
Struct Multidisc Optim 23, 63–74  Springer-Verlag 2001

A genetic algorithm with real-value coding to optimize
multimodal continuous functions�

M. Bessaou and P. Siarry

Abstract In this paper a newGeneticAlgorithm(GA) to
optimize multimodal continuous functions is proposed. It
is based on a splitting of the traditionalGA into a sequence
of three processes. The first process creates several ap-
propriate sub-populations using the information entropy
theory. The second process applies the genetic operators
(selection, crossover and mutation) on every subpopula-
tion that is so gradually enriched with better individuals.
We then determine the best point s∗ among the best so-
lutions issued from each of the preceding subpopulations.
In the neighbourhood of this point s∗ is generated a pop-
ulation used to initialize a traditional GA in the third
process. In this last process, the population is entirely
renewed after each generation, the new population being
generated in the neighborhood of the best point found.
The neighborhood size is decreased after each gener-
ation. A detailed comparison of performanceswith several
stochastic global search methods is presented, using test
functions of which local and global minima are known.

Key words global optimization, genetic algorithms,
multimodal continuous functions

1
Introduction

Genetic algorithms are stochastic search methods which
derive from a metaphor of the evolution process in na-
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ture (Proceedings 7th Int. Conf. on Genetic Algorithms
1997; Laucasius andKateman 1992;Mitchell 1996). Their
domain of utilization is very large, a review of their im-
plementations and some application domains are given
by De Jong (1975), Goldberg (1989). Among these ap-
plications, the training of concepts, or the recognition of
shapes (Lutton and Martinez 1994) can be mentioned.

Experimental results show that through an appropri-
ate choice of representation patterns of the elements of
the search space and operators, genetic algorithms al-
low to solve a lot of “difficult” problems (Mi 1996) with
reasonable computational costs. According to John Hol-
land, genetic algorithms encourage the emergence and
the maintenance in the population of relatively indepen-
dent “pieces” of solutions, called building blocks (Gold-
berg 1989). The juxtaposition of these blocks, achieved by
the crossover operator, produces complete solutions.

Up to now, genetic algorithms, like most other “meta-
heuritics”, such as simulated annealing or tabu search,
were mainly applied to “difficult” combinatorial opti-
mization problems. Nevertheless, numerous practical ap-
plications need to tackle objective functions depending
on several continuous functions. In such cases, classical
gradient-based methods are quite efficient if both of the
following conditions occur:

(i) the analytical expression of the objective function is
known; and

(ii) the problem is unimodal, i.e. it admits only one opti-
mal solution.

When condition (i) is not satisfied, the calculus of the
gradients is very expensive in CPU time, and may lead
to numerical instabilities, for instance if the objective
function evaluations require the handling of experimental
data (e.g. for identification of models, or for inverse prob-
lems). When condition (ii) is unsatisfied, gradient-based
algorithms are trapped into one local optimum, which
may be very bad in comparison with the best globally op-
timal solution. When gradient-based techniques are inap-
propriate, metaheuristics may be successfully used, since
they make no use of the objective function derivatives and
aim at finding one global optimum.

In the field of product and process improvement, the
use of genetic algorithms (GAs) appears particularly at-
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tractive: for instance, GAs were applied to the design
of turbines (Axelsson 1993), the design of engine blocks
(Fisher 1993), load balancing (Vavak et al. 1995), aero-
dynamic design (Périaux et al. 1995), stiffness maximiza-
tion of laminated plates (Potgieter and Stander 1998),
and optimal reservoir system operation (Wardlaw and
Sharif 1999)

In this paper, we propose a new technique for the
optimization of multimodal continuous functions, using
a genetic algorithm with real-value coding, called RCGA.
RCGA uses several existing techniques such as the real
coding and the composition of sub-populations based on
the entropy theory. The novelty of RCGA lies in the pro-
posal of a careful equilibrium between both tasks usual
in heuristic search, namely “intensification” and “diver-
sification”. RCGA first performs the diversification by
means of subpopulations well dispersed within the whole
search space, which prevents GAs from premature con-
vergence. Intensification is then efficiently performed by
using a population wholly renewed after each generation
and selected within a progressively reduced neighbour-
hood of the best point found.

Before presenting RCGA in Sect. 3, we recall in
Sect. 2 some generalities about genetic algorithms (GAs).
In Sect. 4, we compare the performances of our algo-
rithm with those of several global optimization heuristic
methods, using a collection of test functions, of which
local and global minima are known. In conclusion, we
point out the present perspectives of this work.

2
Principle of genetic algorithms

A GA makes a population, that is a set of configurations
called chromosomes, evolve. This type of algorithm uses
three basic operators: the selection, the crossover and
the mutation (see Fig. 1). The selection operator works
out a new population starting from the current one, by
encouraging the chromosomes having the strongest fit-
ness (degree of adaptation), that is those which are in

Fig. 1 Principle of a genetic algorithm

the neighbourhood of the global minima of the “objec-
tive function”. The crossover operator uses the informa-
tion contained in two chromosomes, in order to build two
others. The mutation performs a random transformation
of a chromosome, in order to bring diversity.

GAs can be viewed like techniques of local search
with two levels of neighbourhoods: a local neighbour-
hood, characterized by the mutation operator (which lo-
cally changes a given configuration), and an extensive
neighbourhood, constituted, for a given population, by all
the configurations that may be obtained by crossover.

2.1
Representation of chromosomes

The first problem met during the utilization of GAs is
the representation of the individuals. This coding is con-
nected to the specifications of the optimization problem.
For the optimization of functions of continuous variables,
the classic binary coding is not well adapted. Indeed GAs
were defined to handle discrete variables of which values
vary with a small step (alphabet). In continuous opti-
mization, the representation of continuous variables using
a finished alphabet causes difficulties. Our attention was
turned to the utilization of real coding. So the x chro-
mosome is coded in the form of a vector of real num-
bers, every component of x represents a variable of the
function f (Mi 1996).

2.2
Selection

During the selection, the “parent” individuals aimed at
producing the “child” chromosomes are chosen. The first
step consists in calculating the objective function value at
every individual. Each individual will then be reproduced
with a probability which, in the case of the minimiza-
tion of functions, is inversely proportional to the value
of the objective function of the individual at hand. Sev-
eral methods exist in the the literature to achieve this
task. In our work we chose to use the “roulette wheel se-
lection” algorithm (called also “stochastic sampling with
replacement”), which is characterized by its simplicity.
The individuals are arranged in the form of adjoining
segments, the length of every chromosome’s segment is
proportional to its selection probability. A random num-
ber, comprised between 0 and 1, is then generated. The
individual of which segment contains the drawn number
is selected. This operation is repeated as many times as
required by the size of the population.

2.3
Crossover

The crossover operator is acknowledged as one of the
main causes of the efficiency of genetic algorithms: it
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Parents Children

a1 a2    a3   a4   a5 a1    a2   a3’ a4’ a5’
⇒

b1 b2 b3 b4 b5 b1 b2 b3’ b4’ b5’

k = 2

Fig. 2 Description of the cross-over operator a′i = b
′
i = (ai+ bi)/2 for i > k

allows us to combine some hopeful schemata and thus
quickly progresses towards the optimal regions of the
search space. The crossover produces new individuals
by combining the information contained in the parent
chromosomes. Good results can be obtained with a ran-
dom matching of the individuals (Goldberg 1989). Each
pair generates two children who replace their parents in-
side the population. Single-point crossover is the simplest
form of this operator: one crossover position is randomly
selected and the variables situated after this point are
exchanged between the individuals, thus producing two
offspring. In Sect. 3.3 we describe the crossover used by
us, which is a particular single-point crossover, shown in
Fig. 2. Other forms of crossover are available, especially
the following ones.

– Multi-point-crossover : m crossover positions are cho-
sen, then the variables between successive crossover
points are exchanged among the two parents to pro-
duce new offspring.

– Uniform crossover : a crossovermask is created at ran-
dom and the parity of the genes (bits) in the mask
indicate which parents will supply the offspring with
which bits.

– Intermediate recombination: that method is usable for
real variables. The values of the offspring variables are
chosen from the values of the parents variables accord-
ing some rule.

chromosome   1 xj(1)
.
.
.

chromosome i xj(i)
.
.
.

chromosome M xj(M)

Fig. 3 Determination of entropy of gene j

3
The proposed algorithm

The problem under consideration is the minimization of
a function f

f :D→R , D ⊂Rn , (1)

where n represents the dimension of the function f ; D
represents the search space

D = {x ∈Rn/Ai ≤ xi ≤Bi, i= 1, . . . , n} . (2)

3.1
Structure of the population

Generally a GA starts with a single population, randomly
generated inside the domain D. One of the difficulties
of GAs is that they often converge too quickly and tend
to make quickly uniform the population of the chromo-
somes. Consequently, they are easily trapped into local
minima of the objective function. This difficulty is mainly
due to the premature loss of diversity of the popula-
tion during the search. To solve in part this problem, we
use another organization of the population at the begin-
ning of the algorithm. The overall idea is the following
one: instead of organizing the population in the form of
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a “flat set” (one single population), we split the popu-
lation into subpopulations. The advantage of this tech-
nique is that it permits an exploration of several minima
of the function at the same time, what allows to keep,
for the second step of the algorithm, only the best point
found.

3.2
Initialization

The composition of the subpopulations greatly influ-
ences the performances of a GA. More varied are these
sub-populations, better is the convergence, in respect to
both the time of convergence and the accuracy of the
solution.

With this aim in view, we used the entropy originat-
ing from the information theory, as suggested by Chun
et al. (1997). Let be M the size of every subpopulation
(see Fig. 3), the entropy of the jth gene is

Fig. 4 Generation of the subpopulations

Hj(M) =
M∑
i=1

M∑
k=i+1

−Pik logPik , (3)

where Pik represents the probability that the value of the
jth gene ofthe ith chromosome is different from the one of
the jth gene of the kth chromosome. It is determined in
the following way:

Pik = 1−
| xj(i)−xj(k) |

Bj−Aj
, (4)

where [Aj , Bj ] is the variation domain of the jth gene.
The average entropy H(M) of the subpopulation is

equal to the average of the entropies of the different genes

H(M) =
1

n
×
n∑
j=1

Hj(M) . (5)

The diversity of the population can be derived from
(5). If, for example, the subpopulation is made up of only

Bohachevsky function

Michalewsicz function

(a)

(b)
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Fig. 5 Distribution of the initial subpopulations (30 indi-
viduals) for two functions of two variables (with a threshold
h= 0.2.) (a) Bohachevsky function, (b) Michalewicz function
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copies of a same chromosome, the average entropy value is
equal to zero. In this case, we can say that it is the same
for the diversity. Therefore the more varied the chromo-
somes, higher the entropy of the population, and the bet-
ter is its “quality”.

Every time a new chromosome is generated, the en-
tropy between this one and the previously generated in-
dividuals is calculated. If this information quantity is
higher than a threshold h, fixed at the beginning, the
current chromosome is accepted. Otherwise, it is rejected
and will be replaced by another one. This process is re-
peated until the M chromosomes of every subpopulation
are generated (see Fig. 4). This method induces a good
distribution of the initial individuals within D. Besides,
it allows us to obtain disconnected subpopulations, that
is to say the chromosomes of each subpopulation are not
generated in the same neighbourhood, whatever its di-
mension may be. Our results for two functions of two
variables (Bohachevsky’ and Michalewicz’), for which the
dimensions ofD are respectively “large” and “small” (re-
spectively -50 to 50 and −π to π for each variable), are
represented in Fig. 5.

3.3
Crossover

Crossover allows us to generate new individuals (chil-
dren) starting from existing ones (parents). In our algo-
rithm, we use a single-point crossover, the children are
built inheriting from their parents the values of their vari-
ables. This operator is performed in the following way:
an integer k, representing a component of the x vector,
is randomly generated between 1 and n−1 (n being the
dimension of the function to be optimized). Two new in-
dividuals may, for example, be created by calculating the
half sum of parental genes, for all the genes comprised be-
tween k and n (see Fig. 2).

This operator is applied in a random way, with a Pc
probability typically comprised between 0.6 and 0.9
(Goldberg 1989).

3.4
Mutation

This operator changes the value of a gene xi, what brings
the diversity among the population. Similarly to the tem-
perature of simulated annealing, the mutation allows the
exploration of the search space so that the algorithm “vis-
its” several minima of the function. This exploration de-
pends on two parameters, the mutation mode of the genes
and the probability Pm of applying this operator.

– If a variable xi is selected to be mutated (practically,
this is done by generating a random number in the in-
terval [0,1]: if this number is lower than Pm, the gene is
mutated, otherwise it stays unchanged), the mutation

−

−

−

−

−

−

−

−

−

−

Fig. 6 Convergence of the algorithm, in function of the prob-
ability of mutation for the Easom function

operator randomly changes the value of this variable
by generating a random number within the variation
domain of xi. This domain must not be kept constant
throughout the algorithm, since the regions not likely
to contain the global minimum must be eliminated.

– Like the crossover operator, the mutation is applied
with a probability Pm, which is classically fixed to
a “small” value throughout the algorithm. However,
the theoretical convergence towards the global opti-
mum of a GA, operating with a constant probability of
crossover (Pc), is ensured, if the probability of muta-
tion Pm(k) follows a given decreasing law, in function
of the generation number k (Davis and Principe 1991).
From a practical viewpoint, like in the case of simu-
lated annealing, we use a fast decreasing rate (other-
wise, a prohibitive number of generations would be
necessary to ensure convergence of the GA towards
the global optimum)

Pm(k) = Pm(0)× exp(−k/α) , (6)

where Pm(0) is the initial value of the mutation prob-
ability [typically Pm(0) = 1], a is calculated so that
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a very low final rate of mutation (10−3) is achieved,
after a maximum number of generations,

α=MaxGen/ log

[
Pm(0)

10−3

]
, (7)

where MaxGen represents the maximum number of
generations.
The decreasing rate used allows a wide exploration of
the search space at the beginning of the algorithm,
and a faster convergence at the end of the GA.
The resulting convergence of the algorithm, repre-
sented in Fig. 6, shows that the performances, relating
both to the speed and to the accuracy of the final so-
lution, are better in the case where the probability of
mutation is variable throughout the successive gener-
ations than if it is kept constant.

3.5
Structure of the algorithm

After having generated the initial subpopulations, as de-
scribed above, the algorithm enters its second step. Dur-
ing this process, the algorithm applies the genetic opera-
tors in order to determine the portion of the search space
D which is likely to contain the global minimum. The
stopping criterion used is the maximum number of gener-
ationsMaxGen, as stated in Fig. 7.

At the end of this step, the best individual of each
subpopulation is determined. Then the best chromosome
s∗ is extracted among all the best individuals previously
found. The point s∗ is used to initialize the genetic algo-
rithm involved in the third step of the algorithm.

Once the promising zone thus determined, we perform
an “intensification” inside this zone to refine the solution
s∗. For that purpose, we use a GA with the same oper-
ators that previously, but handling only one population.
At the beginning of the computation, this population is
generated around s∗ inside a neighbourhood V , which

Fig. 8 Last step of the algorithm

Fig. 7 Second step of the algorithm

is progressively reduced throughout the evolution of the
GA. So, at each generation, a new population is generated
around the best point found (see Fig. 8). The decreasing
law relating to the neighbourhood is the same that the
one used for the mutation probability

V (k) = V (0)× exp(−k/α) , (8)

where V (0) stands for the initial neighbourhood; α is cal-
culated so that the final neighbourhood is small enough
(10−2 in our case),

α=MaxGen/ log

[
V (0)

10−2

]
(9)

(MaxGen is the maximum number of generations during
the last step of the algorithm).

This decreasing rate depends on the shape of the func-
tion to optimize. Indeed, for the functions of which shape
is “complicated”, that is to say comprising several local
minima, a too fast decrease (Fig. 9a) of the neighbour-
hood may eliminate the global optimum from the search
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Fast reduction of the neighborhood : no convergence.

Slow reduction of the neighborhood : convergence of the algorithm.

(a)

(b)

Fig. 9 Influence of the reduction speed of the neighbourhood on the convergence of the algorithm. (a) Fast reduction of the
neighbourhood: no convergence; (b) slow reduction of the neighbourhood: convergence of the algorithm

domain, preventing the convergence of the algorithm to-
wards the wished solution. For instance, in Fig. 9a, the
global optimum was “lost” after three generations. In this
case, it is necessary to have a slower decrease of the neigh-
bourhood (Fig. 9b), allowing a better convergence, but to
the detriment of the CPU time (number of evaluations
of the objective function). For instance, in Fig. 9b, the
global optimum is present after three generations; never-
theless, several generations are still necessary to achieve
the convergence around that optimum.

3.5.1
Stopping criteria of the algorithm

The stopping criterion generally used is the maximum
number of generations, set at the beginning of the al-
gorithm. We retained this idea to control the GA used
at the second stage of the algorithm. But, for the last
stage, as the number of generations necessary for the con-
vergence of the algorithm depends on the shape of the
previously determined promising zone, this criterion is
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not well adapted. Indeed, the search for the optimum of
a “simple” function, having no or few local minima, re-
quires less generations than a “complicated” function, for
which a meticulous exploration of the search domain is
necessary. In consequence, we adopted the following alter-
native criteria.

– Improvement of the solution: after a given number
of generations NbAm, which depends on the dimen-
sion of the objective function, if the algorithm does
not progress, that is to say if the solution s∗ is not
“improved” (from the viewpoint of the value of the ob-
jective function), intensification isstopped.

– Accuracy of the solution: like for the first criterion,
if, after a given number of generations NbPr, the
norm of the difference between the solution s∗ at the
gth generation and the solution got at the generation
g−NbPr is smaller than a given threshold (typically
10−4), the last step of the algorithm (intensification) is
stopped.

These various parameters are controlled in an empiri-
cal way; the quality of the final solution depends on this
tuning. Typically the maximum numbers of successive
iterations without any improvement of the objective func-
tion value, NbAm and NbPr, are set respectively to four
and two times the dimension of the objective function. In-
tensification being the last stage of the algorithm, its end
corresponds to the end of the algorithm.

Table 1 Results obtained for 20 test functions

Test function Rate of success Average NBEVAL AVEERROR

MZ 100 452 3.6×10−4

DJ(F2) 100 449 4.7×10−3

GP 100 270 10−9

R2 100 596 10−12

ES 100 642 3.42×10−9

RC 100 490 2.55×10−3

Z2 100 437 10−10

SH 100 946 6.16×10−4

BH 100 493 4.62×10−11

H3,4 100 324 7.1×10−3

DJ(F1) 100 395 5.7×10−4

S4,5 62 1158 1.2×10−3

S4,7 70 1143 1.4×10−4

S4,10 58 1235 4.23×10−3

DJ(F3) 100 540 0

R5 60 4150 1.1×10−1

Z5 100 1115 9.3×10−4

H6,4 100 937 3×10−2

R10 70 8100 10−1

Z10 100 2190 3.3×10−3

4
Experimentation

4.1
Results from our GA

To test our algorithm, several analytical test functions,
listed in the Appendix, were used. This set of functions
includes some functions having the following features:

– continuous/discontinuous
– convex/nonconvex
– unimodal/multimodal
– quadratic/non quadratic
– low dimension/high dimension

A good convergence of the algorithm requires the tuning
of some of its characteristic parameters (that tuning be-
ing valid for all the handled functions).

– The number of subpopulations nb_pop: after several
tests, this parameter was set to five.

– The number of chromosomes per subpopulationM : by
proceeding in the same way, this number was set to
ten.

– The maximum number of generations MaxGen, used
at the second step of the algorithm, was set to ten.

– We fixed the crossover probability at its classical value
of 0.6 (Goldberg 1989).
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The efficiency of the algorithm is quantified by

– the rate of success, which represents the rate of exe-
cutions leading to the global optimum of the handled
function, among a given number of executions of the
algorithm;

– the number of evaluations of the objective function
NbEval at the end of the execution; and

– the standard deviation AveError between the ob-
tained solution and the exact value of the global opti-
mum of the function.

Because of the stochastic nature of genetic algorithms,
the discussion of results derived from one single execu-
tion of the algorithm is meaningless. So, all the results
reported in this paper are obtained by averaging the re-
sults from 100 executions per function.

The results given in Table 1 show that the global op-
timum generally is reached, since the ratio of success is
equal to 100% for the majority of the tested functions.
The splitting of the initial population into subpopula-
tions and the diversity of these ones contributes a lot
in the obtained results. Indeed, the subpopulations well

Table 2 List of the methods used for the comparison

Method Reference

our algorithm (RCGA) this paper

continuous genetic algorithm (CGA) Chelouah and Siarry (2000a)

enhanced continuous tabu search (ECTS) Chelouah and Siarry (2000b)

continuous reactive tabu search (CRTS min) Battiti and Tecchiolli (1996)

continuous reactive tabu search (CRTS ave) Battiti and Tecchiolli (1996)

taboo search (TS) Cvijovic and Klinowski (1995)

enhanced simulated annealing (ESA) Siarry et al. (1997)

INTEROPT Bilbro and Snyder (1991)

Table 3 Comparison of average numbers of objective function evaluations, achieved with 8 algorithms to optimize 13 functions

Function/Method RCGA CGA ECTS CRTSmin CRTSave TS ESA INTEROPT

GP 270 410 231 171 248 486 783 6375

R2 596 960 480 – – – 796 –

ES 642 1504 – – – – – –

RC 490 620 245 41 38 492 – 4172

Z2 437 620 195 – – – 15820 –

SH 946 575 370 – – 727 – –

H3,4 324 582 548 609 513 508 698 1113

S4,5 1158 610 825 664 812 – 1137 3700

S4,7 1143 680 910 871 960 – 1223 2426

S4,10 1235 650 898 693 921 – 1189 3463

R5 4150 3990 2142 – – – 5364 –

Z5 1115 1350 2254 – – – 69799 –

H6,4 937 976 1520 1245 750 2845 2638 17262

cover the variation domain D at the beginning of the
algorithm, when the solution s∗ is improved only occa-
sionally. The purpose of this step is not to find the global
optimum but mainly to find the promising zone, condi-
tioning the convergence of the GA used at the last step
of the algorithm. We also notice in Table 1 a strong cor-
relation between the dimension of the function, the rate
of success and the number of evaluations of the objective
function. This last one tends to increase when the dimen-
sion increases.

4.2
Comparison with other competitive algorithms

We compared the results derived from our GA with
the results of some published methods, see Table 2.
Among these, simulated annealing and tabu search can be
pointed out. Two variants of tabu search are CRTSmin
and CRTSave (Battiti and Tecchiolli 1996). They they
differ from one another in the value of the objective func-
tion used in the neighbourhood considered to generate
a new point; for the first method, the algorithm uses the
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minimal value, for the second one, it uses the average
value.

Table 3 collects the results obtained for 13 functions
of which dimension is lower than 6, using 8 different
methods. We give, for each function, the average number
of evaluations of the function, calculated over 100 tests.
We point out that the 13 functions were not used by all
the authors.

This comparison shows that the results of our algo-
rithm are similar and sometimes better than those pro-
vided by the other methods. When the average number
of evaluations of our algorithm is superior to the one ob-
tained with some other method, that additional compu-
tational cost is acceptable, because it allows to achieve
a better rate of success.

5
Conclusions

The proposed algorithm shows good performances for
continuous variable optimization of benchmark functions.
Our main contributions lie in the appropriate segmen-
tation of the initial population into subpopulations, ob-
tained by using the notion of entropy to evaluate the “in-
formation” contained in each subpopulation. So, at the
beginning of the algorithm, several subpopulations are
handled in parallel, in order to reduce the search space
for the GA used in the last stage of the algorithm. Dur-
ing these two steps, the mutation probability is not kept
constant, but varies according to a decreasing law, what
allows a better exploration of the search space. The same
decreasing law is used for the reduction of the search
space during intensification.

The main improvements of our algorithm over the
simple genetic algorithm SGA (Goldberg 1989) are as
follows.

– SGA uses binary coding whereas we use real-valued
representation.

– The search space is not kept constant throughout the
exploration of our algorithm, but is progressively re-
duced to surround more efficiently the global opti-
mum.

The method is suitable for solving highly multimodal
problems. It can be applied in various engineering fields,
such as image processing, robotics and circuit design.
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Appendix: list of test functions used

Michalewicz (MZ) (n variables):

MZ(xi) =−
n∑
i=1

sin(xi) ·
[
sin(i · (xi)

2/π)
]2m

, (10)

m= 10, search domain: −π ≤ xi ≤ π, j = 1, n;
n= 2, one global minimum: (x1, x2)

∗ = (2.25, 1.57);
MZ[(x1, x2)

∗] = −1.80.

De Joung F2 (2 variables):

F2(x1, x2) = 100× (x22−x1)+ (1−x1) , (11)

search domain: −2.048≤ xj ≤ 2.048, j = 1, 2;
1 minimum (local and global): (x1, x2)

∗ = (0, 0);
F2[(x1, x2)

∗] = 0.

Goldstein and Price (GP) (2 variables):

GP (x1, x2) =
[
1+(x1+x2+1)2× (19−14×x1+

13×x21−14×x2+6×x1×x2+3×x22
)]
×[

30+(2×x1−3×x2)
2× (18−32×x1+12×

x21−48×x2−36×x1×x2+27×x22)
]

(12)

search domain: −2≤ xj ≤ 2, j = 1, 2; 4 local minima;
one global minimum: (x1, x2)

∗ = (−1, 0);
GP[(x1, x2)

∗] = 3.

Rosenbrock (Rn) (n variables):

Rn(x) =
n−1∑
j=1

[
100
(
x2j −xj+1

)2
+(xj−1)2

]
. (13)

Three functions are used: R2, R5 and R10;
search domain: −5≤ xj ≤ 10, j = 1, . . . , n;
global minimum: x∗ = (1, . . . , 1);
Rn(x

∗) = 0.

Easom (ES) (2 variables):

ES(x1, x2) =− cos(x1)× cos(x2)×

exp
{
−
[
(x1−π)2+(x2−π)2

]}
, (14)

search domain: −100≤ xj ≤ 100, j = 1, 2;
one global minimum: (x1, x2)

∗ = (π, π);
ES[(x1, x2)

∗] =−1.

Branin RCOS (RC) (2 variables):

RC(x1, x2) =
{
x2−

[
5/
(
4×π2

)]
·x21+

(5/π)×x1−6}2+

10×{1− [1/(8π)]}× cos(x1)+10 , (15)

search domain: −5≤ x1 ≤ 10, 0≤ x2 ≤ 15;
3 global minima: (x1, x2)

∗= (−π, 12.275), (π, 2.275),
(9.42478, 2.475);
RC[(x1, x2)

∗] = 0.397887.

Zakharov (Zn) (n variables):

Zn(x) =


 n∑
j=1

x2j


+


 n∑
j=1

0.5j×xj



2

+


 n∑
j=1

0.5j×xj



4

, (16)

three functions are used Z2, Z5 and Z10;
search domain: −5≤ xj ≤ 10, j = 1, . . . ,n;
global minimum: x∗ = (0, . . . , 0);
Zn(x

∗) = 0.

Shubert (SH) (2 variables):

SH(x1, x2) =
5∑
j=1

j× cos[(j+1)×x1+ j]×

5∑
j=1

j× cos[(j+1)×x2+ j] , (17)

search domain: −10≤ xj ≤ 10, j = 1, 2;
760 local minima;
18 global minima: SH[(x1, x2)

∗] = −186.7309.

Bohachevsky (BH) (2 variables):

BH(x1, x2) = x21+2×x22−0.3×

cos(3π×x1)× cos(4π×x2)+0.3 (18)

search domain: −50≤ xj ≤ 50, j = 1, 2;
one global minimum: (x1, x2)

∗ = (0, 0);
BH[(x1, x2)

∗] = 0.

Hartmann (H3,4) (3 variables):

H3,4(x) =−
4∑
i=1

ci exp


−

3∑
j=1

aij(xj−pij)
2


 , (19)

(see the parameter values in Table 4)
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search domain: 0≤ xj ≤ 1, j = 1, 3;
4 global minima: pi = (pi1, pi2, pi3) = ith local mini-
mum (approximation);
f [(pi)] ∼= −ci. One global minimum: x∗ = (0.11, 0.555,
0.855);
H3,4(x

∗) =−3.86278.

Table 4 Hartmann (H3,4) function parameter values

i aij ci pij

1 3 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.0381 0.5743 0.8828

De Joung F1 (DJ) (3 variables):

F1(x1, x2, x3) = x21+x22+x23 , (20)

search domain: −5.12≤ xj ≤ 5.12, j = 1, 3;
oneminimum (local and global): (x1, x2, x3)

∗=(0, 0, 0);
DJ((x1, x2, x3)

∗) = 0.

De Joung F3 (DJ) (5 variables):

F3(xi) =
5∑
i=1

integer value (xi) , (21)

search domain: −5.12≤ xj ≤ 5.12, j = 1, . . . 5;
1 minimum (local and global): −5.12≤ xi ≤−5;
DJ[(xi)

∗] =−30.

Shekel (S4,n) (4 variables):

S4,n(x) =−
n∑
i=1

[
(x−ai)

T (x−ai)+ ci
]−1

, (22)

Table 6 Hartmann (H6,4) function parameter values

i aij ci pij

1 10.0 3.00 17.0 3.50 1.70 8.00 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.10 8.00 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.00 3.50 1.70 10.0 17.0 8.00 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.00 0.05 10.0 0.10 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

(see the parameter values in Table 5)
x= (x1, x2, x3, x4)

T , ai = (ai1, ai2, ai3, ai4)
T .

Three functions are used: S4,5, S4,7 and S4,10;
search domain: 0≤ xj ≤ 10, j = 1, . . . ,4;
10 local minima: aTi = ith local minimum (approxima-
tion): S4,n[(a

T
i )]
∼=−1/ci. One global minimum: x∗ =

(4, 4, 4, 4);
S4,n(x

∗) = −10.40294.

Table 5 Shekel (S4,n) function parameter values

i aTi ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Hartmann (H6,4) (6 variables):

H6,4(x) =−
4∑
i=1

ci exp


−

6∑
j=1

aij(xj−pij)
2


 , (23)

(see the parameter values in Table 6)
search domain: 0≤ xj ≤ 1, j = 1, 6;
4 local minima: pi = (pi1, . . . , pi6) = ith local mini-
mum (approximation);
f [(pi)]∼=−ci.


