3rd

1 15936.56260077 115114.75238804 42346.20767985
2 1.30340166 7.19692994 2.39515314

ν = 2.7342

Table 12 Results of the approximation of ten-bar truss
problem

w1 f∗1 w2 f∗2 f2 relative
error

1 0.00 115114.8 1.00 1.303402 1.303402 0.0000000
2 0.05 101267.0 0.95 1.334085 1.313318 0.0155662
3 0.10 89860.31 0.90 1.386240 1.354989 0.0225439
4 0.15 67121.73 0.85 1.532631 1.613612 −0.0528380
5 0.20 65388.59 0.80 1.555534 1.646924 −0.0587515
6 0.25 64432.39 0.75 1.572329 1.666346 −0.0597952
7 0.30 60431.79 0.70 1.665812 1.756248 −0.0542896
8 0.35 55615.28 0.65 1.803539 1.885101 −0.0452233
9 0.40 51166.83 0.60 1.961769 2.027505 −0.0335086
10 0.45 46860.46 0.55 2.152298 2.190924 −0.0179463
11 0.50 42346.21 0.50 2.395153 2.395153 −0.0000000
12 0.55 38521.29 0.45 2.647398 2.601004 0.0175246
13 0.60 33212.91 0.40 3.100311 2.953072 0.0474916
14 0.65 31058.18 0.35 3.324226 3.125166 0.0598815
15 0.70 28224.94 0.30 3.678057 3.386518 0.0792645
16 0.75 25859.35 0.25 4.040436 3.645238 0.0978106
17 0.80 22642.29 0.20 4.684925 4.086638 0.1277049
18 0.85 19506.18 0.15 5.564983 4.701800 0.1551097
19 0.90 16708.75 0.10 6.750439 5.758702 0.1469146
20 0.95 15937.43 0.05 7.196504 7.076471 0.0166793
21 1.00 15936.56 0.00 7.196930 7.196930 0.0000000

can be calculated using the equal weight point. Let w1 =
w2 = 0.5, solving (3), the third point is obtained. Using
the three points to solve the hyper-ellipse equation (4),
the exponent ν can be calculated. All three points used to
construct the hyper-ellipse and the exponent are listed in
Table 11.
Table 12 contains the optimization results yielded by

the weighting method, the data obtained from the hyper-
ellipse, and the relative error of the approximation. Fig-
ure 10 shows that the slope of the Pareto curve of the
ten-bar truss problem at the end f2 = fmin2 is near 0.
The accuracy of the approximation at this end is very
satisfactory.
At the other end of the Pareto curve, the actual slope

is not infinity. Because the slope of the hyper-ellipse is
infinity at this end, the approximation introduces some
error. Numerical experiments show that using a different
middle point does not lead to significant improvement in

the accuracy of the approximation. This error, however,
will not affect the value of the approximation since in the
decision making process, there is a final optimization run
to obtain the values of the design variables and the objec-
tive functions.
The analysis of the Pareto curve of the ten-bar truss

problem is again used to verify the results of the proposed
decision making procedure. For a common engineering
application, the detailed analysis is unnecessary, and gen-
erally, impossible. In the next section, the proposed deci-
sion making procedure is demonstrated by applying it to
the ten-bar truss problem.

4.0.3
Application of the decision making procedure

Again, following the steps of the proposed decision mak-
ing procedure, the ten-bar truss problem can be solved as
follows.

1. Formulate the ten-bar truss problem as a bicriteria op-
timization problem (BCOP)

2. Set w1 = 1 and w1 = 0 to obtain the ideal points for
objective f1 and f2 respectively.
Calculate the values of fmin1 , fmax1 , fmin2 , and fmax2 ,
these values are listed in Table 11.

3. Calculate the third point.
Since there is no extra information to help select the
third point, equal weights are used for the third point
needed to construct the hyper-ellipse. Set w1 = w2 =
0.5 and solve (3) for f∗1 and f∗2 . The values for the
three points are also listed in Table 11.

4. Construct the hyper-ellipse.
Using the three points obtained in the previous step,
solve the hyper-ellipse equation (4) for the value of the
exponent ν. For the ten-bar truss problem, ν = 2.7342.
The approximation of the Pareto set can be expressed
as

(
f1−15936.56

115114.75−15936.56

)2.7342
+

(
f2−1.303

7.197−1.303

)2.7342
= 1 . (17)
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5. Present the approximation of the Pareto set to the
decision-maker, and obtain the preferred objective
function value(s).

6. Depending on the number of values obtained, proceed
to step a or b.
(a) If one objective function value is specified as the
preferred solution, the ε-constrained method is
used to formulate the problem as a single objective
optimization problem.
Assuming that the displacement is more critical
in this structure; the engineer wants to limit the
displacement at node 2 (Fig. 8) to less or equal
to 2 in., according to the Pareto curve (Fig. 10),
the total volume of the structure will be around
50000 in3.
Using the ε-constraintmethod, set δ2 = 2 and solve
(5), the actual design variables and the objective
functions are obtained

x1 = 29.9934, x2 = 0.10000

x3 = 22.7425, x4 = 15.5764

x5 = 0.10000, x6 = 0.10000

x7 = 7.44306, x8 = 20.7933

x9 = 21.8079, x1 = 0.10000

f1 = 50229.79, f2 = 2.0001.

This is the solution according the preference of the
engineer (DM).

(b)If the decision-maker selects two objective function
values, the goal programming method is used to
obtain the values of the design variables and those
of the deviation variables at the preferred location.
Assuming the engineer wants both the volume
(mass) of the structure at 58 000 lb and the dis-
placement at 1.6 in, a goal programming formu-
lation can be set with the goals (from Fig. 10)
b1 = 58000 and b2 = 1.60. Solving the problem
yields

x1 = 30.0000, x2 = 0.10000

x3 = 29.4505, x4 = 18.5412

x5 = 0.10108, x6 = 26.1066

x7 = 7.60888, x8 = 26.1066

x9 = 26.3262, x1 = 0.100000

f1 = 58804.55, f2 = 1.71.

As stated before, because both values of the objectives
are specified, it is not common that both goals can be
reached exactly, however the results will be very close to
those of the approximation. This solution is the optimal
solution of the ten-bar truss problem according the engi-
neer’s preference.
The approach proposed is in our opinion more ef-

fective to designers than the usually applied a priori
method. This is particularly clear in this example. In
the a priori weighting method, the designer would have
made an assumption that for instance volume or weight

was twice as important as deflection. This would have
resulted in a solution of 3.3”. There is no relationship
between the preference information and the results ob-
tained. The engineer could have easily been satisfied with
another weighting. Providing the trade-off curve not only
conveys sensitivity type information, but also, real nu-
merical trade-off values between the two objectives that
can be used much more effectively. As a designer, one
can also assess that there is no point in trying to reduce
deflection to less than 1.4” since the volume or weight
cost will increase very significantly for very little gain in
stiffness.

5
Numerical difficulties

There are some numerical difficulties in solving the ten-
bar truss problem. The problems are described here fol-
lowed by the steps used to circumvent them.

5.1
The vertical displacement of node 2 is practically
insensitive to some of the design variables

When the objective function is minimized, especially
when the displacement of node 2 is minimized, the
value of the displacement varies little when changing the
weights and the initial points. The value of the volume,
however, changes considerably. This causes problems
when using different methods to solve this problem. For
example, when setting w1 = 0 andw2 = 1 in the weighting
method to minimize the displacement of point 2, the dis-
placement obtained is almost the same as the result of the
Tchebycheff method by setting δ1 = 0 and δ2 = 1. But the
volumes of the structure obtained by these two methods
are different. Using the approaches mentioned below can
reduce this effect.

5.2
Convergence problem of the weighting method

In the optimization process, after normalization, the ob-
jective functions are between 0 and 1. Since the weights
wi are also normalized,

∑
wi = 1, the super-objective

wif1+w2f2 is less than 1. The optimizer has some dif-
ficulties converging, even using double precision for all
variables. To avoid this problem, the super-objective
function is multiplied by 100.

5.3
For the Tchebycheff method, the constraints
associated with β are not satisfied with the original
formulation

The reason for this is that the values of the constraints
are too small. They do not exert enough penalty to
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Table 13 Optimization results of the two-bar truss problem (the ε-constraint method)

w1 w2 x1 x2 f1 f2

0.00 1.00 41.53900 1000.00000 815616.2647762 287.3593994
0.05 0.95 41.19213 974.67569 795757.5061814 292.5119871
0.10 0.90 40.84982 946.69116 774990.8361759 298.2356418
0.15 0.85 40.51940 918.88236 754928.8322935 304.2086222
0.20 0.80 40.21212 896.98683 738541.0787766 309.5466956
0.25 0.75 39.98593 869.70509 721324.8029287 315.3522618
0.30 0.70 39.74218 847.30690 706397.7066049 320.8904050
0.35 0.65 39.51527 825.75031 692402.1651683 326.4610596
0.40 0.60 39.28765 805.75797 679331.3449685 332.0599947
0.45 0.55 39.08577 786.24000 667119.1275880 337.6466828
0.50 0.50 38.92909 764.88356 655057.3850718 343.5476755
0.55 0.45 38.56364 755.91288 645039.2056957 348.8267624
0.60 0.40 38.09279 750.38858 634821.2529022 354.4305254
0.65 0.35 37.49084 750.27635 624742.8959137 360.1481773
0.70 0.30 36.90636 750.16780 614958.6606948 365.8782614
0.75 0.25 36.36953 750.06841 605973.5196481 371.3033551
0.80 0.20 35.80049 749.96305 596450.5671475 377.2315975
0.85 0.15 35.29462 749.86922 587985.7401013 382.6623472
0.90 0.10 34.80149 749.77751 579735.0223654 388.1083620
0.95 0.05 34.30724 749.68536 571466.5783321 393.7238473
1.00 0.00 33.87121 749.60308 564172.5756621 398.8141949

Table 14 Optimization results of the two-bar truss problem (the Tchebycheff method)

w1 w2 x1 x2 f1 f2

0.00 1.00 41.53950 999.20378 815210.6799793 287.4383361
0.05 0.95 41.19935 972.33592 794697.4251825 292.7226726
0.10 0.90 40.88772 947.60435 776169.6889984 297.8485007
0.15 0.85 40.60825 924.88210 759552.8206574 302.7572974
0.20 0.80 40.36523 903.12444 744342.8019673 307.5119808
0.25 0.75 39.66687 840.03759 701673.9931968 322.7247619
0.30 0.70 39.92148 863.67737 717303.8088933 316.8034697
0.35 0.65 39.72091 845.13237 705004.3638403 321.4253678
0.40 0.60 39.51258 827.91629 693350.8808010 326.0974017
0.45 0.55 39.30074 811.55212 682180.3335718 330.8513181
0.50 0.50 39.17830 792.01668 671275.2554480 335.6810005
0.55 0.45 38.97851 776.52838 660998.6148147 340.5997190
0.60 0.40 38.85975 756.87035 650407.1092314 345.9515609
0.65 0.35 38.37393 751.96138 640177.3332190 351.4663137
0.70 0.30 37.82235 749.32296 629866.6517645 357.2186131
0.75 0.25 37.17255 750.21549 619413.8168984 363.2466748
0.80 0.20 36.60370 747.32243 608759.6065755 369.6063875
0.85 0.15 35.81685 752.75429 597834.4861045 376.3608773
0.90 0.10 35.14107 752.75877 586556.4943843 383.5973495
0.95 0.05 36.90597 644.16724 573144.3681195 397.1218504
1.00 0.00 33.87399 745.03459 562503.0589894 400.0066494

pull back the search directions. Using the same ap-
proach as in the weighting method, the values of the
constraints are increased (multiplied by 100 for each ob-
jective, that is gi = 100λi fi−β ≤ 0; the super-objective
β is also increased (β×1000). After increasing the con-
straints and the super-objective, the optimizer converges
smoothly.

A general note to the statically indeterminate truss
problems used above. When selecting the displacement
and total weight (volume) as objectives, the displacement
is not as sensitive to some of the design variables cross
sectional areas. Physically, to minimize the displacement,
the stiffness needs to be increased. Since the geometry
and the topology of the structure are fixed, the only way



295

Table 15 Results of the ten-bar truss problem using the
weighted Tchebycheff method

w1 w2 f1 f2

1 0.00 1.00 114858.84054587 1.30372920
2 0.05 0.95 75917.26217639 1.49070752
3 0.10 0.90 62666.74536810 1.61173730
4 0.15 0.85 57674.10552588 1.74095937
5 0.20 0.80 53759.82908485 1.86525537
6 0.25 0.75 50513.14095987 1.98835088
7 0.30 0.70 47699.01969717 2.11249093
8 0.35 0.65 45152.16458896 2.23865014
9 0.40 0.60 42803.26907408 2.36807109
10 0.45 0.55 40607.90168684 2.50373943
11 0.50 0.50 38529.76726677 2.64655623
12 0.55 0.45 36531.22645056 2.79985125
13 0.60 0.40 34580.91596109 2.96756530
14 0.65 0.35 32668.91770644 3.15094344
15 0.70 0.30 30752.36466149 3.35891021
16 0.75 0.25 28805.87919272 3.59922582
17 0.80 0.20 26795.58887335 3.88647880
18 0.85 0.15 24682.37567927 4.25112141
19 0.90 0.10 22373.48100214 4.74992267
20 0.95 0.05 19664.82323129 5.51973114
21 1.00 0.00 15945.53208383 7.19134173

Table 16 Results of the ten-bar truss problem using the
ε-constraint method

w1 w2 f1 f2

1 0.00 1.00 15930.33838658 7.19950556
2 0.05 0.95 20914.68816803 5.13155444
3 0.10 0.90 25864.58131198 4.03807309
4 0.15 0.85 30826.29426326 3.35040831
5 0.20 0.80 35780.28295944 2.86203497
6 0.25 0.75 40749.20256135 2.49573187
7 0.30 0.70 45711.63529606 2.24354812
8 0.35 0.65 50669.82688126 2.01375450
9 0.40 0.60 55605.63317530 1.80415992
10 0.45 0.55 60572.65933753 1.67021785
11 0.50 0.50 65531.69581605 1.57002894
12 0.55 0.45 70403.35357416 1.55782006
13 0.60 0.40 75437.07387688 1.49392476
14 0.65 0.35 80385.88613412 1.45750160
15 0.70 0.30 85354.06638307 1.41829067
16 0.75 0.25 90335.42369639 1.38315281
17 0.80 0.20 95268.62154318 1.35688732
18 0.85 0.15 100230.48283892 1.33750258
19 0.90 0.10 105209.97445419 1.32262364
20 0.95 0.05 110142.10348170 1.31111391
21 1.00 0.00 115114.75134273 1.30340205

to increase the stiffness is to increase the cross sectional
area. A small increase in the cross sectional area of some
truss members (like the cross-sectional area of bar 5 in
Fig. 8) has little impact on the displacement, but it has
a big impact on the weight. Even after normalization, the

objective corresponding to the displacement is still less
sensitive to the changes of some of the cross sectional
areas. Numerical experiments show that reducing the up-
per bound of the cross sectional area can alleviate this
effect.
All the changes made above just increase the accuracy

of the results. They do not change the nature and magni-
tude of the objectives.

6
Conclusions

This paper details a methodology to deal with biobjec-
tive optimization problems based on approximating the
Pareto set and presenting it to the decision-maker. With
this approximation which is obtained using only three op-
timizations (one at each extremity and one intermediate),
the decision-maker can observe the trade-off between the
objectives and decide where on the Pareto curve the “op-
timal” solution lies. Then, using either the ε-constraint
method or the goal programming approach, he/she can
resolve the optimization to get accurate results. Thus,
even in cases on nonconvex or disjointed Pareto sets, the
approach proposed is a useful tool to the designer.
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Appendix

Results for the two-bar and ten-bar truss problems are
given in Tables 13–16.


