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Optimum shapes of bar cross-sections

N.V. Banichuk, F. Ragnedda and M. Serra

Abstract In this paper, the problems of optimization of
cylindrical bar cross sections are formulated. The func-
tional considered characterizes rigidities, maximum stress
and the areas of the cross-section of the bar. The shape
of the boundary of the cross-section is taken as a de-
sign variable and is found in the case of regular polyg-
onal contours. Using minimax approaches optimal de-
signs have been obtained for simply connected and dou-
bly connected cross-sections having given convex holes.
Investigations performed and complete solutions derived
from the cross-sectional area minimization under rigidity
and strength constraints show the changes of the optimal
shapes as functions of the problem parameter.

Key words optimization, stress, rigidity, beam cross-
sections

1
Introduction

The problems of shape optimization for cylindrical elas-
tic bars arise in structural design in the context of im-
proving their resistance characteristics with regards to
bending, torsion, compression and other statical and dy-
namical loading conditions. Many theoretical investiga-
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tions have been devoted to the rational and optimal de-
sign of bar cross-sections. But up to now there are some
important aspects of optimal shape design which create
difficulties for the effective application of existing tech-
niques and are awaiting solution. This can be explained if
we take into account that the finding of the best shapes
of the bar cross-sections is reduced to problems with un-
known boundaries, which are under investigation in mod-
ern mathematics. The most complicated questions in de-
signing the shape of bar cross-sections are connected with
the definition of the set of admissible cross-sections, inves-
tigation of the local extremum, finding of the global op-
timum and solution of more realistic multipurpose opti-
mization problems. One of the earlier results of shape op-
timization of the bar cross-sections is contained in a fun-
damental work by Saint Venant (1961), where for the
first time the problem of the optimal structural design
was formulated as a problem with unknown boundaries,
which must be found from the condition of maximization
of torsional rigidity under the area constraint. A rigor-
ous solution of this problem can be found in the text by
Pólya and Szegő (1962). It was shown that the bar with
circular cross-section has maximum torsional rigidity if it
is compared with other convex cross-sections having the
same area of the cross-section. The application of sym-
metrization theorems proved that the obtained optimum
is not only a local one but a global one. Various general-
izations of this problem in the case of doubly connected
cross-sections have been studied by Weinberger and Ser-
rin (1978), Banichuk (1975, 1976), Kurshin (1975), Kur-
shin and Onoprienko (1976) and Kurshin and Rastorguev
(1979). The important problem of finding the shape of
the cross-section of the strongest cylindrical column, i.e.
the column which has the largest critical buckling load,
was formulated by Keller (1960) for the set of convex
cross-sections and investigated for the case of the regular
polygonal domain. It was shown that the cross-section of
the strongest column is not a circle but is instead an equi-
lateral triangle and that changing the cross-section from
a circle to an equilateral triangle increases the critical
buckling load by 20.9%. This triangularization is per-
formed under the condition that the cross-sections con-
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sidered have the same area. The problem of the optimum
convex shape for maximum bending stiffness (equilateral
triangle), was solved before by Ting (1963) by purely
geometrical means and later by Karihaloo and Hemp
(1987a) using variational techniques. Banichuk and Kar-
ihaloo (1976) obtained the minimum-weight design of
a solid cylindrical bar that was to act as a shaft or as
a beam at different times during its design life and had
to have certain minimum torsional and bending stiffness.
The shape of a hollow cylindrical bar under the same
conditions was found by Parbery and Karihaloo (1977).
Parbery and Karihaloo (1980) investigated the problem
of determining the cross-sectional shape of a thin-walled
cylinder of constant (but unknown) wall thickness and
given contour length that uses the least amount of mate-
rial to achieve the prescribed minimum stiffness in bend-
ing and torsion. Another solution of the same problem
was obtained by Karihaloo and Hemp (1982) in a closed
formwith the help of parametric representation of the un-
known boundary.

Rational and optimal shapes of beam cross-sections
have been found by Ishlinskii (1940) and Banichuk and
Kobelev (1983) for the case when the plane of bend-
ing is given and the strength constraint is taken into
account. In the same year Karihaloo and Hemp (1983)
solved the problem of finding the shape of a cross-section
of a doubly symmetrical thin-walled cylinder of constant
wall thickness and given contour length, which uses the
smallest possible wall thickness to provide, at least, cer-
tain given rigidities in torsion and bending in a princi-
pal plane. The solution depends on the ratio I0/J0 be-
tween given bending rigidity and torsional rigidity. If
I0/J0 ≤ 1/2 the solution is a circle; if I0/J0 > 1/2 it is
like an ellipse. Since 1983 several other papers about opti-
mum cross-sections have been published. Among them we
can cite that of Karihaloo and Hemp (1987c), who solve
numerically the problem of the optimum section (mini-
mum area) of prescribed torsional and flexural rigidity;
that of Karihaloo and Hemp (1987b) where an approx-
imated analytical solution of the problem of finding the
shape of a plane convex figure of minimum area with tor-
sional constant and least moment of inertia prescribed is
found.

Very recently Lipton (1998) solved the problem of
finding the shaft and fiber cross-section that yield the
maximum torsional rigidity (with imperfect bonding be-
tween matrix and fibers and fixed joint area of fiber cross-
section); Lipton supposes also that the cross-sectional
area is fixed.

Here we cite only results on the design of cylindrical
bars, closely connected with our considerations, and by
no means intend to give observations on shape optimiza-
tion. Some additional results on shape optimization of
bars can be found in the book of Banichuk (1983).

In this paper we initially discuss the formulation of the
classical problem of the maximization of minimal bend-
ing rigidity of a bar, i.e. the maximization of the minimal
moment of inertia of cross-sections. Some generalizations

of the problem for doubly connected cross-sections are
given. Then the problem of finding the best shape of the
cross-section from the condition of minimization of the
maximum stress is formulated and investigated. Special
attention is devoted to the problem of minimum weight
design of cylindrical bars under rigidity and strength con-
straints. The optimal solution is found for the family of
admissible cross-sections having the shape of a regular
polygon.

2
Maximization of bending rigidity

To find the best geometrical characteristics of beams,
rods and bars is an important problem of structural
design. Improvement of cross-section geometry gives us
the possibility to decrease significantly the weight of the
structural elements without losing rigidity and strength.
In this paper we will mainly be interested in the optimiza-
tion of such mechanical functionals as critical buckling
load, strength and rigidity or integral stiffness. Consider
first the cross-section rigidity properties which determine
the resistance of rods against buckling and control lateral
bending. As is well-known, in order to reduce the deflec-
tions of the beam under lateral bending or to increase
buckling load (fundamental eigenvalue) it is necessary to
increase the cross-section moment of inertia under some
isoperimetric constraints. The area S of the cylindrical
bar cross-section Ω (S =measΩ), which determines the
volume V of the bar (V = SL, L is length of the bar),
is supposed to be given. We will consider mainly convex
simply connected cross-sections. The optimization prob-
lem considered consists in finding the boundary Γ of the
cross-sectionΩ which maximizes the minimal moment of
inertia I(Γ, α),

I∗ =max
Γ
min
α

I(Γ, α) , (1)

under the isoperimetric constraint

S(Γ ) =

∫
Ω

dΩ = S0 , (2)

where S0 is a given value of the cross-sectional area, α is
the angle that determines the orientation of the plane of
bending (Fig. 1).

We will consider the case when the applied external
forces act in the same bending plane (problems of lat-
eral bending) but the orientation of this plane is unknown
beforehand and can be taken arbitrarily. This case is
the most important for buckling problems of compressed
columns when loss of stability takes place in the plane
with minimum bending rigidity (minimum moment of in-
ertia). In this case, to optimize the rigidity of the rod (the
critical buckling load of the column) it is necessary to
maximize the minimum moment of inertia of the cross-
section. As was noted by Keller (1960) and followed from
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Fig. 1 Cross-section and reference systems

symmetrization theorems (Pólya and Szegő 1962), to op-
timize the cross-sectional shape of the rod it is required
to consider the family of admissible symmetrical cross-
sections having equal moment of inertia for any neutral
line crossing the centroid. Note that any regular symmet-
rical polygon [from triangular (n= 3) to circle (n=∞),
n is the number of polygon sides] has equal moments
of inertia with respect to any axis. In the following we
will consider regular polygons and investigate their prop-
erties. For the polar moment of inertia Ip of a regular
polygon with n axes of symmetry, we have the following
formula:

Ip =

∫
Ω

ρ2 dΩ , (3)

where ρ2 = x2+ y2. It is supposed that the area of the
cross-section satisfies the condition (2). Taking into ac-
count that for considered symmetrical cross-sections, mo-
ments of inertia with respect to arbitrary axes crossing
the centroid are equal, we have

I =
1

2
(Ix+ Iy) =

1

2


∫
Ω

y2 dΩ+

∫
Ω

x2 dΩ


= 1

2
Ip , (4)

where Ix and Iy are the moments of inertia of the cross-
section with respect to axes x and y of the orthogonal
coordinate system (Oxy) where O is the centroid of the
cross-section (Fig. 2).

In order to evaluate Ip it is sufficient to consider
one elementary triangle OPQ (see Fig. 2) with the po-
lar moment of inertia (Ip)

e, taking into account that
Ip = n(Ip)

e).
If the local orthogonal coordinate systemOηζ is intro-

duced in such a manner that the axis Oη is perpendicular
to the side PQ, then we have (Ip)

e = (Iζ)
e+(Iη)

e. Here
(Iη)

e = b3a/48, (Iζ)
e = ba3/4 are the moments of inertia

of the triangle OPQ with respect to the axes η and ζ,
and a and b are, respectively, the lengths of the height
OT and the side PQ. Using the expression for (Ip)

e, the
isoperimetric equality S0 = n(ba/2), obtained from (2),

Fig. 2 Regular polygonal cross-section

and performing summation of (Ip)
e (e = 1, 2, . . . , n), we

have

I =
1

2
Ip =

n

2
(Ip)

e = S20ϕ(n) , (5)

ϕ(n) =
sin2(πn )+3 cos

2(πn )

12n sin(πn ) cos(
π
n )

. (6)

The dependence of the nondimensional moment of in-
ertia Ĩ = I/S20 on the number of sides n is presented in
Fig. 3.

In the following tilde is omitted. As can be seen from
Fig. 3, the nondimensional moment of inertia I monotoni-
cally decreases when n tends to infinity and the maximum
of I is realized for n= 3. So the optimum is attained for an
equilateral triangle and the worst case corresponds to the
limiting case (n=∞) of the circular cross-section. Opti-
mality of the triangular cross-section between all regular
polygonal domains (of the same area) was first shown
by Keller (1960) in the context of investigation of the
strongest column having the maximum critical buckling
load. Optimality of a triangular cross-section for the class
of symmetrical convex domains has been an unsolved
problem up to now. But by using calculus of variations
it is possible to prove one local property for any regular
polygon with n sides. Apply to its contour Γ an arbi-
trary small symmetrical perturbation that does not vio-
late the convexity of the domain and isoperimetric con-
straint S = S0. For the sake of simplicity, the unperturbed
domain PQR and the perturbed third part P ′KT ′DQ′ of
the boundary are shown in Fig. 4 in the case of a triangu-
lar cross-section.
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Fig. 3 Moment of inertia of a regular polygon versus the number of sides

Fig. 4 Small convex perturbation of a regular polygon

Expression for small variation δI of the moment of in-
ertia I is given by the formula

δI =
1

2
δ

∫
Ω

ρ2 dΩ =
1

2

∫
Γ

ρ2δf dΓ , (7)

where δf is the variation of the boundary Γ measured
in the direction of the external normal to the boundary.
Taking into account the symmetry of the unperturbed
polygon and disturbed boundary with respect to the axis
of symmetry shown in Fig. 4 by dashed lines, we will have

the following representations for the variation of the mo-
ment of inertia:

δI = 3



K∫
P

ρ2δf dΓ +

T∫
K

ρ2δf dΓ


 , (8)

and the area of the cross-section

δS = 6



K∫
P

δf dΓ +

T∫
K

δf dΓ


 . (9)

Using (9) and the isoperimetric condition S = S0 (δS =
0), we obtain the relation

K∫
P

δf dΓ =−

T∫
K

δf dΓ . (10)

The required estimation is performed with application of
(10) and the inequalities

(ρ2)PK ≥ (ρ
2)K , (ρ2)KT ≤ (ρ

2)K , (11)

to (8) for δI in the following manner:

δI ≤ 3


(ρ2)K

K∫
P

δf dΓ +(ρ2)K

T∫
K

δf dΓ


=

3(ρ2)K



K∫
P

δf dΓ +

T∫
K

δf dΓ


 . (12)
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Analogous estimations can be performed for any regu-
lar polygon. Thus δI ≤ 0 and consequently every regu-
lar polygon gives the local maximum for the functional
considered.

Previously we considered only bars with simply con-
nected cross-sections. Suppose now that the cross-section
is doubly connected (the bar has a hole) and the domain
Ω is bounded by a given internal contour Γi (boundary of
the hole) and an unknown external contour Γ . Suppose
also that the internal domain Ωi, bounded by the con-
tour Γi, is convex and its moments of inertia with respect
to arbitrary axes, lying in the plane of the cross-section
and crossing the centroid, are equal. Assume that the area
S of the cross-section Ω is given (S = S0) and that the
boundary Γ of the equilateral triangle, having the area
S = Si+S0 [Si+S0 =meas(Ωi+Ω0)] and the same cen-
troid as the domain Ωi, does not touch the boundary Γi.
The last condition is essential in order to consider free
variations of the external contour Γ for the class of regu-
lar polygons. For this set of considered boundaries Γ ,
the minimal distance between Γ and the centroid, as is
known, is realized for the equilateral triangle. Under the
formulated assumptions, the unknown external boundary
Γ must be found from the condition of optimization of
the moment of inertia I of the considered cross-sectionΩ.
Take into consideration a regular polygon for Γ and use
the following representation for the moment of inertia I of
the bar cross-sectionΩ:

I(n) = Is(n)− Ii , (13)

where the moment of inertia Is of simply connected do-
main Ωi+Ω depends on the number of sides of the poly-
gon and the moment Ii of inertia of the internal convex
domainΩi does not depend on n. The optimization prob-
lem is reduced to maximization of Is(n); we have

I∗ =max
n

I(n) = max
n
[Is(n)]− Ii = Is(3)− Ii . (14)

Thus, the optimal cross-section is an equilateral triangle,
having the centre at the centroid of the domain Ωi.

3
Strength maximization

Consider now the problem of stress minimization for
cylindrical bars having symmetrical convex cross-sections.
We suppose that the plane of the bending of the bar and
applications of external forces is unknown beforehand,
but the limiting valueM0 of the bending moment, acting
in the considered cross-section, is given. Only the nor-
mal stresses, arising in the cross-section are taken into
consideration and the following formula is used for their
calculation:

σ(x, y, Γ, β) =M0
h(x, y, β)

I(Γ, β)
, (15)

where the angle β characterizes the orientation of the neu-
tral line of the bending with respect to the global coordi-
nate system, and h is the distance between the considered
point (x, y) of the cross-section and the neutral line. The
optimization problem consists in finding the boundary
Γ of the cross-section Ω, which minimizes the maximal
stress

σ∗ =min
Γ
max
β

max
(x,y)∈Ω

σ(x, y, Γ, β) , (16)

under the isoperimetric constraint (2).
Define by hm and σm, respectively, the maximal value

of h and σ on Ω, for fixed boundary Γ and angle β, i.e.

hm = hm(Γ, β) = max
(x,y)∈Ω

h(x, y, β) , (17)

σm = σm(Γ, β) =
M0

I(Γ, β)
hm . (18)

As in Sect. 2, we confine our considerations to the case
of symmetrical convex cross-sections bounded by regular
polygons. In this case, the moment of inertia does not de-
pend on β [I = I(Γ )] and the maximum value of h with
respect to β (0≤ β ≤ 2π) and (x, y) ∈Ω is given by

max
β

hm(Γ, β) = maxβ max
(x,y)∈Ω

h(x, y, β) =

S
1/2
0√[

n sin
(
π
n

)
cos
(
π
n

)] , (19)

where n equals the number of sides of the polygon con-
sidered. Note that (19) was obtained with the help of
isoperimetric conditions (2). Using the corresponding for-
mulae (5) and (19) we find the expression for the maximal
value of stress σ in the following form:

σM =max
β

σm =
M0

I
max
β

hm(Γ, β) =
M0

S
3/2
0

ψ(n) , (20)

ψ(n)≡
12
√

n sin
(
π
n

)
cos
(
π
n

)
sin2
(
π
n

)
+3 cos2

(
π
n

) . (21)

The dependence of the maximum stress σM on the num-
ber n of the sides of the polygon is shown in Fig. 5 for the
nondimensional variable σ̃M = σMM−1

0 S
3/2
0 .

In the following tilde is omitted. As can be seen from
Fig. 5, the nondimensional maximum σM = Ψ(n) mono-
tonically decreases when n tends to infinity and the min-
imum of σM (n) with respect to n is realized for n =∞.
So the optimum is reached for the circular cross-section
and the worst case corresponds to the equilateral triangle
(n= 3).

It is possible to show that a circular cross-section gives
the local minimum for the optimized functional for small
variations which do not violate the convexity of the do-
main. To do this, let us consider a circular cross-section
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Fig. 5 Maximum stress versus the number of sides of a regular polygon

Ω and apply to its contour Γ an arbitrary small symmet-
rical perturbation that does not violate the convexity of
the domain and isoperimetric constraint (2) (S = S0). For
the sake of simplicity and without loss of generality, the
perturbed contour in Fig. 6 has three axes of symmetry,
shown by dashed lines.

A small variation of the optimized functional is evalu-
ated with the help of the following expression:

δσM =
1

I
δhm−

hm

I2
δI . (22)

Fig. 6 Small convex perturbation of a circle

Taking into account the formula for a small variation of
the area S of the considered circular domain and the
isoperimetric condition we will have

∫
Γ

δf dΓ = 0 . (23)

Using (23) we can evaluate the first variation of the mo-
ment of inertia

δI =
1

2

∫
Γ

ρ2δf dΓ =
ρ2

2

∫
Γ

δf dΓ = 0 . (24)

Here we used the property that the function ρ(x, y) is
a constant at the points of the boundary Γ (ρ is the radius
of the considered cross-section). Thus, the second term in
the representation (22) is cancelled. As for the first term
in (22), the variation of hm is nonpositive (δhm ≤ 0) as
can be seen from Fig. 6 and consequently

δσM =
1

I
δhm ≤ 0 , (25)

for considered perturbations of the circular cross-section.
As in Sect. 2, it is possible to generalize results ob-

tained in the case of doubly connected cross-sections.
We will consider the bar, where the cross-section Ω is
bounded by the given internal boundary Γi and by an un-
known external boundary Γ , where the shape is found
for the set of regular polygons. Making the same assump-
tion as in Sect. 2 for the case of shape optimization of the
doubly connected domain, we reduce the original problem
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of minimization of the maximum stress to the following
one:

σ∗ =min
n

[
M0hM (n)

Is(n)− Ii

]
, (26)

where Ii is the moment of inertia of the domainΩi, which
does not depend on n. The expressions for the maximum
hM and for the moment of inertia Is(n) are given by (19),
(5) and (6), in which it is necessary to substitute Si+S0
for S0.

4
Minimum weight design of bars under strength and
rigidity constraints

In previous chapters we investigated the problems of
strength and rigidity optimization for cylindrical bod-
ies having the same cross-sectional areas. We were con-
strained by considering the symmetrical polygonal cross-
section. This family of cross-sections does not exhaust the
class of symmetrical convex cross-sections, which have
the same moment of inertia with respect to the arbi-
trary line crossing the centroid. So the problems of global
shape optimization for the family of convex cross-sections
are open up to now. Taking into account the practical
importance of the family of symmetrical polygonal cross-
sections, opposite tendencies in cross-sectional shape
changing to maximize rigidity and minimize the max-
imum stress and also the meaningful effect of optimiza-
tion, it is of interest to consider more general opti-
mum solution problems for symmetrical polygonal cross-
sections.

In this section we will study the following shape opti-
mization problem for the family of symmetrical rods with

Fig. 7 Area minimization of a regular polygon under stress and rigidity constraints: situation (a)

polygonal cross-sections. It is necessary to minimize the
cross-sectional area

J(Γ ) = S(Γ )→min
Γ

, (27)

under the following rigidity and strength constraints:

I ≡ ϕ(n)S2 ≥ I0 , (28)

σ ≡
M0

S3/2
ψ(n)≤ σ0 (29)

where M0, I0 and σ0 are given values of applied bend-
ing moment and the limit values for admissible moments
of inertia and stresses, respectively. Functions ϕ(n) and
ψ(n) are defined by

ϕ(n) =
sin2
(
π
n

)
+3 cos2

(
π
n

)
12n sin

(
π
n

)
cos
(
π
n

) ,

ψ(n) =
12
√

n sin
(
π
n

)
cos
(
π
n

)
sin2
(
π
n

)
+3 cos2

(
π
n

) . (30)

In the following we introduce the nondimensional
cross-sectional area S̃, the optimized functional J̃ , the
moment of inertia Ĩ, the stress σ̃, and the problem param-
eter k by the expressions

S̃ =
S
√
I0

, J̃ =
J
√
I0

, Ĩ =
I
√
I0

,

σ̃ =
σ

σ0
, k =

M0

σ0I
3/4
0

, (31)

and then omit the tilde.
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Under the performed transformations, (27) does not
change and the inequalities (28) and (29) take the form

I ≡ ϕ(n)S2 ≥ 1 , (32)

σ ≡ kψ(n)S−3/2 ≤ 1 . (33)

Now we conclude that the solution of the considered op-
timization problem is dependent on a problem parameter
k. To find the solution of the problem of area S minimiza-
tion under rigidity and strength constraints, it is conve-
nient to transform the inequalities (32) and (33) into the
form

S ≥ Φ(n) , Φ(n)≡ φ(n)−1/2 , (34)

S ≥ γΨ(n) , Ψ(n)≡ ψ(n)2/3 , γ = k2/3 . (35)

It is clear that the optimum value of the minimized func-
tional for each given γ can be presented in the following
manner:

Sopt(γ) = min
n
max {Φ(n), γΨ(n)} , (36)

where the internal maximization consists in finding for
any fixed n the maximum of two numbers written in
brackets, and the external minimization consists in find-
ing the optimal nopt = nopt(γ) which realizes the optimal
value Sopt(γ) of the functional.

In constructing the optimal solution we can encounter
three different situations (a), (b) and (c) as shown in
Figs. 7, 8 and 9, respectively.

The first situation (a), shown in Fig. 7, corresponds
to the case when γ ∈ BI = [0, γ∗ ] and Φ(n) ≥ γΨ(n), for

Fig. 8 Area minimization of a regular polygon under stress and rigidity constraints: situation (b)

n= 3, 4, 5, . . . . Taking into account that Φ(n) and Ψ(n)
are, respectively, monotonically increasing and monoton-
ically decreasing functions of the integer argument n, we
determine γ∗ = Φ(3)/Ψ(3) = 0.74. For the considered in-
terval 0≤ γ ≤ γ∗ the internal maximum in (36) is realized
for Φ(n) and the external minimum with respect to n is
attained for n= 3. Thus for γ ∈BI we have the following
optimal solution:

nopt = 3 , Sopt = Φ(3) = 3.22 . (37)

The second situation (b) shown in Fig. 8, corres-
ponds to the case when γ ∈ Bσ = [γ∗∗,∞] and Φ(n) ≤
γΨ(n) for n = 3, 4, 5, . . . . In this case the properties of
monotonically decreasing Ψ(n) and monotonically in-
creasing Φ(n) and the inequality presented show that
γ∗∗ = Φ(∞)/Ψ(∞) = 0.96. For the considered interval
γ∗∗ ≤ γ ≤∞ the internal maximum in (36) is realized for
γΨ(n) and the external minimum with respect to n is
obtained for n=∞ . Thus for γ ∈ Bσ we have that the
optimal solution corresponds to the circular cross-section

nopt =∞ , Sopt = γΨ(∞) = 3.69γ . (38)

The third situation (c), shown in Fig. 9, corresponds
to the case when γ ∈ BIσ = [γ∗ ≤ γ ≤ γ∗∗]. For this case,
let us determine the values of γ0i ∈BIσ by

γ = γ0i =
Φ(i)

Ψ(i)
, i= 3, 4, 5, . . . . (39)

If γ = γ0i , then the optimal solution corresponds to the
symmetrical i-angular polygon and is given by the follow-
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Fig. 9 Area minimization of a regular polygon under stress and rigidity constraints: situation (c)

ing formulae:

nopt = i , Sopt = Φ(i) = γ0i Ψ(i) . (40)

In this case, the internal maximum in (36) is realized for
Φ(n) if n > i and for γ0i Ψ(i) if n < i. If n = i then the
internal maximum in (36) is realized under the condi-
tion that the first and second expressions are equal, i.e.
Φ(n) = γ0i Ψ(i). Taking into account that Φ(n) and Ψ(n)
are, respectively, monotonically increasing and monoton-
ically decreasing functions, we obtain (40). Find now the
optimal solution for the typical subinterval γ∗ ≤ γ0i < γ <
γ0i+1 ≤ γ∗∗. To do this let us determine the switching point
γsi as

γsi =
Φ(i+1)

Ψ(i)
, γ0i < γsi < γ0i+1 . (41)

This value satisfies the equalities

γsi Ψ(i) = Φ(i+1) = γ0i+1Ψ(i+1) . (42)

If γ0i < γ < γsi and consequently

γΨ(i)< Φ(i+1) = γ0i+1Ψ(i+1)

then the optimal solution is given by

nopt = i , Sopt = γΨ(i) . (43)

If γsi < γ < γ0i+1 then

γΨ(i)> Φ(i+1) = γ0i+1Ψ(i+1) ,

and for this case the optimal solution is presented by

nopt = i+1 , Sopt = Φ(i) . (44)

The optimal solution is presented in Fig. 10 as a function
of the problem parameter γ.

As is seen from Fig. 10 Sopt(γ) is constant and equal
to Φ(3) = 3.22 for the interval 0≤ γ ≤ γ∗ and the optimal
cross-section is an equilateral triangular of constant area.
For γ∗∗ ≤ γ the dependence of Sopt on parameter γ is rep-
resented by the straight line. The tangent at the angle
of inclination of this straight line with respect to γ-axis
is equal to Ψ(∞). Optimal cross-sections have circular
shapes. The corresponding cross-sectional area is propor-
tional to the value of γ. For the interval γ∗ ≤ γ ≤ γ∗∗
we have a piece-wise linear dependence of Sopt on γ. At
the first subinterval γ∗ = γ03 ≤ γ ≤ γ04 our continuous line
Sopt = Sopt(γ) has two parts. The first part (γ

0
3 ≤ γ ≤ γs3)

is characterized by the line that has a nonzero angle of in-
clination with respect to the axis γ. The tangent of the
angle is Ψ(3). For this part the optimal shape of the cross-
section is the equilateral triangular of variable area. The
distribution of the area is given by γΨ(3). The second
part (γs3 ≤ γ ≤ γ04) is represented by the horizontal line
with a squared cross-section of constant area (optimal
solution). The same dependence of Sopt on problem pa-
rameter γ we have for the second γ04 ≤ γ ≤ γ05 and next
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Fig. 10 Optimal regular polygon area S versus problem parameter γ

subintervals (γ0i ≤ γ ≤ γ0i+1, i= 5, 6, 7, . . . ). Note that the
length of subinterval γ0i+1− γ0i is monotonically dimin-
ished with the increase of number i and tends to zero
when i→∞.

5
Some notes and concluding remarks

In the present paper we have examined shape optimiza-
tion problems for cylindrical bars and demonstrated some
possibilities of the effective application of parametric an-
alysis. For simplicity we have studied shape optimization
problems taking into account only the normal stresses
acting in the cross-section of a bent bar. But the opti-
mization approaches described in this paper can also be
applied to the problems of the shape optimization of the
cross-section taking the maximum value of the stress in-
tensity [(σ2+mτ2)1/2 with τ as shear stress, m as given
parameter] as a minimized functional.

We have confined our attention to the case of pure
bending of the bar. It is clear that the problems investi-
gated can be generalized when the torsional rigidity and
torsional stress are also taken into consideration. Corres-
ponding shape optimization problems can be interpreted
as multipurpose design problems, which include two sep-
arate loading conditions: bending and torsion.

We have also focused on the case in which the M0
moment does not change its value. Rigorously speaking,
we have examined only statically determinate cases for
which the equilibrium equations can be integrated sepa-
rately and the bending momentM can be taken as known

beforehand. We have also supposed that the distribution
of the moment is constant along the bar. More compli-
cated statically indeterminate cases require the taking
into account of the behavioural equation as an additional
part of the formulated optimization problem and will
be investigated separately with the help of a proposed
minimax approach, which will include additional stress
maximization with respect to the positioning of the cross-
section.
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