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Abstract. From a proper class of supercompact cardinals, we force and
obtain a model in which the proper classes of strongly compact and strong
cardinals precisely coincide. In this model, it is the case that no strongly
compact cardinat is 2% = xk* supercompact.

1. Introduction and preliminaries

The fact that the notion of strong compactness is a singularity in the large
cardinal hierarchy is well-known. There is, of course, the fundamental work
of Magidor [19], showing that the least strongly compact cardinegdn be
either the least supercompact cardinal or the least measurable cardinal (in
which cases isn’t even2” supercompact). A generalization of this work by
Kimchi and Magidor [16] shows that the (possibly proper) classes of super-
compact and strongly compact cardinals can coincide except at measurable
limit points, where a result of Menas [21] shows they can’t. Magidor has
also shown (in unpublished work that doesn’t even appear in [16]) that it is
consistent, relative ta € w supercompact cardinals, for the firsstrongly
compact cardinals to be the firstmeasurable cardinals.

Although Magidor’s work was groundbreaking and established the gen-
eral field of “identity crisis studies”, there has been additional, extensive
research done in this area. We mention three such results along these lines.
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One is the work of [7], in which, roughly speaking, a model with a level

by level correspondence between degrees of strong compactness and su-
percompactness is provided. Another is the work of [6], where, using the
just mentioned unpublished techniques of Magidor and techniques from [8],
relative ton € w supercompact cardinals, a model in which the firgtea-
surable cardinalsy, . . ., x,, are both the first strongly compact cardinals

and are so that eaeh is x;” supercompact is constructed. In the model of
[6], 2% = k;F fori = 1,...,n. A third is the work of [2], in which it

is shown, roughly speaking, that the supercompact and non-supercompact
strongly compact cardinals can in a generic extension conform to any pattern
prescribed by a fixed ground model function.

The purpose of this paper is to add to the litany of confusion by showing,
again using among other techniques the aforementioned unpublished ideas
of Magidor, that the class of strongly compact cardinals can assume yet
another identity. Specifically, we prove the following.

Theorem 1.Con(ZFC + There is a proper class of supercompact cardinals)
— Con(ZFC + There is a proper class of strongly compact cardinals + No
strongly compact cardinat is 2 = k™ supercompact #x|x is strongly
compact iffs is strong.

Unlike Magidor’s result that the first (for n € w) strongly compact
cardinals can be the firastmeasurable cardinals and the result of [6], there
is no barrier to proving Theorem 1 for more than finitely many strongly
compact cardinals. In fact, while these results require severe restrictions on
the large cardinal structure of the ground model, the large cardinal structure
for the ground model of Theorem 1, modulo a proper class of supercompact
cardinals, can otherwise be completely arbitrary. We will comment on this
more at the end of Sect. 2.

The structure of this paper is as follows. Sect. 1 contains our introduc-
tory comments and preliminary remarks concerning notation, terminology,
etc. Sect. 2 contains a proof of Theorem 1 for one cardinal, i.e., a con-
struction of a model, relative to a supercompact cardinal, in which the least
strongly compact cardinal is the least strong cardinal and is@'t = x*
supercompact. Sect. 3 contains a proof of Theorem 1 in the general case.
Sect. 4 discusses some possible generalizations of Theorem 1 and contains
our concluding remarks.

Before giving the proof of Theorem 1, we briefly mention some prelim-
inary information. Essentially, our notation and terminology are standard,
and when this is not the case, this will be clearly noted.d~er (5 ordinals,

[a, O], [, B), (e, B], and(av, B) are as in standard interval notation.

When forcingg > pwillmeanthaty is stronger thap. If G is V-generic
overP, we will use bothV[G] and V¥ to indicate the universe obtained by
forcing with P. If we also have that is inaccessible anet = ((P,, Q,) :
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a < k) is an Easton support iteration of lengtfso that at stage, a non-
trivial forcing is done based on the ordingl, then we will say thad,, is in
the field of P. If =z € V[G], thenz will be a term inV for z. We may, from
time to time, confuse terms with the sets they denote and writhen we
actually mearn:, especially when: is some variant of the generic &t or
x is in the ground modéeV'.

If kK < X are regular cardinals, then Add ) is the standard partial
ordering for adding\ Cohen subsets ta If « is a regular cardinal arilis a
partial orderingP is k-closed if for every sequencg,, : « < k) of elements
of P so that3 < v < x impliespg < p, (an increasing chain of lengtk),
there is some € P (an upper bound to this chain) so that < p for all
a < k. Pis< k-closedifPisd-closed for all cardinalé < «.Pis k-directed
closed if for every cardinal < x and every directed s&p, : a < §) of
elements of? (where(p, : a < 0) is directed if for every two distinct
elementy,, p, € (po : o < ), p, andp, have a common upper bound of
the formp, ) there is an upper bounde P. P is k-strategically closed if in
the two person game in which the players construct an increasing sequence
(pa : @ < k), Where player | plays odd stages and player Il plays even and
limit stages (choosing the trivial condition at stage 0), then player Il has a
strategy which ensures the game can always be continued. Notelthat if
k-strategically closed anfl: x — V is a function inVF, thenf € V. Pis
< k-Strategically closed iP is §-strategically closed for all cardinals< .

P is < k-strategically closed if in the two person game in which the players
construct an increasing sequerigg : « < k), where player | plays odd
stages and player Il plays even and limit stages, then player Il has a strategy
which ensures the game can always be continued. Note that trividlys if

< k-closed, thef® is < x-strategically closed and x-strategically closed.

The converse of both of these facts is false.

Suppose as in the preceding paragraphthat) are regular cardinals.

A patrtial orderingP that will be used throughout the course of this paper
is the partial ordering for adding a non-reflecting stationary set of ordinals
of cofinality x to A. Specifically,P is defined as{p : For somea < A,

p : a — {0, 1} is a characteristic function &,, a subset of not stationary

at its supremum nor having any initial segment which is stationary at its
supremum, so that € S, implies3 > « and cof3) = «}, ordered by

q > piff ¢ 2 pandS, = S,Nsup(S,), i.e., 5, is an end extension &f,. It

is well-known that forG' V'-generic ovet? (see [9] or [16]), inV[G], if we
assume GCH holds i, a non-reflecting stationary s€t= S[G] = U{S) :

p € G} C X of ordinals of cofinalityx has been introduced, the bounded
subsets of\ are the same as those ¥, and cardinals, cofinalities, and
GCH have been preserved. Itis also virtually immediateRat:-directed
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closed, and it can be shown (see [9] or [16]) tlfais < A-strategically
closed.

We mention that we are assuming familiarity with the large cardinal
notions of measurability, strongness, superstrongness, strong compactness,
and supercompactness. We will also at the end of this paper refer to the
large cardinal notions of Woodinness and Shelahness. Interested readers
may consult [15], [20], or [22] for further details. We mention only that
unlike [15], we will say that the cardinal is A\ strong for\ > & if there
isj:V — M an elementary embedding having critical poinso that
j(k) > AandV, C M. As always, is strong ifx is A strong for every
A > k. We will also say the cardinal is superstrong with target if there
isj:V — M an elementary embedding having critical poinso that
j(k) = AxandV, C M.If jo : V — M witnesses that is superstrong with
target\ andj; : M — N witnesses the measurability &fin M, then it is
easily verified thaf; o jo : V — N witnesses that is \ strong.

We mention that we are also assuming some familiarity with the basics of
extender technology and the transference of generic objects via elementary
embeddings. The section on background material of [10] is extremely useful
in this regard. We will freely, particularly in the proofs of Lemmas 2.4 and
2.5, use notation, definitions, and terminology found here. Readers may also
consult [20] for additional details concerning extenders.

Finally, both authors wish to express their gratitude to Menachem Magi-
dor for his explanations to them given at the January 7-13, 1996 meeting in
Set Theory held at the Mathematics Research Institute, Oberwolfach, Ger-
many on his method of forcing to make the firsineasurable and strongly
compact cardinals coincide, for any finite

2. The proof of Theorem 1 for one cardinal

In this section, we will construct, starting with a supercompact cardinal, a
model in which the least strongly compact cardirak the same as the
least strong cardinal andisn’t 2¢ = k™ supercompact. We begin with the
following lemma, which also appears as Lemma 3.1 of [5].

Lemma 2.1. Let k be 2" supercompact and strong. Assuphe V. — M
is an elementary embedding witnessing2hiesupercompactness af and
let 1 be the normal measure overassociated withy. Then{d < x: disa
strong cardina} € p.

Proof. We first show, forj andu as in the statement of Lemma 2.1, that
{6 < Kk :disk strong € u. (See also the proof of Proposition 26.11 of
[15].) To see this, note that sindd?” C M, j | V.,1 € M. Thus, as in
[3], page 203, there i§ € M a(k, j(k)) extenderand : M — Ult(M, E)
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so thatx is the critical point ofc and M and UI{ M, £) agree through rank
j(k). Thismeans\/ E “k is superstrong with targgtr)”, so by reflection,
{6 < K : J is superstrong with target} € n. By our remarks in Sect. 1,
{6 < K :diskstrong € pu.

Fix nowé < k so thatV E “4 is k strong”. We show that i > «
is arbitrary,VV £ “0 is A strong”. Let\’ > X be so that any extendér
witnessing the\ strongness of is such tha€ € V.. By the strongness of
k, letj* : V. — M* be an embedding having critical pointwitnessing
that x is ) strong. Sincel” E “§ is x strong”, M* E “j*(6) = J is
j*(k) > N > Astrong”. AsVy, C M* andM* E “§ is \ strong”,V E “§
is A\ strong”. This proves Lemma 2.1.0

We observe that in the above proof, it will actually be the case that
M E “kis a strong limit of strong cardinals”. This is singé F “x is j(k)
strong andj(x) is strong”, so by the second paragraph of the above proof,
M E “kis strong”. Further, iff < « is so thatV £ “§ is strong”, then
M E “j(0) = § is strong”. Thus, by reflection, we have the more powerful
factthat{d < x : J is a strong limit of strong cardinglsz .

We turn now to the proof of Theorem 1.

Proof. Let V F “ZFC + k is supercompact”. Without loss of generality,
by first doing a preliminary forcing if necessary, we may also assume that
V E GCH.

By Lemma 2.1, letd = (J, : a < x) be an enumeration of the strong
cardinals below. The partial ordering®* we use in the proof of Theorem
1 given in this section is the Easton support iterat{ghy, Q) : a <
k), WhereP; is the partial ordering\dd(w, 1) andlFp: “Q% adds a non-
reflecting stationary set of ordinals of cofinalityto ¢,,".

Lemma 2.2. VF" E “No cardinald < « is strong”.

Proof. Letd < « be sothal” E “§ is strong”. It must therefore be the case
thaté = ¢, for somea < x. This allows us to writé?" = P + Q% « R =
Pr,, * R

By the definition ofP* and the fact that any stationary subset of a mea-
surable (or weakly compact) cardinal must refl&€t:+1 = “§ isn’t measur-
able (and hence isn't strong) since ther&'is. ¢ which is a non-reflecting
stationary set of ordinals of cofinality”. Since by the definition of®*,
“_[PZ+1 “R is §’-strategically closed fod’ the least inaccessible abo¥e

VFari = VP" £ «§ C § is a non-reflecting stationary set of ordinals of

cofinality w, sod isn't measurable”. Thus/™" = “No V-strong cardinal

0 < k is measurable”. The proof of Lemma 2.2 will therefore be complete

once we have shown there is no cardihat » so thatV?" E “§is strong”.
Write P* asPf + Q. By the definition of?, [P§| = w andiFps “Q is ¥;-

strategically closed”. Therefore, using Hamkins’ terminology of [12], [13],
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and [14],P* is a “gap forcing admitting a very low gap”, so by the results
of [12], [13] and [14],VF" E “Any strong cardinal was already strong in
V. This means/"" E “No cardinald < « is strong”. This proves Lemma
22. O

Lemma 2.3. V" E “No cardinald < & is strongly compact”.

Proof. By Lemmas 2.1 and 2.2/ = “There are unboundedly inmany
cardinalsé < k containing a non-reflecting stationary set of ordinals of
cofinality w”. It is a theorem of [22] that if a cardina} contains a non-
reflecting stationary set of ordinals of cofinalitythen there are no strongly
compact cardinals in the intervéd, 7]. Thus, V" = “No cardinald < « is
strongly compact”. This proves Lemma 2.3

Lemma 2.4. V" E “k is strongly compact”.

Proof. The proof of Lemma 2.4 uses the unpublished ideas of Magidor
referred to at the beginning of this paper. (See also the proof of Lemma 4
of [6].) Let A\ > 2% = kT be an arbitrary successor of a regular cardinal,
and letk, : V — M be an embedding witnessing thesupercompactness

of k so thatM E “k is < A supercompact but isn’'t A supercompact’

has been chosen large enough so that we may assume by choosing a normal
ultrafilter of Mitchell order0 over x thatk, : M — N is an embedding
witnessing the measurability of definable inM so thatN E “k isn't
measurable”. It is the case thatif: V' — N is an elementary embedding
with critical pointx and for anyx C N with |z| < ), there is somg € N

so thatzx C y and N F “ly| < k(k)", then k witnesses the\ strong
compactness of. Using this fact, it is easily verifiable thgt= ks o k;

is an elementary embedding witnessing dh&rong compactness ef We
show thatj extends tgj : VF* — NJ(P), Since this extended embedding
witnesses the strong compactness afin V", this proves Lemma 2.4.

To do this, writej(P*) asP” x QF * R*, whereQ* is a term for the
portion of j(P*) betweens and ky(x) andR” is a term for the rest of
j(P%),i.e., the part abovk,(x). Note that sinceéV F “x isn't measurable”,

K ¢ ﬁeld(@”). Also, since Lemma 2.1 and the succeeding paragraph imply
that M F “k is strong”, by elementarityy F “kqo(k) is strong”. Thus, the
field of Q* is composed of allV-strong cardinals in the intervék, ko (k)]

(so ka(k) € field(Q®)), and the field ofR* is composed of allV-strong
cardinals in the intervalks (), k2 (k1(k))).

Let Gy beV-generic ove?*. We construct i/ [Go] an N[Gy]-generic
objectG; overQ" and anV[Gy|[G1]-generic objectr, overR”. SinceP” is
an Easton support iteration of lengtha direct limit is taken at stage and
no forcing is done at stage the construction ofs; andG, automatically
guarantees that' Gy C Go * Gy * G>. This means that: V' — N extends
tOj : V[Go] — N[Go] [GIHGQ]
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To build G1, note that sincé; can be assumed to be generated by an
ultrafilter &/ over x and since in boti” and M, 2% = k*, |ke(x™)| =
|ko(2%)| = |[{f : f : K — T is afunction| = |[x*]"] = k. Thus, as
N[Go] E “lp(Q")| = ko(2%)", we can let(D,, : a < k™) enumerate in
V[Gy] the dense open subsets@f present inV[Gp]. Since thex closure
of N with respect to eithef/ or V' implies the least element of the field
of Q% is > k™, the definition of Q" as the Easton support iteration which
adds a non-reflecting stationary set of ordinals of cofinality eachV [G)-
strong cardinalin the intervék, k()] implies thatV [Go] F “Q~is< k-
strategically closed”. By the fact the standard arguments show that forcing
with the x-c.c. partial orderingP” preserves thaV [G,] remainsk-closed
with respect to eitheM [Gy] or V[Go], Q" is < T -strategically closed in
both M[Go] andV [Gy)].

We can now construet; in either M [Gy] or V[Gy] as follows. Player
| picks p, € D, extendingsup((gs : 8 < «)) (initially, ¢_; is the empty
condition) and player Il responds by picking > p. (S0¢. € D). By
the < xT-strategic closure d” in both M [Gy] andV'[Gy], player Il has
a winning strategy for this game, 89, : < x*) can be taken as an
increasing sequence of conditions with € D, for o < x™. Clearly,
G1 = {p € Q" : 3a < k'[ga > p|} is our N|Go]-generic object ove@".

It remains to construct ifv [Go] the desiredV[Gy][G1]-generic object
Gy overR*, Todo this, we first note.that ad E “kis strong”, we can write
k1 (P*) asP* « S* « T*, wherel-p« “S* adds a non-reflecting stationary set
of ordinals of cofinalityw to ", and T* is a term for the rest of; (P*).

Note now thatd/ = “No cardinald € (x,A] is strong”. To see this,
assume to the contratyc (k, \] is so that\/ E “§ is strong”. If¢ : M —
M* is an elementary embedding witnessing ¥hetrongness of for some
cardinal\’ > X\ > 6 > k, then asM E “k is < X supercompact’M* &
“U(k) = ks < £(\) supercompact”. Sinc&0) can be made arbitrarily
high in the universe by increasing the amount of strongrdesgnesses,
¢(\) can be made arbitrarily high in the universe also, so by choo¥ing
large enough, the fad/* E “x is < ¢(\) supercompact” is sufficient to
deduce that is A supercompact in/. As this contradicts the choice 61,
we must have that/ E “§ isn’t strong”. Thus, the field df* is composed
of all M-strong cardinals in the interval, k1 (x)), which implies that in\/,
IFpr s “T" is < At-strategically closed”. Further, sindé= GCH and\
is regular|[\]="| = A and2* = \*. Therefore, ag; can be assumed to be
generated by an ultrafiltéf over P, (\), |[k1(AT)| = |k1(2Y)| = |20V =
{f: f:P.()) = AT isafunctio| = |[A*]}| = AT,

Work until otherwise specified if/. Consider the “term forcing” partial
orderingT* (see [10], Sect. 1.2.5, page 8) associated Witfi.e.,r € T* iff
7 is aterm in the forcing language with respecPtox S* andirp, ¢ “T €
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T+”, ordered byr > ¢ iff Iy, . “7 > o”. Clearly, T* € M. Also, since

| “T* js < \*-strategically closed”, it can easily be verified tHzt
itself is < A" -strategically closed id/ and, sinceV/* C M, inV as well.
Therefore, asp,,¢. “T% = ki(A) and2¥1®) = (k1 (\)" = k1 (A1),
we can assume without loss of generality thatVin |T*| = k;()A). This
means we can létD,, : a < AT) enumerate iV the dense open subsets of
T* present inM and argue as before to constructiran M -generic object
H, overT*.

Note now that sincé&/ can be assumed to be given by an ultrapow@r/of
viaanormalultrafiltet/ € M overk, Fact2 of Sect. 1.2.2 of [10]tells usthat
k4 H, generates aiV-generic objectGs over ko (T*). By elementariness,
ko(T*) is the term forcing inV defined with respect tés (k1 (Py)k+1) =
P* + Q*. Therefore, sincg (P*) = ky(ky(P¥)) = P* % Q" x R, G} is
N-generic ovelks(T*), andGg * Gy IS ka(P* S“)-generic overNV, Fact
1 of Sect. 1.2.5 of [10] tells us that fa¥s = {ig,«c,(T) : 7 € G5}, Ga
is N[Gp][G1]-generic ovelR". Thus, inV[Go], j : V — N extends to
J : V[Go] = N[Go][G1][G2]. This proves Lemma 2.4.0

Lemma 2.5. VF" £ “x is strong’”.

Proof. We use for the proof of this lemma notation and terminology from
the introductory section of [10]. FiXx > x*, Aacardinal sothat = R,. Let

j 'V — M be an elementary embedding withessing Xterongness of
generated by &, \)-extender of width: sothatV E “kisn’t A strong”, and
leti : V' — N be the elementary embedding witnessing the measurability
of k generated by the normal ultrafilttr = {z C x : k € j(x)}. We then
have the commutative diagram

1% M

N

wherej = k o i and the critical point of: is abovex.

Observe thai\l = “No cardinalp € (k, ] is strong”, for if this were
false, then sincd’y, C M, M F “k is < p strong”. By the argument
in the second paragraph of the proof of Lemma 24l F “k is strong”,
contradicting the choice @ff. This meansthatin/, the least strong cardinal
d > kis sothaty > .
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For any ordinaky, defines,, as the least ordinat « so thata isn't o,
strong if such an ordinal exists, ang = 0 otherwise. Defing : k — &
as f(a) = The least inaccessible cardinal o,,. By our choice of\ and
the preceding paragraph,< A < j(f)(k) < d, whered is the least strong
cardinal inM > k, i.e., the least element of the field fP*) — x.

Note now thatM = {j(g)(a) : a € [A<“, dom(g) = [x]l, ¢ :
(K] = V} = {k(i(9))(a) : a € [N, dom(g) = [x]", g : [8]"l = V'}.
By definingy = i(f)(x), we havek(v) = k(i(f)(k)) = j(f)(k) > A. This
meansj(g)(a) = k(i(9))(a) = k(i(g) | [1]*)(a), ie.. M = {k(h)(a) :

a € [N h e N,dom(h) =[] &: [y = N}. By elementariness,
we must haveV E “k isn’t strong andk < v = i(f)(k) < dp = The least
strong cardinal inV > x = The least element of the field ofP") — x”,
sinceM F “k(rk) = risntstrong andk(k) = k < k(v) = k(i(f)(k)) =
J(f)(k) < k(dp) = 6”. Therefore k can be assumed to be generated by an
N-extender of widthy € (k,d0).

Write i(P*) = P* + QY, whereQ" is a term for the portion of(P%)
whose field is composed of ordinals in the intervali(x)). SinceN F “x
isn't a strong cardinal”, the field d@” is actually composed of ordinals in
the interval(x, i(x)), or more precisely, of ordinals in the interyad, i(x)).
This means that if/, is once agaifi’-generic ovei®”, the argument from
Lemma 2.4 for the construction of the generic objégtcan be applied
here as well to construct iW[G] an N[Go]-generic objecG% over Q.
Sincei"Gy C Gy * GF, i extends ta : V[Gy] — N|[Go]|G7], and since
K'Gy = Gy andk(k) = &, k extends tak : N[Go] — M[Go]. By Fact
3 of Sect. 1.2.2 of [10]k : N[Go] — M|[Gy] can also be assumed to be
generated by an extender of widthe (k, dg). .

In analogy to the preceding paragraph, wyit@~) = P~ x Q'. By the
last sentence of the preceding paragraph and thégastthe least ordinal
in the field of Q°, we can use Fact 2 of Sect. 1.2.2 of [10] to infer that
H = {peQ!':3qck'G;lq > p]}is M[Go]-generic ovek(Q'). Thus,k
extends tdk : N[Gol|[Gi] — M[Go|[H], and we get the new commutative
diagram

V(G ’ M(Gy)[H]

N|[Go][G]]
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Since M E “No cardinalp € [k, )] is strong”, the field ofQ! is
composed of ordinals in the intervél, j(x)). Therefore, ad/y C M,
VA[Go] € MGy, and as the field o' is composed of ordinals in the
interval (A, j(x)), Va[Go] is the set of all sets of rank A in M[Gy|[H].
Hence,j is a) strong embedding. Sincewas arbitrary, this proves Lemma
25. O

Lemma2.6. V" E “kisn’'t 2¢ = k1 supercompact”.

Proof. By Lemmas 2.2 and 2.5/ E “x is a strong cardinal so that
no cardinald < & is strong”. Thus, by Lemma 2.5/ £ “x isn't 2~
supercompact”. Sinc*| = x andV kE “2f = g1, VE" | “or = gt
This proves Lemma 2.6.0

Lemmas 2.1 - 2.6 complete the proof of Theorem 1 for one cardinal.

We remark that the use of non-reflecting stationary subsets of ordinals
of cofinality w in the preceding proof was completely arbitrary. We could
just as easily have added non-reflecting stationary subsets of ordinals of
cofinality v, where ford, < « the least strong cardinal, € (w,dy) is an
arbitrary regular cardinal. Also, an easy induction shows that sinde
GCH, V" = GCH as well.

We conclude this section by noting that the large cardinal structure above
k in V can be completely arbitrary by the proof just given. This is quite
different from the situation in Magidor’s original proof of the consistency
of the firstn € w strongly compact cardinals being the firsmeasurable
cardinals and the situation in [6], in which severe limitations are of necessity
placed on the large cardinal structure of the ground model. The reason for
this is that strongness, unlike measurability, is not a local property, so in
the proofs of Lemmas 2.4 and 2.5, we don’t have to worry about unwanted
cardinals having a non-reflecting stationary set of ordinals added to them.
The fact that these limitations don’t exist will allow us in the next section to
prove Theorem 1 for a proper class of cardinals.

3. The proof of Theorem 1 in the general case

We turn now to the proof of Theorem 1 for a proper class of cardinals.

Proof. LetV F “ZFC +(k,, : @ € Ord) is the proper class of supercompact
cardinals”. Without loss of generality, we assume in additionthet GCH

and that by “cutting off” the universe if necessary at the least inaccessible
limit of supercompact cardinals, fay = w andy, = Ug<qrg for a > 0,

Ya < Kq IS singular ifa is a limit ordinal. Further, by the methods of either
[4] or [1] (both of which generalize Laver’s result of [17]), we can also
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assume without loss of generality that = Add(w, 1) «R*, V; = VR £
“GCH + The supercompactness of eaghis indestructible under forcing
with x-directed closed set or class partial orderings not destroying GCH".
Since it will be the case théta g, 1) “R* is N;-strategically closed” and
|Add(w, 1)| = w, R is a gap forcing admitting a very low gap. Thus, once
again by Hamkins’ results of [12], [13], and [14};, F “Any cardinal which
is supercompact or strong must have been supercompact or strorig in
Work in V1. For each ordinad, let (65 : 8 < k) be an enumeration of

theV-strong cardinals in the intervéd,,, k), and letP*~ = (<P§“,an> :
[ < kq) be the Easton support iteration whée = {0} andlkpga “Qg“

adds a non-reflecting stationary set of ordinals of cofinalifyto 5g We
definelP as the Easton support produydt, ., q P~ Since everyP"= is
v -directed closed, the definition of eatie together with the standard
Easton arguments shoWf’ F ZFC + GCH.

For each ordinak, write P = P, x Pf~ x P>% whereP., =
[15<, P"? andP>* is the remainder oP. By the definition ofP and the
fact the supercompactness /@f is indestructible under set or class forc-
ing not destroying GCHVIPM F “GCH + i, is supercompact”. Further,
sinceR x (P> x Pre) = Add(w,1) * (R* * (P> x Pe)) is so that
IFadd(w,1) “R** (P~ x PF) is R, -strategically closed”, the results of [12],
[13], and [14] once more apply to show that any cardinal which is strong in
VE~“XP™ must have been strong in. Thus, we can apply the results of
Sect. 2 to show thdt® “*F"* | 4, is both strongly compact and strong,
there are no strongly compact or strong cardinals in the intéryak,, ), and
Ko iSN't 28 = kT supercompact”. Sinck; F “|P.,| < 272" the Léevy-
Solovay results[18] showthat” ~*F"**F<e — P &=« isboth strongly
compact and strong, there are no strongly compact or strong cardinals in the
interval (v, £a ), andk,, isn't 2% = k1 supercompact”. Therefore, since
any cardinabl which is strongly compact or strong and is notamust be
so thats € (ya, Ka), Vi is our desired model. This proves Theorem 1 for a
proper class of cardinals.O

We conclude this section by noting that a result of Menas from [21] shows
that any measurable limit of strongly compact cardinals is strongly compact.
This has as a consequence that if we assume large enough cardinals in the
universe, there can never be a precise coincidence between the notions of
strongly compact and strong. This is shown by the following, whose proofis
essentially the same as Menas’ proof of [21] that the least measurable limit
k of strongly compact or supercompact cardinals igfi'supercompact.

Fact 3.1.If x is the least measurable limit of cardinals which are both
strongly compact and strong, therisn't x + 2 strong.
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Proof. Assume to the contrary thatis x + 2 strong, and lej : V' — M be

an elementary embedding witnessing this fact. Sivice “x is measurable”
andj [ k =id, M F “k is a measurable limit of cardinals which are both
strongly compact and strong”. This contradicts that= “j(x) > « is the
least measurable limit of cardinals which are both strongly compact and
strong”. This proves Fact 3.1.0

4. Possible generalizations and concluding remarks

We observe that by combining the techniques of this paper with those of [2],
it is possible to prove the following.

Theorem 2.Let V' F “ZFC + (2 is an inaccessible limit of measurable
limits of supercompact cardinals # : {2 — 3 is a function”. There is then
a partial orderingP € V so that forV = V}; , the universe oF’F truncated
at 2,V E “ZFC + If f(a) = 0, then thea!" compact cardinab,, isn't
27 supercompact ofy, + 2 strong + If f(«) = 1, then thea™ compact
cardinal v, is supercompact + Iff () = 2, then then'® compact cardinal
o 1S Strong but isn'27> supercompact”.

For Theorem 2, we take a compact cardinal as being one which is either
supercompact or non-supercompact strongly compact. Also, since we will
be able to assume GCH In, V E GCH, so whenf(a) = 0 or f(a) = 2,

Yo WON't be supercompact.

We will not give a detailed proof here, but we will explicitly describe the
forcing conditionsP used in the construction df. Readers of this paper
and [2] should then fairly easily be able to combine the methods of these
two papers to prove Theorem 2.

We begin as in the proof of Theorem 1 given in Sect. 3 by assuirikg
GCH and that by using a partial ordering of the foRn= Add(w, 1) x R*
that VR £ “GCH + The supercompact and strongly compact cardinals
coincide except at measurable limit points + Every supercompact cardinal
k is indestructible undek-directed closed forcing not destroying GCH".
Since the work of [1] and [2] tells uR can be presumed to preserve all
V-supercompact cardinals, their measurable limits, and the regulatity of
we can assume without loss of generality thais in VF the least regular
limit of measurable limits of supercompact cardinals.

Working in VE, we let (5, : a < §2) enumerate the measurable limits
of supercompact cardinals belo®. For an arbitraryee < (2, let </<;g :

B < d,) enumerate thé” = VE-supercompact cardinals in the interval
(Uy<aby,04). Definep, = wwhena = 0 andp, = (U,<ad,)" when

€ (0,92).If f(a) = 0, takeP* as the Easton support iteration of partial
orderings which add a non-reflecting stationary set of ordinals of cofinality
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patoeach:g. If f(a) = 1, takeP* as the partial ordering which adds a non-
reflecting stationary set of ordinals of cofinalitff to d,. If f(a) = 2, take

P> asQf x QF, whereQf is the partial ordering which adds a non-reflecting
stationary set of ordinals of cofinalif to 6, andQ$ is the Easton support
iteration of partial orderings which add a non-reflecting stationary set of
ordinals of cofinalityp,, to eachV/-strong cardinal in the intervap,,, ).

Let P* be the Easton support prodddt,_, P*. P = R + P* is our desired
partial ordering.

We remark that another possible generalization of Theorem 1 that one
might wish to obtain is the construction, relative to a proper class of super-
compact cardinals, of a model in which not only do the strongly compact
and strong cardinals precisely coincide, but each strongly compact cardinal
k is kT supercompact. In such a model, GCH would of necessity have to
fail, since by Lemma 2.1, no strongly compact cardinabuld be2” super-
compact. The techniques used to build this sort of model would doubtlessly
involve a melding of the ideas of [6] and [8] with the ideas of this paper,
along with the construction of the appropriate kinds of supercompact and
strong embeddings. Although we feel attaining this result is within reach,
we have not yet been able to come up with a concrete proof.

In conclusion to this paper, we note that it is tempting to want to prove an
analogue to Theorem 1 for superstrong cardinals, i.e., to want to construct
a model in which the strongly compact and superstrong cardinals precisely
coincide. That this can't be, however, is shown by the following.

Fact 4.1.Suppose is both strongly compact and superstrong. Themas
a normal measure concentrating on strongly compact cardinals.

Proof. Letj : V — M be an elementary embedding witnessing that
superstrong. Sincg;,,) € M,V F “j(x) is a strong limit cardinal”. Thus,
Vi) F “ris < j(k) strongly compact’, i.e.M F “xis < j(k) strongly
compact”. This means, by elementarity, tldt F “x is < j(x) strongly
compact ang(«) is strongly compact”, so by a theorem of DiPrisco [11],
M E “kis strongly compact”. Fact 4.1 now follows by reflectior

Thus, an analogue to Theorem 1 for superstrong cardinals is impossible.
We finish by asking, however, if an analogue to Theorem 1 can be proven
for Woodin or Shelah cardinals, i.e., if it is consistent, relative to some
large cardinal hypothesis, for the classes of strongly compact and Woodin
cardinals or strongly compact and Shelah cardinals to coincide precisely.
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