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Extensions of design potential concept for reliability-based
design optimization to nonsmooth and extreme cases

K.K. Choi, J. Tu and Y.H. Park

Abstract The reliability-based design optimization
(RBDO) can be described by the design potential con-
cept in a unified system space, where the probabilistic
constraint is identified by the design potential surface
of the reliability target that is obtained analytically
from the first-order reliability method (FORM). This
paper extends the design potential concept to treat non-
smooth probabilistic constraints and extreme case design
in RBDO. In addition, refinement of the design poten-
tial surface, which yields better optimum design, can
be obtained using more accurate second-order reliability
method (SORM). By integrating performance probabil-
ity analysis into the iterative design optimization process,
the design potential concept leads to a very effective de-
sign potential method (DPM) for robust system param-
eter design. It can also be applied effectively to extreme
case design (ECD) by directly representing a probabilistic
constraint in terms of the system performance function.

Key words reliability-based, optimization, design po-
tential method, extreme case design, nonsmooth

1
Nomenclature

– P (•) probability function
– P f prescribed failure probability target
– Φ(•) standard normal cumulative distribution func-
tion (CDF)

– FG(•)performance function CDF, FG(g)=P [G(x)< g]
– g∗ target probabilistic performance measure, g∗ =
F−1G [Φ(−βt)]
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– βs reliability index, βs =−Φ−1[FG(0)]
– βt reliability target index, βt =−Φ−1(P f )
– βet equivalent reliability target index for nonsmooth
probabilistic constraint

– βt,e equivalent reliability target index in RBDO using
SORM

– dkP design potential point (DPP) in DPM correspond-
ing to design dk

2
Introduction

In the conventional reliability-based design optimization
(RBDO) methodology (Enevoldsen and Sorensen 1994;
Chandu and Grandhi 1995; Grandhi and Wang 1998),
the probabilistic constraint is directly prescribed by the
reliability index obtained from the first-order reliability
method (FORM). The RBDO problem is then solved of-
ten by well-developed search methods for the constrained
nonlinear optimization, where the search direction is eval-
uated by solving an optimization subproblem with lin-
earized probabilistic constraints at the current design.
However, the prohibitive computational cost prevented
RBDO from broader engineering applications (Frangopol
and Corotis 1996).

Some simplistic techniques (Parkinson et al. 1993)
using linear statistical analysis have been developed for
practical robust system parameter design, where the
system parameter variability is often described only by
parameter tolerance limits. Sundaresan et al. (1993) pro-
posed the concept of the corner space evaluation (CSE)
to better understand the design robustness. Yu and Ishii
(1998) further studied the interdependency among pa-
rameter tolerances and proposed the manufacturing vari-
ation pattern (MVP) that is obtained through design of
experiments (DOE) for robust system parameter design.

Tu and Choi (1997, 1999) studied performance prob-
ability analysis from the design optimization perspective
and proposed a general approach for robust and effi-
cient probabilistic constraint evaluation. The RBDO is
described in the unified system space Tu et al. (1999b),
where design potential surfaces, which are obtained an-
alytically from FORM, are used to identify the proba-
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Fig. 1 Design potential concept for RBDO

bilistic constraint. More important, by comprehending
the close interconnection between probability analysis
and probabilistic constraint approximation in the iter-
ative RBDO process, the highly effective design poten-
tial method (DPM) is developed for RBDO with smooth
probabilistic constraints.

This paper introduces a general design potential con-
cept (DPC) for RBDOwith smooth and nonsmooth prob-
abilistic constraints. In the unified system space, the
probabilistic constraint can then be measured by design
potential surfaces that are obtained from both the more
accurate second-order reliability method (SORM) and
the extreme case probability analysis. The DPC provides
an in-depth understanding of RBDO and leads to the
effective DPM for solving general RBDO problems. In
addition, DPC can be applied to the extreme case design
(ECD) of RBDO by directly representing the extreme
case probabilistic constraint in terms of the system per-
formance function. As shown in Fig. 1, the new RBDO
methodology that combines DPM with a robust adap-
tive probabilistic constraint evaluation strategy can thus
be used effectively and efficiently for broader engineering
applications.

3
Review of probabilistic constraint evaluation in
RBDO

An engineering system can be described by a set of
continuous random system parameters X = [Xi]

T (i =

1, . . . , n), which represent the collectively exhaustive
sets of outcomes x = [xi]

T that can take on real values
over specified tolerance limits, i.e. xL ≤ x≤ xU , and are
completely characterized by the system parameter joint
probability density function (JPDF) fX(x) (Ayyub and
McCuen 1997).

In the RBDO model for robust system parameter
design (Enevoldsen and Sorensen 1994; Chandu and
Grandhi 1995), mean values of random system param-
eters are often chosen as independent design variables,
d= [di]

T ≡ [µi]T , and the cost function is minimized sub-
ject to prescribed probabilistic constraints. For the given
design, a system performance criterion is described by
a system performance function G(x) where the system
fails if G(x) < 0, and a target performance failure prob-
ability limit P f is prescribed in a probabilistic constraint
as

P [G(x)< 0]≤ P f . (1)

The performance probability analysis of G(x) is to
evaluate its cumulative distribution function (CDF) FG
in terms of the probabilistic performance measure g as

FG(g) = P [G(x)< g] =

∫
G(x)<g

. . .

∫
fX(x)dx1 . . .dxn ,

xL ≤ x≤ xU , (2)

where the probability integration domain is bounded by
the parameter tolerance limits. The target failure prob-
ability limit can also be represented by the reliability
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target index, βt =−Φ−1(P f ), and the generalized prob-
ability index βG (Madsen et al. 1986) is often used to
measure the performance probability as

βG(g) =−Φ
−1[FG(g)] . (3)

Tu and Choi (1997, 1999) showed that the compre-
hensive probabilistic constraint in (1) can be consistently
described by the reliability index approach (RIA) and the
performance measure approach (PMA), respectively, as

βS(d)≥ βt , g
∗(d)≥ 0 , (4)

where the reliability index βS = −Φ−1[FG(0)] is evalu-
ated by reliability analysis and the target probabilistic
performance measure g∗ = F−1G [Φ(−βt)] is evaluated by
inverse reliability analysis. The PMA is inherently robust
and more efficient in evaluating the inactive probabilistic
constraint, while RIA could be more efficient for the vio-
lated probabilistic constraint but may not yield a solution
if the design has zero failure probability.

Performance probability analysis in probabilistic con-
straint evaluation can be performed effectively using
FORM, or more accurately by SORM (Madsen et al.
1986). The FORM/SORM represent an analytical ap-
proach for approximate probability integration, where
general transformations (Hohenbichler and Rackwitz
1981; Madsen et al. 1986) between the often dependent
non-normal system parameters X (x-space) and the in-
dependent standardized normal variablesU (u-space) at
the design dk (Tu et al. 1999b) are

u= [ui]
T =T(x;dk) = [Ti(x;d

k)]T ,

x= [xi]
T =T−1(u;dk) = [T−1i (u;dk)]T ,

i= 1, . . . , n . (5)

Thus, the performance function G(x) can then be ex-
pressed in the u-space as

G(x) =G[T−1(u;dk)] =GU (u) . (6)

In the u-space, the point on surface GU (u) = g with
the maximum joint probability density is the point with
the minimum distance β from the origin and is called the
most probable point (MPP) u∗g (or x

∗
g in the x-space).

The minimum distance is defined in FORM as the first-
order probability index βFORM(g) as

βFORM(g) = β = ‖u
∗
g‖= ‖T(x

∗
g;d

k)‖ . (7)

The principal curvatures κg� (� = 1, 2, . . . , n− 1) at the
MPP u∗g are used in the more accurate SORM in defining
the second-order probability index βSORM(g) as

βSORM(g) = Ψ (βFORM(g), κ
g
� ) , (8)

where the SORM operator Ψ(•) is explicitly defined, such
as the one-term formula of Breitung (1984):

Ψ (βFORM(g), κ
g
� ) =

Φ−1

{
1−Φ [−βFORM(g)]

n−1∏
�=1

[1−βFORM(g)κ
g
� ]
−1/2

}

(9)

and a more accurate three-term formula that was pro-
posed by Tvedt (1990).

4
Design potential concept for RBDO in unified
system space

In the RBDO model, probabilistic constraints (4) are
defined on the design variable space (d-space), while
system performance functions are defined in the sys-
tem parameter sample space (x-space). For the design
dk, the probability integration domain is the subset
xL( dk)≤ x≤ xU (dk) in the x-space, which corresponds
to the standardized normal reference space (u-space) in
FORM/SORM.

The unified system space is then defined (Tu and Choi
1999) by mapping the d-space into the x-space as

x=T−1(000;d) . (10)

Thus, the design dk in the unified system space will
correspond to the origin T−1(000;dk) of the u-space, and
the design potential surface that corresponds to the spe-
cific probability measurement βP around d

k is defined as
‖T(x;dk)‖= βP .

4.1
Design potential concept for probabilistic constraint

At the design dk, if first-order reliability analysis finds
a unique MPP x∗g=0 on the performance function limit-
state surface G(x) = 0, there must be a design potential
point (DPP) dkP that renders the probabilistic constraint
active so that its corresponding design potential surface
of the reliability target, ‖T(x;dkP )‖= βt, is tangential to
the performance function limit-state surface at the same
MPP, as shown in Fig. 2.

Thus, the limit-state surface of the probabilistic con-
straint βS(d) = βt [also g

∗(d) = 0] can be constructed
conceptually in the unified system space by tangentially
sweeping the design potential surface of the reliability
target along the feasible side of the performance function
limit-state surface G(x) = 0.

The RBDO process can then be described by the
design potential concept (DPC) as searching for the
minimum cost design doptβt that can fit the correspond-
ing design potential surface of the reliability target,
‖T(x; doptβt )‖= βt, into the feasible side of all perform-
ance function limit-state surfaces, as shown in Fig. 3.
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Fig. 2 Illustration of DPC in unified system space

Fig. 3 Optimality of RBDO in unified system space

If FORM is used for performance probability analysis,
one probabilistic constraint is identified active at the de-
sign dkP if βS,FORM(d

k
P ) = ‖T(x

∗
g=0;d

k
P )‖= βt. Thus, the

corresponding surface of the reliability target is explicitly
defined as ‖T(x;dkP )‖= βt and is called the surface of the
reliability target.

In the extreme case design (ECD) of RBDO where the
target failure probability is zero, i.e. β→∞, the design
potential surface of the reliability target is called the sur-
face of tolerance limits ‖T̃ (x;dkP )‖ →∞, which encloses
the corresponding probability integration domain for de-
sign dkP , i.e. x

L(dkP )≤ x≤ x
U (dkP ).

If SORM is used for more accurate probability analy-
sis, one probabilistic constraint is active if βS,SORM(d

k
P ) =

Ψ(βS,FORM(d
k
P ), κ

0
�) = βt, where κ

0
� are principal curva-

tures of the limit-state surface in the u-space. Thus, the
corresponding design potential surface of the reliabil-
ity target is ‖T(x;dkP )‖ = βt,e = Ψ

−1(βt, κ
0
�), where the

implicitly defined βt,e is called the equivalent target relia-
bility index.

4.2
Design potential method for probabilistic constraint
approximation

The DPC provides an in-depth understanding of RBDO
and illustrates that performance probability analysis in
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probabilistic constraint evaluation yields important sys-
tem design information. This leads to the design po-
tential method (DPM) that can significantly accelerate
the RBDO convergence by taking advantage of the close
coupling of performance probability analysis and the iter-
ative design optimization process.

At the design dk, if the probabilistic constraint can
be evaluated in RIA by FORM to find the MPP x∗g=0
(or u∗g=0 in its corresponding u-space) on the perform-
ance function limit-state surface G(x) = 0, then the DPP
dkP that is on the probabilistic constraint limit-state sur-
face and its corresponding MPP u∗∗ in the u-space must
satisfy

x∗g=0 =T
−1(u∗g=0;d

k) =T−1(u∗∗;dkP ) ,

u∗∗ =−βt ·
∇uGU (u∗∗)

‖∇uGU (u∗∗)‖
. (11)

Thus, dkP and u∗∗ can be determined by solving the
nonlinear equation system (11) by using the Newton’s
method (Atkinson 1989). If SORM is required for more
accurate probability integration, βt in (11) is replaced by
βt,e = Ψ

−1(βt, κ
0
�).

Note that DPP is in effect obtained as a by-product
of performance probability analysis without requiring ad-
ditional costly performance function evaluation (Tu and
Choi 1999). The RBDO problem is often solved using
gradient-based search methods (Arora 1989), such as
SLP, SQP, and MFD. Instead of the conventional lin-
earization at the current design dk, the probabilistic con-
straint is linearized by DPM at the DPP dkP as

∇TdβS(d
k
P ) · (d−d

k
P )≥ 0 (12)

Since the DDP dkP is located on the limit-state sur-
face of the probabilistic constraint, the constraint ap-
proximation in DPM becomes exact at dkP . Therefore,
DPM provides better constraint approximation with-
out additional costly evaluation of the system perform-
ance function. Consequently, a higher rate of conver-
gence in solving the RBDO problem can be achieved
(Tu et al. 1999b).

5
Nonsmooth probabilistic constraint in RBDO

Even for a smooth system performance function, the cor-
responding probabilistic constraint could be nonsmooth
if reliability analysis by FORM/SORM finds multiple
MPPs. In such case, since each MPP is a local minimum
in performance probability analysis, the corresponding
system JPDF has multiple local maxima in the probabil-
ity integration domain. The performance probability can
then be represented (Madsen et al. 1986) as

Φ
[
βs(d

k)
]
=Θ
{
Φ
[
βas (d

k)
]
, Φ
[
βbs(d

k)
]
,

. . . , Φ
[
βnms (dk)

] }
, (13)

where Θ(•) is a transformation operator and MPPs and
their corresponding probability indexes are identified
from a to nm. When multiple MPPs at the design dk are
sparsely distributed on the performance function limit-
state surface, the transformation operator Θ(•) can be
simplified as

Θ
[
Φ(βas ), Φ(β

b
s), . . . , Φ(β

nm
s )
]
= Φ(βas ) ·Φ(β

b
s) ·

. . . ·Φ(βnms ) . (14)

In practical applications, however, two local MPPs
that correspond to the two lowest probability indexes, βas
and βbs, are often adequate to approximate the reliability
index of one performance function. For illustration pur-
pose, a case with two MPPs is used in a two-dimensional
example in this paper.

5.1
DPC for nonsmooth probabilistic constraint

At the design dk, the reliability index function with two
local MPPs, i.e. x∗a and x

∗
b on the performance function

limit-state surfaceG(x) = 0 in the unified system space as
shown in Fig. 4, or u∗a and u

∗
b on GU (u) = 0 in the corres-

ponding u-space as shown in Fig. 5, can be computed in
RIA as

βs(d
k) = Φ−1

{
Φ
[
βas (d

k)
]
·Φ
[
βbs(d

k)
]}

(15)

where

βas (d
k) = ‖u∗a‖= ‖T(x

∗
a;d

k
P )‖ ,

and

βbs(d
k) = ‖u∗b‖= ‖T(x

∗
b ;d

k
P )‖ .

Using DPC, the nonsmooth RBDO can be viewed as
searching for the minimum cost design that can fit the
surface of the equivalent reliability target, ‖T(x;doptβt )‖=
βet , to the feasible side of the performance function limit-
state surface. The equivalent reliability target index, βet =
min{βas (d

opt
βt
), βbs(d

opt
βt
)}, is used so that the true reliabil-

ity index at the optimum design is maintained as

βs(d
opt
βt
) = Φ−1

{
Φ
[
βas (d

opt
βt
)
]
·
[
βbs(d

opt
βt
)
]}

= βt .

If the RBDO optimum doptβt is at the nonsmooth point

dnspβt , as shown in Fig. 6, then β
e
t = β

a
s (d

nsp
βt
) = βbs(d

nsp
βt
)

and thus
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βs(d
nsp
βt
) = Φ−1

{
Φ
[
βes(d

nsp
βt
)
]
·
[
βes(d

nsp
βt
)
]}

= βt .

The conventional RBDO methodology cannot deal
with the nonsmooth probabilistic constraint because it
is not differentiable with respect to design variables. In-
stead, DPM can be applied to construct multiple simul-
taneously linearized probabilistic constraints by (12) at
all DPPs corresponding to multiple MPPs in defining the
search direction determination subproblem, such as in the
example with two MPPs as

Fig. 4 Performance probability analysis with multiple MPPs

Fig. 5 Multiple MPPs in the u-space

∇TdG(x
∗
a) · (d−d

k
P,a)≥ 0 ,

∇TdG(x
∗
b) · (d−d

k
P,b)≥ 0 , (16)

where dkP,a and d
k
P,b are DPPs that can be obtained by

first substituting βt in (11) with β
e
t and then solving the

equation system that is comprised of (11).
Note that the equivalent reliability target index βet

cannot be pre-determined if doptβt is not the nonsmooth
point of the probabilistic constraint. However, it is known
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Fig. 6 Nonsmooth probabilistic constraint in RBDO

that βt ≤ βet ≤ Φ
−1[
√
Φ(βt)] because

βet =min{βas (d
opt
βt
), βbs(d

opt
βt
)}

and

Φ(βt) = Φ
[
βas (d

opt
βt
)
]
·Φ
[
βbs(d

opt
βt
)
]
.

A two-step strategy with iterative DPM for multidimen-
sional case is proposed here.

Step 1: Set βet = Φ
−1[
√
Φ(βt)] and perform RBDO using

(16) to converge to a feasible design deDPM with
min{βas (d

e
DPM), β

b
s(d

e
DPM)}= β

e
t .

Fig. 7 Extended PMA for nonsmooth probabilistic constraint approximation

Step 2: If βas (d
e
DPM) = β

b
s(d

e
DPM) = β

e
t , then the RBDO

optimum is doptβt = deDPM = dnspβt that renders
both of (16) active, as shown in Fig. 6. Other-
wise,

– if βbs(d
e
DPM)> β

a
s (d

e
DPM) = β

e
t , the RBDO op-

timum will only render the first of (16) active.
Thus, continue RBDO iteration by resetting
βet (d

k) = Φ−1{Φ(βt)/Φ[βbs(d
k)]} until it con-

verges to doptβt so that βS(d
opt
βt
) = βt;

– if βas (d
e
DPM)> β

b
s(d

e
DPM) = β

e
t , the RBDO op-

timum will only render the second of (16) ac-
tive. Thus, continue RBDO iteration by reset-
ting βet (d

k) = Φ−1{Φ(βt)/Φ[βbs(d
k)]} until it

converges to doptβt .
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5.2
Robust nonsmooth probabilistic constraint
approximation

The DPM requires RIA for reliability analysis of the per-
formance function. The RIA is more efficient for violated
probabilistic constraints but it may not yield a solution
if the design has zero failure probability. In such case,
a robust performance measure approach (PMA) can be
extended to apply for nonsmooth probabilistic constraint
approximation by assuming the equivalent reliability tar-

get index βet = Φ
−1
(√
Φ(βt)

)
.

At the design dk, the probabilistic constraint is ap-
proximated by the extended PMA, where the equivalent
target probabilistic performance measures correspond-
ing to multiple MPPs on the design potential surface,
‖T(x;dk)‖= βet , are obtained as g

∗
a(d

k) and g∗b (d
k), as

illustrated in Fig. 7. Similar to PMA for smooth proba-
bilistic constraint (Tu et al. 1999a), two simultaneously
linearized probabilistic constraints can be obtained at
each MPP as

g∗a(d
k)+∇TdG(x

∗,a) · (d−dk)≥ 0 ,

g∗b (d
k)+∇TdG(x

∗,b) · (d−dk)≥ 0 . (17)

The extended PMA is inherently robust because it is
well defined in the probability integration domain, and
it is more efficient than the first step in the proposed
iterative DPM with RIA if the nonsmooth probabilistic
constraint is inactive. Because PMA will converge to the
same feasible design as in the first step of the DPM with
RIA, PMA can be used as an alternative that is chosen
adaptively depending on the estimated marginal status
of the nonsmooth probabilistic constraint in the iterative
RBDO process (Tu and Choi 1999).

6
Extreme case design in RBDO

In some engineering applications where system parameter
tolerance limits are well controlled by the quality assur-
ance procedure in the manufacturing process, the opti-
mum design with zero failure probability may be required
and RBDO becomes an extreme case design (ECD). An
extreme case probabilistic constraint is expressed as

P [G(x) < 0] = 0 , (18)

which does not yield a solution for RIA but can still be
represented in PMA as

gL(d) = F−1G (0)≥ 0 , (19)

and the evaluation of the minimum probabilistic perform-
ance measure is extreme case analysis that can be per-

formed by solving an unconstrained nonlinear optimiza-
tion problem as

gL(dk) = min[G(x)] , xL(dk)≤ x≤ xU (dk) , (20)

where the optimum solution x̃∗ is called the extreme value
point (EVP) and thus gL(dk) =G(x̃∗).

6.1
Extreme case analysis in unified system space

In ECD, the system parameter tolerance limits are of-
ten directly represented in terms of the nominal mean
value µ̃i and nominal tolerance ∆i as x

L
i = µ̃i−∆i and

xUi = µ̃i+∆i. The nominal mean value is then often used
as an independent design variable, while the nominal
tolerance is either constant or depends on the nominal
mean value, e.g., d= [di]

T ≡ [µ̃i]T and ∆(d) = [∆i(µ̃i)]
T

(i= 1, 2, . . . , n). Thus, the mapping from the d-space to
the x-space becomes simply as x= d.

As shown in Fig. 3, the ECD optimum is identified by
DPC as the minimum cost design that can fit the surface
of tolerance limits, ‖T̃ (x;doptECD)‖ →∞, to the feasible
side of all system performance function limit-state sur-
faces. It is clear that doptECD is more conservative than the
RBDO optimum doptβt with finite βt, where the surface of
the reliability target expands as βt increases.

At the design dk, evaluations of extreme case prob-
abilistic constraints are illustrated in the unified sys-
tem space in Fig. 8, where two EVPs, x̃∗,1 and x̃∗,2, are
vertices of the surface of tolerance limits, ‖T̃(x;dk)‖ →
∞, and minimum probabilistic performance measures
of two probabilistic constraints are gLj (d

k) = Gj(x̃
∗,j)

(j = 1, 2). Thus, x̃∗,1 is on the first performance func-
tion iso-surface G1(x) = G1(x̃

∗,1) = gL1 (d
k) and x̃∗,2 is

on the second performance function iso-surface G2(x) =
G2(x̃

∗,2) = gL2 (d
k).

Extreme case analysis represents the extreme case of
PMA and the surface of tolerance limits represents the
upper-limit of the design potential surface, which also
helps to explain the nonexistence of a solution for RIA.
For the second probabilistic constraint where the min-
imum probabilistic performance measure is gL2 (d

k) > 0
and thus P [G2(x)< 0] = 0, RIA may not have a so-
lution and thus reliability analysis by FORM/SORM
may not yield a solution because the performance limit-
state surface G2(x) = 0 has no definition in the cor-
responding probability integration domain xL(dk) ≤
x≤ xU (dk).

Equation (19) can then be directly linearized at design
dk in defining the search direction determination sub-
problem as

gL(dk)+∇Tdg
L(dk) · (d−dk)≥ 0 , (21)

where

∇Tdg
L(dk) =∇TxG(x̃

∗) . (22)
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Fig. 8 Illustration of extreme case analysis in unified system space

Note that (21) and (22) can be used robustly in the
general ECD (Tu and Choi 1999). However, DPC can be
directly applied to represent an extreme case probabilistic
constraint in terms of the system performance function
and the ECD problem can then be solved more effectively
by treating it as a traditional deterministic optimization
problem.

6.2
Direct application of DPC in smooth ECD

Because EVPs are often at vertices of the correspond-
ing probability integration domain that is enclosed by the
surface of tolerance limits, as shown in Fig. 8, the extreme
case probabilistic constraint can be simplified by DPC.
For convenience, a design potential vector is defined as

∆P (d) =−S
T
G(d) ·∆(d) , (23)

where SG is defined as the signum vector of the perform-
ance function gradient,

SG(d) =

[
∂G(d)

∂di
·

∣∣∣∣∂G(d)∂di

∣∣∣∣
−1
]T
. (24)

If the EVP x̃∗ at the design dk is the vertex of the
surface of tolerance limits, it can be expressed as

x̃∗ = dk+∆P (d
k) , (25)

and if x̃∗ is on the performance function limit-state sur-
face, then dk must render the extreme case probabilistic
constraint active, i.e.

gL(dk) =G(x̃∗) =G[dk+∆P (d
k)] = 0 . (26)

Thus, the extreme case probabilistic constraint in (19)
can be directly expressed by DPC in terms of the system
performance function as

gL(d) =G[d+∆P (d)]≥ 0 . (27)

If G(x) is monotonic in terms of all system param-
eters, then the signum vector SG is a constant vector
and EVP is always at a vertex of the surface of toler-
ance limits (Sundaresan et al. 1993). In such case, (27) is
the exact representation of the extreme case probabilistic
constraint and ECD can essentially be solved as a tradi-
tional deterministic optimization problem.

Derived from linear statistic analysis by calculating
the transmitted variation, so-called worst case tolerance
analysis (Parkinson et al. 1993) essentially used a first-
order Taylor expansion of (27) to prescribe the probabilis-
tic constraint as

G(d)+∇TdG(d) ·∆P (d)≥ 0 , (28)

which often yields overly conservative design or even in-
feasible design in practical applications because the sys-
tem performance functions are often highly nonlinear in
terms of system parameters (Sundaresan et al. 1993; Yu
and Ishii 1998).

6.3
Direct application of DPC in nonsmooth ECD

If G(x) is not monotonic in terms of some system param-
eters and its limit-state surface encloses a convex corner,
then there exists a nonsmooth point dnspECD on the limit-
state surface of the extreme case probabilistic constraint.
For example, in a two-dimensional example as shown in
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Fig. 9, two EVPs on the performance function limit-state
surface correspond to the design dnspECD that is the nons-
mooth point on the limit-state surface of the probabilistic
constraint. In case that all EVPs are at vertices of the
surfaces of tolerance limits, the extreme case probabilis-
tic constraint can always be completely described in DPC
by multiple simultaneous constraints in terms of the per-
formance function, whose intersection is the nonsmooth
point dnspECD. For the example in Fig. 9, two simultaneous
constraints corresponding to two EVPs are expressed ex-

Fig. 9 DPC for nonsmooth extreme case probabilistic constraint

Fig. 10 Approximation error from direct application of DPC in ECD

plicitly as

G[d+∆aP (d)]≥ 0 , G[d+∆
b
P (d)]≥ 0 . (29)

If the nonsmooth point dnspECD is the ECD optimum
doptECD, then both constraints in (29) are active, as shown
in Fig. 9. Two different signum vectors of the performance
function gradient at EVPs can be obtained by comparing
signum vectors at all vertices of the surface of tolerance
limits.
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6.4
Approximation error from direct application of DPC
in ECD

If G(x) is not monotonic in terms of some system pa-
rameters and its limit-state surface encloses a concave
corner, then the EVPmay not be a vertex of the surface of
tolerance limits. In such case, (27) only represents an ap-
proximation of the extreme case probabilistic constraint.

As shown in Fig. 10 where G(x) is not monotonic in
terms of x2, the two possible signum vectors are SG(d

k) =
[+1,+1]T and SG(d

k+1) = [+1,−1]T . Thus, (27) can be
completely represented by the combination of two con-
straints as

G[d+∆kP (d)]≥ 0 ,

G[d+∆k+1P (d)]≥ 0 , (30)

where ∆kP (d) = −S
T
G(d

k) ·∆(d) and ∆k+1P (d) =
−STG(d

k+1) ·∆(d).
Note that a gap exists between the limit-state surface

of the exact probabilistic constraint gL(d) = 0 (dotted
curve) and the limit-state surfaces of the combined con-
straints of (30). This is because the EVP corresponding
to the design in the gap region is not a vertex of the sur-
face of tolerance limits. Although (30) provides a correct
description of the extreme case probabilistic constraint
other than the gap region, the approximation error of
DPC in the gap region always yields an infeasible design.
In contrast, extreme case analysis can always be used ro-
bustly to perform probabilistic constraint evaluation and
to solve the ECD problem.

Therefore, a two-step strategy is suggested for ECD.
First, the direct application of DPC is used because it
yields a higher rate of convergence. Then, extreme case
analysis of (20) is used to check the feasibility of the opti-
mum design obtained from the direct application of DPC
and (21) can be used iteratively to correct the approxima-
tion error if necessary.

7
Examples

Using FORM/SORM for performance probability analy-
ses, a smooth RBDO problem is solved using DPM, and
its ECD is performed by direct application of DPC. Then,
a nonsmooth RBDO problem is solved using DPM, and
its ECD is also given for comparison.

7.1
Smooth RBDO and ECD

Consider a system described by two independent uni-
formly distributed system parameters X = [X1, X2]

T

with constant standard deviations, σ1 = 1/2 and σ2 =

2/5. The design variable is chosen as d = [d1, d2]
T ≡

[µ1, µ2]
T , and system parameter CDFs are expressed in

terms of design variables as

FXi(xi) =
xi−di

2
√
3σi+1/2

,

di−
√
3σi ≤ xi ≤ di+

√
3σi , i= 1, 2 . (31)

The transformations between the u-space and the x-
space at design dk are nonlinear as

ui = Ti(xi; d
k
i ) = Φ

−1[FXi(xi)] =

Φ−1
(

xi−di

2
√
3σi+1/2

)
, i= 1, 2 , (32)

xi = T
−1
i (ui; d

k
i ) = F

−1
Xi
[Φ(ui)] =

di−
√
3σi+2

√
3σiΦ(ui) , i= 1, 2 , (33)

and the mapping from the d-space to the x-space can be
simplified in this example as

x=T−1(0;d) = d . (34)

An RBDO problem with prescribed reliability target
β = 2 can be formulated as

min Cost(d) = d1+d2 ,

subject to P (Gj(x) < 0)≤ Φ(−βt) , j = 1, 2, 3 ,

1≤ d1 ≤ 10 , 1≤ d2 ≤ 10 , (35)

where three smooth nonlinear performance functions
are

G1(x) =
1

20
x21x2−1 ,

G2(x) =
1

10
(10x32−x

2
1x2−2x1)−1 ,

G3(x) =
80

x21+8x2+5
−1 . (36)

7.1.1
Smooth RBDO using FORM

A special case of the RBDO problem with β = 0 can es-
sentially be solved as a deterministic optimization prob-
lem whose optimum often is an effective initial design
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Table 1 RBDO History with DPM (d0 = [3.593, 1.549]T )

k-th Cost dk j = 1 j = 2 j = 3

Iteration dk1 dk2 β1s,FORM dkP β2s,FORM dkP g∗3(d
k)

0 5.142 3.593 1.549 0.000 4.327 2.129 0.000 2.970 2.178 0.962
1 6.412 4.004 2.408 1.877 4.025 2.430 1.918 3.981 2.417 0.557
2 6.455 4.027 2.428 2.000 4.027 2.428 2.000 4.027 2.428 0.546

Optimum 6.455 4.027 2.428 active 4.027 2.428 active 4.027 2.428 inactive

Table 2 RBDO History using SORM (d0SORM = [4.027, 2.428]T )

k-th Cost dk j = 1 j = 2 j = 3

Iteration dk1 dk2 β1s,FORM dkP β2s,FORM dkP g∗3(d
k)

0 6.455 4.027 2.428 2.212 3.988 2.391 2.201 4.088 2.406 0.546
1 6.380 3.997 2.383 1.992 3.999 2.384 1.980 3.989 2.385 0.565
2 6.383 3.996 2.387 1.997 3.997 2.387 2.001 3.997 2.387 0.565
3 6.384 3.997 2.387 2.000 3.997 2.387 2.000 3.997 2.387 0.565

Optimum 6.384 3.997 2.387 active 3.997 2.387 active 3.997 2.387 inactive

for general RBDO. In such case, the surface of the re-
liability target shrinks to a point in the unified system
space and the probabilistic constraint can be directly ex-
pressed in terms of the system performance function as
g∗(d) =G(T−1(000;d))ge0. Thus, the initial design of this
problem, d0 = [3.593, 1.549]T , can be obtained from

minCost(d) ,

subject to Gj(d)≥ 0 , j = 1, 2, 3 ,

1≤ d1 ≤ 10 , 1≤ d2 ≤ 10 , (37)

Fig. 11 Comparison of SORM and FORM in RBDO

which can be obtained by using SLP, SQP, orMFD. Using
DPM with adaptive probabilistic constraint evaluation
by FORM, the RBDO problem is solved using SLP and
the optimum design is doptFORM = [4.027, 2.428]T with the
RBDO history shown in Table 1.

7.1.2
Smooth RBDO using SORM

Solving the RBDO problem by FORM is easier than using
SORMbecause the performance function Hessian matrix,
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that is often difficult to evaluate, is required in SORM
to compute principle curvatures of the performance func-
tion. Thus, it is suggested here to use the RBDO/FORM
optimum design as the RBDO/SORM initial design, i.e.
d0SORM = [4.027, 2.428]T .

Using DPM with adaptive probabilistic constraint
evaluation by SORM, this case is easily solved using SLP.
The doptFORM is compared with doptSORM = [3.997, 2.387]T in
Fig. 11 and the RBDO history is listed in Table 2. Notice
that design doptFORM fits the surface of the reliability tar-
get, ‖T(x;doptFORM)‖= βt, into the feasible side of the ac-
tive performance function limit-state surfaces, G1(x) = 0
and G2(x) = 0, while design doptSORM fits both surfaces
of the equivalent reliability target, ‖T(x;dk)‖ = βjt,e
(j = 1, 2).

Although two active performance functions have the
same reliability target index β = 2, the equivalent reliabil-
ity target indices for performance functions are generally
different as the curvatures of different performance func-
tion limit-state surfaces are different. In this example,
β1t,e = 1.804 and β2t,e = 1.817, and the two surfaces of
equivalent reliability target are incidentally very close.

7.1.3
Smooth ECD example

The nominal mean values of the system parameters are
used as independent design variable, d = [di]

T = [µ̃i]
T ,

with constant nominal tolerances∆i =
√
3σi (i= 1, 2).

Because three performance functions are monotonic
in terms of two system parameters, their signum vec-

Fig. 12 Illustration of DPC for smooth ECD

tors are constant and therefore three design potential
vectors are also constant as ∆1P = [−

√
3σ1,−

√
3σ2]

T ,
∆2P = [

√
3σ1,−

√
3σ2]

T , and ∆3P = [
√
3σ1,
√
3σ2]

T , where
σ1 = 1/2 and σ2 = 2/5. The ECD model can then be ex-
pressed as

minCost(d) = d1+d2 ,

subject to Gj(d+∆
j
P )≥ 0 , j = 1, 2, 3 ,

1≤ d1 ≤ 10 , 1≤ d2 ≤ 10 , (38)

which can be solved as a deterministic optimization prob-
lem and the ECD optimum is doptECD = [4.124, 2.577]T .
The direct application of DPC for ECD is illustrated in
Fig. 12 and doptECD has been compared with the RBDO op-
timum doptβt=2 in Fig. 3.

Because system parameters are independent and uni-
formly distributed in their tolerance limits in this ex-
ample, doptECD is just slightly more conservative than
doptβt=2. However, it must be pointed out that if the distri-
butions of system parameters are biased and/or interde-
pendent, ECD may yields significantly more conservative
designs than RBDO with a finite βt (Tu and Choi 1999).

7.2
Nonsmooth RBDO and ECD

Consider another system with two independent, uni-
formly distributed system parameters whose standard
deviations are constants as σ1 =

√
3/2 and σ2 =

√
3/3.
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A system performance function is defined as

G(x) = 1−
1

15
(x1−x2−1)

2−
1

400
(x1+x2−25)

2 . (39)

7.2.1
Nonsmooth RBDO using FORM

An RBDO problem with prescribed reliability target
βt = 2 can be formulated as

minCost(d) = d1+d2 ,

subject to P [G(x)≤ 0]≤ Φ(−βt) ,

1≤ d1 ≤ 10 , 1≤ d2 ≤ 10 . (40)

If the standard RBDO procedure is used, the opti-
mization algorithm will oscillate around design [5.0, 4.0]T

Table 3 Design potential method for nonsmooth RBDO

k-th Cost dk MPP x∗,ka MPP x∗,kb
iteration dk1 dk2 βaS(d

k) dkP,a βbS(d
k) dkP,b

0 9.000 5.000 4.000 2.138 5.022 3.962 3.236 5.134 3.918
1 8.836 4.969 3.867 2.271 4.970 3.866 2.461 5.012 3.844
2 8.772 4.947 3.825 2.275 4.949 3.827 2.345 4.965 3.816
3 8.747 4.939 3.808 2.275 4.940 3.810 2.304 4.944 3.802
4 8.734 4.934 3.800 2.275 4.936 3.803 2.284 4.938 3.799
5 8.732 4.934 3.798 2.275 4.934 3.798 2.275 4.934 3.798

Optimum 8.732 4.934 3.798 active 4.934 3.798 active 4.934 3.798

Fig. 13 Comparison of nonsmooth RBDO and ECD

and the two distinct MPPs will be found. Thus, the
equivalent reliability target index in the first step of DPM
with RIA can be determined as

βet = Φ
−1
[√
Φ(βt)

]
= Φ−1

[√
Φ(2)
]
= 2.275 . (41)

Starting from the initial design d0 = [5.0, 4.0]T , SLP
is used to solve this RBDO problem by using DPM with
RIA of (29), and it converges after 5 iterations and the
RBDO history is listed in Table 3, where two DPPs cor-
responding to two active probabilistic constraints, dkP,a
and dkP,b, also converge to the RBDO optimum.

The RBDO optimum doptβt=2 = [4.934, 3.798]T is shown
in Fig. 6, where the MPPs at the optimum are x∗a =
[3.538, 4.627]T and x∗b = [6.266, 2.902]T . In this example,
the extended PMA can also be used to obtain the true
RBDO optimum. The optimum corresponding to βt = 3
(i.e. βet = 3.205) is obtained as doptβt=3 = [5.311, 4.191]T

and compared with the ECD result in Fig. 13.
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In addition, the nonsmooth probabilistic constraint
evaluation by RIA at the design dk = [4.5, 3.0]T is illus-
trated in the unified system space and the corresponding
u-space, respectively, in Figs. 4 and 5. The PMA at the
design dk = [5.0, 3.5]T is illustrated in Fig. 7, where RIA
does not find one of the two MPPs on G(x) = 0 because
only one piece of the performance function limit-state
surface is defined inside the corresponding probability in-
tegration domain.

7.2.2
Nonsmooth ECD by DPC

In the ECD model, the nominal tolerances of the system
parameters are constants as ∆1 = 1.5 and ∆2 = 1.0, and
nominal mean values are used as independent design vari-
ables d= [di]

T ≡ [µ̃i]T (i= 1, 2).
If the standard extreme case analysis is carried out

using (21), the optimization algorithm will oscillate
around certain design and the two distinct signum vec-
tors of the performance function can be obtained as
SaG = [+1,−1]T and SbG = [−1,+1]T . Thus, the extreme
case probabilistic constraint, gL(d) ≥ 0, can be com-
pletely represented by (29) as

G(x1−∆1, x2+∆2) = 1−
1

15

(
x1−x2−

7

2

)2
−

1

400

(
x1+x2−

51

2

)2
≥ 0 ,

G(x1+∆1, x2−∆2 = 1−
1

15

(
x1−x2+

3

2

)2
−

1

400

(
x1+x2−

49

2

)2
≥ 0 , (42)

and the ECD problem can be solved as a deterministic
optimization problem. The SLP is used to obtain the opti-
mum doptECD = [5.429, 4.315]

T , which is illustrated in Fig. 9
and compared with RBDO results in Fig. 13.

Note that the reliability target index βt is generally
a highly nonlinear function of the design in RBDO. In
this example, independent random system parameters
are evenly distributed within their tolerance limits and
therefore doptβt=3 and d

opt
ECD are rather close. In such case,

ECD can be used as an effective alternative of RBDO for
robust system parameter design and parameter tolerance
design. However, ECD can yield overly conservative de-
sign if distributions of system parameters are biased or
interdependent and the related study can be found in the
reference (Tu and Choi 1999).

8
Summary

The DPC provides an in-depth understanding of the
interconnection between performance probability an-

alysis by FORM/SORM and the iterative RBDO pro-
cess in the unified system space. Taking advantage of
the inherent design information from probabilistic con-
straint evaluation, DPC leads to an effective DPM
for probabilistic constraint approximation in smooth
and nonsmooth RBDO. The DPC can also be effec-
tively applied to ECD by directly representing smooth
and nonsmooth extreme case probabilistic constraints
in terms of system performance functions. Moreover,
the adaptive probabilistic constraint evaluation strat-
egy can be used to ensure the robustness in RBDO
and ECD.

In conclusion, the proposed RBDO methodology that
combines DPMwith the adaptive probabilistic constraint
evaluation strategy can be effectively and efficiently used
for broader engineering applications.
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