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Abstract. Thestructureof derivationsin natural deductionisanalyzed throughisomorphism
with asuitable sequent cal culus, with twelve hidden convertibilities revealed in usual natural
deduction. A general formulation of conjunction and implication elimination rulesis given,
analogous to digjunction elimination. Normalization through permutative conversions now
appliesin all cases. Derivationsin normal form have all major premisses of elimination rules
as assumptions. Conversion in any order terminates.

Through the condition that in a cut-free derivation of the sequent ' = C, no inactive
weakening or contractionformulasremaininI", acorrespondencewiththeformal derivability
relation of natural deduction is obtained: All formulas of ' become open assumptions in
natural deduction, through an inductively defined trandlation. Weakenings are interpreted
as vacuous discharges, and contractions as multiple discharges. In the other direction, non-
normal derivationstrandateinto derivationswith cuts having the cut formulaprincipal either
in both premisses or in the right premiss only.

1. Introduction

We shall analyze the structure of derivations in natural deduction through isomor-
phic correspondence with derivationsin asuitabl e sequent cal culus. Thekey insight
isto formulate al elimination rules of natural deduction in the manner of disunc-
tion elimination. The standard conjunction and implication elimination rules come
out as special cases: it is seen that these rules stand behind the failure of unique
correspondence between natural deduction and sequent calculus derivations. In
particular, twelve cases of failure of normalization in propositional logic areidenti-
fied. When conjunction and implication elimination rules are formul ated as general
elimination rules, derivations permit conversion to full normal form. The character-
istic of thisform isthat all major premisses of elimination rules are assumptions.
Normalization holds for any order of conversions.

In full normal form for intuitionistic logic, also premisses of falsity elimina
tion, or therule ‘ex falso quodlibet,” are assumptions. Thus, anormal intuitionistic
derivation of aformula C begins with assumptions and inferences of the form %,
followed by subderivationsin minimal logic. The usual conjunctionandimplication
elimination rules do not permit this, which created a discrepancy between natural

J. von Plato: University of Helsinki, Department of Philosophy, 00014 University of
Helsinki, Finland. e-mail: vonpl at o@el si nki . fi

Mathematics Subject Classification (2000): 03F05



542 J. von Plato

deduction and sequent calculus. In the former, falsity elimination can occur in the
middle of aderivation, butinthelatter, falsity elimination alwaysisin thebeginning
of aderivation.

The concept of full normal form is extended to intuitionistic predicate logic by
agenera elimination rule for the universal quantifier, anal ogous to the elimination
rule for the existential quantifier. Thiswill bring forth twelve more cases of hidden
convertibilities in natural deduction.

Our analysis is based on trandations establishing isomorphism between nat-
ural deduction derivations and suitable sequent calculus derivations. The formal
derivability relation of sequent calculus, written I' = C, is usualy related to a
meta-level derivability relation for natural deduction, written I' = C. This latter
is defined through the existence of anatural deduction derivation of C from open
assumptions contained in I". We give a correspondence with theformal derivability
relation of natural deduction: If in the derivation of I' = C there remain no inac-
tive weakening or contraction formulasin the context I, all formulas of I" become
open assumptions in the translation to a natural deduction derivation. Equivalence
between natural deduction and sequent cal culus only obtains when inactive weak-
enings and contractions are absent in the latter.

In the sequent calculus we use, weakening is an explicit structural rule. Weak-
ening by aformulathat is active in alogica rule in a sequent calculus derivation
corresponds to avacuously discharged formulain natural deduction. To study con-
traction, we treat contexts as multisets. A sequent calculus derivation has contrac-
tions whenever more formula occurrences are discharged in a natural deduction
rulethan isindicated in the schematic rule, say, more than onein implication intro-
duction. It was not possible to see fully what weakening and contraction amount to
in terms of natural deduction before the genera elimination rules were available.

The proof of cut elimination for the sequent calculus corresponding to natural
deduction with general elimination rules is a straightforward induction on length
of cut formulaand height of derivation of the premisses of cut. When contexts are
treated as multisets, a case of cut elimination is encountered in which the right
premiss has been derived by contraction. To obtain cut elimination for this case, a
multi-cut rule, asin Gentzen’soriginal proof, can be used. But adirect proof isalso
available, through consideration of how the premiss of contraction was derived.

The trangdlations we give also apply to non-normal derivations. Normalization
can be achieved through trandl ation to sequent cal culusfollowed by cut elimination
and trandlation back. The normal form thusobtained isnot unique ascut elimination
is not unique. Direct normalization through detour and permutation conversions,
instead, will give strong normalization and uniqueness of normal form for natural
deduction with general elimination rules.

2. Hidden convertibilitiesin natural deduction

Normal derivations with the usual natural deduction rules for conjunction and im-
plication have a pleasant property: In each step of inference, the formula below
is an immediate subformula of a formula above, or the other way around. With
digunction elimination, this simple subformula structure along al branches of a
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normal derivation tree is lost. But on the other hand, if the major premiss of an
elimination step is concluded by digunction elimination, the derivation converts
into amore direct form. For example, if both steps are disjunction eliminations, we
have

(Al 15]
A B 3. 4,
: : [C] (D]
AVB CVvD CvD : :
VE,1.,2.
CvD E VvE,3.4
This derivation converts into
1. 3. 4 2. 3. 4
[A] [C] [D] [B] [C] [D]
cvD E E cvD E E
AV B ——VE3,4 ——  VE 3.4
E E_ p12

E

If disunction elimination is used to conclude a major premiss of conjunction or
implication elimination, transl ations similar to the above apply. These permutation
conversions were found by Prawitz in 1965. It is possible that the last step in the
derivation of C v D from A or B is vI. Elimination with major premiss A v B
separates the introduction of C v D from an elimination of C v D. A permutation
conversion can reveal such a‘hidden’ detour convertibility.

In terms of sequent calculus, where the rule corresponding to VE is the left
disunction rule LV, thefirst derivation is

A=CvD B=CvVvD C=EFE D=E
L
AVB=CVD Y T CVD=E

Lv
Cut

AVB=E
The second derivation corresponds to
C=FE D=E C=E D=E
A=CvD C\/D:>ECWLv B=CvD C\/D:>ECWLv
A= E B=E |
AVB=E

Thus, the conversion of the natural deduction derivation into a more direct form
corresponds to a step of cut elimination, where the cut is permuted with Lv, to
move it upwardsin the derivation.

In Schroeder-Heister (1984), thefollowing general conjunctioneliminationrule
is presented,

(A, B]

A&B C
—&E
C
Thestandard rulescome out asspecial caseswhen C = A and C = B, respectively:
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A&B [A] A&B [B]
&Eq &E2
A B
In the other direction, leaving out the dummy discharged assumptions in these

special cases, if C isderivablefrom A, B, we have
A&B A&B

A B

C
But thestructural propertiesof thesetwo special eliminationrulesarequitedifferent
from those of the general elimination rule. To give an example, with the special
rules we have the derivation
(A& B)&C
A&B

A
With the general rule, this becomes the derivation

L
A& B)& A& B
(8DEC_[A8H],, . o
A&~ Al g,

Here the major premiss of the second elimination isitself a conclusion of general
conjunction elimination and a permutation conversion can be made:

[Aé' B] [fZ(]
(A&B)&C ~— 4 4E2 )
" &E,1.
Now the major premisses of both instances of the elimination rule have become
assumptions.

To write derivations in terms of sequent calculus, we make explicit the rules of
weakening and contraction: T', A, ®, ... are finite multisets (lists without order)
of formulas, with T", A indicating multiset union and A, I" addition of one copy of
formula A to multiset .

r=s~<=C AA T =C
w
AT'=C AT =C
Sequent calculus derivations start with sequents of theform A = A or 1L = C.

Schroeder-Heister’sgeneral conjunction elimination rule correspondsto theleft
conjunction rule of sequent calculus, through the correspondence

Ctr

[A,B], T

A, B, =C A&B c

— L& &E
A&B,I' = C BTN C
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Derivation (1) with the general elimination rule corresponds, in away to be made
exact below, to

A&B = A&B A=A
w w
A&B.C = A&B . A,B:>AL&
(A& B)&C = A&B A&B=A
(A&B)&C = A
Derivation (2) correspondsto
A=A
—_—W
A,B= A
—— &
A&B = A W
A&B,C = A

— L&
(A&B)&C = A -

It can be obtained from the first one by permuting the cut up twice, first with L&
and then with weakening in the left premiss. We observe that the elimination of cut
corresponds to the conversion of major premisses of & E rules into assumptions.

With the standard implication elimination rule, or modus ponens, we observe
the same phenomenon: A derivation such as

AD(MBDC) A
BOC B
C
does not convert. But if in asequent calculus derivationthelast ruleis L D anditis

trandated analogously to rules Lv and L& ageneral implication elimination rule
isfound:

I [B], A
r=A B,A=C ADB A C

LD
ADB,T'A=C - C

Again, we obtain the standard elimination rule as a specia case, by setting C = B.
In the other direction, if C is derivable from B, we have

DE

ADB A
B
c

With the general rule, our example derivation is:

1.
AD(BDC) A [BDC(]
DE,1

2,
BO>C B [C]
C

DE,2.

It converts into the derivation
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1. 2.
[BDC] B |[C]
AD(MBD>C) A C
C

OE,2.

DE, 1

Tranglations of these derivations into sequent calculus are: For the first, we have

A=A BDC=BD>C B=B C=C
)

L L
A>(B-SC)LA=>B>SC B5CB=C [
AS>BOC)LAB=C

The second one gives instead the cut-free derivation

B=>B C=C,,
A=A BDODC,B=C

AS(B>5C)LAB=C

There are altogether twelve cases of hidden convertibilitiesin natural deduction
for propositional logic with special elimination rules.
For quantifiers, the standard elimination rules are

D

[A]

VxA IxA C
VE
A(r/x) C

where ¢ is a term free for x in A and usua variable restrictions for 3E apply.
Similarly to the case of propositional logic, if the major premiss of an elimination
step is derived by VE, the derivation does not convert. This brings out twelve new
cases of hidden convertibilities, all eliminable by the use of the general elimination
rule for the universal quantifier,

JE

[A@/x)]

vxA C
C
This rule will permit afull normal form for derivationsin intuitionistic first-order
logic. The special elimination rule follows by setting C = A(¢/x). In the other
direction, if C isderivable from A(z/x), we have the derivation
VxA

A(t/x)

VE

c
The detailed treatment of quantifiers brings no essential new aspects and is left to
another occasion.

What hasbeen said of conjunctionand implication elimination extendstofalsity
elimination % In full normal form, itsmajor premiss L isan assumption. Thus, in
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intuitionistic derivationsinfull normal forminstancesof rule L E aretopinferences,
followed by aderivation in minimal logic. A typical case of conversion is

1 1

AD1l A [1] [L]
—DE,l. —lE

ADL AC

—1FE —F DE,L
C > C

that cannot be done with the modus ponensrule.

3. A sequent calculusisomor phic to natural deduction

We shall introduce a sequent calculus, to be called GOi, corresponding precisely to
natural deduction with logical introduction and general elimination rules.

GOi

Logical axiom;

A=A
Logical rules:
A,B,F:>CL& '=A A=B
A&B, ' = C I' A = A&B
A,l'sC B,A=C r= A I'= B
Lv Rv1 ————Rv2
AVB T, A=C '=>AVB I'=AVB
'=sA B,A=C A, = B
L> ——R>
ADB,IA=C '=ADB
Ll
1l=C
A@/x), T = C = A(y/x)
VxA, ' = C I' = VxA
A(y/x), T = CL3 = A(t/x)R3
AxA,I'= C ' = IxA

Rules of weakening and contraction:

r=s=~c
W
AT =C

AAT=C
AI'=>C

Ctr

Therestrictionin RV and in L3 isthat y does not occur freein the conclusion. The
first axiom applies to arbitrary formulas. Therefore, in particular, it gives 1L = L
as an instance, where falsity L is not an atomic formula but alogical constant of
length 0. Toemphasizethat L L isalogical rule, wehavewrittenit asazero-premiss
left rule. I itisleft out, a sequent calculus for minimal logic is obtained.

Each rule has a context, a finite multiset of formulas designated by T, A inthe
aboverules, activeformulasdesignated by A and B, and aprincipal formulathat is
introduced by the rule in question. Corresponding to the treatment of assumptions
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in natural deduction, two-premiss rules have independent contexts, both collected
in the antecedent of the conclusion.

Therule of cut,

'=s>A A A=C
Na==~
is proved admissible in GOi in von Plato (2001).

We shall give aninductive definition of atranslation from cut-free derivationsin
GO0i to natural deduction derivationswith general elimination rules. It is sometimes
thought that natural deduction is not able to express the rule of weakening. One
defines instead derivability in natural deduction by: C is derivable from I if there
is a derivation with open assumptions contained in I". Here we shall consider the
more strict, formal derivability relation.

Cut

Definition 3.1. Aformulain a sequent calculus derivation isused if itisactivein
an antecedent inarule.

Rulesthat use aformulamake it disappear from an antecedent, so these are the left
rulesand R D. In natural deduction, use of formulas corresponds to the discharge
of assumptions. The little numbers written next to the mnemonic symbol for the
rule applied and on top of formulasindicate what is discharged and where. We shall
adjust the translation from sequent calculus to natural deduction accordingly, by
adding labels to used formulas. Labels on top of discharged formulas are called
assumption labels and those next to the rules discharge labels.

Principle 3.2. Unique discharge. No two rulesin a derivation must have the same
discharge labels.

The trandation of a cut-free sequent calculus derivation of a sequent ' = C to
natural deduction, where I" has no unused weakening or contraction formulas,
starts with the last step and works root-first step by step until it reaches axioms and
instances of L_L. In this process, it is crucial to keep track of how formulasin the
antecedentsturn into assumptions. To satisfy Principle 3.2, each rulethat discharges
assumptions must have fresh discharge labels. Below, in each case of trandation,
we write the result of the first step of trandlation with arule in natural deduction
notation, and the premi ssesfrom which thetransl ation continuesin sequent cal culus
notation. We also add square brackets and treat labelled and bracketed formulas
in the same way as other formulas when continuing the trandation. The natural
deduction derivation comes out from the trandation all finished:

If thelast rule to be trandated islogical, we have

: 1. 2. .
A B.T=C A&B [Al[Bl,T=C
—_— L& &E,1.,2.
A&B. T =C = = C
FssA A=>B r=A A::>B&
_— _— [

R&
I'A = A&B > A&B
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: : 1. : 2. :
A I'=C B, A=C Av B J[A],T=C [B]l,A=C
Lv VE,1., 2.
AVB T, A=C v C
r=A r=A =B =B
—— RV; VI RV Iz
I'=AVB ~ AV B I'=AVB ~ AV B
: : : 1. :
's>A B,A=C ADB I'A [Bl,A=C
LD DE,\1
ADBT,A=C ~ C
: 1. :
A, =B [A],T =B
—— DI

— RD
I'=ADB > ADB

L
Li —1E
1=cC ~ C

If the last rule is weakening or contraction, we have

r=cC . A A T=C

Ctr

n. . n. n. n. .
[Al,T = C ~» I'sC J[AlL,T=C ~»  [A],[A],T=C
If the last rule is an axiom, we have

A=A ~» A

By the assumption of no unused weakening or contraction formulas, the translation
can only reachweakening or contraction formulasindicated asdischarged by square
brackets. The topsequents of derivations are axioms or instancesof L = C. If the
trangdlation arrives to these sequents and they do not have labels, their antecedents
turn into open assumptions of the natural deduction derivation. When aformulais
used the trand ation produces formulas with labels and we can reach topsequents

[A]:> A and [L]:> C with a label in the antecedent. These are trandated into

[A] and LlJ_E with discharged assumptions. Note that if a labelled formula gets
decomposedfurther upinthederivation, thelabelled formulaitself becomesamajor
premiss of an elimination rule that has been assumed. The components, instead,
do not inherit that label but only those indicated in the above translations. Two
different labels must be used for assumptions A and B inrules& E and VE. The
trandation produces derivations in which the major premisses of elimination rules
always are (open or discharged) assumptions:

Definition 3.3. Aderivationin natural deductionisin full normal formif all major
premisses of E-rules are assumptions.
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We shall refer to such derivations briefly as normal. Notice that L in LE is
counted as amajor premiss of an E-rule.

Tranglation of derivations with cuts will be discussed in Section 4.

The trandation is an agorithm that works its way up from the endsequent in
a local way, reflecting the local character of sequent calculus rules. It produces
syntactically correct derivation trees with discharges fully formalized.

The tranglation of applications of the rule of weakening into natural deduction
may seem somewhat surprising, but it will lead to a useful insight about the nature
of this rule. Natural deduction rules permit to discharge formulas that have not
occurred in aderivation. Similarly, natural deduction rules permit to discharge any
number of occurrences of an assumption, not just the occurrence indicated in the
schematic rule.

Definition 3.4. Rule O I and the elimination rules produce a vacuous (multiple)
discharge whenever

1.In DI concluding A > B no occurrence (more than one occurrence) of
assumption A was discharged.

2. In&E and v E with major premisses A& B and A v B, no occurrence of A
or B (more than one occurrence of A or B, or morethantwo if A = B), was
discharged.

3. In D E with major premiss A D B no (more than one) occurrence of B was
discharged.

A weakening formula (resp. contraction formula) is a formula A introduced by
weakening (contraction) in a derivation. There can be applications of weakening
that have no correspondence in natural deduction: Whenever we have a derivation
withweakening formulasthat are not used, theendsequent isof theform A, I' = C,
with A an inactive weakening formula throughout.

The condition of no inactive weakening or contraction formulas in a sequent
calculus derivation permits a correspondence with the formal derivability relation
of natural deduction:

Theorem 3.5. Given a derivation of ' = C with no inactive weakening or con-
traction formulas, there is a natural deduction derivation of C from I" with each
formula of I an open assumption.

Proof. The proof is by induction on the height of derivation, using the translation
from sequent calculus. If I' = C isanaxiomorinstanceof LL, I’ =Cor[' = 1,
and the tranglation gives the natural deduction derivations C and %J_E with open
assumptions C and L, respectively. If thelast ruleis L&, wehave’ = A& B, T’
and the tranglation gives

1 2 :
A&B [Al[B.I'=C
C

If there are no inactive weakenings or contractionsin thederivationof A, B, T =
C, thereis by inductive hypothesis a natural deduction derivation of C from open

&E1.,2.
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assumptions A, B, I''. Now assume A& B and apply & E to obtain a derivation of
C from A& B, T".

If there is an inactive weakening or contraction formula in the derivation of
A, B, T/ = C it is by assumption not in I'" so it is A or B or both. Deleting
the weakenings and contractions with unused formulas we obtain a derivation of
A™ B".T' = C, withm,n >0 copies of A and B, respectively. By the induc-
tive hypothesis, there is a corresponding natural deduction derivation with open
assumptions A™, B", T"". Application of & E now gives a derivation of C from
A& B, . All the other cases of logical rules are dealt with similarly.

The last step cannot be weakening or contraction by the assumption about no
inactive weakening or contraction formulas. |

By the tranglation, the natural deduction derivation in Theorem 3.5 is normal.
Later we show the converse result. Equivalence of derivability between sequent
calculus and natural deduction only appliesif unused weakenings and contractions
are absent.

Theorem 3.6. Givenaderivationof I' = C with noinactive weakening or contrac-
tionformulas, if A isaweakening (contraction) formulainthederivation, then A is
vacuously (multiply) dischargedin the corresponding natural deduction derivation.

Proof. Formula A canbeusedinleft rulesand R O only. Applyingthetranslationto
natural deduction, A becomes alabelled formulain the antecedent, and translating
further, it disappearswhen aweakening with A istranslated, and is multiplied when
acontraction on A istrandlated. |

Perhaps the simplest example is, with the corresponding natural deduction at
right,

A=A
7w 1 2
A,B:>AL& [A&B] [A]
A&B = A
—R e —
—~A&B->A ~  A&BOA

Inthe natural deduction derivation, B isvacuously discharged. The translation pro-
duces, as atrace of the weakening, the discharge label 3 to which no assumption
label corresponds. An intermediate stage of the trandation just before the disap-
pearance of the weakening formulais

&E,2.,3.
oIl

A=Ay
Aé’B f\‘ 5 A
[ 1 [ALl[B] = 4523
A
—FFF D>, 1
A&B D A

In Gentzen's origina sequent cal culus there were two left rules for conjunction:

Al=cC Br=cC |
A&B,T = C ' A&B,T = C

&2
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These |eft rules correspond to the standard elimination rules for conjunction,
and the derivation of A& B O A and itstrand ation become

1.
A=A [A& B]
A&B = A Rl A .
——  RD —_— D, 1
— A&B D A A&B S A"

Weakening is hidden in Gentzen's left conjunction rules and vacuous discharge in
the special conjunction elimination rules. It isnot possibleto statefully the meaning
of weakening in terms of natural deduction without using the general elimination
rules.

The premiss of a contraction step can arise in essentially three ways: First, the
duplication A, A comesfrom arulewith two premisses each having one occurrence
of A. Second, A istheprincipal formulaof aleft ruleand apremisshad A aready in
the antecedent. Third, weakening isapplied to apremisshaving A in theantecedent.

The simplest example of a multiple discharge should be the derivation of
A D A&A, given here both in GOi with a contraction and in translation to nat-
ural deduction with a double discharge:

A=A A= Apg 1 L
A A= A&A,. 1l 14 [A]&z
< aea 7 A& A
A= A&A SIL
= A D A&A AD A&A

In Definition 3.4, the clause about more than two occurrencesin & E and VE in
case of A = B, isexemplified by the derivationof A v A O A:

3. 1 2.
A=A A=A . [AVA] [A] [A]
VE,1.2.
A\/A=>AR A
S AVADA AVAS A

Here there is no contraction even if two occurrences of A are discharged at VE.
We now cometo thetranslation from natural deduction to sequent calculus. Itis
essential to use multisetsto see how natural deduction can keep track of contraction.
This is no problem since it is well defined how many times open assumptions
A, B, C, ... appear above any given formulain aderivation.
Trandation from fully normal natural deduction derivations with unique dis-
charge to the calculus GOi is defined inductively according to the last rule used:

1. Thelast ruleis&1I:
' A r A
A B A B .
A&BY > T.A= A&B

2. Thelastruleis & E: Thenatural deduction derivation, with m-fold discharge
on A and n-foldon B, is

&



Natural deduction with general elimination rules 553

12
[A™].[B"].T

A&B
&E,1.,2
Cc
Thetrandlation is by cases according to values of m and n:
m=0,n=0:
r
C
AT=cC",
A, B, T = CL&
A&B, T = C
m=1n=1

&
A&B,T = C-&

Note that the discharge labels and brackets have been removed. The cases of m =

1,n =0andm = 0, n = 1 have one weakening step before the L& inference.

m>1n=0:
A™ T

trm

w
L&

C
AT=SCC
A, B, ' =C
A&B,T = C

Here Ctr™ indicates an m — 1 fold contraction, and dischargesin m occurrences of
assumption A have been removed. The rest of the casesfor & E are similar.

3. Thelastruleis vI:

r r r r

A I A R B I B R
—_—V vV Vv — RV
AVB ' > I'=>AvB ' AvVvB > ™ I'=AVB °

4, Thelast ruleis v E: The natural deduction derivation is
1 2.
[A™], T [B"],A
AV B ¢

c
and the trangdlation is again by cases according to the values of m and n:

VE,1.,2.
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m=0n=0
r A
C C
w w
A T=C B,A:>CLv
AVB T, A=C
m=1n=1
A, T B,A
c C

\%

AVB,T,A= CL
Here again, the assumptions have been opened. The general caseism > 1,n > 1:

A" T B", A
C o)
Ctr™ Ctr
A,I'=>C B,A=C

Lv

AVB,T,A=C

5. Thelast ruleis D I: The general casewith m > 1istranslated by

N A™ T
[A"], T :

: B ”
B AT=B "

D11 .
ADB ~» T=A>B

Again assumptions have been opened. If m = 0, there is a weakening instead of
contraction, if m = 1, thereisjust rule R D.

6. Thelast ruleis D E: The general caseistranslated as

B", A
1 r
I [B"],A :
: : ¢ Cir
ADB A Cc r
DE, 1 A B’A:C LD
C > ADB,T,A=C

The other cases are translated analogously to above.

7. Thelastruleis LE:

4
—1E Ll

Ay
C 1=cC

8. Thelast formula is an assumption:

A w» A=A
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Notice that in afully normal derivation, the premiss of rule LE is an assumption
and nothing remainsto betrandlated in step 7. If in 7 or 8 there are discharge labels
and brackets they are removed.

Theorem 3.7. Given a fully normal natural deduction derivation of C from open
assumptions I, thereisa derivation of I' = C in GOi.

Proof. By thetrandation defined. ]

There are no unused weakenings or contractions in the derivation of I' = C.
By the translation, we obtain the converse to theorem 3.6:

Theorem 3.8. If A isvacuously (multiply) discharged in the derivation of C from
open assumptions T, then A is a weakening (contraction) formula used in the
derivation of I' = C in GOi.

The usual explanation of contraction runs something like “if you can derive a
formula using assumption A twice you can aso deriveit using A only once.” But
thisis just a verbal statement of the rule of contraction. Logical rules of natural
deduction that discharge assumptions vacuously or multiply are reproduced as
weakeningsor contractionsplusalogical rulein sequent cal culus, but theweakening
and contraction rules in themselves have no proof-theoretical meaning, as was
pointed out by Gentzen (1936, pp. 513-14) already.

By the trandlation of a derivation from natural deduction to sequent calculus,
each formula in the former appears in the latter. We therefore have a somewhat
surprising proof of the

Corollary 3.9 (Subformula property). In a normal derivation of C from open
assumptions I', each formulain the derivation is a subformula of ', C.

The trandations we have defined from natural deduction to sequent calculus
and the other way around do not quite establish an isomorphism between the two:
the order of logical rulesis preserved, but it is possible to permute weakenings and
contractions on a formula A as long as A remains inactive so that isomorphism
obtains modulo such permutations. This, however, is a minor point that can be
handled by doing weakening and contraction on formula A right before A is used.

Tranglation of non-normal derivations will be discussed in Section 5.

4. Derivationswith cuts

We show that derivations with cuts can be translated into natural deduction if the
cuts are of a suitable kind: the detour cuts and permutation cuts corresponding
to cuts with the cut formula principal in both premisses and right premiss only,
respectively. These are the principal cuts, the rest are nonprincipal cuts. Principal
cuts correspond, in terms of natural deduction, to instances of rules of elimination
in which the major premisses are not assumptions.

A sequent calculus derivation has an equivalent in natural deduction only if it
has no unused weakening or contraction formulas. By this criterion, there is no
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correspondence in natural deduction for many of the nonprincipal cuts of sequent
calculus. In particular, if the right premiss of cut has been derived by contraction,
the contraction formulais not used in the derivation and there is no corresponding
natural deduction derivation. Thisisprecisely the problematic casethat led Gentzen
to use the rule of multicut. If cut and contraction are permuted, the right premiss
of acut becomes derived by another cut and there is likewise no trandation.

In trandating derivations with cuts, if the left premiss is an axiom the cut is
deleted. There are three detour cuts and another twelve permutation cuts with left
premiss derived by alogical rule to be translated. We also trandlate principal cuts
on | aswell as cases where the left premiss has been derived by a structural rule,
but derivations with other cases of cuts will not be translated. Translation of rules
other than cut have been given in Section 3.

1. Detour cut on A& B, and we have the derivation

rsA A=B A,B,®=C

R& — L&
' A= A&B A&B,®=>CCM
A,®=C

Thetrandationis:

F::>A A::>B 1. 2 :
A&B & [Al[Bl.@=>C
C

&E1.,2.

Tranglation now continues from the premisses.

2., 3. Detour cutson A v B and A O B. The trangdlations are analogous to 1,
with the left and right rules trandated asin Section 3.

4. Permutation cut on C& D with left premiss derived by L&:

A, B.T = C&D C.D.A=SE

L& L&
A&B,T' = C&D C&D,A:ECW
A&B, ')A = E

Thetrandationis

1. 2. .
A&B [A],[B],T = C&D 3. 4
C&D &E.L.2. [C],[D],A=>E

E

&E,3.,4.

Therest of the permutation cutswith L&, Lv and L D are trandated anal ogously.

5. Wea so have permutation cutson L E but no detour cutssince L. can never be
principal in the left premiss. The derivation and its translation are, where L stands
for a (one-premiss) left rule and E for an elimination,
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=1 =1

L L1l E
'=> 1L L:>CC 1
= C o

6. ‘Structural’ cuts with left premiss derived by weakening, contraction or cut.
For weakening and contraction thetransl ation reaches, by the condition of no unused

n.
weakening or contraction formulas, aconclusion of cut of theform[A], T, A = C.
In the case of weakening, the left premissof cut A, I' = B has been derived from
I' = B, inthecaseof contractionfrom A, A, I’ = B. Thecutsaretrandated with

|eft premiss replaced by T => B and [A], [A], T' = B, respectively.
For left premiss of cut derived by another cut the translation is modular and the
upper cut is handled as before.

5. Non-normal derivations

We began in Section 2 with examples of non-normal natural deduction derivations
corresponding to sequent cal culus derivations with cuts. The latter are produced by
trand ations defined inductively according to the last step. Derived major premisses
are called conversion formulas. There are three cases of non-normality in which
the major premiss of an elimination rule has been derived by the corresponding
introduction rule:

1. The conversion formula has been derived by & I and the derivationis

ra 1 2.
[Am]’ [Bn]’ @
&1
A&B C

C

&E,1.,2.

Thetrandation is by cases according to values of m and n. The general caseis
A", B™ ®

r A :
co C c
A B A,B,®=C
—R& — &
I' A= A&B A&B,®=>CC

A, ®=C

tr’™ Ctr"

ut

Thereisanm + n — 2 fold contractionincasem, n > 1.

2., 3. The conversion formulahas been derived by VI or > I and thetranslation
is analogous.

When detour conversions are applied, the open assumptionsin aderivation can
change. For example, the derivation
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A B&I 1
A&B  [A]

&E.L
A

convertsinto the derivation A. Trandation gives
A=A
—_—Ww
A=A B=B A, B= A

R& I —
A B = A&B A&B=>ALfm
AB=>A

Cut elimination produces the derivation

A=A
—W
A,B= A

Deletion of the unused weakening gives the derivation A = A, corresponding to
the result of the detour conversion.

Given a (cut-free) derivation of ' = C, we can first delete the unused weak-
enings, then trandate to natural deduction, and last add the unused weakening
formulas of I to the natural deduction derivation by the above trick on formula B,
to obtain anon-normal derivation of C from open assumptionsT.

There is a good number of non-normalities with a permutation convertibility
but we only show one typical case:

4. The conversion formula C& D has been derived by & E from A& B:

1. 2.
[A].[B").7 A
: [C*].[D]. A
A&B C&D .
C‘SL—D&E,]..,Z. E
E & E,3.,4.

Thetrandation is by cases according to values of m, n, k, I, with the general case

A™ B" T ck. D!, A
C&D C
— _ctmctr" ——————cCurk ol
A,B,T = C&D C.D.A=E .
A&B,T = C&D C&D,A = E

ARB.T.A S E Cut

If A& B inturnisaconversion formula, acut on A& B isinserted after therule L&
that concludes the left premiss of the cut on C& D.

Trandationswhen VE and O E have been used are analogousto theonefor & E.
Translation when L E has been used isthe converseto trandation 5 in Section 4. If
the major premiss in the derivation of a conversion formulais again a conversion
formula, another cut isinserted.
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Consider atypical principal cut, say, on A& B:

A.B.A=C

_— &

= A&B A&B.A = C
Cut
T A=C !

We see that the cut is redundant, in the sense that its left premiss is an axiom,
precisely when A& B is an assumption in the corresponding natural deduction
derivation. In this case, the cut is not translated but deleted. We have, in general:

A non-normal instance of alogical rulein natural deduction is represented
in sequent calculus by the corresponding left rule and a cut.

L et us compare this explanation of cut to the presentation of cut as a combination
of twolemmasT = A and A, A = C into atheorem ', A = C. Consider the
derivation of C from assumptions A, A in natural deduction. Obviously A playsan
essential role only if it is analyzed into components by an elimination rule, thus,
A isamajor premiss of that elimination rule. If not, it acts just as a parameter
in the derivation. Our explanation of cut makes more precise the idea of cut as a
combination of lemmas:. In terms of sequent calculus, the cut formula has to be
principal in aleft rulein the derivation of A, A = C.

Given a non-normal derivation, tranglation to sequent calculus, followed by
cut elimination and translation back to natural deduction, will produce a normal
derivation:

Theorem 5.1. Nor malization. Given a natural deduction derivation of C fromT,
the derivation converts to a normal derivation of C from I'* where each formula
inT*isaformulainT.

This process of normalization will not produce a unique result since cut elimi-
nation will not.

6. Thestructure of normal derivations

Theorem 5.1 gave aproof of normalization for intuitionistic natural deduction with
general elimination rules, through atranslation to sequent cal culus, cut elimination
and transglation back to natural deduction. Strong normalization and uniqueness of
normal form (modulo the choices in simplification convertibilities on disjunction,
see below) for our system of natural deduction is given by Joachimski and Matthes
(2001). Their proof uses a system of term assignment.

We consider three different types of non-normalities of a natural deduction
derivation with general elimination rulesthat depend on how amajor premiss of an
elimination rule was derived. Then the subformula structure of normal derivations
is detailed, with a direct proof of the subformula property.

(a) Detour conver sions: Gentzen'soriginal notion of anormal derivationin natural
deduction wasthat no conclusion of an introduction rule must be the major premiss
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of an elimination rule. (Thisis seen from the example on implication in his 1934—
35, Sec. II. 85.12.) Non-normal derivations are transformed into normal ones by
detour conversions that delete each such pair of introduction and elimination rule
instances. In a fully general form, a detour convertibility on the formula A& B
obtainsin a derivation whenever it has a part of the form

1. 2
: : [A™].[B"]
[A]_[B],, :
A& B C
C

&E,1.,2.

Detour conversion on A& B gives, through simultaneous substitution, the modified
derivation

A detour convertibility on A v B is quite analogous. For implication, the situation
is more complicated since a vacuous or multiple discharge is possible also in the
introduction of the conversion formula:

1.
[A™]
. 2.
: [B"]
B .
oIl
ADB A C

DE,2.

In detour conversions, open assumptions typically get multiplied or deleted.

(b) Permutation conversionsfor general elimination rules: There arefour eim-
ination rules which gives sixteen cases of permutation convertibilities, magjor pre-
misses of elimination rulesthat are derived by another elimination rule. All of these
act in asimilar way on derivations and we only show one:
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A permutation convertibility on major premiss C& D derived by & E on A& B
obtains whenever a derivation has the part

[A™, B"]
: : [Ck’ Dl]
A&B C&D .
cap  “F
E &E

E

After the permutation conversion the part is
[Am7 Bn] [Ck, Dl]

. C&D E
A&B E
E

&E
&E

The effect of the conversion isthat the height of derivation of major premissC& D,
as measured from the discharged assumptions A, B, is diminished by one.

(c) Simplification conversions: Other reductions of natural deduction derivations
exist besides detour and permutation conversions. In Prawitz (1971), asimplifica-
tion of derivationsin natural deduction is suggested, called properly simplification
conversion. The convertibility arises from digjunction elimination when in at least
one of the auxiliary derivations, say thefirst one, a disjunct was not assumed:

1.
r A [BL®
AVB C ¢
C

The elimination step is not needed, for C is already concluded in the first auxil-
iary derivation. With general elimination rulesfor conjunction and implication, we
analogously have:

VE,1

r A r A ©®

A&B € ADB A ¢
C C
In both inferences, C isaready concluded without the elimination rule, and simpli-
fication conversion extends to all elimination rules, quantifier rules included. The
notion is captured by the

DE

Definition 6.1. A simplification convertibility in a derivation is an instance of an
E-rule with no discharged assumptions, or an instance of v E with no discharges
of at least one digunct.
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A simplification convertibility can prevent the normalization of aderivation, as
is shown by the following:

Ii. 2.
(4] oLl LB] S1.2. 3.
ADA Bo>B~ ', [C]
(AD A)&(B D B) coc e
&E
cC>C

Thereisadetour convertibility but due to the vacuous dischargein & E, the pieces
of derivation do not fit together intheright way to removeit. Instead asimplification
conversion into the derivation
3,
[C]
cCocC

will remove the detour convertibility.

It is possible that in a simplification convertibility with v E, both auxiliary
assumptions are vacuously discharged. In this case, there are two converted deriva-
tions of the conclusion.

oI,3.

(d) The subformula structure of general elimination rules: With specia elimi-
nation rules in the v- and 3-free fragment, there is a smple subformula structure
along al branches of a normal derivation, from assumptions to a minor premiss
of rule D E or to the conclusion. In fully normal derivations with general elimina-
tion rules, branches are replaced by sequences of formulas that jump from major
premisses to their auxiliary assumptions. Contrary to first appearance, a greater
uniformity in the structure of derivations, for the full language of predicate logic,
isachieved.

The subformula property in natural deduction is more complicated than in
sequent cal culus, duetothenonlocal character of therulesof inference. It isobtained
through the notion of thread (a term suggested to us by Dag Prawitz) where for
simplicity we assume that no simplification convertibilities obtain:

Definition 6.2. Athread in a natural deduction derivation of C from open assump-
tionsT" without simplification convertibilitiesisasequenceof formulasAy, ..., A,
such that

1. A, iseither C or aminor premissof D E.

2. A;_1 iseither amajor premiss with auxiliary assumption A; in an E-rule, or
aminor premissinan E-rulewith A;_; = A;,, or a premiss with conclusion
A; inan I-rule.

3. A1 isatop formula not discharged by an E-rule.

Threads typically run through a sequence of major premisses of E-rules, until
the conclusion of the innermost major premissis built up by 7-rules, and so on. If
vacuous instances of elimination rules are admitted, there can be threads that stop
at the major premiss.

Threads in a normal derivation, briefly, normal threads, have the following
structure:
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E-part
——
(Alv"'sAn‘la"'vAn)
———

I-part

In the E-part, the major premisses follow in succession and A;1 isan immediate
subformula of A;. In the I-part, either A; 1 isequa to A; or A; isan immediate
subformulaof A; 1.

We concluded in corollary 3.9 the subformula property of normal derivations
with general elimination rules by a corresponding result that is immediate for the
sequent calculus GOi. A more direct proof interms of natural deduction sheds some
light on the structure of threads:

Direct proof of the subformula property: Each formula A is in at least one
normal thread, and it is a subformula of the topformula or of the endformula of
the thread. In the former case, the topformulais either an open assumption and the
subformula property follows, else it is discharged by > I and A is a subformula
of the endformula of the thread. If the endformula is the conclusion of the whole
derivation the subformulaproperty follows. If it isthe endformulaof aminor thread,
it is aso a subformula of the corresponding major premiss. The major premiss is
either an open assumption and the subformula property follows. Else the major
premissis discharged by > I and belongs to some normal thread with endformula
further down in the derivation. If this endformulaisthe conlusion of the derivation
the subformula property follows, if not, by repeating the argument the conclusion
isreached. O

In sequent calculus, the rule of falsity elimination is represented by a sequent
1 = C by which derivations can start. In usual natural deduction, instead, falsity
elimination can apply at any stage of aderivation. Thisdiscrepancy isnow explained
as a hidden convertibility. In particular, if the conversion formulais L derived by
L E wehaveaderivation with two non-normal instancesof LE. Since L E hasonly
amajor premiss, a permutation conversion just removes one of these instances:

¥J_E Ay C

and the converted one
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Fully normal derivationsdo not have redundant iterationsof L E. In Prawitz (1965,
p. 20), the effect of the above permutation conversion is achieved by the ad hoc
restriction that in L E the conclusion be different from _L.

Inatypical application of L E in natural deduction with the special elimination
rules we have, using the modus ponensrule,

ADL A
T Mp
—IE
C
With the more general D E rule, the derivation and its permutation conversion are
1.
AD>DL1L A [1] [J_]
— " SE1L —1E
AD>D1l A C
—1E > —— =  ~ SEL
C C

Here the premiss L is converted into a topformula of the derivation. The same
appliesin general and we thus obtain the following

Proposition 6.3. A fully normal intuitionistic derivation begins with assumptions
and instances of theintuitionistic L F rule, followed by a subderivationin minimal
logic.

This fact will give a natural trandation of intuitionistic into minimal logic:
Consider an intuitionistic derivation of C in full normal form. The conclusions of
falsity elimination are derivable from falsity eliminations concluding atoms. By
the subformula property, these are atoms of C, and let them be Py, ..., P,. Each
step ; isreplaced by anassumption L > P;, and P; is concluded from LbyDE
instead of L E. Collecti ng all the new assumptions, we obtain the

Theorem 6.4. Formula C isintuitionistically derivable if and only if
(Lo>P)&---&(LD>P)DC

isderivable in minimal logic.

It would be a redundancy in a normal derivation if it had major premisses of
elimination rules that are derivable formulas:

Definition 6.5. A major premiss of an elimination rule is a proper assumption if it
isunderivable.

Theorem 6.6. Givenaderivation, thereisaderivationinwhichall major premisses
of elimination rules are proper assumptions.

Proof. Consider a derivable major premiss A. In a normal derivation of A, the
last rule must be an I-rule since an E-rule would leave an open assumption. A
substitution of assumption A with anormal derivation createsadetour convertibility.
From the conversion schemes, we observe that no conversion ever produces new
major premisses of E-rulesand that detour conversions produce shorter conversion
formulas. Thereforethe processof substituting derivable major premissesof E-rules
with their derivations and subsegquent normalization terminatesin aderivation with
proper assumptions. |
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By the undecidability of predicate |ogic, the theorem does not give an effective
proof transformation. A trangation to sequent calculus givesthe

Coroallary 6.7. If the sequent I' = C is derivable in GOi, it has a derivation in
which all formulas principal in left rules are underivable,

Theeliminahility of derivable principal formulasinleft rulesin sequent calculus
derivations was discovered by Mints (1993). The formulation in terms of natural
deduction with general elimination rules makes this result intuitive.

7. Concluding remarks

Gentzen found the rules of natural deduction through an analysis of actual mathe-
matical proofs. How natural arethe general elimination rules, in comparison?Inan
informal proof, a proposition of the form A& B is used by deriving consequences
of the assumptions A and B, without the intermediate logical steps of the usual
conjunction elimination rules. Similarly, A O B is used by deriving consequences
from B, and if at some stage A obtains, those consequences obtain. The same
natural use of logic isfound with A v B in proofs by cases.

In Gentzen's original work, atrandation of natural deduction derivations into
sequent cal culusisdescribed (193435, sec. V. 84). Each formula C isfirst replaced
by asequent I' = C inwhich I' isalist of open assumptions C depends on, and
then the rules are translated. Rules &7 and VI are trandated in the obvious way.
Trandations of > I and Vv E involve possible weakenings and contractions, corre-
sponding to vacuous and multiple discharges. Whenever in the natural deduction
there are instances of & E and D E, the first phase of the translation gives steps
such as

'=A&B T'=ADB A=A
= A I''A=B

These are turned into sequent cal culus inferences by the replacements

A=A A=A B=B,

[ — D

I = A&B A&B:Aclt r=A>B ADBA=B
I = A ! A= B .

Each instance of these E-rules leads to a cut. The cut is redundant if in natural
deduction the major premiss is an assumption, but this need not be the case with
& E or D E even if the derivation is normal in Gentzen's sense of not containing
detour convertibilities.

With the knowledge that the special elimination rules of natural deduction
correspond to ‘hidden cuts, it is to be expected that a normal natural deduction
inthe old sense trandlates into a sequent calculus derivation with cuts. In Gentzen's
work, the ‘Hauptsatz' is proved in terms of sequent calculus, and the possibility
of a formulation in terms of a normal form in intuitionistic natural deduction is
only mentioned. No comment is made about the cutsthat the translation to sequent
calculus produces.
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Thereisanother way of arriving at the general elimination rulefor conjunction
than the translation from sequent cal culus we have used, namely, constructive type
theory. The genera rule comes straight out by suppressing the proof objectsin the
typedrule, asin Martin-Lof (1984, p. 44). In the other direction, typing our general
implication elimination rule will result in a new selector, generalized application:

[x : B]

ciADB a:A d:C
gap(c,a, (x)d): C

A full type-theoretical rule usesthe function type (A) B that has no correspondence
infirst-order logic. The usual first-order selector ap corresponding to modus ponens
is defined, for B = C, by ap(c,a) = gap(c, a, (x)x) : B. Normality means
that each selector term has a variable as first argument. A direct proof of strong
normalization for natural deduction with genera elimination rules was found by
Joachimski and Matthes (2001), through a term assignment system. (They also
suggested the term ‘generalized application’ for general implication elimination
typed.)

In Ekman (1998), it is noticed that a derivation of the formula~ (P >C ~ P),
where equivalenceisimplication in both directions, either isnot normal or else has
a subderivation of the form

~P>P ~P
PDO~P P
~P
The derivation has the reduncancy, or is‘indirect’ in Ekman’sterminology, that the
derivation of the conclusion could be replaced by the derivation of the first occur-
rence of ~ P. But thiswill produce anon-normal derivation, for the top occurrence
of ~ P isthe conclusion of 51 and the bottom occurrence amajor premissof DE.
This problem is solved by the use of the general implication elimination rule, as
shown in our (2000).

In our view, the essential difference between sequent calculus and natural de-
ductionisnot inthisor that set of logical rules. Themost important differenceisthat
the logical rules of natural deduction permit non-normal instances, where sequent
calculus hasto use aleft logical rule and a cut. We take thisto be the characteristic
featureof natural deduction. Secondly, thereareno explicit structural rules of weak-
ening or contraction, but vacuous and multiple discharges of assumptions instead.
It is possible to devise a‘* sequent calculus in natural deduction style, exemplified
by the rules

DE

DE

A”’,B”,F:>CL& A’",F=>BR
A&B, T = C '=ADB

having instancesfor any valuesm, n > 0. Thereare no explicit rules of weakening
or contraction but these are built into the logical rules that use assumptions. (See
Negri and von Plato 2001 for the calculus and a proof of cut elimination.) With
the calculus GOi, isomorphism with derivations in natural deduction is obtained

D
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modul o some permutations of weakenings and contractions. In sequent calculusin
natural deduction style, the correspondence between the two main forms of logical
calculi is perfect.
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