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Topology optimization of compliant mechanisms with multiple
materials using a peak function material interpolation scheme

L. Yin and G.K. Ananthasuresh

Abstract In the topology optimization of structures,
compliant mechanisms or materials, a density-like func-
tion is often used for material interpolation to overcome
the computational difficulties encountered in the large
“0-1” type integer programming problem. In this paper,
we illustrate that a gradually formed continuous peak
function can be used for material interpolation. One of
the advantages of introducing the peak function is that
multiple materials can easily be incorporated into the
topology optimization without increasing the number of
design variables. By using the peak function and the op-
timality criteria method, we synthesize compliant mech-
anisms with multiple materials with and without the ma-
terial resource constraint. The numerical examples in-
clude the two-phase, three-phase, and four-phase materi-
als where void is treated as one material. This new design
method enables us to optimally juxtapose stiff and flex-
ible materials in compliant mechanisms, which can be
built using modern manufacturing methods.

Key words material interpolation, topology optimiza-
tion, optimality criteria, compliant mechanism, heteroge-
neous material

1
Introduction

The topology optimization of continuum structures, com-
pliant mechanisms, or materials tries to optimally dis-
tribute material in a fixed reference domain. Employ-
ing a material interpolation function, the finite element
method for the fixed reference domain, and an optimiza-
tion algorithm has been proven to be very successful
in determining optimum continuum topologies (Bendsøe
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1995). There are several key issues in this method. They
include: (i) a well-posed objective function, (ii) appropri-
ate constraints, (iii) appropriate material interpolation
function, and (iv) an efficient optimization algorithm.
Many objective functions and appropriate constraints
are suggested for various problems in the literature such
as stiff structures (Bendsøe and Kikuchi 1988), vibrat-
ing structures (Ma and Kikuchi 1995), compliant mech-
anisms (Ananthasuresh et al. 1994a,b), material design
(Sigmund 1994), tunnel support (Yin et al. 2000; Yin and
Yang 2000a,b), prevention of crack propagation (Yin and
Yang 2000c), etc. However, the other two problems, which
are fundamental and encountered in every application,
are still argued in the literature.
In many applications, we expect the optimal top-

ology of a structure to consist solely of one material and
void. This necessitates a “0-1” type integer parametriza-
tion of the design domain to decide if material should
be placed at a point or not. Obtaining reasonable solu-
tions of the “0-1” type large-scale integer programming
problem is a computationally daunting task. Along the
idea of the homogenization method (Bendsøe and Kikuchi
1988) to relax the “0-1” problem, many methods are sug-
gested to overcome the computational difficulties of the
integer-programming problem by treating the reference
domain as if it is made of a composite material consisting
a solid and void and varying its microstructure. A major-
ity of these methods use density-like material interpolat-
ing functions that continuously vary between 0 and 1. For
such density-like functions, a question often arises as to
whether a corresponding material microstructure physi-
cally exists. This is a concern especially if intermediate
gray-scale densities prevail in the final solution. This is
not a concern in the original homogenization method of
Bendsøe andKikuchi (1988) because it is based on the mi-
crostructure variation of a composite material consisting
of a material and an oriented void. On the other hand,
the widely used density-like function called SIMP (Solid
Isotropic Material with Penalization) model (e.g. Roz-
vany et al. 1995; Zhou and Rozvany 1991) is originally
not intended to correspond to a physical microstructure
(Bendsøe 1989). However, recently Bendsøe and Sigmund
(2000) concluded that there exist physical microstruc-
tures for SIMP functions for a suitably chosen exponent
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η in the following material interpolation function where ρ
denotes the material “density”:

Eijk� = ρ
ηE0ijk� . (1)

They noted that when η is greater than or equal to three,
the SIMP model obeys Hashin and Shtrikman (1963)
bounds on the effective properties of composite materials,
and therefore bears out physical microstructure. How-
ever, since the original problem is a “0-1” type delta func-
tion, it will be interesting to explore more direct ways of
interpolating the material between zero and one. There
indeed exist many continuous functions that approximate
the delta function. In this paper we employ one such func-
tion, which we call a peak function for brevity, and show
that it not only works well but also provides some advan-
tages over previously used material interpolation func-
tions. One of the principal advantages is the ability to
include multiple materials without increasing the number
of design variables in the optimization procedure. A re-
source constraint on the amount of available material can
also be easily included.
By taking advantage of the peak function to interpo-

late the material, we formulate a new problem for com-
pliant mechanisms that are comprised of stiff and flexible
materials in a monolithic structure. We also present an
iterative update scheme to solve this problem using the
optimality criteria method. One of the motivations for
the multimaterial compliant mechanism design problem
is the availability of modern manufacturing methods such
as the shape deposition manufacturing (Rajagopalan
et al. 2000), layered manufacturing with embedded com-
ponents (Bailey et al. 2000), co-extrusion of plastics, etc.
These methods are capable of economical manufacture of
three-phase material designs where void is considered as
one phase.

2
Compliant mechanisms

Compliant mechanisms are elastic continua that are de-
signed to be sufficiently flexible to deform and act like
rigid-link mechanisms. They have many advantages as
described in the recent literature on this subject. Compli-
ance in these mechanisms can exist either in the lumped
form as flexural pivots (the so-called living hinges) or
in the distributed form where the whole structure de-
forms to varying degree. Both kinematics-based (How-
ell and Midha 1996; Mettlach and Midha 1996; Saxena
and Kramer 1998); and continuum mechanics-based (e.g.
Ananthasuresh et al. 1994a; Sigmund 1997; Frecker et al.
1997; Nishiwaki et al. 1998; Hetrick and Kota 1998; Sax-
ena and Ananthasuresh 2000) design methods have been
developed for compliant mechanisms. In the continuum
mechanics-based methods, the material is optimally dis-
tributed in a fixed design domain to define a topology.
In the solutions obtained using such methods, it is not

uncommon to see the semblance of flexural pivots and
relatively rigid segments within the monolithic object. An
example of this is shown in Fig. 1.

Fig. 1 Appearance of flexural pivots in continuum compliant
topologies. (a) Problem specifications, (b) optimized topology

The most general compliant mechanism can consist of
compliant and or rigid segments joined with compliant
and/or rigid (i.e. kinematics) joints excluding the special
case of all rigid segments and joints. Hence, a question
arises as to what is the optimal balance between rigid-
ity and compliance for a given set of problem specifica-
tions. This question can be partially answered by consid-
ering a two-material model where one material is much
more flexible (lower Young’s modulus) than the other.
The second motivation is the need to design compliant
mechanisms to be flexible and strong. Using two or more
materials, it is possible to obtain large deformations with-
out exceeding the strengths of the materials. The third
motivation for pursuing two-material compliant mechan-
ism design is the emergence of manufacturing methods
that are capable of producing heterogeneous parts with-
out assembly and with strong inter-material interfaces.
New design methods are necessary to take full advantage
of such techniques. The fourth motivation is to mimic Na-
ture’s compliant designs that are usually made up of rigid
and flexible materials (Vogel 1995; Full 1997).

3
Problem statement

In the spirit of topology optimization methods for com-
pliant mechanisms, we seek optimal material distribution
in a fixed reference domain so that the mechanism can
most efficiently resist the external forces and at the same
time it can produce maximum displacement at the output
port. We suppose that the optimal mechanism consists of
(n+1) material phases. The (n+1)-st phase refers to the
void (i.e. no material) in order to define holes in the top-
ology of the optimal continuum. Them-th phase material
occupies a domain Ωm, which is a part of the fixed refer-
ence design domain Ω. The external forces and displace-
ment boundary conditions are given on the fixed design
domain, as shown in Fig. 2. The problem we consider here
is linearly elastic in 2-D space although further general-
izations are not precluded. Figure 2a shows an input force
F at the input port Γin, and an expected output displace-
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ment ∆out at output port Γout. We may require that the
output port resist an output force when interacting with
its surroundings. Following the work of Ananthasuresh
et al. (1994a), we use a linear spring of spring constant ks
at the output port to model the work-piece that is being
acted upon. To facilitate analytical formulation, we con-
sider another load condition for the mechanism as shown
in Fig. 2b, which is a unit dummy force f that acts at
the output port Γout in the direction of the output dis-
placement. Then, the output displacement ∆out can be
expressed in the form of the mutual strain energy as

∆out =

∫
Ω

ε(u) :E : ε(v) dΩ =

∫
Γin

F ·v dΓ. (2)

u is the equilibrium displacement field under the input
force F , v is the equilibrium displacement field under the
unit dummy force f .

Fig. 2 Problem definition

Based on previous formulations (Saxena and Anan-
thasuresh 2000) and using the two load conditions of the
mechanism, the design problem can be stated as

minimize


−
∫
Ω

ε(u) :E : ε(v) dΩ∫
Ω

ε(u) :E : ε(u) dΩ
=−

∫
Γin

F ·v dΓ∫
Γin

F ·u dΓ


 (3)

subject to∫
Ω

ε(u) : E : ε(wu) dΩ =

∫
Γin

F ·wu dΓ for all wu ∈ U ,

(4)∫
Ω

ε(v) : E : ε(wv) dΩ =

∫
Γout

f ·wv dΓ for all wv ∈ U ,

(5)

Eijkl(x) =
n∑
m=1

δm(x)E
m
ijkl , (6)

δm(x) =

{
1 if x ∈Ωm

0 if x ∈Ω/Ωm
. (7)

Here, the minimized entity in (3) is a multicriteria objec-
tive function that reflects maximizing the ratio of flexibil-

ity and stiffness measures, and (4) and (5) are the equi-
librium equations for the two load conditions shown in
Fig. 2. They are cast into their weak, variational form,
with U denoting the space of kinematically admissible
displacement field, and ε linearized strain tensor. In (6),
Emijkl denotes the constitutive linear material property
tensor of the m-th elastic material from which the mech-
anism is to be formed. The function δm(x) is a point-wise
function denoting where the m-th phase material exists.
Its value should be zero or one in the optimized design in
order to be manufactured easily. The peak function ma-
terial interpolation model that meets this requirement is
presented next.

4
Peak function material interpolation model

The optimization problem stated in (3) is a discrete opti-
mization problem that is difficult to solve. Thus, relaxed
formulations are commonly used in the literature. Two
relaxed formulations are popularly used. One is the ho-
mogenization method and the other is the SIMP method.
These two and others view the material distribution prob-
lem as a variable microstructural or artificial density al-
location problem. In the SIMP method, such a density is
expressed as shown below for a two-phase material where
void is one “material”,

Eijk� = ρ
ηE0ijk� , (8)

where Eijk� is the relaxed tensor of material properties
in the design domain, ρ the density of the material E0ijk�,
with the parameter η to penalize the intermediate den-
sities in the final solution. For the three-phase material
design the SIMP formulation gives

Eijk� = ρ
η1
1

(
ρ
η2
2 E

1
ijk�+(1−ρ

η2
2 )E

2
ijk�

)
, (9)

where the density of materialE1ijk� is ρ1ρ2 and the density
of material E2ijk� is ρ1 (1−ρ2), with the penalty param-
eters η1 and η2. Thus, the number of design variables ρi
is doubled in the three-phase material model compared
to the two-phase material model. For more than three
phases of materials, the interpolation model in the SIMP
method becomes even more complicated. We present an
alternative material interpolation model that does not
increase the number of design variables as the number
of material phases increases. According to (6) and (7),
we can see that in the material model the function δm
is ideally a δ function. As noted before, a continuous
function is needed for the numerical optimization. Such
a function need not correspond to a physical microstruc-
ture of a material nor be viewed as a density of the ma-
terial provided that the final solution approaches the δ
function model. A number of smooth functions that ap-
proximate the δ function exist (Arfken 1970).We consider
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here the normal distribution function to interpolate the
material properties of multimaterial continuum.
The normal distribution function is given as

exp

[
−
(ρ−µm)2

2σ2m

]
,

where ρ is the variable parameter with mean µm and stan-
dard deviation σm. Using this function, (6) can be rewrit-
ten as a peak function material interpolation model given
by

Eijk� =
n∑
m=1

Emijk� exp

[
−
(ρ−µm)2

2σ2m

]
+Evoidijk� , (10)

with ρ as the relaxed continuous design variable. With

small enough σm, the function exp
[
− (µ−µm)

2

2σ2m

]
is a con-

tinuous approximation to δ-function. That is, if at some
space point x where ρ is equal to µm there will exist m

th

phase material exclusively. Likewise, when all σm’s are
sufficiently small so that peaks are created at the corres-
ponding µm’s, a value of ρ that is different from µm’s gives
rise to a void. The tensor Evoidijk� is chosen to be very small,
but not zero, to avoid numerical problems in the finite
element analysis. Thus, by appropriately choosing µm for
each phase, a single variable ρ can be used to select among
multiple materials and void. For example for a two-phase
material model, (10) becomes

Eijk� =E
1
ijk� exp

[
−
(ρ−µ1)2

2σ21

]
+Evoidijk� (11)

and for a three-phase material model,

Eijk� =E
1
ijk� exp

[
−
(ρ−µ1)2

2σ21

]
+

E2ijk� exp

[
−
(ρ−µ2)2

2σ22

]
+Evoidijk� . (12)

It is just as easy to write down the four or higher phase
material model according to (10).
An additional advantage of the peak function model

is that the design variable is free to take any value be-
tween−∞ to∞ and hence side constraints on the bounds
on the design variables are not necessary in the opti-
mization problem. Furthermore, it is worth noting that
the material interpolation model in (10) intrinsically has
both the upper and lower bounds irrespective of the
variable ρ.
For more than two phases of material, the interpola-

tion model of (10) poses some difficulty in the numerical
procedure. We take the three-phase material design as an
example to illustrate the difficulty and how to overcome
it. In (12), we take the two materials as isotropic with
Young’s modulus for the first phase 100 and the second

phase 10, σ1 = σ2 = 0.05, µ1 = 0, and µ2 = 0.3. The re-
lationship between ρ and Young’s modulus E are shown
in Fig. 3a. It can be seen in this figure that there exists
a point with zero slope on the curve between µ = 0 and
µ= 0.3. This zero slope is a potential source of difficulty
in the numerical calculations. Since all steps for searching
optimal value of ρ depend on the slope of the local point
on the curve, the algorithm may have difficulty to cross
this point to make transition from one material phase to
the other during the optimization process. In such a case,
the initial guess would strongly influence which material
phase exists in any given portion of the reference design
domain. For instance, if the initial value for ρ is taken
as 0.25, the final design might consist only of the second
phase material and the void. Similarly, if the initial value
for ρ taken as 0.1, the final design might consist of the first
phase material and the void. To get a reasonable tran-
sition between the material phases, we begin with large
values of σm (m = 1, . . . , n) in (12), and then gradually
decrease the values after each iteration in the optimiza-
tion procedure until we get a very close approximation to
the δ-function. That is,

σ(k+1)2m = σ(k)2m (1−ω) for m= 1, . . . , n , (13)

(a)

(b)

−

−

Fig. 3 Gradual tightening of the relaxed three-phase mate-
rial interpolation model



53

Fig. 4 A two-phase material compliant mechanism. (a) Specifications, (b) optimal topology, (c) convergence history

where the superscripts (k) and (k+1) denote the k-th
and (k+1)-st iterations, and ω is the rate at which σ2m’s
are decreased. This is pictorially illustrated in Fig. 3b.
By incorporating this into the optimization procedure,
we can get reasonable transition and separation between
different material phases. This is demonstrated in the ex-
amples presented in Sect. 6.

4.1
Material resource constraint

A material resource constraint (i.e. the volume con-
straint) can easily be included using the peak function
interpolation model. As shown in the inequality below,
one design variable ρ is sufficient to pose a very general
constraint,

∫
Ω

n∑
m=1

wm exp

[
−
(ρ−µm)2

2σ2m

]
dΩ ≤ V ∗ , (14)

where wm(m = 1, . . . , n) are the relative weights on dif-
ferent material phases and V ∗ is the available material
resource. An appropriate choice of wm allows us to gain
control over different material phases either individually
or in an integrated manner.

4.2
A note on the numerical examples

Although the material interpolation model proposed in
this paper is very general, in the examples presented in
this paper, we mainly focus our attention on the three-
phase material model. At present, a three-phase material
model is more useful than the others because a two-phase
material model has been used extensively in the litera-
ture and need not be solved again with this new model.
The authors also had presented some two-phase mate-

rial solutions for compliant mechanisms and other prob-
lems in their previous work. There does not yet exist
a three-phase material design for compliant mechanisms
consisting of stiff and flexible materials. Using some of
the modern manufacturing methods, three-phase mate-
rial designs can be fabricated. For instance, shape depo-
sition manufacture (SDM) (Rajagopalan et al. 2000) and
co-extrusion allow fabrication of a heterogeneous product
consisting of stiff and flexible materials. The fabrication
of structures consisting of more than three phases is more
difficult, but is not impossible. However, the need for such
four-phase designs is not yet strongly felt in the applica-
tion domain.

5
Optimality criteria–based solution procedure

5.1
Solution procedure without material resource
(volume) constraint

First, we consider the case where there is no constraint on
the total available volume of the material. The first-order
necessary condition for the minimum of problem stated in
(3) can be obtained as

−

∫
Γin

F ·v dΓ

[ ∫
Γin

F ·u dΓ

]2 ε(u) : ∂E∂ρ : ε(u)+

ε(v) : ∂E∂ρ : ε(u)∫
Γin

F ·u dΓ
= 0 . (15)

The following iterative design variable update scheme is
used to meet the above condition:
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ρ(k+1) = ρ(k)+

∫
Γin

F ·v dΓ

[ ∫
Γin

F ·u dΓ

]2 ε(u) : ∂E∂ρ : ε(u)−

ε(v) : ∂E
∂ρ
: ε(u)∫

Γin

F ·u dΓ
(16)

with limited moving range for ρ(k+1) as shown in (17)
where the superscripts (k+1) and (k) denote the k-th and
(k+1)-st iterations,

ρ(k)(1− ξ)≤ ρ(k+1) ≤ ρ(k)(1+ ξ) . (17)

In the following calculations, we use ξ =
σ
(k)
1
5 .

5.2
Solution procedure with material resource (volume)
constraint

For the material interpolation model using peak func-
tions, the material volume constraint can be written as

∫
Ω

n∑
m=1

wm exp

[
−
(ρ−µm)2

2σ2m

]
dΩ ≤ V ∗ . (18)

For the optimization problem consisting of equations (3),
(4), (5) and (18) and direct calculation method (Yin and
Yang 2000a), the necessary condition for the optimum
can be obtained as

A+ΛD= 0 , (19)

where

A=−

∫
Γin

F ·v dΓ

[ ∫
Γin

F ·u dΓ

]2 ε(u) : ∂E∂ρ : ε(u)+

ε(v) : ∂E∂ρ : ε(u)∫
Γin

F ·u dΓ
,

D =
n∑
m=1

− (ρ−µm) /σ
2
mwm exp

[
−
(ρ−µm)2

2σ2m

]
,

and Λ is the Lagrangian multiplier for the material vol-
ume constraint (18). The above optimality condition can
be used to derive design variable update formulas in many
ways. One of the ways is

ρ(k+1) = ρ(k)
(
−
A

ΛD

)q
, (20)

where the value of the exponent q is selected to obtain
stable convergence of the scheme. This updating scheme
was used by many authors (see, for example Bendsøe and
Kikuchi 1988; Yin et al. 2000; Yin and Yang 2000a). How-
ever, with our present material interpolation we found
this updating scheme converges too quickly to get a satis-
factory separation between different material phases. For
example with three material phases interpolation model,
it leads to only two phase material mechanism consisting
of either the soft material or the stiff material, and the
void. Reducing the value of q helps in slowing the rate of
convergence, but it was not sufficient in this problem. An
alternate method to overcome this problem is discussed
next.
Encouraged by the successful solution of the multiple

phase model by the updating scheme proposed for no ma-
terial resource constraint problem in the last section, we
use the following updating scheme for the material vol-
ume constraint problem,

ρ(k+1) = ρ(k)−
[
A(k)+ΛD(k)

]
. (21)

Then, the Lagrangian multiplier Λ has to be solved using
the equation (18). Typically, this equation can be solved
by the bisection method (see, for example Bendsøe and
Kikuchi 1988). However, the nonlinearity of (18) seems to
make it difficult to obtain proper solution here with the
move limits as in (17). Therefore, instead of using the ex-
act constraint as in (18), we solve the first-order Taylor
series approximation:

∫
Ω

n∑
m=1

wm exp

[
−
(ρ(k+1)−µm)2

2σ2m

]
dΩ =

∫
Ω

B(k) dΩ+

∫
Ω

D(k)
[
ρ(k+1)−ρ(k)

]
dΩ ≤ V ∗ , (22)

where

B =
n∑
m=1

wm exp

[
−
(ρ−µm)2

2σ2m

]
. (23)

Using (22), we get analytical expression for Λ with V de-
noting

∫
Ω�
D(k)ρ� dΩ+

∫
Ωu
D(k)ρu dΩ,

Λ=

V ∗−
∫
Ω

B(k)+D(k)ρ(k) dΩ−V∫
Ωa

D(k)D(k) dΩ
. (24)

where the domain Ω� refers to the domain controlled by
the lower moving limit, Ωu to the domain controlled by
upper moving limit, and Ωa to the active domain con-
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Fig. 5 Example 2. (a) Gradual formation of a three-phase material compliant mechanism with the corresponding material
interpolation model (cyan: flexible; red: stiff), (b) convergence history

trolled by equation (18). As is usual in this method, an
inner loop is needed to decide these domain partitions
(e.g. Bendsøe and Kikuchi 1988; Yin and Yang 2000a).
In this inner loop, we find that Ωa is easily prone to
becoming empty. This is because the immediate dens-
ity domain, which is controlled by (20) or (21), is very
small compared with the domain controlled by the up-
per or lower bounds on the design variables. Very small

or completely emptyΩa poses difficulties during the com-
putation of Λ as is evident from (24). Therefore, we ter-
minate the inner loop before Ωa becomes very small so
that our updating could be continued. This will lead to
a minor violation of the constraint during the calcula-
tion, which tends to improve when convergence is finally
achieved. Example 8 in Sect. 6.4.2 was solved using (22)
and (24).
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Fig. 6 Example 3: Gradual separation and distribution of a three-phase material compliant mechanism (cyan: flexible; red: stiff)

Fig. 7 Example 4: Gradual formation of the mechanism (cyan: flexible; red: stiff). (a) Specification for a three-phase material

compliant mechanism, 100 iterations from the uniform initial guess ρ(0) = 0.4, (b) formation of the mechanisms as the materials
redistribute
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6
Numerical examples

6.1
Compliant mechanism design with a two-phase
material model

6.1.1
Example 1

The specifications for a compliant mechanism are shown
in Fig. 4a. The mechanism is subjected to a vertical force
at the upper left corner. The bottom edge of the mech-
anism is fixed. The output port is located at the mid-
dle of the right vertical edge. This point is expected to
have a displacement along the direction of 45◦ down-
wards. The stiffness of the spring at the output port is
ks = 0.01E

0. Young’s modulus of the manufacturing ma-
terial E = 100E0, where E0 is Young’s modulus of a ref-
erence material. The domain design with dimension l×2l
is shown in Fig. 4a. Black area is prescribed as nonde-
sign material area. The grey area is the design area, in
which ρ is uniformly distributed for the initial design (e.g.
ρ(0) = 0.1). Further, the remaining parameters are cho-
sen as µ1 = 0 , and the start value of 2σ

2
1 = 0.05. The

value of 2σ21 = 0.05 need not be varied in the two-phase
model to get a sensible topology. However, by decreasing
it gradually, the intermediate densities can be completely
eliminated resulting in a “black and white” or “0-1” de-
sign. The final design for this mechanism is shown in
Fig. 4b and the convergence history in Fig. 4c. This result
is similar to the ones obtained using the SIMP and other
two-phase material models.

6.2
Compliant mechanism design with three-phase
material model

To optimally juxtapose rigidity and flexibility in compli-
ant mechanisms, we consider the void, a stiff material and
a flexible material in our three-phase design examples.

6.2.1
Example 2

The problem specifications for the first example of the
three-phase material we present are the same as those
for the two-phase material example discussed above.
The parameters used in this example include: 2σ

(0)2
1 =

2σ
(0)2
2 = 0.1, µ1 = 0, µ2 = 0.5, ks = 0.1E

0, E1 = 10E2 =

100E0, ω = 0.005, ξ = σ
(i)
1 /5.

The initial guess for this problem is shown in the
first image in Fig. 5a where cyan area denotes the sec-
ond phase (flexible) material, and the red area the first
phase (stiff) material. The solution images are shown in
Fig. 5a after every 100 iterations to illustrate how the ma-
terial distribution takes place. The change of the material

model is also shown below each image. The final image
in Fig. 5a is the final design. Figure 5b is the convergence
history. Although the two materials and void are clearly
separated in the final design, some isolated cyan cells re-
main. This is because during calculation, we uses a special
filtering scheme in trying to get the flexural pivot. For the
other examples presented next, we do not use this filtering
technique.

6.2.2
Example 3

We solved the above example using a different set of pa-
rameters: 2σ

(0)2
1 = 2σ

(0)2
2 = 0.05, µ1 = 0, µ2 = 0.3, ks =

0.1E0, E1 = 10E2 = 100E0, ω = 0.005, δ = σ
(i)
1 /5. The

initial guess was uniform density of ρ(0) = 0.35. The re-
sults are shown in Fig. 6. Although the topology is the
same as before, the shape and size are substantially dif-
ferent. Nevertheless, both the solutions resemble the top-
ology obtained using the two-phase material model.

6.2.3
Example 4

In this example, the problem specifications are as shown
in Fig. 7a where two input forces symmetrically act on
the vertical sides of a square design domain. An out-
put displacement is expected at the midpoint of the up-
per edge of the design domain. The four corners are
held fixed. Initial distribution of the material is uniform
with ρ(0) = 0.4 except a red area at output port where
stiff material is prescribed as nondesign area. The ma-
terial distribution in Fig. 7a is after 100 iterations from
the initial guess. The parameters used are as follows:
2σ
(0)2
1 = 0.1, 2σ

(0)2
2 = 0.2, µ1 = 0, µ2 = 0.5, ks = 0.1E

0,

E1 = 10E2 = 100E0, ω = 0.005, δ = σ
(i)
1 /5. The results

are shown in Fig. 7b.

6.2.4
Example 5

The specifications for the last example of the three-phase
design are shown in Fig. 8a. An input force is acting at
the upper left corner in the downward direction and an
output displacement is expected at a point along the bot-
tom edge towards right. The vertical edge on the right
is held fixed and the bottom edge is restrained in the
vertical degree of freedom but is free to move in the ho-
rizontal direction. Uniform distribution of ρ is used for
the initial design. The distribution in the Fig. 8a is after
100 updating calculations. Figure 8b shows the mate-
rial separation and topology formation. The final image
in Fig. 8b is the final design. From the figures, we ob-
serve after 800 iterations the distribution of material
becomes stable. A clean separation of the two materi-
als and the void can be seen in this example. At the
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Fig. 8 Example 5: (a) Specification for three-phase material compliant mechanism design, 100 iterations from the uniform initial

guess ρ(0) = 0.4, (b) gradual formation of the mechanism (cyan: flexible; red: stiff)

lower left corner, the flexible (cyan) material connects
the stiff (rigid) material segments indicating a flexural
connection.

6.3
Four-phase material compliant mechanism design

6.3.1
Example 6

It is not difficult to get more than three or higher phases
of material in a compliant mechanism design. Here, we

only give an example up to four-phase material compliant
mechanism. The problem specifications are the same as
the last example in the Sect. 6.2, but we use a four-phase
material model. We use the following parameters in the
calculation: ρ(0) = 0.55, 2σ

(0)2
1 = 2σ

(0)2
2 = 2σ

(0)2
3 = 0.05,

µ1 = 0, µ2 = 0.3, µ3 = 0.5, ks = 0.1E
0, E1 = 2E2

= 10E3 = 100E0, ω = 0.0065, δ = σ
(i)
1 /5. In Fig. 9, the

red area refers to the first phase (stiffest) material, the
green the second phase (moderately stiff) material, and
the blue the third phase (flexible) material. The first
image is after 100 updating calculations from the uni-
form initial guess and the final image is the converged
solution.
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Fig. 9 A four-phase material design for a compliant mechanism (red: very stiff; green: moderately stiff; blue: flexible)

6.4
Two and three-phase material compliant mechanism
design with material volume constraint

6.4.1
Example 7

A two-phase material is considered to solve the first ex-
ample involving a volume constraint. The specifications
for this are the same as those for Example 5. The up-
per bound on the volume, V ∗, was 0.4Ω, where Ω is
the area of the design domain. The following parame-
ters were used in the numerical calculation: ρ(0) = 0.4,
2σ
(0)2
1 = 0.06, µ1 = 0, ks = 0.1E

0,E1 = 100E0, ω= 0.008,

δ = σ
(i)
1 /5.

Fig. 10 A two-phase material design for a compliant mechanism with material volume constraint. (a) A two-phase material de-
sign for a compliant mechanism with material volume constraint, (b) the convergence history for the material volume constraint
and objective function

The update scheme in (20) was used to solve this prob-
lem. Figure 10a shows the optimal topology, and Fig. 10b
shows the iteration history of the objective function and
the volume constraint respectively.

6.4.2
Example 8

This example is concerned with the three-phase mate-
rial compliant mechanism including the material volume
constraint. Equal weights were given to the stiff and flex-
ible materials. That is, w1 = 1 and w2 = 1 in (18). The
problem specifications are the same as those of Example
5, but we use a three-phase material model and mate-
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Fig. 11 Example 8. (a) A three-phase material design for a compliant mechanism with material volume constraint (red: very
stiff; blue: flexible), (b) the convergence history for the material volume constraint and objective function

rial volume constraint. The parameters used in this cal-
culation were: ρ(0) = 0.4, 2σ

(0)2
1 = 2σ

(0)2
2 = 0.06, µ1 = 0,

µ2 = 0.5, ks = 0.1E
0, E1 = 10E2 = 100E0, ω = 0.008,

δ = σ
(i)
1 /5. We prescribed the volume constraint V

∗ as
0.4Ω, where Ω is the area of the design domain. The
update scheme in (21) and (24) was used to solve this
problem. In Fig. 11a the red area refers to the first
phase (stiff) material, and the blue the third phase
(flexible) material. The first image is after 100 itera-
tions from the uniform initial guess and the last image
is the converged solution. The convergence histories
of the objective function and volume constraint are
shown in Fig. 11b. Small violation of the volume con-
straint can be seen in Fig. 11b. The reason for this

was explained in Sect. 5 and was reasoned that this is
innocuous.

7
Conclusions

In this paper, we proposed a new material interpolation
model, called the peak function model , using a linear com-
bination of a normal distribution functions. This model
makes it easy to include multiple materials in the de-
sign without increasing the design variables. There is con-
siderable flexibility to control the material selection and
separation during the optimization process. There is no
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need to impose side constraints on the design variables
as the model has intrinsic lower and upper bounds on
the material property tensor irrespective of the value of
the design variable. By gradually adjusting the param-
eters in the model to create multiple peaks, the final
solution can be made to posses pure materials by avoid-
ing intermediate values. Consequently, the need to com-
ply with the existence of physical microstructures that
satisfy variational bounds is averted. The material re-
source constraint can be exercised freely to control the
volume of individual phases or the combined heteroge-
neous structure. Further extensions and the mathemati-
cal implications of this new material interpolation model
in the topology optimization will be considered in a fu-
ture publication. Numerous examples solved using this
model show that compliant mechanisms consisting of
flexible and stiff materials can easily be designed. Thus,
this method provides a partial answer to an important
question: for a given problem specification how much com-
pliance is needed and where is it needed in the design
domain? The designs reported in this paper could be
manufactured using some of the modern manufacturing
techniques that are specifically oriented towards hetero-
geneous structures.
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