
Struct Multidisc Optim 23, 24–33 Springer-Verlag 2001

On the use of energy minimization for CA based analysis in
elasticity

P. Hajela and B. Kim

Abstract There has been recent interest in exploring
alternative computational models for structural analy-
sis that are better suited for a design environment re-
quiring repetitive analysis. The need for such models is
brought about by significant increases in computer pro-
cessing speeds, realized primarily through parallel pro-
cessing. To take full advantage of such parallel machines,
however, the computational approach itself must be revis-
ited from a totally different perspective; parallelization of
inherently serial paradigms is subject to limitations intro-
duced by a requirement of information coordination. The
cellular automata (CA) model of decentralized computa-
tions provides one such approach which is ideally tailored
for parallel computers. The proposed paper examines the
applicability of the cellular automata model in problems
of 2-D elasticity. The focus of the paper is in the use of
a genetic algorithm based optimization process to derive
the rules for local interaction required in evolving the cel-
lular automata.

Key words cellular automata, structural analysis, evo-
lutionary methods

1
Introduction

Improved efficiency of numerical simulations is a core
issue in the development of the next generation of
computer-based design systems. Not only will such sys-
tems be used for design of very complex artifacts, but
they will have to be tailored for a more effective interface

Received August 28, 2000

P. Hajela and B. Kim

Mechanical Engineering, Aeronautical Engineering and Me-
chanics, Rensselaer Polytechnic Institute, Troy, NY 12180,
USA
e-mail: hajela@rpi.edu

with the human designer. There is some agreement that
for the human designer to be effective in their role, an-
swers to “what- if” questions typically posed during a de-
sign cycle must be available in an expeditious manner.
Towards this end, there has been considerable activity in
the MDO community in developing methods for function
approximations (Guinta 1997) which provide surrogate
models for use in design in lieu of more expensive “exact”
calculations. In many instances, however, these surrogate
models themselves require substantial numerical data to
establish, and such data comes from either physical or nu-
merical experiments. As design optimization moves into
addressing practical scale problems, the computational
costs associated with numerical experiments has gone up
sharply. This bottleneck has continued to develop despite
a rapid increase in computer processing speeds over the
past decade. While such speeds continue to double every
18 months, there is a growing realization that the silicon
technology based processor is rapidly approaching phys-
ical constraints that would preclude further dramatic
increases in processing speeds. The obvious answer lies in
using massive arrays of processors, acting in parallel, to
perform lengthy computations.

The use of parallel processing, however, is not with-
out its own challenges. Two distinct paradigms have re-
ceived considerable attention in the literature. The first
deals with optimization of existing code to make it more
amenable to improving processing speeds on a parallel
computer. This strategy was extensively pursued in com-
putational fluid dynamics, and to a lesser extent in com-
putational solid mechanics. A second approach is based
on decomposition of the analysis domain into subdo-
mains, with analysis of different subdomains being per-
formed on different processors. The substructuring con-
cept in finite element analysis (Zienkiewicz and Taylor
1989) is an example of such an approach, and has been
reported with varying degrees of success. Almost all ap-
plications of the approach, however, report the common
problem of a decreasing rate of increase in processing
speeds with additional processors. With an increase in
processors, the overhead associated with coordination of

25

information among the decomposed subdomains over-
whelms any increase in processing speed. This is common
to all analysis that is rooted in serial thinking. There
is very clearly the need for developing new algorithms,
drawn from and developed in a parallel processing frame-
work. The cellular automata approach is an example of
such a concept, and has been studied here in the context
of problems in 2-D elasticity.

Cellular automata are fully discrete models of a physi-
cal system. They emulate systems in nature which exhibit
sophisticated collective information-processing through
local rules of interaction with their nearest neighbours.
In this regard, they offer an approach wherein distributed
processors interact via restricted communication path-
ways to perform collective information-processing. Since
information processing in such systems is intrinsically
parallel, they are naturally amenable to implementation
on massively parallel computers with minimal loss in ef-
ficiency for coordination requirements. Examples of such
systems include the efficient foraging and construction ac-
tivities in ant colonies (Pasteels and Deneubourg 1987),
production of multicellular organisms from single amoeba
cells (Devreotes 1989), and the PDP model of the bio-
logical brain (Rumelhart et al. 1986). This model of com-
putation has been adapted in a number of combinatorial
mathematics and computer science applications, and in
computation of fluid flow properties (Hardy et al. 1976;
Orszag and Yakhot 1986). In the context of the latter,
a form of cellular automata referred to as the lattice
gas model has received considerable attention. A lattice
gas structure has been shown to be a realistic model of
the equations of hydrodynamics, and to provide a simple
framework for the development of a kinetic theory (Roth-
man and Zaleski 1997).

The rules for evolving such cellular automata, how-
ever, are generally not known a priori. They are generally
established on the basis of physics governing a particu-
lar problem, and the model is sensitive to this choice.
The rules can involve well known concepts such as con-
tinuity in flow, force equilibrium, or momentum conser-
vation, or may be specific equations relating values of
state variables at various points in the discrete system
to those at neighourhood sites. When using the latter
approach, there could be problems where such relations
may not be readily apparent, and here the user would
be expected to experiment with different laws of interac-
tion to identify one that is useful in a particular problem.
This form of experimentation would also be required in
those cases where the physics of the problem is not prop-
erly understood. The present paper describes the cellular
automata approach in the analysis of 2-D elastic struc-
tures. The focus is on describing how physical principles
or known problem heuristics can be effectively combined
to develop rules of cellular automata evolution that are
pertinent to a given problem. Central to this approach
is the rule discovery or learning process, and for which
a genetic algorithm (GA) based search process is used.
Subsequent sections of this paper describe the cellular

automata approach and its adaptations in elasticity in
greater detail.

2
CA evolution and rules of interaction

One can think of cellular automata as a stylized universe
where space is represented by a uniform grid. The cells
formed by such a grid contain a few bits of data, and col-
lectively, this data describes the state of the system. The
state of all cells are then advanced in discrete time steps
following some “laws of the universe” which are generally
in the form of a simple recipe through which each cells
updates its state from that of its closest neighbours. To
better understand how cellular automata function, con-
sider a one-dimensional grid of cells to define a binary
state system as shown in Fig. 1, where each cell can take
on a value of 0 or 1.

Fig. 1 One-dimensional CA model

Assume further that the neighbourhood of any cell
is defined as itself and the two adjacent cells. A simple
local rule that can be used to evolve this binary state sys-
tem from one discrete time-step to the next is that each
cell state assumes a value that is a “majority vote” of
the 3 cells that define its neighbourhood; boundary cells
are flipped from a 0 to 1 or vice versa. This updating
procedure is shown in Fig. 2. Application of this rule to
the 1-D cellular automata for two time steps is shown in
Fig. 1. Similar rules can be developed for cellular auto-
mata models in higher dimensions.

Fig. 2 Majority vote rule

Such a model is naturally amenable to implementa-
tion on massively parallel machines – the temporal up-
dating of the state of different cell groups can be assigned
to different processors. Since all such operations are per-
formed simultaneously, proper load distribution among
processors is not an issue of serious concern. Further-
more, minimal amount of information must be exchanged
among processors at the end of each time step. The key

26

to the success of this parallel distributed approach is that
the proper rule for updating the states be available. A rule
different from the “majority vote rule” of Fig. 2 would
produce a different cellular automata evolution pattern.
The pertinent question then is whether appropriate rules
of interaction can be derived for a given problem of inter-
est. The present work explores the use of soft computing
based optimization techniques in this problem.

To illustrate this concept, we revert to the one-dimen-
sional binary state cellular automata described above.
Assume that while the converged state of the system
is known, the “majority vote” rule for evolution is not
known, and a derivation of this rule is the object of the
optimization process. Since the rule is a string of binary
numbers, a genetic algorithm based search process is most
appropriate for this optimization. A stepwise process can
be outlined as follows.

Step 1. A population of 8-digit binary bit strings (rules)
is generated at random. Each bit of this string
corresponds to the output of one of the eight
unique combinations of a 3-digit binary bit string
representing the 3 cell neighbourhoods.

Step 2. Each rule in this population of rules would be ap-
plied to the same initial state (one at a time), and
the state evolved to some converged final configu-
ration. The similarity between the converged and
known final state of the system would be the fit-
ness assigned to the selected rule. This process is
repeated for each rule in the population.

Step 3. Using the fitness of rules in Step 2, the traditional
selection, crossover, and mutation operations of
a GA are performed to maximize the rule fitness.

Step 4. The process is repeated from Step 2 to conver-
gence of the GA evolution process.

The converged rule obtained from this simulation
should be the “majority vote rule” which was responsi-
ble for generating the desired state. This rule learning
process can be extended to a problem with higher dimen-
sions. The principal issue in this case would be a new
definition of the neighbourhood of a particular cell site.
In 2-D problems, examples of a neighbourhood definition
are shown in Fig. 3. If the majority vote rule were to be
implemented for the N-S-E-W definition of the neigh-
bourhood, the rule length would change from 8 bits for
the 1-D CA model to 32 bits, given that there would be

Fig. 3 Set of possible neighbourhoods of interaction

32 uniquecombinations of the 5 cell states (the site and
its four neighbours) that would be involved in the voting
process.

It is clear from the foregoing example that the two
most important factors in evolving a cellular automata
are the definition of a cell state and of its neighbour-
hood of interaction. In problems of structural analysis,
for example, the definition of the cell states may involve
quantities such as the local stiffness, strain or stress in
place of a simple binary state discussed in the previous
example. The neighbourhood would also be subject to se-
lection. While such neighbourhoods can extend beyond
the immediate neighbours, the motivation for parallel im-
plementation behind the cellular automata approach re-
quires that they be kept as compact as possible. The
rule for evolving such states could be based on known re-
sults, as in the example described above. Hajela and Kim
(1999) describe a process for structural analysis prob-
lems, where known numerical solutions from finite elem-
ents are used to derive rules for interactions. When ap-
plied to a discrete representation of the structure, these
rules produce results similar to those that would be ob-
tained from a finite element solution. It was possible to
add some generalization capability to the process. In the
paper by Hajela and Kim (1999), this would developed
by identifying rule sets for many different load cases, and
by using a neural network to build the functional rela-
tionship between the load set and the corresponding rule
of interaction. The motivation in this case was that if
a general set of rules for evolving cellular automata for
a given structural system could be derived, then such
a model would be extremely efficient for structural re-
analysis required during design optimization, particularly
when implemented on a massively parallel computing
architecture.

The approach used in the present work does not re-
quire a known solution to derive the rules of interac-
tion for the cellular automata problem. Instead, it is
based on using well-known principles from solid mechan-
ics, more specifically, the principle of minimum strain
energy to derive these rules. In this context, two dif-
ferent plane strain problems have been studied, the an-
alytical solutions for which are known. Both displace-
ment and strain components are selected as possible cell
states in the evolution process. The neighbourhood of
interactions are actually selected as part of the optimiza-
tion process. Both binary coded and real-valued GA’s
are used in optimization. The numerical results clearly
indicate the need to determine the globally optimal solu-
tion, as sub-optimal rules tend to generate relatively poor
solutions.

3
Energy minimization and CA evolution

For an elastic domain D subjected to given static load
field F , the equilibrium strain state would be one that

27

yields a minimum strain energy. For a 2-D problem in
elasticity, the expression for strain energy can be written
as follows:

U =
E

2(1 + v)

∫ ∫ ∫
vol

[
1

1− v

(
ε2x+ ε2y+

2vεxεy
)

+
1

2
γ2xy

]
dx g4dy dz (1)

where εx, εy are the normal strains, and γxy is the shear
strain component. This is a quadratic function in terms of
the strain components and will, therefore, have a unique
solution that defines the minimum of U . These strain
components are natural candidates for defining the state
of the cells in a cellular automata model of a structure.
An even more fundamental definition of the cell state
would be in terms of displacement components at each
cell site, and from which strain components can be de-
rived through numerical gradients. In either case, we
see that it is possible to have multiple state variables
at any given cell site in the domain. While it may be
possible to evolve a fundamental set of state variables
through one rule, the evolution of states such as stresses
or strains generally require as many rules as there are
state variables.

When working with arbitrary state variables, it is
sometimes difficult to determine the precise format of
a rule of interaction. In the absence of physical guidelines
for this selection, one can propose an arbitrary algebraic
rule with some unknown parameters to be determined
during the optimization process. A linear or nonlinear
weighted averaging scheme is one such option, and can be
stated as follows:

CS(i) =
∑
j∈J

wjCS(j) linear , (2)

CS(i) =
∑
j∈J

wj [CS(j)]ηj nonlinear . (3)

In the above, CS(j) is the state of the j-th cell, J de-
fines the cells in the neighbourhood, and wj and hj are
the unknown weights and coefficients to be determined
in the optimization process. Note that nonlinear aver-
aging indeed introduces additional degrees of freedom
hj to be determined in the optimization process. For
the example problems described in this paper, a linear
weighted average was found to be satisfactory for both
applications.

In addition to determining unknown parameters in
some assumed model of interaction, it is also possible to
include a search for the optimal neighbourhood of inter-
action during the optimization process. Figure 3 shows
a limited set of possible neighbourhoods of interaction;
each of these is symmetric and involves no more than
cells from the immediate neighbourhood (adjacent cell

sites only). If each of these neighbourhoods is defined as
Nk ∈N , then the rule discovery problem may be stated in
the following mathematical form:

minimize E
(
wki , N

k
)
,

(
wki
)
L≤ wki ≤

(
wki
)
U , Nk ∈N ,

gj ≤ 0 , j ∈M . (4)

Here a linear averaging process of (1) is assumed; the
weights are bounded by lower and upper limits to (wki)L
and (wki)U , respectively; E is the strain energy which
is to be minimized, and gj are other general constraints
that may be required in the problem. Examples of such
constraints could include a requirement that the minimal
strain energy be equal to the external work, or, a phys-
ical constraint to ensure single-valued displacements at
a given point in the structural domain. In this search pro-
cess, the neighbourhood selection parameter is discrete
and the number of weights associated with each set is also
different. A GA based search is naturally amenable to this
class of optimization problems, and both binary coded
and real valued GA’s were used in the problem solution.
A stepwise description of the optimization problem is as
follows.

Step 1. Initialize a population of possible rules at ran-
dom, where each rule represents a particular
neighbourhood of interaction and numerical
values of the weights associated with that par-
ticular neighbourhood. Prescribe an initial value
of the state variable in each cell and the bound-
ary conditions which the converged solution must
satisfy.

Step 2. Apply each rule in the population to evolve the
initial state to a converged solution. Compute the
strain energy corresponding to each converged
solution and the constraint values associated
with that solution (if additional constraints are
imposed).

Step 3. Using minimum strain energy and constraint sat-
isfaction to define a fitness function, compute fit-
ness of each rule.

Step 4 Evolve the population of rules using the GA over
one generation of evolution.

Step 5. Repeat from Step 2 to convergence.

The converged rule from this GA evolution, when applied
to the initial state would then yield the required state
variable distribution in the structural domain.

4
Binary and real-coded GA’s

Traditional binary-coded genetic algorithms have been
extensively studied and proven to be robust and power-
ful when used in the solution of optimization problems

28

involving nonconvex or disjointed design spaces (Hajela
1990), and with a mix of continuous, integer, and dis-
crete design variables. Evolution strategies (ES) have also
become the focus of research over the last decade and
proven to be efficient and effective in seeking a global op-
timum in problems where multiple relative optima exist
(Cai and Thierauf 1997). The major difference between
genetic algorithms and evolution strategies resides in the
design variable coding and in population size. While,
in genetic algorithms, a large number of co-existing de-
signs comprise a population that is evolved over many
generations via gene exchange mechanisms and repro-
duction strategies, evolution strategies are constrained
to the use of a few designs. The operation of gene ex-
changes in genetic algorithms is mainly performed on
the coded design space (binary is most common) rather
than the real design space. Evolution strategies, on the
other hand, perform design variations directly on design
variables.

One shortcoming of the binary coded algorithm is
the increased numerical cost and loss in efficiency in
problems where the continuous variables need to be lo-
cated with a high degree of precision. Evolution strate-
gies circumvent this problem by operating on the vari-
ables directly; however, since they work with fewer de-
sign alternatives, they do not concurrently process in-
formation from all over the design domain (as in the
genetic algorithm), and are therefore less likely to lo-
cate the global optimum. This brings about the need for
combining the strengths of genetic algorithms and evo-
lution strategies by transforming the traditional binary-
coded genetic algorithms into real-coded genetic algo-
rithms (Wright 1991). A variant of this approach was
implemented in the rule discovery process in the present
work, and was found to be extremely useful in those cases
where the weights defining the neighbourhood interaction
had to be determined with increased precision. More spe-
cifically, the traditional crossover and mutation operators
of binary coded GA’s were replaced by the following op-
erations applicable to using real-valued representations of
the designs.

A linear weighted crossover operation was used in
which combinations of two parentsX1 = {x11, x

2
1, . . . , x

n
1}

and X2 = {x12, x
2
2, . . . , x

n
2} were selected at random from

the population and combined to yield three progenies hik,
i= 1, n and k = 1, 3 as follows:

hi1 = 0.5xi1+ 0.5xi2 , h
2
k = 0.5xi1−0.5xi2 ,

hi3 =−0.5xi1+ 1.5xi2 . (5)

Two of these offspring with better fitness values re-
place the parents in the next generation. A simplistic
mutation operator was also implemented for real vari-
ables wherein a new design variable was perturbed from
its original value by a fraction of the standard deviation
for that particular variable. As in binary coded GA’s,
the crossover and mutation were applied with a specified

probability. The use of the real valued GA had a signifi-
cant influence on the quality of numerical results, as is
borne out by the numerical examples in a later section.

5
Parallel implementation

The process of extracting rules for CA simulation is com-
putationally intense; in each generation of the GA evolu-
tion, each rule in the population must be applied to evolve
a CA, and its fitness evaluated on the basis of the con-
verged state of strains. To reduce the wall-clock time for
this procedure, the entire process can be implemented on
a parallel computing architecture. The optimal parallel
strategy is based on the number of processors to be em-
ployed (NPROC), the memory available to each processor
(NMEMP), and the amount of memory needed to store
and update the CA algorithm (NMEMC). The last item
is proportional to the number of cells used to describe
the complete structure. Two distinct possibilities must be
considered. First, if the NMEMC < NMEMP (i.e. we can
store the entire CA data structure on the memory allo-
cated to each processor) and NPROC < NPOP, then the
most efficient way to proceed is as follows.

1. Initialize the entire population of chromosomes on the
master processor.

2. The GA algorithm begins by sending a list of chromo-
somes to each processor, where the list size is NPOP/
NPROC; in general this will not be an integer and may
cause some imbalance in processor loading. The over-
all impact on the performance of such a mismatch,
however, is minimal.

3. Each processor then works in parallel. for each chro-
mosome (rule set) the CA is evolved until the cells
reach a steady-state value after completing the evo-
lution, the strain energy corresponding to the CA so-
lution is computed, compared with the the external
work, and a fitness assigned to the rule, this chromo-
some fitness is then stored in an array of the same
shape as the chromosome itself.

4. After completing the fitness evaluation for each mem-
ber of its portion of the chromosome pool, each proces-
sor sends the fitness values back to the master process
to be evolved.

5. With the entire populations fitness measures avail-
able, the master then evolves the population using
a standard GA approach.

6. If the population is not determined to be converged,
the algorithm repeats by returning to step 3. If a con-
verged best rule is obtained, the algorithm stops and
reports that best rule to the user.

This algorithm requires communication that scales only
with the number of rules that exist in the population,
and is independent of the size of the CA. It can therefore
be expected to scale very well so long as the amount of

29

Table 1 Parallel implementation results

No. of Grid No. of CA No. of GA population work work/ wall clock

processors size iterations iterations size ×(10−9) processor time (sec)

1 10×10 400 100 316 1.26 1.26 1097.6
4 20×20 800 100 320 10.24 2.56 2240.6
8 20×20 800 100 320 10.24 1.28 1193.6
16 40×40 1600 100 3201 81.92 5.12 5149.3
32 40×40 1600 100 320 81.92 2.56 2719.3

work required to evaluate the CA is large relative to the
amount of work required to perform a single generation of
GA evolution and to communicate the rules down to the
processors and fitness back to the master node. A series of
tests were performed to assess the scaling on an IBM SP2
machine, using as a test article, the plate with a circular
hole described in a later section. Results from this study
are summarized in Table 1.

A second form of parallelization is required when the
problem size gets very large and/or the fidelity of the CA
is pushed to very high levels. Here, it may not be pos-
sible to store the entire CA data structure on the memory
allocated to a each processor. A modified strategy is be-
ing implemented for this scenario, and will be reported
elsewhere.

6
Numerical implementation

The approach described in preceding sections was im-
plemented for two linear elasticity problems. The first is
a cantilever beam structure with a tip load as shown in
Fig. 4. Analytical solutions to the u−v displacement field
for this problem are obtained as follows:

Fig. 4 A tip loaded cantilever beam structure

u=−
P

2EI
x2y+

P

3EI

(
1 +
v

2

)
y3+

P

2EI

[
L2− (1 + v)

d2

d

]
y ,

v =
vP

2EI
xy2+

P

6EI
x3−

PL2

2EI
x+
PL3

3EI
. (6)

Here P is the applied load, E is the Youngs modulus, and
I is the bending moment of inertia; L and d are geometric
parameters identified in the figure. The second problem
deals with a plate subjected to inplane loads along an
edge, and with a circular hole at its centre. This struc-
ture is shown in Fig. 5 and was selected as a problem with
somewhat greater challenge, given the strain concentra-
tion effects near the hole boundary.

Fig. 5 A flat plate with a hole and inplane loading

6.1
Problem 1

The analytical strain distributions obtained upon differ-
entiation of 6 are shown in Fig. 6. For a cellular auto-
mata based solution of the 2-D state of strain in the
beam, the structure was discretized into a n×m uni-
form grid, where n and m denote the number of cells in

(a)

(c) (d)

(b)

Fig. 6 Neighbourhoods in polar coordinate system

30

the x and y directions, respectively. The state of each
cell was defined in terms of the normal and shear strain
components, respectively. Known values of these strains
were specified along the supported boundary and along
the mid plane of the beam; all other cells were set at
zero strain values. A linear weighted averaging proced-
ure was used as the base model to discover the rules for
interaction. To use the GA based energy minimization,
a population of weights was initialized at random. Each
of these weights were then used to evolve the given ini-
tial state along with the boundary conditions to a con-
verged state. The strain energy corresponding to the
converged state for each rule was computed and used
to establish the fitness function for the GA. Evolving
the population over many generations of evolution min-
imized the fitness function. A constraint requiring that
the strain energy be equal to the external work was also
imposed, although such a constraint is not strictly re-
quired. In this optimization, a binary coded GA was used
to determine three different sets of optimal weights, one
for each of the strain components. Furthermore, sepa-
rate rules were derived for cells on the boundary of the
domain as they do not have neighbours on one side.
It is important to bear in mind that the binary coded
GA searches through a discrete subset of the continu-
ous variable space. A search with greater resolution re-

Fig. 7 Analytical strain distributions for cantilever beam

Fig. 8 Strain distribution obtained from the CA evolution

quires longer binary strings, which makes the search pro-
cess less efficient. The string length were selected such
that the weight components were searched in increments
of ∆w = 0.012. The optimal sets of weights obtained
in this optimization yield a CA evolution of strains as
shown in Fig. 7. While the normal strain components
show reasonable agreement with the analytical results
of Fig. 6, there is considerable discrepancy in the shear
strain components.

In another numerical experiment, in addition to values
of the optimal weight sets, the optimal neighbourhood
of interaction was a variable to be determined from
the optimization process. For this exercise, 5 differ-
ent neighbourhoods were candidates for selection – the
Moore neighbourhood, N-S-E-W, N-S, E-W, and NE-
NW-SW-SE. Each of these has a different number of
weights to be determined. Using the binary coded GA,
this optimization problem in a mix of discrete and con-
tinuous variables was solved as before to minimize the
strain energy. The optimal rule sets for this problem
were interesting. While the Moore neighbourhood was
picked as the optimal neighbourhood for interaction for
the normal strain components, a N-S neighbourhood
was established for the shear strains. These neighbour-
hoods along with the optimal values of the weights
yields a strain distribution pattern as shown in Fig. 8.

31

Fig. 9 CA evolution with optimal neighbourhood interaction

Table 2 Ca implementation results

Cantilever beam Plate with a hole

CA evolution strategy strain field displacement field strain field displacement field

Design variable representation binary real–valued real–valued binary real–valued real–valued
for GA

population size 200 100 200 100 100
prob. of crossover 0.80 0.80 0.80 0.80 0.80 0.80
prob. of mutation 0.03 0.03 0.03 0.03 0.03 0.03

total external work 426.7 2581.6
(lb · in)

converged minimum strain energy 432.9 427.5 427.3 2590.8 2581.9 2582.2
(lb · in)

It is clear from this figure that the distribution of the
shear strain compares better with the known analytical
solution.

Using the optimal neighbourhoods of interaction iden-
tified in the previous step, the optimal weights were also
determined using a continuous valued GA. This approach
removes the artificial constraint of searching from a dis-
crete representation of a continuous space. Indeed, as
shown in Table 2, the optimal weights determined from
this optimization yields a minimum energy that is very
close to the external work. The corresponding strain dis-
tributions are shown in Fig. 9.

Fig. 10 Strain distributions for CA solution with weights discovered using continuous valued CA

6.2
Problem 2

A second elasticity problem used for numerical testing
involved a flat plate with a circular hole and subjected
to inplane loading. A Moore neighbourhood (A) of the
type shown in Fig. 10 was used to define the cell and its
immediate neighbourhood. To facilitate the implemen-
tation of the CA approach, the plate was divided into
a grid structure as shown in Fig. 5. For this problem, it
was convenient to compute the strains in the polar co-
ordinate system. As in the previous problem, the strain

32

components comprise the state of an individual cell and
collectively, the state of the structure. In searching for the
optimal neighbourhoods, the four options that were in-
cluded in the optimal search are also shown in Fig. 10.
As in the previous example, separate rules were derived
for cells on the boundary of the structure. Furthermore,
separate sets of weights were determined for each of the
strain components. Both real and binary coded GA’s were
used in the optimal search; however, result are presented
here only for the real valued implementation. Figure 11
shows the distribution of analytically computed strain in
this plate under the applied loads. The strain distribu-
tion obtained for a 20×20 grid is as shown in Fig. 12, and

Fig. 11 Analytical strain distribution for the flat plate

Fig. 12 Majority vote rule

Fig. 13 Strain distribution obtained from evolving displacements

compares very favourably with the analytical solution of
Fig. 11. Table 2 also shows that the minimal strain en-
ergy is very close to the value of the external work. The
optimal neighbourhoods corresponding to this solution
was a Moore neighbourhood for the εr and εθ compo-
nents, and the neighbourhood B from Fig. 10 for the εrθ
component.

An alternative definition of the state variables was
also considered for both of these problems. For example,
in the first problem, the displacements u and v at each
cell site were used to defined the cells states in place
of the three strain components. The advantage of using
these more basic variables is two fold. It not only al-

33

lows for an easier definition of boundary conditions but
also reduces the number of rule sets that must be in-
dependently derived during optimization. For example,
after evolving u and v, it is possible to compute each of
the three strain components from this field using a fi-
nite difference approximation. This approach, when im-
plemented for the flat plate problem, yields strain fields
as shown in Fig. 13. These strains are virtually identi-
cal to those obtained using direct strain evolution, and
yield a minimal strain energy very close to the theoretical
value.

7
Closing remarks

The paper describes a cellular automata based approach
for the analysis of 2-D elasticity problems. The unique as-
pect of this work is the derivation of the required rules
for CA evolution using a genetic algorithm based search
procedure. The guiding principle in rule selection is the
principle of minimum energy. The approach, as presented
in this work, allows for the exploration of discrete con-
cepts (different neighbourhoods of interaction), discrete
models for the rules (selection from among many differ-
ent rules of interaction), and a continuous refinement of
a selected model (by refining the weighting coefficients
used in rule definition). The approach is implemented in
the analysis of two elasticity problems. The CA approach
is assessed for performance with changes in the rules for
interaction, including both the interaction model as well
as the neighbourhood of interaction. Rules for interac-
tion have been derived for different choices of the state
variables. Evolving the displacement field and computing
strains from this field by finite difference produces re-
sults similar to those obtained through evolving the strain
fields directly. Issues relating to a parallel implementation
of the rule learning process are also examined.

Acknowledgements Support received for this work under

grant NAG 1–2089 from the NASA Langley Research Center

is gratefully acknowledged.

References

Cai, J.; Thierauf, G. 1997: Evolution strategies in engineering
optimization. Eng. Opt. 29, 177–199

Devreotes, P. 1989: Dictyostelium: a model for cell–cell inter-
actions in development. Science 245, 1065

Giunta, A.A. 1997: Aircraft multidisciplinary design optimiza-
tion using design of experiments theory and response surface
modeling . Ph.D. Dissertation, Virginia Polytechnic Institute
and State University

Hajela, P. 1990: Genetic search – an approach to the noncon-
vex optimization problem. AIAA J. 26, 1205–1210

Hajela, P.; Kim, B. 1999: GA based learning in cellular auto-
mata models for structural analysis. 3rd World Cong. on
Structural and Multidisciplinary Optimization (held in Nia-
gara Falls, NY, May)

Hardy, J.; De Pazzis, O.; Pomeau, Y. 1976: Molecular dynam-
ics of a classical lattice gas: transport properties and time
correlation functions. Phys. Rev. A 13, 1949–1960

Orszag, S.; Yakhot, V. 1986: Reynolds numbers scaling
of cellular-automaton hydrodynamics. Phys. Rev. Lett. 56,
1691–1693

Pasteels, J.M.; Deneubourg, J.L. (eds.) 1987: From indi-
vidual to collective behavior in social insects (Proc. Les
Treilles Workshop), Experientia Supplementum, Vol. 54.
Basel: Birkhauser

Rothman, D.H.; Zaleski, S. 1997: Lattice – gas cellular auto-
mata – simple model of complex hydrodynamics. Cambridge,
UK: Cambridge University Press

Rumelhart, D.E.; Hinton, G.E.; McClelland, J.L. 1986: A gen-
eral framework for parallel distributed processing. In: Parallel
distributed processing , Vol. 1, pp. 45–76. Cambridge, MA:
MIT Press

Wright, A. 1991: Genetic algorithms for real parameter op-
timization. In: Rawlin, G.J.E. (ed.) Foundations of genetic
algorithms 1 . San Mateo, CA: Morgan Kaufmann

Zienkiewicz, O.C.; Taylor, R.L. 1989: The finite element
method, Vol. 1, Basic formulation and linear problems. New
York: McGraw Hill

