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Abstract. The structure of derivations in natural deduction is analyzed through isomorphism
with a suitable sequent calculus, with twelve hidden convertibilities revealed in usual natural
deduction. A general formulation of conjunction and implication elimination rules is given,
analogous to disjunction elimination. Normalization through permutative conversions now
applies in all cases. Derivations in normal form have all major premisses of elimination rules
as assumptions. Conversion in any order terminates.

Through the condition that in a cut-free derivation of the sequent � ⇒ C, no inactive
weakening or contraction formulas remain in�, a correspondence with the formal derivability
relation of natural deduction is obtained: All formulas of � become open assumptions in
natural deduction, through an inductively defined translation. Weakenings are interpreted
as vacuous discharges, and contractions as multiple discharges. In the other direction, non-
normal derivations translate into derivations with cuts having the cut formula principal either
in both premisses or in the right premiss only.

1. Introduction

We shall analyze the structure of derivations in natural deduction through isomor-
phic correspondence with derivations in a suitable sequent calculus. The key insight
is to formulate all elimination rules of natural deduction in the manner of disjunc-
tion elimination. The standard conjunction and implication elimination rules come
out as special cases: it is seen that these rules stand behind the failure of unique
correspondence between natural deduction and sequent calculus derivations. In
particular, twelve cases of failure of normalization in propositional logic are identi-
fied. When conjunction and implication elimination rules are formulated as general
elimination rules, derivations permit conversion to full normal form. The character-
istic of this form is that all major premisses of elimination rules are assumptions.
Normalization holds for any order of conversions.

In full normal form for intuitionistic logic, also premisses of falsity elimina-
tion, or the rule ‘ex falso quodlibet,’ are assumptions. Thus, a normal intuitionistic
derivation of a formula C begins with assumptions and inferences of the form ⊥

A
,

followed by subderivations in minimal logic. The usual conjunction and implication
elimination rules do not permit this, which created a discrepancy between natural
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deduction and sequent calculus. In the former, falsity elimination can occur in the
middle of a derivation, but in the latter, falsity elimination always is in the beginning
of a derivation.

The concept of full normal form is extended to intuitionistic predicate logic by
a general elimination rule for the universal quantifier, analogous to the elimination
rule for the existential quantifier. This will bring forth twelve more cases of hidden
convertibilities in natural deduction.

Our analysis is based on translations establishing isomorphism between nat-
ural deduction derivations and suitable sequent calculus derivations. The formal
derivability relation of sequent calculus, written � ⇒ C, is usually related to a
meta-level derivability relation for natural deduction, written � � C. This latter
is defined through the existence of a natural deduction derivation of C from open
assumptions contained in �. We give a correspondence with the formal derivability
relation of natural deduction: If in the derivation of � ⇒ C there remain no inac-
tive weakening or contraction formulas in the context �, all formulas of � become
open assumptions in the translation to a natural deduction derivation. Equivalence
between natural deduction and sequent calculus only obtains when inactive weak-
enings and contractions are absent in the latter.

In the sequent calculus we use, weakening is an explicit structural rule. Weak-
ening by a formula that is active in a logical rule in a sequent calculus derivation
corresponds to a vacuously discharged formula in natural deduction. To study con-
traction, we treat contexts as multisets. A sequent calculus derivation has contrac-
tions whenever more formula occurrences are discharged in a natural deduction
rule than is indicated in the schematic rule, say, more than one in implication intro-
duction. It was not possible to see fully what weakening and contraction amount to
in terms of natural deduction before the general elimination rules were available.

The proof of cut elimination for the sequent calculus corresponding to natural
deduction with general elimination rules is a straightforward induction on length
of cut formula and height of derivation of the premisses of cut. When contexts are
treated as multisets, a case of cut elimination is encountered in which the right
premiss has been derived by contraction. To obtain cut elimination for this case, a
multi-cut rule, as in Gentzen’s original proof, can be used. But a direct proof is also
available, through consideration of how the premiss of contraction was derived.

The translations we give also apply to non-normal derivations. Normalization
can be achieved through translation to sequent calculus followed by cut elimination
and translation back. The normal form thus obtained is not unique as cut elimination
is not unique. Direct normalization through detour and permutation conversions,
instead, will give strong normalization and uniqueness of normal form for natural
deduction with general elimination rules.

2. Hidden convertibilities in natural deduction

Normal derivations with the usual natural deduction rules for conjunction and im-
plication have a pleasant property: In each step of inference, the formula below
is an immediate subformula of a formula above, or the other way around. With
disjunction elimination, this simple subformula structure along all branches of a
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normal derivation tree is lost. But on the other hand, if the major premiss of an
elimination step is concluded by disjunction elimination, the derivation converts
into a more direct form. For example, if both steps are disjunction eliminations, we
have

1.
[A]

2.
[B]

...
...

A ∨ B C ∨D C ∨D
C ∨D ∨E,1.,2.

3.
[C]

4.
[D]

...
...

E E

E
∨E,3.4.

This derivation converts into

A ∨ B

1.
[A]

3.
[C]

4.
[D]

...
...

...
C ∨D E E

E
∨E,3.,4.

2.
[B]

3.
[C]

4.
[D]

...
...

...
C ∨D E E

E
∨E,3.,4.

E
∨E,1.,2.

If disjunction elimination is used to conclude a major premiss of conjunction or
implication elimination, translations similar to the above apply. These permutation
conversions were found by Prawitz in 1965. It is possible that the last step in the
derivation of C ∨ D from A or B is ∨I . Elimination with major premiss A ∨ B
separates the introduction of C ∨D from an elimination of C ∨D. A permutation
conversion can reveal such a ‘hidden’ detour convertibility.

In terms of sequent calculus, where the rule corresponding to ∨E is the left
disjunction rule L∨, the first derivation is

A⇒ C ∨D B ⇒ C ∨D
A ∨ B ⇒ C ∨D L∨

C ⇒ E D ⇒ E

C ∨D ⇒ E
L∨

A ∨ B ⇒ E
Cut

The second derivation corresponds to

A⇒ C ∨D
C ⇒ E D ⇒ E

C ∨D ⇒ E
L∨

A⇒ E
Cut

B ⇒ C ∨D
C ⇒ E D ⇒ E

C ∨D ⇒ E
L∨

B ⇒ E
Cut

A ∨ B ⇒ E
L∨

Thus, the conversion of the natural deduction derivation into a more direct form
corresponds to a step of cut elimination, where the cut is permuted with L∨, to
move it upwards in the derivation.

In Schroeder-Heister (1984), the following general conjunction elimination rule
is presented,

[A,B]
...

A&B C

C
&E

The standard rules come out as special cases whenC = A andC = B, respectively:
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A&B [A]

A
&E1

A&B [B]

B
&E2

In the other direction, leaving out the dummy discharged assumptions in these
special cases, if C is derivable from A,B, we have

A&B

A

A&B

B
...
C

But the structural properties of these two special elimination rules are quite different
from those of the general elimination rule. To give an example, with the special
rules we have the derivation

(A&B)&C

A&B

A

With the general rule, this becomes the derivation

(A&B)&C
1.

[A&B]

A&B
&E,1. 2.

[A]
A

&E,2.
(1)

Here the major premiss of the second elimination is itself a conclusion of general
conjunction elimination and a permutation conversion can be made:

(A&B)&C

1.
[A&B]

2.
[A]

A
&E,2.

A
&E,1.

(2)

Now the major premisses of both instances of the elimination rule have become
assumptions.

To write derivations in terms of sequent calculus, we make explicit the rules of
weakening and contraction: �,�,�, . . . are finite multisets (lists without order)
of formulas, with �,� indicating multiset union and A,� addition of one copy of
formula A to multiset �.

� ⇒ C

A,� ⇒ C
W

A,A,� ⇒ C

A,� ⇒ C
Ctr

Sequent calculus derivations start with sequents of the form A⇒ A or ⊥ ⇒ C.
Schroeder-Heister’s general conjunction elimination rule corresponds to the left

conjunction rule of sequent calculus, through the correspondence

[A,B], �
...

A, B, � ⇒ C

A&B,� ⇒ C
L&

�

A&B C

C
&E
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Derivation (1) with the general elimination rule corresponds, in a way to be made
exact below, to

A&B ⇒ A&B

A&B,C ⇒ A&B
W

(A&B)&C ⇒ A&B
L&

A⇒ A

A,B ⇒ A
W

A&B ⇒ A
L&

(A&B)&C ⇒ A
Cut

Derivation (2) corresponds to

A⇒ A

A,B ⇒ A
W

A&B ⇒ A
L&

A&B,C ⇒ A
W

(A&B)&C ⇒ A
L&

It can be obtained from the first one by permuting the cut up twice, first with L&
and then with weakening in the left premiss. We observe that the elimination of cut
corresponds to the conversion of major premisses of &E rules into assumptions.

With the standard implication elimination rule, or modus ponens, we observe
the same phenomenon: A derivation such as

A ⊃ (B ⊃ C) A

B ⊃ C B

C

does not convert. But if in a sequent calculus derivation the last rule is L⊃ and it is
translated analogously to rules L∨ and L& a general implication elimination rule
is found:

� [B],�
...

...
� ⇒ A B,�⇒ C

A ⊃ B,�,�⇒ C
L⊃

�

A ⊃ B A C

C
⊃E

Again, we obtain the standard elimination rule as a special case, by setting C = B.
In the other direction, if C is derivable from B, we have

A ⊃ B A

B
...
C

With the general rule, our example derivation is:

A ⊃ (B ⊃ C) A
1.

[B ⊃ C]

B ⊃ C ⊃E,1.
B

2.
[C]

C
⊃E,2.

It converts into the derivation
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A ⊃ (B ⊃ C) A

1.
[B ⊃ C] B

2.
[C]

C
⊃E,2.

C
⊃E,1.

Translations of these derivations into sequent calculus are: For the first, we have

A⇒ A B ⊃ C ⇒ B ⊃ C
A ⊃ (B ⊃ C),A⇒ B ⊃ C L⊃

B ⇒ B C ⇒ C

B ⊃ C,B ⇒ C
L⊃

A ⊃ (B ⊃ C),A,B ⇒ C
Cut

The second one gives instead the cut-free derivation

B ⇒ B C ⇒ C L⊃
A⇒ A B ⊃ C,B ⇒ C

A ⊃ (B ⊃ C),A,B ⇒ C
L⊃

There are altogether twelve cases of hidden convertibilities in natural deduction
for propositional logic with special elimination rules.

For quantifiers, the standard elimination rules are

[A]
...∀xA

A(t/x)
∀E

∃xA C

C
∃E

where t is a term free for x in A and usual variable restrictions for ∃E apply.
Similarly to the case of propositional logic, if the major premiss of an elimination
step is derived by ∀E, the derivation does not convert. This brings out twelve new
cases of hidden convertibilities, all eliminable by the use of the general elimination
rule for the universal quantifier,

[A(t/x)]
...∀xA C

C
∀E

This rule will permit a full normal form for derivations in intuitionistic first-order
logic. The special elimination rule follows by setting C = A(t/x). In the other
direction, if C is derivable from A(t/x), we have the derivation

∀xA
A(t/x)
...
C

The detailed treatment of quantifiers brings no essential new aspects and is left to
another occasion.

What has been said of conjunction and implication elimination extends to falsity
elimination ⊥

C
. In full normal form, its major premiss ⊥ is an assumption. Thus, in
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intuitionistic derivations in full normal form instances of rule ⊥E are top inferences,
followed by a derivation in minimal logic. A typical case of conversion is

A ⊃ ⊥ A
1.

[⊥]

⊥
C

⊥E
⊃E,1.

�

1.
[⊥]

A ⊃ ⊥ A C
⊥E

C
⊃E,1.

that cannot be done with the modus ponens rule.

3. A sequent calculus isomorphic to natural deduction

We shall introduce a sequent calculus, to be called G0i, corresponding precisely to
natural deduction with logical introduction and general elimination rules.

G0i

Logical axiom:

A⇒ A

Logical rules:

A,B, � ⇒ C

A&B,� ⇒ C
L&

� ⇒ A �⇒ B

�,�⇒ A&B
R&

A,� ⇒ C B,�⇒ C

A ∨ B,�,�⇒ C
L∨

� ⇒ A

� ⇒ A ∨ B R∨1
� ⇒ B

� ⇒ A ∨ B R∨2

� ⇒ A B,�⇒ C

A ⊃ B,�,�⇒ C
L⊃

A,� ⇒ B

� ⇒ A ⊃ B R⊃

⊥ ⇒ C
L⊥

A(t/x), � ⇒ C

∀xA,� ⇒ C
L∀

� ⇒ A(y/x)

� ⇒ ∀xA R∀

A(y/x), � ⇒ C

∃xA,� ⇒ C
L∃

� ⇒ A(t/x)

� ⇒ ∃xA R∃

Rules of weakening and contraction:

� ⇒ C

A,� ⇒ C
W

A,A,� ⇒ C

A,� ⇒ C
Ctr

The restriction in R∀ and in L∃ is that y does not occur free in the conclusion. The
first axiom applies to arbitrary formulas. Therefore, in particular, it gives ⊥ ⇒ ⊥
as an instance, where falsity ⊥ is not an atomic formula but a logical constant of
length 0. To emphasize thatL⊥ is a logical rule, we have written it as a zero-premiss
left rule. If it is left out, a sequent calculus for minimal logic is obtained.

Each rule has a context, a finite multiset of formulas designated by �,� in the
above rules, active formulas designated byA and B, and a principal formula that is
introduced by the rule in question. Corresponding to the treatment of assumptions
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in natural deduction, two-premiss rules have independent contexts, both collected
in the antecedent of the conclusion.

The rule of cut,
� ⇒ A A,�⇒ C

�,�⇒ C
Cut

is proved admissible in G0i in von Plato (2001).
We shall give an inductive definition of a translation from cut-free derivations in

G0i to natural deduction derivations with general elimination rules. It is sometimes
thought that natural deduction is not able to express the rule of weakening. One
defines instead derivability in natural deduction by: C is derivable from � if there
is a derivation with open assumptions contained in �. Here we shall consider the
more strict, formal derivability relation.

Definition 3.1. A formula in a sequent calculus derivation is used if it is active in
an antecedent in a rule.

Rules that use a formula make it disappear from an antecedent, so these are the left
rules and R⊃. In natural deduction, use of formulas corresponds to the discharge
of assumptions. The little numbers written next to the mnemonic symbol for the
rule applied and on top of formulas indicate what is discharged and where. We shall
adjust the translation from sequent calculus to natural deduction accordingly, by
adding labels to used formulas. Labels on top of discharged formulas are called
assumption labels and those next to the rules discharge labels.

Principle 3.2. Unique discharge. No two rules in a derivation must have the same
discharge labels.

The translation of a cut-free sequent calculus derivation of a sequent �⇒ C to
natural deduction, where � has no unused weakening or contraction formulas,
starts with the last step and works root-first step by step until it reaches axioms and
instances of L⊥. In this process, it is crucial to keep track of how formulas in the
antecedents turn into assumptions. To satisfy Principle 3.2, each rule that discharges
assumptions must have fresh discharge labels. Below, in each case of translation,
we write the result of the first step of translation with a rule in natural deduction
notation, and the premisses from which the translation continues in sequent calculus
notation. We also add square brackets and treat labelled and bracketed formulas
in the same way as other formulas when continuing the translation. The natural
deduction derivation comes out from the translation all finished:

If the last rule to be translated is logical, we have

A,B, �

...⇒C
A&B,� ⇒ C

L&
�

A&B
1.

[A],
2.

[B], �
...⇒C

C
&E,1.,2.

�

...⇒A �

...⇒B
�,�⇒ A&B

R&
�

�

...⇒A �

...⇒B
A&B

&I
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A,�

...⇒C B,�

...⇒C
A ∨ B,�,�⇒ C

L∨
�

A ∨ B
1.

[A], �
...⇒C

2.
[B],�

...⇒C
C

∨E,1.,2.

�

...⇒A
� ⇒ A ∨ B R∨1 �

�

...⇒A
A ∨ B ∨I1

�

...⇒B
� ⇒ A ∨ B R∨2 �

�

...⇒B
A ∨ B ∨I2

�

...⇒A B,�

...⇒C
A ⊃ B,�,�⇒ C

L⊃
�

A ⊃ B �

...⇒A
1.

[B],�
...⇒C

C
⊃E,1.

A, �

...⇒B
� ⇒ A ⊃ B R⊃

�

1.
[A], �

...⇒B
A ⊃ B ⊃I,1.

⊥ ⇒ C
L⊥

�
⊥
C

⊥E

If the last rule is weakening or contraction, we have

�

...⇒C
n.

[A], � ⇒ C

W

� �

...⇒C
A,A,�

...⇒C
n.

[A], � ⇒ C

Ctr

�
n.

[A],
n.

[A], �
...⇒C

If the last rule is an axiom, we have

A⇒ A � A

By the assumption of no unused weakening or contraction formulas, the translation
can only reach weakening or contraction formulas indicated as discharged by square
brackets. The topsequents of derivations are axioms or instances of ⊥ ⇒ C. If the
translation arrives to these sequents and they do not have labels, their antecedents
turn into open assumptions of the natural deduction derivation. When a formula is
used, the translation produces formulas with labels and we can reach topsequents
n.

[A]⇒ A and
n.

[⊥]⇒ C with a label in the antecedent. These are translated into
n.

[A] and
n.

[⊥]
C

⊥E, with discharged assumptions. Note that if a labelled formula gets
decomposed further up in the derivation, the labelled formula itself becomes a major
premiss of an elimination rule that has been assumed. The components, instead,
do not inherit that label but only those indicated in the above translations. Two
different labels must be used for assumptions A and B in rules &E and ∨E. The
translation produces derivations in which the major premisses of elimination rules
always are (open or discharged) assumptions:

Definition 3.3. A derivation in natural deduction is in full normal form if all major
premisses of E-rules are assumptions.
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We shall refer to such derivations briefly as normal. Notice that ⊥ in ⊥E is
counted as a major premiss of an E-rule.

Translation of derivations with cuts will be discussed in Section 4.
The translation is an algorithm that works its way up from the endsequent in

a local way, reflecting the local character of sequent calculus rules. It produces
syntactically correct derivation trees with discharges fully formalized.

The translation of applications of the rule of weakening into natural deduction
may seem somewhat surprising, but it will lead to a useful insight about the nature
of this rule. Natural deduction rules permit to discharge formulas that have not
occurred in a derivation. Similarly, natural deduction rules permit to discharge any
number of occurrences of an assumption, not just the occurrence indicated in the
schematic rule.

Definition 3.4. Rule ⊃I and the elimination rules produce a vacuous (multiple)
discharge whenever

1. In ⊃ I concluding A ⊃ B no occurrence (more than one occurrence) of
assumption A was discharged.

2. In &E and ∨E with major premisses A&B and A ∨ B, no occurrence of A
or B (more than one occurrence of A or B, or more than two if A = B), was
discharged.

3. In ⊃E with major premiss A ⊃ B no (more than one) occurrence of B was
discharged.

A weakening formula (resp. contraction formula) is a formula A introduced by
weakening (contraction) in a derivation. There can be applications of weakening
that have no correspondence in natural deduction: Whenever we have a derivation
with weakening formulas that are not used, the endsequent is of the formA,� ⇒ C,
with A an inactive weakening formula throughout.

The condition of no inactive weakening or contraction formulas in a sequent
calculus derivation permits a correspondence with the formal derivability relation
of natural deduction:

Theorem 3.5. Given a derivation of � ⇒ C with no inactive weakening or con-
traction formulas, there is a natural deduction derivation of C from � with each
formula of � an open assumption.

Proof. The proof is by induction on the height of derivation, using the translation
from sequent calculus. If � ⇒ C is an axiom or instance of L⊥, � = C or � = ⊥,
and the translation gives the natural deduction derivations C and ⊥

C
⊥E with open

assumptions C and ⊥, respectively. If the last rule is L&, we have � = A&B,�′
and the translation gives

A&B
1.

[A],
2.

[B], �′
...⇒C

C
&E,1.,2.

If there are no inactive weakenings or contractions in the derivation of A,B, �′ ⇒
C, there is by inductive hypothesis a natural deduction derivation of C from open
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assumptions A,B, �′. Now assume A&B and apply &E to obtain a derivation of
C from A&B,�′.

If there is an inactive weakening or contraction formula in the derivation of
A,B, �′ ⇒ C it is by assumption not in �′ so it is A or B or both. Deleting
the weakenings and contractions with unused formulas we obtain a derivation of
Am,Bn, �′ ⇒ C, with m, n� 0 copies of A and B, respectively. By the induc-
tive hypothesis, there is a corresponding natural deduction derivation with open
assumptions Am,Bn, �′. Application of &E now gives a derivation of C from
A&B,�′. All the other cases of logical rules are dealt with similarly.

The last step cannot be weakening or contraction by the assumption about no
inactive weakening or contraction formulas. 
�

By the translation, the natural deduction derivation in Theorem 3.5 is normal.
Later we show the converse result. Equivalence of derivability between sequent
calculus and natural deduction only applies if unused weakenings and contractions
are absent.

Theorem 3.6. Given a derivation of� ⇒C with no inactive weakening or contrac-
tion formulas, ifA is a weakening (contraction) formula in the derivation, thenA is
vacuously (multiply) discharged in the corresponding natural deduction derivation.

Proof. FormulaA can be used in left rules andR⊃ only. Applying the translation to
natural deduction, A becomes a labelled formula in the antecedent, and translating
further, it disappears when a weakening withA is translated, and is multiplied when
a contraction on A is translated. 
�

Perhaps the simplest example is, with the corresponding natural deduction at
right,

A⇒ A

A,B ⇒ A
W

A&B ⇒ A
L&

⇒ A&B ⊃ A R⊃

1.
[A&B]

2.
[A]

A
&E,2.,3.

A&B ⊃ A⊃I,1.

In the natural deduction derivation,B is vacuously discharged. The translation pro-
duces, as a trace of the weakening, the discharge label 3 to which no assumption
label corresponds. An intermediate stage of the translation just before the disap-
pearance of the weakening formula is

A⇒ A W
1.

[A&B]
2.

[A],
3.

[B] ⇒ A

A
&E,2.,3.

A&B ⊃ A⊃I,1.

In Gentzen’s original sequent calculus there were two left rules for conjunction:

A,� ⇒ C

A&B,� ⇒ C
L&1

B,� ⇒ C

A&B,� ⇒ C
L&2
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These left rules correspond to the standard elimination rules for conjunction,
and the derivation of A&B ⊃ A and its translation become

A⇒ A

A&B ⇒ A
L&1

⇒ A&B ⊃ AR⊃

1.
[A&B]

A
&E

A&B ⊃ A⊃I,1.

Weakening is hidden in Gentzen’s left conjunction rules and vacuous discharge in
the special conjunction elimination rules. It is not possible to state fully the meaning
of weakening in terms of natural deduction without using the general elimination
rules.

The premiss of a contraction step can arise in essentially three ways: First, the
duplicationA,A comes from a rule with two premisses each having one occurrence
ofA. Second,A is the principal formula of a left rule and a premiss hadA already in
the antecedent. Third, weakening is applied to a premiss havingA in the antecedent.

The simplest example of a multiple discharge should be the derivation of
A ⊃ A&A, given here both in G0i with a contraction and in translation to nat-
ural deduction with a double discharge:

A⇒ A A⇒ AR&
A,A⇒ A&A

Ctr
A⇒ A&A R⊃

⇒ A ⊃ A&A

1.
[A]

1.
[A]

A&A
&I

A ⊃ A&A
⊃I,1.

In Definition 3.4, the clause about more than two occurrences in &E and ∨E in
case of A = B, is exemplified by the derivation of A ∨ A ⊃ A:

A⇒ A A⇒ A

A ∨ A⇒ A
L∨

⇒ A ∨ A ⊃ AR⊃

3.
[A ∨ A]

1.
[A]

2.
[A]

A
∨E,1.2.

A ∨ A ⊃ A⊃I,3.

Here there is no contraction even if two occurrences of A are discharged at ∨E.
We now come to the translation from natural deduction to sequent calculus. It is

essential to use multisets to see how natural deduction can keep track of contraction.
This is no problem since it is well defined how many times open assumptions
A,B,C, . . . appear above any given formula in a derivation.

Translation from fully normal natural deduction derivations with unique dis-
charge to the calculus G0i is defined inductively according to the last rule used:

1. The last rule is &I :

� �
...
...

A B

A&B
&I �

� �
...

...
A B

�,�⇒ A&B
R&

2. The last rule is &E: The natural deduction derivation, withm-fold discharge
on A and n-fold on B, is
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1.
[Am],

2.
[Bn], �
...

A&B C

C
&E,1.,2.

The translation is by cases according to values of m and n:

m = 0, n = 0:

�
...
C

A,� ⇒ C
W

A,B, � ⇒ C
W

A&B,� ⇒ C
L&

m = 1, n = 1:

A,B, �
...
C

A&B,� ⇒ C
L&

Note that the discharge labels and brackets have been removed. The cases of m =
1, n = 0 and m = 0, n = 1 have one weakening step before the L& inference.

m > 1, n = 0:

Am,�
...
C

A,� ⇒ C
Ctrm

A,B, � ⇒ C
W

A&B,� ⇒ C
L&

Here Ctrm indicates anm− 1 fold contraction, and discharges inm occurrences of
assumption A have been removed. The rest of the cases for &E are similar.

3. The last rule is ∨I :
�
...
A

A ∨ B ∨I1 �

�
...
A

� ⇒ A ∨ B R∨1

�
...
B

A ∨ B ∨I2 �

�
...
B

� ⇒ A ∨ B R∨2

4. The last rule is ∨E: The natural deduction derivation is
1.

[Am], �
2.

[Bn],�
...

...
A ∨ B C C

C
∨E,1.,2.

and the translation is again by cases according to the values of m and n:
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m = 0, n = 0:

�
...
C

A,� ⇒ C
W

�
...
C

B,�⇒ C
W

A ∨ B,�,�⇒ C
L∨

m = 1, n = 1:

A,� B,�
...

...
C C

A ∨ B,�,�⇒ C
L∨

Here again, the assumptions have been opened. The general case is m > 1, n > 1:

Am,�
...
C

A,� ⇒ C
Ctrm

Bn,�
...
C

B,�⇒ C
Ctrn

A ∨ B,�,�⇒ C
L∨

5. The last rule is ⊃I : The general case with m > 1 is translated by

1.
[Am], �
...
B

A ⊃ B ⊃I,1.
�

Am,�
...
B

A,� ⇒ B
Ctrm

� ⇒ A ⊃ B R⊃

Again assumptions have been opened. If m = 0, there is a weakening instead of
contraction, if m = 1, there is just rule R⊃.

6. The last rule is ⊃E: The general case is translated as

�
1.

[Bn],�
...

...
A ⊃ B A C

C
⊃E,1.

�

Bn,�
�
...

...
C

A B,�⇒ C
Ctrn

L⊃
A ⊃ B,�,�⇒ C

The other cases are translated analogously to above.

7. The last rule is ⊥E:

⊥
C

⊥E � ⊥ ⇒ C
L⊥

8. The last formula is an assumption:

A � A⇒ A
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Notice that in a fully normal derivation, the premiss of rule ⊥E is an assumption
and nothing remains to be translated in step 7. If in 7 or 8 there are discharge labels
and brackets they are removed.

Theorem 3.7. Given a fully normal natural deduction derivation of C from open
assumptions �, there is a derivation of � ⇒ C in G0i.

Proof. By the translation defined. 
�
There are no unused weakenings or contractions in the derivation of � ⇒ C.

By the translation, we obtain the converse to theorem 3.6:

Theorem 3.8. If A is vacuously (multiply) discharged in the derivation of C from
open assumptions �, then A is a weakening (contraction) formula used in the
derivation of � ⇒ C in G0i.

The usual explanation of contraction runs something like “if you can derive a
formula using assumption A twice you can also derive it using A only once.” But
this is just a verbal statement of the rule of contraction. Logical rules of natural
deduction that discharge assumptions vacuously or multiply are reproduced as
weakenings or contractions plus a logical rule in sequent calculus, but the weakening
and contraction rules in themselves have no proof-theoretical meaning, as was
pointed out by Gentzen (1936, pp. 513–14) already.

By the translation of a derivation from natural deduction to sequent calculus,
each formula in the former appears in the latter. We therefore have a somewhat
surprising proof of the

Corollary 3.9 (Subformula property). In a normal derivation of C from open
assumptions �, each formula in the derivation is a subformula of �,C.

The translations we have defined from natural deduction to sequent calculus
and the other way around do not quite establish an isomorphism between the two:
the order of logical rules is preserved, but it is possible to permute weakenings and
contractions on a formula A as long as A remains inactive so that isomorphism
obtains modulo such permutations. This, however, is a minor point that can be
handled by doing weakening and contraction on formula A right before A is used.

Translation of non-normal derivations will be discussed in Section 5.

4. Derivations with cuts

We show that derivations with cuts can be translated into natural deduction if the
cuts are of a suitable kind: the detour cuts and permutation cuts corresponding
to cuts with the cut formula principal in both premisses and right premiss only,
respectively. These are the principal cuts, the rest are nonprincipal cuts. Principal
cuts correspond, in terms of natural deduction, to instances of rules of elimination
in which the major premisses are not assumptions.

A sequent calculus derivation has an equivalent in natural deduction only if it
has no unused weakening or contraction formulas. By this criterion, there is no



556 J. von Plato

correspondence in natural deduction for many of the nonprincipal cuts of sequent
calculus. In particular, if the right premiss of cut has been derived by contraction,
the contraction formula is not used in the derivation and there is no corresponding
natural deduction derivation. This is precisely the problematic case that led Gentzen
to use the rule of multicut. If cut and contraction are permuted, the right premiss
of a cut becomes derived by another cut and there is likewise no translation.

In translating derivations with cuts, if the left premiss is an axiom the cut is
deleted. There are three detour cuts and another twelve permutation cuts with left
premiss derived by a logical rule to be translated. We also translate principal cuts
on ⊥ as well as cases where the left premiss has been derived by a structural rule,
but derivations with other cases of cuts will not be translated. Translation of rules
other than cut have been given in Section 3.

1. Detour cut on A&B, and we have the derivation

...
...

� ⇒ A �⇒ B

�,�⇒ A&B
R&

...
A, B,�⇒ C

A&B,�⇒ C
L&

�,�,�⇒ C
Cut

The translation is:

�

...⇒A �

...⇒B
A&B

&I
1.

[A],
2.

[B],�
...⇒C

C
&E,1.,2.

Translation now continues from the premisses.

2., 3. Detour cuts on A ∨ B and A ⊃ B. The translations are analogous to 1,
with the left and right rules translated as in Section 3.

4. Permutation cut on C&D with left premiss derived by L&:

A,B, �

...⇒C&D

A&B,� ⇒ C&D
L&

C,D,�

...⇒E
C&D,�⇒ E

L&

A&B,�,�⇒ E
Cut

The translation is

A&B
1.

[A],
2.

[B], �
...⇒C&D

C&D
&E,1.,2.

3.
[C],

4.
[D],�

...⇒E
E

&E,3.,4.

The rest of the permutation cuts with L&, L∨ and L⊃ are translated analogously.

5. We also have permutation cuts on ⊥E but no detour cuts since ⊥ can never be
principal in the left premiss. The derivation and its translation are, where L stands
for a (one-premiss) left rule and E for an elimination,
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�′
...⇒ ⊥

� ⇒ ⊥L ⊥ ⇒ C
L⊥

� ⇒ C
Cut �

�′
...⇒ ⊥

⊥
C

⊥E
E

6. ‘Structural’ cuts with left premiss derived by weakening, contraction or cut.
For weakening and contraction the translation reaches, by the condition of no unused

weakening or contraction formulas, a conclusion of cut of the form
n.

[A], �,�⇒ C.
In the case of weakening, the left premiss of cut A,� ⇒ B has been derived from
� ⇒ B, in the case of contraction fromA,A,� ⇒ B. The cuts are translated with

left premiss replaced by � ⇒ B and
n.

[A],
n.

[A], � ⇒ B, respectively.
For left premiss of cut derived by another cut the translation is modular and the

upper cut is handled as before.

5. Non-normal derivations

We began in Section 2 with examples of non-normal natural deduction derivations
corresponding to sequent calculus derivations with cuts. The latter are produced by
translations defined inductively according to the last step. Derived major premisses
are called conversion formulas. There are three cases of non-normality in which
the major premiss of an elimination rule has been derived by the corresponding
introduction rule:

1. The conversion formula has been derived by &I and the derivation is

� �
...
...

A B

A&B
&I

1.
[Am],

2.
[Bn],�
...
C

C
&E,1.,2.

The translation is by cases according to values of m and n. The general case is

� �
...
...

A B

�,�⇒ A&B
R&

Am,Bm,�
...
C

A,B,�⇒ C
Ctrm,Ctrn

A&B,�⇒ C
L&

�,�,�⇒ C
Cut

There is an m+ n− 2 fold contraction in case m, n > 1.

2., 3. The conversion formula has been derived by ∨I or ⊃I and the translation
is analogous.

When detour conversions are applied, the open assumptions in a derivation can
change. For example, the derivation
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A B

A&B
&I 1.

[A]
A

&E,1.

converts into the derivation A. Translation gives

A⇒ A B ⇒ B

A,B ⇒ A&B
R&

A⇒ A

A,B ⇒ A
W

A&B ⇒ A
L&

A,B ⇒ A
Cut

Cut elimination produces the derivation

A⇒ A

A,B ⇒ A
W

Deletion of the unused weakening gives the derivation A ⇒ A, corresponding to
the result of the detour conversion.

Given a (cut-free) derivation of � ⇒ C, we can first delete the unused weak-
enings, then translate to natural deduction, and last add the unused weakening
formulas of � to the natural deduction derivation by the above trick on formula B,
to obtain a non-normal derivation of C from open assumptions �.

There is a good number of non-normalities with a permutation convertibility
but we only show one typical case:

4. The conversion formula C&D has been derived by &E from A&B:

1.
[Am],

2.
[Bm],�
...

A&B C&D

C&D
&E,1.,2.

3.

[Ck],
4.

[Dl],�
...
E

E
&E,3.,4.

The translation is by cases according to values of m, n, k, l, with the general case

Am,Bn, �
...

C&D

A,B,� ⇒ C&D
Ctrm,Ctrn

A&B,� ⇒ C&D
L&

Ck,Dl,�
...
C

C,D,�⇒ E
Ctrk,Ctrl

C&D,�⇒ E
L&

A&B,�,�⇒ E
Cut

IfA&B in turn is a conversion formula, a cut onA&B is inserted after the rule L&
that concludes the left premiss of the cut on C&D.

Translations when ∨E and ⊃E have been used are analogous to the one for &E.
Translation when ⊥E has been used is the converse to translation 5 in Section 4. If
the major premiss in the derivation of a conversion formula is again a conversion
formula, another cut is inserted.
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Consider a typical principal cut, say, on A&B:

A,B,�

...⇒C
� ⇒ A&B A&B,�⇒ C

L&

�,�⇒ C
Cut

We see that the cut is redundant, in the sense that its left premiss is an axiom,
precisely when A&B is an assumption in the corresponding natural deduction
derivation. In this case, the cut is not translated but deleted. We have, in general:

A non-normal instance of a logical rule in natural deduction is represented
in sequent calculus by the corresponding left rule and a cut.

Let us compare this explanation of cut to the presentation of cut as a combination
of two lemmas � ⇒ A and A,� ⇒ C into a theorem �,� ⇒ C. Consider the
derivation ofC from assumptionsA,� in natural deduction. ObviouslyA plays an
essential role only if it is analyzed into components by an elimination rule, thus,
A is a major premiss of that elimination rule. If not, it acts just as a parameter
in the derivation. Our explanation of cut makes more precise the idea of cut as a
combination of lemmas: In terms of sequent calculus, the cut formula has to be
principal in a left rule in the derivation of A,�⇒ C.

Given a non-normal derivation, translation to sequent calculus, followed by
cut elimination and translation back to natural deduction, will produce a normal
derivation:

Theorem 5.1. Normalization. Given a natural deduction derivation of C from �,
the derivation converts to a normal derivation of C from �∗ where each formula
in �∗ is a formula in �.

This process of normalization will not produce a unique result since cut elimi-
nation will not.

6. The structure of normal derivations

Theorem 5.1 gave a proof of normalization for intuitionistic natural deduction with
general elimination rules, through a translation to sequent calculus, cut elimination
and translation back to natural deduction. Strong normalization and uniqueness of
normal form (modulo the choices in simplification convertibilities on disjunction,
see below) for our system of natural deduction is given by Joachimski and Matthes
(2001). Their proof uses a system of term assignment.

We consider three different types of non-normalities of a natural deduction
derivation with general elimination rules that depend on how a major premiss of an
elimination rule was derived. Then the subformula structure of normal derivations
is detailed, with a direct proof of the subformula property.

(a) Detour conversions: Gentzen’s original notion of a normal derivation in natural
deduction was that no conclusion of an introduction rule must be the major premiss
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of an elimination rule. (This is seen from the example on implication in his 1934–
35, Sec. II. §5.12.) Non-normal derivations are transformed into normal ones by
detour conversions that delete each such pair of introduction and elimination rule
instances. In a fully general form, a detour convertibility on the formula A&B
obtains in a derivation whenever it has a part of the form

...
[A]

...
[B]

A&B
&I

1.
[Am],

2.
[Bn]
...
C

C
...

&E,1.,2.

Detour conversion onA&B gives, through simultaneous substitution, the modified
derivation

...
A,

m×
. . . ,

...
A

...
B,

n×
. . . ,

...
B

...
C
...

A detour convertibility on A∨ B is quite analogous. For implication, the situation
is more complicated since a vacuous or multiple discharge is possible also in the
introduction of the conversion formula:

1.
[Am]
...
B

A ⊃ B ⊃I,1.
...
A

2.
[Bn]
...
C

C
...

⊃E,2.

Detour conversion on A ⊃ B gives the modified derivation

...
A,

m×
. . . ,

...
A

...
A,

m×
. . . ,

...
A

...
B,

n×
. . .

...
, B

...
C
...

In detour conversions, open assumptions typically get multiplied or deleted.

(b) Permutation conversions for general elimination rules: There are four elim-
ination rules which gives sixteen cases of permutation convertibilities, major pre-
misses of elimination rules that are derived by another elimination rule. All of these
act in a similar way on derivations and we only show one:
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A permutation convertibility on major premiss C&D derived by &E on A&B
obtains whenever a derivation has the part

[Am,Bn]
...

...

A&B C&D

C&D
&E

[Ck,Dl]
...
E

E
...

&E

After the permutation conversion the part is

...
A&B

[Am,Bn] [Ck,Dl]
...

...

C&D E

E
&E

E
&E

...

The effect of the conversion is that the height of derivation of major premissC&D,
as measured from the discharged assumptions A,B, is diminished by one.

(c) Simplification conversions: Other reductions of natural deduction derivations
exist besides detour and permutation conversions. In Prawitz (1971), a simplifica-
tion of derivations in natural deduction is suggested, called properly simplification
conversion. The convertibility arises from disjunction elimination when in at least
one of the auxiliary derivations, say the first one, a disjunct was not assumed:

�
...

A ∨ B

�
...
C

1.
[B], �
...
C

C
∨E,1.

The elimination step is not needed, for C is already concluded in the first auxil-
iary derivation. With general elimination rules for conjunction and implication, we
analogously have:

�
...

A&B

�
...
C

C
&E

�
...

A ⊃ B

�
...
A

�
...
C

C
⊃E

In both inferences,C is already concluded without the elimination rule, and simpli-
fication conversion extends to all elimination rules, quantifier rules included. The
notion is captured by the

Definition 6.1. A simplification convertibility in a derivation is an instance of an
E-rule with no discharged assumptions, or an instance of ∨E with no discharges
of at least one disjunct.
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A simplification convertibility can prevent the normalization of a derivation, as
is shown by the following:

1.
[A]

A ⊃ A⊃I,1.
2.

[B]

B ⊃ B ⊃I,2.

(A ⊃ A)&(B ⊃ B) &I

3.
[C]

C ⊃ C ⊃I,3.

C ⊃ C &E

There is a detour convertibility but due to the vacuous discharge in &E, the pieces
of derivation do not fit together in the right way to remove it. Instead a simplification
conversion into the derivation

3.
[C]

C ⊃ C ⊃I,3.

will remove the detour convertibility.
It is possible that in a simplification convertibility with ∨E, both auxiliary

assumptions are vacuously discharged. In this case, there are two converted deriva-
tions of the conclusion.

(d) The subformula structure of general elimination rules: With special elimi-
nation rules in the ∨- and ∃-free fragment, there is a simple subformula structure
along all branches of a normal derivation, from assumptions to a minor premiss
of rule ⊃E or to the conclusion. In fully normal derivations with general elimina-
tion rules, branches are replaced by sequences of formulas that jump from major
premisses to their auxiliary assumptions. Contrary to first appearance, a greater
uniformity in the structure of derivations, for the full language of predicate logic,
is achieved.

The subformula property in natural deduction is more complicated than in
sequent calculus, due to the nonlocal character of the rules of inference. It is obtained
through the notion of thread (a term suggested to us by Dag Prawitz) where for
simplicity we assume that no simplification convertibilities obtain:

Definition 6.2. A thread in a natural deduction derivation of C from open assump-
tions� without simplification convertibilities is a sequence of formulasA1, . . . , An
such that

1. An is either C or a minor premiss of ⊃E.
2. Ai−1 is either a major premiss with auxiliary assumption Ai in an E-rule, or

a minor premiss in an E-rule with Ai−1 = Aig , or a premiss with conclusion
Ai in an I -rule.

3. A1 is a top formula not discharged by an E-rule.

Threads typically run through a sequence of major premisses of E-rules, until
the conclusion of the innermost major premiss is built up by I -rules, and so on. If
vacuous instances of elimination rules are admitted, there can be threads that stop
at the major premiss.

Threads in a normal derivation, briefly, normal threads, have the following
structure:
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(

E-part
︷ ︸︸ ︷

A1, . . . , Am, . . . , An
︸ ︷︷ ︸

I-part

)

In the E-part, the major premisses follow in succession and Ai+1 is an immediate
subformula of Ai . In the I -part, either Ai+1 is equal to Ai or Ai is an immediate
subformula of Ai+1.

We concluded in corollary 3.9 the subformula property of normal derivations
with general elimination rules by a corresponding result that is immediate for the
sequent calculus G0i. A more direct proof in terms of natural deduction sheds some
light on the structure of threads:

Direct proof of the subformula property: Each formula A is in at least one
normal thread, and it is a subformula of the topformula or of the endformula of
the thread. In the former case, the topformula is either an open assumption and the
subformula property follows, else it is discharged by ⊃ I and A is a subformula
of the endformula of the thread. If the endformula is the conclusion of the whole
derivation the subformula property follows. If it is the endformula of a minor thread,
it is also a subformula of the corresponding major premiss. The major premiss is
either an open assumption and the subformula property follows. Else the major
premiss is discharged by ⊃I and belongs to some normal thread with endformula
further down in the derivation. If this endformula is the conlusion of the derivation
the subformula property follows, if not, by repeating the argument the conclusion
is reached. 
�

In sequent calculus, the rule of falsity elimination is represented by a sequent
⊥ ⇒ C by which derivations can start. In usual natural deduction, instead, falsity
elimination can apply at any stage of a derivation. This discrepancy is now explained
as a hidden convertibility. In particular, if the conversion formula is ⊥ derived by
⊥E we have a derivation with two non-normal instances of ⊥E. Since ⊥E has only
a major premiss, a permutation conversion just removes one of these instances:

�
...⊥
⊥⊥E
C

⊥E �

�
...
⊥
C

⊥E

The first derivation has the translation to sequent calculus

�

...⇒ ⊥ ⊥ ⇒ ⊥
� ⇒ ⊥ Cut ⊥ ⇒ C

L⊥

� ⇒ C
Cut

and the converted one

�

...⇒ ⊥ ⊥ ⇒ C
L⊥

� ⇒ C
Cut



564 J. von Plato

Fully normal derivations do not have redundant iterations of ⊥E. In Prawitz (1965,
p. 20), the effect of the above permutation conversion is achieved by the ad hoc
restriction that in ⊥E the conclusion be different from ⊥.

In a typical application of ⊥E in natural deduction with the special elimination
rules we have, using the modus ponens rule,

A ⊃ ⊥ A

⊥
C

⊥E
Mp

With the more general ⊃E rule, the derivation and its permutation conversion are

A ⊃ ⊥ A
1.

[⊥]
⊥
C

⊥E
⊃E,1.

�
A ⊃ ⊥ A

1.
[⊥]

C
⊥E

C
⊃E,1.

Here the premiss ⊥ is converted into a topformula of the derivation. The same
applies in general and we thus obtain the following

Proposition 6.3. A fully normal intuitionistic derivation begins with assumptions
and instances of the intuitionistic ⊥E rule, followed by a subderivation in minimal
logic.

This fact will give a natural translation of intuitionistic into minimal logic:
Consider an intuitionistic derivation of C in full normal form. The conclusions of
falsity elimination are derivable from falsity eliminations concluding atoms. By
the subformula property, these are atoms of C, and let them be P1, . . . , Pn. Each
step ⊥

Pi
is replaced by an assumption ⊥ ⊃ Pi , and Pi is concluded from ⊥ by ⊃E

instead of ⊥E. Collecting all the new assumptions, we obtain the

Theorem 6.4. Formula C is intuitionistically derivable if and only if

(⊥ ⊃ P1)& · · · &(⊥ ⊃ Pn) ⊃ C
is derivable in minimal logic.

It would be a redundancy in a normal derivation if it had major premisses of
elimination rules that are derivable formulas:

Definition 6.5. A major premiss of an elimination rule is a proper assumption if it
is underivable.

Theorem 6.6. Given a derivation, there is a derivation in which all major premisses
of elimination rules are proper assumptions.

Proof. Consider a derivable major premiss A. In a normal derivation of A, the
last rule must be an I -rule since an E-rule would leave an open assumption. A
substitution of assumptionAwith a normal derivation creates a detour convertibility.
From the conversion schemes, we observe that no conversion ever produces new
major premisses ofE-rules and that detour conversions produce shorter conversion
formulas. Therefore the process of substituting derivable major premisses ofE-rules
with their derivations and subsequent normalization terminates in a derivation with
proper assumptions. 
�
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By the undecidability of predicate logic, the theorem does not give an effective
proof transformation. A translation to sequent calculus gives the

Corollary 6.7. If the sequent � ⇒ C is derivable in G0i, it has a derivation in
which all formulas principal in left rules are underivable.

The eliminability of derivable principal formulas in left rules in sequent calculus
derivations was discovered by Mints (1993). The formulation in terms of natural
deduction with general elimination rules makes this result intuitive.

7. Concluding remarks

Gentzen found the rules of natural deduction through an analysis of actual mathe-
matical proofs. How natural are the general elimination rules, in comparison? In an
informal proof, a proposition of the form A&B is used by deriving consequences
of the assumptions A and B, without the intermediate logical steps of the usual
conjunction elimination rules. Similarly, A ⊃ B is used by deriving consequences
from B, and if at some stage A obtains, those consequences obtain. The same
natural use of logic is found with A ∨ B in proofs by cases.

In Gentzen’s original work, a translation of natural deduction derivations into
sequent calculus is described (1934–35, sec. V. §4). Each formulaC is first replaced
by a sequent � ⇒ C in which � is a list of open assumptions C depends on, and
then the rules are translated. Rules &I and ∨I are translated in the obvious way.
Translations of ⊃ I and ∨E involve possible weakenings and contractions, corre-
sponding to vacuous and multiple discharges. Whenever in the natural deduction
there are instances of &E and ⊃ E, the first phase of the translation gives steps
such as

� ⇒ A&B

� ⇒ A

� ⇒ A ⊃ B �⇒ A

�,�⇒ B

These are turned into sequent calculus inferences by the replacements

� ⇒ A&B
A⇒ A

A&B ⇒ A
L&1

� ⇒ A
Cut

� ⇒ A ⊃ B
�⇒ A B ⇒ B

A ⊃ B,�⇒ B
L⊃

�,�⇒ B
Cut

Each instance of these E-rules leads to a cut. The cut is redundant if in natural
deduction the major premiss is an assumption, but this need not be the case with
&E or ⊃E even if the derivation is normal in Gentzen’s sense of not containing
detour convertibilities.

With the knowledge that the special elimination rules of natural deduction
correspond to ‘hidden cuts,’ it is to be expected that a normal natural deduction
in the old sense translates into a sequent calculus derivation with cuts. In Gentzen’s
work, the ‘Hauptsatz’ is proved in terms of sequent calculus, and the possibility
of a formulation in terms of a normal form in intuitionistic natural deduction is
only mentioned. No comment is made about the cuts that the translation to sequent
calculus produces.
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There is another way of arriving at the general elimination rule for conjunction
than the translation from sequent calculus we have used, namely, constructive type
theory. The general rule comes straight out by suppressing the proof objects in the
typed rule, as in Martin-Löf (1984, p. 44). In the other direction, typing our general
implication elimination rule will result in a new selector, generalized application:

[x : B]
...

c : A ⊃ B a : A d : C

gap(c, a, (x)d) : C

A full type-theoretical rule uses the function type (A)B that has no correspondence
in first-order logic. The usual first-order selector ap corresponding to modus ponens
is defined, for B = C, by ap(c, a) = gap(c, a, (x)x) : B. Normality means
that each selector term has a variable as first argument. A direct proof of strong
normalization for natural deduction with general elimination rules was found by
Joachimski and Matthes (2001), through a term assignment system. (They also
suggested the term ‘generalized application’ for general implication elimination
typed.)

In Ekman (1998), it is noticed that a derivation of the formula ∼(P ⊃⊂ ∼P),
where equivalence is implication in both directions, either is not normal or else has
a subderivation of the form

∼ P ⊃ P ∼P ⊃E
P ⊃∼P P

∼P ⊃E

The derivation has the reduncancy, or is ‘indirect’ in Ekman’s terminology, that the
derivation of the conclusion could be replaced by the derivation of the first occur-
rence of ∼P . But this will produce a non-normal derivation, for the top occurrence
of ∼P is the conclusion of ⊃I and the bottom occurrence a major premiss of ⊃E.
This problem is solved by the use of the general implication elimination rule, as
shown in our (2000).

In our view, the essential difference between sequent calculus and natural de-
duction is not in this or that set of logical rules. The most important difference is that
the logical rules of natural deduction permit non-normal instances, where sequent
calculus has to use a left logical rule and a cut. We take this to be the characteristic
feature of natural deduction. Secondly, there are no explicit structural rules of weak-
ening or contraction, but vacuous and multiple discharges of assumptions instead.
It is possible to devise a ‘sequent calculus in natural deduction style,’ exemplified
by the rules

Am,Bn, � ⇒ C

A&B,� ⇒ C
L&

Am,� ⇒ B

� ⇒ A ⊃ B R⊃

having instances for any valuesm, n ≥ 0. There are no explicit rules of weakening
or contraction but these are built into the logical rules that use assumptions. (See
Negri and von Plato 2001 for the calculus and a proof of cut elimination.) With
the calculus G0i, isomorphism with derivations in natural deduction is obtained
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modulo some permutations of weakenings and contractions. In sequent calculus in
natural deduction style, the correspondence between the two main forms of logical
calculi is perfect.
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