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A finite element optimization technique to determine critical
imperfections of shell structures

A.A. El Damatty and A.O. Nassef

Abstract Geometric imperfections play a significant
role in the evaluation of the buckling capacity of thin-
walled structures. Since the pattern and distribution of
such imperfections take a random variation, the deter-
mination of a critical imperfect shape that leads to the
minimum buckling load becomes a challenge. In this
study, an optimization technique based on binary coded
genetic algorithms is used together with a nonlinear finite
element model to identify the critical imperfection pat-
tern for thin-walled welded structures. The finite element
model is based on a consistent sub-parametric shell elem-
ent that accounts for the effect of both geometric and
material nonlinearities. The binary coded genetic algo-
rithm is used as the optimization means to arrive at the
imperfection pattern leading to the near globally mini-
mum buckling load. A previously developed mathemati-
cal model is employed to describe the imperfection bulges
associated with lines of weldment. The method is demon-
strated by considering the nonlinear stability analysis of
both a circular cylinder subjected to pure axial compres-
sive load and a conical tank under hydrostatic pressure.
The combined genetic algorithm – finite element code is
used to determine the critical imperfection bulge patterns
for the two problems, as well as their associated buckling
loads.

Key words shell structures, genetic algorithms, buck-
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1
Introduction

Thin-walled structures (e.g. tanks and pressure vessels)
are usually constructed by welding curved metal panels.
As a result of the welding process, a geometric depression
(bulge) can occur along the line of weldment. Based on
extensive experimental measurements, Rotter and Teng
(1989) have identified the typical bulges that might de-
velop along the weldment line for large-scale shell struc-
tures. In the same study, mathematical expressions for
these typical bulges were suggested. In practice, along
a line of weldment, a bulge might or might not occur
depending on the quality of the welding process in the
specified location. As such, the imperfections associated
with a certain welding configuration can have a very large
number of possible patterns.
The buckling capacity of thin-walled structures is

greatly affected by the initial imperfection pattern ex-
isting in the structure. The purpose of this study is to
develop a technique that predicts the critical distribution
of bulges that might occur for a given welding configura-
tion and leads to the minimum buckling capacity of the
structure. The technique involves coupling between a fi-
nite element model and a binary coded genetic algorithm.
The study starts by describing the possible imperfection
patterns that might be associated with a welding con-
figuration of a thin-walled structure. This is followed by
a description of the optimization technique that is used
to determine the imperfection pattern associated with the
minimum buckling load. For the purpose of demonstra-
tion, two examples that involve nonlinear stability analy-
sis of thin-walled structures are then presented. In these
examples, the critical imperfection patterns and their
associated buckling loads are determined for a hydrostat-
ically loaded conical tank and for a cylinder subjected to
a pure axial compression load.

2
Imperfection patterns for thin-walled structures

A part of a thin-walled structure is shown in Fig. 1. It
consists of a number of curved panels that are welded to-
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gether using one circumferential weld (H1) as well as four
meridional welds (V1, V2, V3 and V4). Along each line of
weldment, imperfections (bulges) might occur as a result
of the welding process.

Fig. 1 Lines of weldment for a thin-walled structure

Rotter and Teng (1989) have conducted a large num-
ber of field measurements to determine the shape of typ-
ical weld depressions. Based on this study, two mathe-
matical models that describe the weld depression were
suggested. These were labelled as types A and B as shown
in Fig. 2.

Fig. 2 Types of bulge depression due to welding

The profile of types A and B bulges are given by (1)
and (2), respectively,
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where δ0 is the amplitude of the depression (bulge), R is
the radius of the cross-section of the thin-walled struc-
ture, t is the thickness, ν is Poisson’s ratio and λ is the
imperfection’s half wavelength. It should be noted that
the weld depression has an inward direction, i.e. it is dir-
ected toward the axis of revolution of the shell.
For each weld line (H1, V1, V2, V3 and V4), bulges

in the form of types A or B can occur either along the
whole length of the weldment line or at combinations of
certain discrete locations along each line. The geometry of

the shell structure, associated with a certain imperfection
configuration, is modelled in this study using nonuniform
rational B-Splines (NURBS).
The occurrence, or non-occurrence, of weld imperfec-

tions can be modelled by discretizing the weld lines into
a number of equally spaced segments, then by pulling the
points along the segment with displacements obtained
from (1) or (2) on a path normal to the structure’s sur-
face. An engineering decision is taken to choose the num-
ber of different bulges configurations (segments) for both
the meridional (n) and circumferential (m) lines of weld.
It is clear that the larger the values of n andm, the more
accurate the results of the analysis. However, an increase
in the values of m and n would lead to significant in-
crease in the computational time. For demonstration, let
n= 3 and m= 8. For such a case, the maximum value of
the bulges can occur independently at axes A, B and C
(Figs. 3–6) for the meridional welds, and along segments
1 to 8 for the circumferential weld.

Fig. 3 Bulge variation due to meridional weldment at V3
having a peak at axis B

For demonstration, Fig. 3 shows the circumferential
and meridional variation of a bulge resulting from the
meridional weldment V3. In this particular figure, the
bulge is assumed to be localized around axis B and dies
out at axes A and C. Figure 4 shows the variation of
a bulge resulting from the same meridional weldment
(V3). In this case, two peaks for the bulge are assumed to
occur at axes B and C leading to a profile that has con-
stant distribution between the two axes and dies out at
axes A and H1. Two bulge cases that might result from
the circumferential weldment H1 are shown in Figs. 5 and
6. Figure 5 shows the meridional and circumferential vari-
ation of a bulge having a peak value in the middle of
segment 6. In Fig. 6, the bulge extends to have a max-
imum value in the whole length of segment 5 and along
half the lengths of segments 4 and 6.
As shown in Figs. 3 to 6, the meridional weldment

leads to a bulge having a nonlinear distribution [described
by (1) or (2), depending on the assumed type of bulge]
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Fig. 4 Bulge variation due to meridional weldment at V3
having its peak between B and C

Fig. 5 Bulge variation due to circumferential weldment H1
having its peak in segment 6

Fig. 6 Bulge variation due to the circumferential weldment
H1 having its peak between segments 4, 5 and 6

in the circumferential direction and a linear distribution
in the meridional direction. Meanwhile, a circumferential
weldment results in a bulge having a nonlinear distribu-
tion [described by (1) or (2) depending on the assumed
type of bulge] in the meridional direction and a linear dis-

tribution in the circumferential direction. The length Lb
shown in the nonlinear distribution is defined as the dis-
tance at which the ratio δ/δ0 is almost negligible. In this
study, it was decided to choose Lb as the length, from the
centre of the weldment, at which δ/δ0 = 0.005. The extent
in the other direction (the linear distribution) depends on
the length of the weldment and the assumed number of
segments (n andm)

3
Coupling between shell element model, and binary
coded genetic algorithms for critical load
identification

The previous section demonstrated how imperfections
can be localized on axes and segments along the weldment
lines. These localizations divide the weldment lines into
discrete segments within which bulges might or might not
occur. The occurrence of a bulge at a certain localization
can be modelled by a zero-one variable, where zero indi-
cates the nonoccurrence and one indicates the occurrence
of the bulge. Figure 7 shows a possible pattern of imper-
fections along the line of weldments. Each localization has
a unique number associated with it, and is represented as
a bold line if it has a bulge. The inter-changing occurrence
of imperfections, shown in Fig. 7, is only used for demon-
stration, but any of the 20 weld stretches can be either
imperfect or perfect.

Fig. 7 Sample of imperfection pattern

For the twenty welding localizations between panels,
shown in Fig. 7, there can be 220 = 1048576 patterns of
welding imperfections. It is definitely impossible to con-
duct such a large number of analyses. Hence in order to
find the pattern which gives the limit-buckling load, an
optimization method has to be adopted. A typical opti-
mization flow chart for identifying the limit-buckling load
is shown in Fig. 8.
The optimization problem at hand falls in the cate-

gory of zero-one programming problems, where the deci-
sion variables assume a value equal to zero or one, and
the objective function becomes the minimization of the
buckling load. In the presented study, this means that
either the bulge occurred at a localization or not. Since
the objective function of such problem includes nonlin-
ear finite elements analysis, there is a possibility that the
function can be multi-modal. Genetic algorithms (Hadje-
Alouane and Bean 1997) have been shown to have good
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Fig. 8 Flow chart for evaluation of minimum buckling load of thin-walled structures

performance in arriving to near-global optimum solutions
if properly coded and if the proper operators are used.
Binary coded genetic algorithms are used in this paper to
solve the buckling load minimization problem with spe-
cial choices of operators to suit the problem at hand.

3.1
The finite element model

The finite element model, used in this study, is based on
a consistent triangular element that was developed by
Koziey and Mirza (1997). The element was extended by
Damatty et al. (1997a) to include geometric and material
nonlinearities. The material model incorporates a strain
hardening behaviour and is based on the von Mises yield
criterion and its associated flow rule. The inclusion of
both types of nonlinearities allows nonlinear stability an-
alysis of shell structures to be conducted using this fi-
nite element model. One of the main advantages of this
element is being free from the spurious shear models –
that lead to a locking behaviour for thin shell problems
– associated with isoparametric shell elements. This was
achieved by using a consistent formulation that involves
a cubic interpolation for displacements and a quadratic
interpolation for rotations.
As shown in Fig. 9, the element has a triangular shape

and consists of 13 nodes. Ten nodes are used to achieve
a cubic interpolation of the global displacement u, v and
w, that are directed along the global axes x, y and z,
respectively. The rotational degrees of freedom α and β

Fig. 9 Coordinates and degrees of freedom of the consistent
shell element

are interpolated quadratically using 6 nodes; α and β are
rotations about two perpendicular local axes x‘ and y‘, re-
spectively. These axes are located in a plane tangent to
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the surface. The geometry within an element is interpo-
lated quadratically by employing the same nodes used to
interpolate the rotational degree of freedom.
Since the depression bulge is localized in a relatively

narrow region, special attention has to be taken in the
finite element model to assure that the quadratic interpo-
lation of the element produces a good description of the
bulge geometry. In order to assess the suitable number of
elements that has to be used in modelling one side of the
bulge, the following steps are conducted.

1. For a certain value of the radius R and the thickness t,
(3) can be applied to get the appropriate value of λ.

2. This value is substituted into (1) and (2) to evalu-
ate the function δ(x) for each one of the bulges (types
A and B).

3. One side of the bulge was approximated by either
two or three elements. For the case of two elements,
two quadratic curves are used to fit the values {δ(0),
δ(Lb/4), δ(Lb/2)} and {δ(Lb/2), δ(3Lb/4), δ(Lb)},
respectively. For the case of three elements, three
quadratic curves are used to fit the values {δ(0),
δ(Lb/6), δ(Lb/3)}, {δ(Lb/3), δ(Lb/2), δ(2Lb/3)} and
{δ(2Lb/3), δ(5Lb/6), δ(Lb)}, respectively.

4. The bulge profile (Type A or B) is then compared to
the corresponding approximating quadratic function.

5. Steps (1) to (5) are repeated for values of R ranging
from 4 to 7m, using intervals of 1 m, and values of t
ranging from 10 to 16mm, using intervals of 2 mm.

6. Typical plots that show a comparison between the real
bulge, the two and three element approximations are
shown in Figs. 10 and 11.

Fig. 10 Comparison between the real bulges and their geometric representation using the finite elements method (Type A)

The plots shown in Figs. 10 and 11 indicate that at
the locations where significant imperfections occur, type
A bulge deviates considerably from the two-elements ap-
proximation, while being close to the three-elements ap-
proximation. As for the type B bulge, both approxima-
tions were considerably close to the real bulge. This be-
haviour was typically shown for the above considered
ranges of R and t. As such, it is recommended to use at
least two and three elements to model one side of the
bulge for types A and B, respectively. In order to iden-
tify the restrictions that have to be imposed on the model
when simulating an imperfect shell of revolution, a finite
element mesh for the typical shell problem discussed in
Sect. 2 is shown in Fig. 12.
In view of the above discussion, the following re-

strictions have to be imposed on the number and the
size of the elements, when considering the finite element
modelling.

For type A modelling

1. For the three rows of elements adjacent to the merid-
ional weldments, the length of the element in the
circumferential direction (Lc) should be less than
or equal to one third of the bulge length, i.e. Lc ≤
Lb/3.

2. For the three rows of elements adjacent to the circum-
ferential weldment, the length of the element in the
meridional direction (Lm) should be less than or equal
to one third of the bulge length, i.e. Lm ≤ Lb/3.
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Fig. 11 Comparison between the real bulges and their geometric representation using the finite elements method (Type B)

Fig. 12 Finite elements mesh of a thin walled structure with
lines of weldments

Fore type B modelling

1. For the two rows of elements adjacent to the merid-
ional weldments, the length of the element in the
circumferential direction (Lc) should be less than or
equal to one half of the bulge length, i.e. Lc ≤ Lb/2.

2. For the two rows of elements adjacent to the circum-
ferential weldment, the length of the element in the
meridional direction (Lm) should be less than or equal
to one half of the bulge length, i.e. Lm≤ Lb/2.

For both types A and B modelling

1. In the direction where buckling is anticipated (the
meridional and circumferential directions depending
on the loading), the lengths of the element Le should

be less than one fourth of the wavelength of the buck-
ling mode of the perfect structure (Lr); i.e. Le≤ Lr/4,
(where, Le = Lc or Lm).

The first two restrictions are imposed to ensure that
the bulge on one side of the weld is properly simulated by
the proper number of quadratic functions. The third re-
striction is to ensure that the finite element mesh detects
the first buckling mode.
Once the shell structure is modelled using the appro-

priate finite element mesh, the solution is carried out
incrementally by gradually increasing the magnitude of
the load acting on the structure. Iterations are conducted
within each load increment using the Newton–Raphson
method as described in detail by Damatty et al. (1997a).
At a certain increment, if the load acting on the struc-
ture does not exceed its buckling strength, a convergent
solution is achieved (pre-buckling stage). By increasing
the load, the stiffness of the structure decreases and the
structure reaches its limit load (buckling load) when its
stiffness vanishes. Such a limit load can be detected by
the finite element model and can happen either in the
elastic range (elastic buckling) or after an onset of yield-
ing occurs at some locations of the structure (inelastic
buckling).

3.2
Binary coded genetic algorithms

Genetic Algorithms (GAs) are random search methods,
which imitate the genetics of natural evolution. During
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the process of welding panels of shell structures, the local
welding bulge either becomes present or nonpresent de-
pending on the quality control of the welding process.
Hence, the problem of identifying the minimum-buckling
load of shell structures in the presence of welding im-
perfections is a zero-one programming problem, where
an imperfection between one panel and another is either
present or nonpresent. For zero-one programming prob-
lems, binary coding is used with the genetic algorithms.
Since genetic algorithms operate on sample of solution in-
stances where each instance represents an imperfection
pattern, it is important that the solution instances reflect
the physical imperfection pattern.
Each instance is composed of a number of locations

equal to the number of localized panel weldments. A lo-
cation can be filled with either 0 or 1; where 0 indicates
that the localized weldment is performed ideally, and, 1
indicates that the weldment is associated with an imper-
fection. Hence, each location refers to a specific localized
weldment between a pair of panels. An example of a solu-
tion instance and its equivalent pattern of imperfections
is shown in Fig. 13.

Fig. 13 Example of a solution instance

The general procedure of operation of genetic algo-
rithms is given as follows.

1. Generate a random population of instances
2. t = 1
3. while t≤ tmax
(a) evaluate the buckling load Pcr associated with

each instance
(b) apply the instance selection scheme
(c) apply genetic operators (cross-over and muta-

tion)
(d) replace the population with the new one

4. end while
5. Find the best instance in the final population and de-
liver it as the problem solution.

The genetic algorithms starts by generating an initial ran-
dom population P0 = {C1, C2, . . . , CM} of M instances,
where Ci denotes the i-th instance. The pattern of imper-
fections corresponding to each instance is modelled and

the shell structure is analyzed for its corresponding buck-
ling load Pcr

i using the nonlinear finite elements analysis
described in the previous section.
The buckling load values are then used to select in-

stances to be inserted in the consecutive population.
First, elitist selection is applied, where the instances with
the lowest buckling load is copied to the consecutive pop-
ulation. According to Fogel (1996), this selection ensures
the possibility of arriving at the global optimum solu-
tion. Using the buckling load values of the first pop-
ulation as a random sample, a geometric distribution
of the buckling-loads is estimated, and used to select
chromosomes for the application of the following genetic
operators.

1. Single point cross-over
Two instances C1, C2 are selected from the popula-
tion. Both instances are selected at random, where
instances with lower buckling loads get higher prob-
ability of selection. A bit location j is selected at
random and the bit values to the right of the j-th lo-
cation are swapped between C1, and C2.

2. Uniform cross-over
Two instances C1, C2 are selected from the popula-
tion. Both instances are selected at random, where
instances with lower buckling loads get higher proba-
bility of selection. For every bit location j, a random
variable b ∈ [0, 1] is generated. If b is less than 0.5,
the bit values of the j-th location are swapped be-
tween C1, and C2, otherwise their original values are
retained. This operator is useful with low population
sizes, which is needed to decrease the number of the
time consuming nonlinear finite elements analysis.
(Harik et al. 1999).

3. Bit mutation
A chromosome C1 is selected from the population.
This instance is selected at random, where instances
with higher buckling loads get higher probability of se-
lection. A random bit location j is selected and its bit
value is reversed.

4. Whole mutation
A chromosome C1 is selected from the population.
This instance is selected at random, where instances
with higher buckling loads get higher probability of se-
lection. For every bit location j, reverse the bit value
from zero to one and vice versa. This operator adds an
element of uniformly distributed random search at the
early iterations, which can be useful in detecting re-
mote global minima. The application of this operator
decays exponentially over the iterations.

Note that the cross-over operators are used on good
solutions, i.e. ones with low buckling loads. This is needed
as cross-over is in a sense a kind of interpolation method
between solutions. On the other hand, as mutation oper-
ators simulate uniformly distributed random search, they
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are applied on low-quality solutions, i.e. instances with
high buckling loads. In the numerical examples shown at
the end of this paper (Sect. 6), the above set of operators
are applied on each population generating the consequent
population with the following ratios.

1. Population size = 100 solution instances.
2. 6 instances undergo whole mutation during the initial
generations and then that number decreases exponen-
tially to 2 chromosomes.

3. 4 instances undergo bit mutation.
4. 8 instances undergo uniform cross-over.
5. 8 instances undergo single point cross-over.

Each newly generated instance, from any of the above-
described operators, is placed in the new population tak-
ing the location of an instance randomly selected form the
instances of higher buckling loads. In addition, the best
instance is also placed in the new population in the loca-
tion of a high buckling load instance randomly selected
form the population. The remaining instances are then
directly copied to the new population.
The above procedure is repeated over 40 iterations

and the best solution instance in the final iteration is de-
livered as the problem’s solution.

4
Geometric modelling of the imperfect shell structure

The shell structures under consideration in this study
are those which fall in the category of surfaces of revolu-
tion. Although the study is conducted on cylindrical and
conical structures which comprise a wide variety of ap-
plications, the same analysis can be extended to general
surfaces of revolution.

4.1
Geometric model of the shell structure

Surfaces of revolution are generated, by revolving a gen-
eral free form curve, called the generatrix , around a circle
(Fig. 14). If the generatrix is a straight line normal to the
plane containing the circle, the surface becomes a cylin-
der, and, if such a straight line assumes any angle of incli-
nation (other than 90 degrees), a cone is generated. Sur-
faces of revolution are represented in their most general
form using Non-Uniform Rational B-Splines (NURBS).
The generatrix can be a general NURBS curve given by
the following equation:

C(v) =
m∑
j=0

Ri,q(v)Pj , (4)

where, C(v) is any point on the curve corresponding to
the independent variable v ∈ [0, 1], Pj : j ∈ {0, . . . ,m} is
the set of control points approximating the curve and

Fig. 14 Surface of revolution

Rj,q(v) is the j-th rational B-Spline function of degree q
given by the following equation:

Rj,q(v) =
wjNj,q(v)
m∑
i=0

wiNi,q(v)
, (5)

where Ni,q is the piece-wise continuous B-Spline func-
tion, and w is a vector of weights whose elements range
from zero to one. The B-spline function Ni,q is defined
on a vector U , known as the knot vector, which par-
titions the domain of the independent variable v into
subregions, and consequently causing the spline func-
tions to be nonzero in some curve segments. This prop-
erty yields the B-spline curve having enough flexibil-
ity to be shaped in many arbitrary forms. A more de-
tailed description of NURBS, is given by Piegl and Tiller
(1995). The generatrix curve is rotated around a circu-
lar curveG(u), which is also represented by NURBS with
the following parameters Piegl and Tiller (1995): q = 2,
m= 8, w = {1, cos(45), 1, cos(45), 1, cos(45), 1, cos(45),
1}, U = {0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1} and
the 9 control points take the form of a square (Fig. 14).
Both curves are combined together into one NURBS

surface equation

S(u, v) =
8∑
i=0

m∑
j=0

Ri,2,j,q(u, v)Pi,j . (6)

The surface control points Pi,j are generated by re-
volving the generatrix control points along the path of
the circle’s control points (Fig. 14). By substituting the
proper values for the independent parameters u and v,
a cloud of points of the structure can be formed, some of
which can be altered to induce the imperfections.

4.2
Modelling of imperfections

Using the cloud of points generated on the surface of revo-
lution, the meridional or the circumferential imperfection
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is simulated by applying a displacement normal to the
shell structure’s surface according to the procedure de-
scribed in Sect. 2.

5
General procedure

Using the above developed finite element/genetic algo-
rithm model, the procedure to evaluate the minimum
buckling load of a thin walled structure follows these
steps.

1. The weldment locations (both meridional and cir-
cumferential) are identified based on the construction
practice.

2. A decision is taken to select a suitable number of bulge
segments within the meridional and circumferential
weldments.

3. Based on the dimensions of the shell and the bulge
length is calculated using (3).

4. A finite element mesh is developed for the problem fol-
lowing the restrictions described in section Sect. 3.1.

5. A value for the amplitude of the bulge δ0 is assumed
(a decision taken based on the level of quality control
of the weldment).

6. The genetic algorithm/finite element model is applied
to obtain the critical bulge pattern and its associated
buckling load.

Fig. 15 Finite elements mesh for one quarter of the cylindrical structure

6
Numerical examples

To illustrate the procedure described in this paper, the
numerical optimization model was used to determine the
critical imperfection pattern for two thin-walled welded
structures. The classical buckling problem of a circu-
lar cylinder subjected to pure axial compressive load is
studied in the first example. The second example involves
the stability analysis of a liquid-filled conical tank. In
both examples, type B of bulge patterns was assumed
to be associated with the circumferential and meridional
weldments. Description of the two problems and results of
the analyses are presented in the next subsections.

6.1
Cylinder under pure axial compression load

This example considers a vertical circular cylinder hav-
ing a radius of R = 5 metres, a height H = 8 metres
and a thickness t = 12mm. The cylinder is assumed to
be made of steel having a modulus of elasticity E =
2×105MPa, a yield strength σy = 300MPa, and a Pois-
son’s ratio ν = 0.3. The cylinder is simply supported at
both ends and is subjected to pure axial compression
load. Assuming symmetry in the longitudinal direction,
only one half of the length of the cylinder is considered.
In addition, symmetry about two perpendicular axes

located in a horizontal plane is assumed. Thus one eighth
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Fig. 16 Critical imperfection pattern and corresponding
buckling load

of the cylinder is simulated using the consistent shell
element model. The cylinder is assumed to be constructed
from a number of panels welded at specified locations.
Since buckling is anticipated to occur near the supported
edges of the cylinder, only weld depressions that are close
to these edges are considered. Based on (3), and using the
dimensions of the cylinder, the length of the bulge depres-
sionLb is found to be equal to 0.98 metres. The amplitude
of the depression δ0 was assumed to be equal to twice the
thickness of the shell, i.e. δ0 = 24mm. This value might
be too high in the fabrication process, since according to
the API (1987) the permitted imperfection for this case
is 9.8mm.

Fig. 17 Buckling mode

According to Roark and Young (1982), the buckling
wavelength (which is expected to happen near the sup-
port) of this classical problem is given by the following
relation:

"r = 3.44
√
Rt . (7)

For the considered case, the above equation leads to
a value of "r = 0.84 metres. A perspective view of the fi-
nite element mesh for one eighth of the cylinder, showing
the specified weld locations (4 meridional and one cir-
cumferential), is given in Fig. 15. As shown in the figure,
a total number of 384 = (16×12×2) elements are used.
Note that each rectangle in Fig. 15 refers to two triangu-
lar shell elements. Based on the dimensions of the cylin-
der, this finite element mesh satisfies all the requirements
given in Sect. 3.1. The assumed number of bulge segments
in the meridional (n) and circumferential (m) directions
were taken as: m = 8, n= 3. This leads to a total num-
ber of 20 weldments, i.e. 20 decision variables from the
optimization point of view.
Based on the geometric and material parameters of

the cylinder and according to the equation given by Roark
and Young (1982), the elastic buckling load Pelastic of this
cylinder is equal to 27.3 MN. The dimensionless variable
φ is defined as the ratio between the buckling load corres-
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ponding to certain imperfection pattern (Pimp) and the
elastic buckling load of the perfect structure, i.e.

φ=
Pimp

Pelastic
. (8)

The minimum value of φ, denoted as φcr, corresponds
to the critical imperfect pattern. Using the genetic al-
gorithm/finite element model, a minimum buckling load
Pcr = 15.0MN was reached leading to φcr = 0.55. This re-
sult is in agreement with previous experimental evidences
(Roark and Young 1982). The critical imperfection pat-
tern corresponding to this critical load is illustrated in
Fig. 16, where the solid lines represent the locations along
which weld depression occurs. The buckling mode asso-
ciated with this critical imperfection pattern is shown
in Fig. 17, indicating a kind of diamond shape pattern.
According to the ECCS recommendations (SSRC 1991,
pp. 547–550, 594–597), the critical buckling load of this
particular cylinder is 13.9MN. This result indicates that
the above recommendations provide generally a conserva-
tive and safe design for cylindrical shells subjected to pure
compression.

6.2
Hydrostatically loaded conical tanks

Figure 18 shows a photograph of a typical conical tank.
This type of water structures usually consists of a steel
conical shell having a superimposed cylindrical shell (com-
posite shell). The steel shell rests on a reinforced concrete
tower. In a previous study conducted by Damatty et al.
(1997b), it was shown that a composite shell can be re-
placed by a pure cone (by omitting the upper cylindrical
part) that has the same volume capacity. Using the same
thickness, both structures would have the same buckling
capacity. Figure 19 is used to illustrate the state of stresses
acting on a conical tank filled with water. The concrete
shaft directly supports the weight of the fluid in region II.

Fig. 18 Photograph of a typical elevated conical tank

Fig. 19 Conical tank

The weight of the fluid in region I leads to meridional com-
pressive and hoop tensile stresses that are localized at the
bottom of the tank.
The compressive meridional stresses are the main cause
of buckling of this type of shell structures. These stresses
are magnified by local bending resulting from possible ge-
ometric imperfections.
A conical tank having a bottom radius R = 5 metres,

a height H = 8 metres, a thickness t= 12mm and an in-
clination angle θ = 45 degrees, is used as a demonstrative
example. The tank is assumed to be simply supported
at its bottom edge. Due to the stress concentration and
the effect of boundary conditions, buckling is expected to
occur at the bottom part of the cone. Hence, the bulges
resulting for welds at the bottom region are only consid-
ered in the analysis. Symmetry about two perpendicular
axes located in a horizontal plane is assumed. As such,
only one quarter of the cone is considered.
A perspective view of the finite element mesh used to

model one quarter of the cone is shown in Fig. 20 indi-
cating the elements size and the location of the assumed
weld lines (shown in bold lines). Note that each rect-
angle in Fig. 20 refers to two triangular shell elements.
Four meridional weldments and one circumferential weld-
ment are assumed in one quarter of the tank. Again, the
values of n and m are assumed to be equal to 3 and 8
respectively, similar to the previous example. Also, the
magnitude of δ0 was equal to twice the shell thickness,
i.e. δ0=24 mm. As a result of the variation in the ra-
dius, and according to (3), the length of the weld de-
pression (Lb) would vary along the height of the tank.
This leads to a value of Lb at the bottom and at the cir-
cumferential weld equal to 0.98 metres and 1.15 metres,
respectively.
An expression for the buckling wavelength ("r) of

the perfect structure is given by Vanderpitte (1982)
which, when applied to this specific problem, leads to
"r = 1.05metres. Based on the above values of Lb and
"r, the finite element mesh shown in Fig. 20 satisfies the
restrictions of Sect. 3.1. The load acting on the tank is
carried incrementally by multiplying the specific weight
of the fluid by a load factor φ. For each analysis (i.e. each
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Fig. 20 Finite elements mesh for one quarter of the conical structure

Fig. 21 Critical imperfections pattern for the conical tank

imperfection pattern), the load factor is gradually in-
creased till the structure reaches its limit load at φ= φlim.
Analysis was conducted first for the perfect structure
leading to φlim (perfect) = 3.0. The optimization tech-
nique is then conducted to determine the critical pattern
which is illustrated in Fig. 21. The corresponding limit
load factor is denoted as φcr and is found to be equal
to 2.6.
Compared to the perfect structure, this imperfection

pattern leads to a reduction of about 13.3% in the buck-
ling capacity. Previous work by Damatty et al. (1997b)
indicated a reduction of about 35%, by assuming an im-
perfection pattern matching the buckling mode of the
perfect structure. Meanwhile, the formulae incorporated
in the ECCS recommendations (SSRC 1991, pp. 547–550,
594–597), which are based on the research conducted by
Vandepitte (1999) lead to a reduction of about 62.5%.
As such, one can conclude that the ECCS recommenda-
tions provide a conservative design for liquid-filled conical
tanks.

7
Summary and conclusions

This paper lays up a procedure that can be used to ob-
tain a practical estimate of the buckling load of thin-
walled welded structures. Such a buckling load is greatly
affected by the pattern of initial geometric imperfections
existing in the structure. In this procedure, a welding
configuration for the structure is assumed to be known.
Mathematical expressions for the bulge shapes associ-
ated with the welding are applied based on previous ex-
perimental work. The distribution of these bulges takes
a random pattern depending on the quality control of
the weldment at various locations. A numerical model
is developed in this study to determine the critical pat-
tern of bulges, associated with a certain welding config-
uration, that leads to the minimum buckling capacity of
thin-walled welded structures. The numerical model in-
volves a coupling between the binary coded genetic op-
timization technique and a finite elements model. The
decision variables of the optimization model are the dis-
crete localized weldments; where each local weldment can
be either perfect or imperfect, and the critical buckling
load is the function to be minimized. The modelling re-
strictions that have to be adopted in this technique are
presented in the study. Two practical examples are ap-
plied to demonstrate the methodology. In the first ex-
ample, the classical problem of buckling of a cylindri-
cal shell under pure axial compressive load is considered.
The buckling load associated with the critical imperfect
pattern, that resulted from the analysis, coincides with
previous experimental evidence. The second problem in-
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volves studying the stability of hydrostatically loaded
conical tanks. Buckling load obtained from this procedure
is compared with the one associated with an imperfec-
tion pattern having a wavelength equal to the buckling
wavelength of the perfect structure. The comparison re-
veals that such an assumption of imperfection matching
the buckling mode can be overly-conservative and per-
haps unrealistic. As such, the suggested procedure based
on optimization can provide a more realistic and econom-
ical solution.
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