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Abstract. From a proper class of supercompact cardinals, we force and
obtain a model in which the proper classes of strongly compact and strong
cardinals precisely coincide. In this model, it is the case that no strongly
compact cardinalκ is 2κ = κ+ supercompact.

1. Introduction and preliminaries

The fact that the notion of strong compactness is a singularity in the large
cardinal hierarchy is well-known. There is, of course, the fundamental work
of Magidor [19], showing that the least strongly compact cardinalκ can be
either the least supercompact cardinal or the least measurable cardinal (in
which caseκ isn’t even2κ supercompact). A generalization of this work by
Kimchi and Magidor [16] shows that the (possibly proper) classes of super-
compact and strongly compact cardinals can coincide except at measurable
limit points, where a result of Menas [21] shows they can’t. Magidor has
also shown (in unpublished work that doesn’t even appear in [16]) that it is
consistent, relative ton ∈ ω supercompact cardinals, for the firstn strongly
compact cardinals to be the firstn measurable cardinals.
Although Magidor’s work was groundbreaking and established the gen-

eral field of “identity crisis studies”, there has been additional, extensive
research done in this area. We mention three such results along these lines.
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One is the work of [7], in which, roughly speaking, a model with a level
by level correspondence between degrees of strong compactness and su-
percompactness is provided. Another is the work of [6], where, using the
just mentioned unpublished techniques ofMagidor and techniques from [8],
relative ton ∈ ω supercompact cardinals, a model in which the firstnmea-
surable cardinalsκ1, . . . , κn are both the firstn strongly compact cardinals
and are so that eachκi is κ

+
i supercompact is constructed. In the model of

[6], 2κi = κ++
i for i = 1, . . . , n. A third is the work of [2], in which it

is shown, roughly speaking, that the supercompact and non-supercompact
strongly compact cardinals can in a generic extension conform to any pattern
prescribed by a fixed ground model function.
The purpose of this paper is to add to the litany of confusion by showing,

again using among other techniques the aforementioned unpublished ideas
of Magidor, that the class of strongly compact cardinals can assume yet
another identity. Specifically, we prove the following.

Theorem 1.Con(ZFC + There is a proper class of supercompact cardinals)
=⇒ Con(ZFC + There is a proper class of strongly compact cardinals + No
strongly compact cardinalκ is 2κ = κ+ supercompact +∀κ[κ is strongly
compact iffκ is strong].

Unlike Magidor’s result that the firstn (for n ∈ ω) strongly compact
cardinals can be the firstnmeasurable cardinals and the result of [6], there
is no barrier to proving Theorem 1 for more than finitely many strongly
compact cardinals. In fact, while these results require severe restrictions on
the large cardinal structure of the ground model, the large cardinal structure
for the ground model of Theorem 1, modulo a proper class of supercompact
cardinals, can otherwise be completely arbitrary. We will comment on this
more at the end of Sect. 2.
The structure of this paper is as follows. Sect. 1 contains our introduc-

tory comments and preliminary remarks concerning notation, terminology,
etc. Sect. 2 contains a proof of Theorem 1 for one cardinal, i.e., a con-
struction of a model, relative to a supercompact cardinal, in which the least
strongly compact cardinalκ is the least strong cardinal and isn’t2κ = κ+

supercompact. Sect. 3 contains a proof of Theorem 1 in the general case.
Sect. 4 discusses some possible generalizations of Theorem 1 and contains
our concluding remarks.
Before giving the proof of Theorem 1, we briefly mention some prelim-

inary information. Essentially, our notation and terminology are standard,
and when this is not the case, this will be clearly noted. Forα < β ordinals,
[α, β], [α, β), (α, β], and(α, β) are as in standard interval notation.
When forcing,q ≥ pwillmean thatq is stronger thanp. If G isV -generic

overP, we will use bothV [G] andV P to indicate the universe obtained by
forcing withP. If we also have thatκ is inaccessible andP = 〈〈Pα, Q̇α〉 :
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α < κ〉 is an Easton support iteration of lengthκ so that at stageα, a non-
trivial forcing is done based on the ordinalδα, then we will say thatδα is in
the field ofP. If x ∈ V [G], thenẋ will be a term inV for x. We may, from
time to time, confuse terms with the sets they denote and writex when we
actually meaṅx, especially whenx is some variant of the generic setG, or
x is in the ground modelV .
If κ < λ are regular cardinals, then Add(κ, λ) is the standard partial

ordering for addingλCohen subsets toκ. If κ is a regular cardinal andP is a
partial ordering,P isκ-closed if for every sequence〈pα : α < κ〉of elements
of P so thatβ < γ < κ impliespβ ≤ pγ (an increasing chain of lengthκ),
there is somep ∈ P (an upper bound to this chain) so thatpα ≤ p for all
α < κ.P is< κ-closed ifP isδ-closed for all cardinalsδ < κ.P isκ-directed
closed if for every cardinalδ < κ and every directed set〈pα : α < δ〉 of
elements ofP (where〈pα : α < δ〉 is directed if for every two distinct
elementspρ, pν ∈ 〈pα : α < δ〉, pρ andpν have a common upper bound of
the formpσ) there is an upper boundp ∈ P. P is κ-strategically closed if in
the two person game in which the players construct an increasing sequence
〈pα : α ≤ κ〉, where player I plays odd stages and player II plays even and
limit stages (choosing the trivial condition at stage 0), then player II has a
strategy which ensures the game can always be continued. Note that ifP is
κ-strategically closed andf : κ → V is a function inV P, thenf ∈ V . P is
< κ-strategically closed ifP is δ-strategically closed for all cardinalsδ < κ.
P is≺ κ-strategically closed if in the two person game in which the players
construct an increasing sequence〈pα : α < κ〉, where player I plays odd
stages and player II plays even and limit stages, then player II has a strategy
which ensures the game can always be continued. Note that trivially, ifP is
< κ-closed, thenP is< κ-strategically closed and≺ κ-strategically closed.
The converse of both of these facts is false.
Suppose as in the preceding paragraph thatκ < λ are regular cardinals.

A partial orderingP that will be used throughout the course of this paper
is the partial ordering for adding a non-reflecting stationary set of ordinals
of cofinality κ to λ. Specifically,P is defined as{p : For someα < λ,
p : α → {0, 1} is a characteristic function ofSp, a subset ofα not stationary
at its supremum nor having any initial segment which is stationary at its
supremum, so thatβ ∈ Sp impliesβ > κ and cof(β) = κ}, ordered by
q ≥ p iff q ⊇ p andSp = Sq ∩ sup(Sp), i.e.,Sq is an end extension ofSp. It
is well-known that forG V -generic overP (see [9] or [16]), inV [G], if we
assumeGCHholds inV , a non-reflecting stationary setS = S[G] = ∪{Sp :
p ∈ G} ⊆ λ of ordinals of cofinalityκ has been introduced, the bounded
subsets ofλ are the same as those inV , and cardinals, cofinalities, and
GCH have been preserved. It is also virtually immediate thatP isκ-directed
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closed, and it can be shown (see [9] or [16]) thatP is ≺ λ-strategically
closed.
We mention that we are assuming familiarity with the large cardinal

notions of measurability, strongness, superstrongness, strong compactness,
and supercompactness. We will also at the end of this paper refer to the
large cardinal notions of Woodinness and Shelahness. Interested readers
may consult [15], [20], or [22] for further details. We mention only that
unlike [15], we will say that the cardinalκ is λ strong forλ > κ if there
is j : V → M an elementary embedding having critical pointκ so that
j(κ) > λ andVλ ⊆ M . As always,κ is strong ifκ is λ strong for every
λ > κ. We will also say the cardinalκ is superstrong with targetλ if there
is j : V → M an elementary embedding having critical pointκ so that
j(κ) = λ andVλ ⊆ M . If j0 : V → M witnesses thatκ is superstrong with
targetλ andj1 : M → N witnesses the measurability ofλ inM , then it is
easily verified thatj1 ◦ j0 : V → N witnesses thatκ is λ strong.
Wemention that we are also assuming some familiarity with the basics of

extender technology and the transference of generic objects via elementary
embeddings. The section on backgroundmaterial of [10] is extremely useful
in this regard. We will freely, particularly in the proofs of Lemmas 2.4 and
2.5, use notation, definitions, and terminology found here. Readersmay also
consult [20] for additional details concerning extenders.
Finally, both authors wish to express their gratitude to MenachemMagi-

dor for his explanations to them given at the January 7-13, 1996 meeting in
Set Theory held at the Mathematics Research Institute, Oberwolfach, Ger-
many on his method of forcing to make the firstnmeasurable and strongly
compact cardinals coincide, for any finiten.

2. The proof of Theorem 1 for one cardinal

In this section, we will construct, starting with a supercompact cardinal, a
model in which the least strongly compact cardinalκ is the same as the
least strong cardinal andκ isn’t 2κ = κ+ supercompact. We begin with the
following lemma, which also appears as Lemma 3.1 of [5].

Lemma 2.1. Let κ be2κ supercompact and strong. Assumej : V → M
is an elementary embedding witnessing the2κ supercompactness ofκ, and
let µ be the normal measure overκ associated withj. Then{δ < κ : δ is a
strong cardinal} ∈ µ.

Proof. We first show, forj andµ as in the statement of Lemma 2.1, that
{δ < κ : δ is κ strong} ∈ µ. (See also the proof of Proposition 26.11 of
[15].) To see this, note that sinceM2κ ⊆ M , j � Vκ+1 ∈ M . Thus, as in
[3], page 203, there isE ∈ M a(κ, j(κ)) extender andk : M → Ult(M, E)
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so thatκ is the critical point ofk andM and Ult(M, E) agree through rank
j(κ). This meansM � “κ is superstrong with targetj(κ)”, so by reflection,
{δ < κ : δ is superstrong with targetκ} ∈ µ. By our remarks in Sect. 1,
{δ < κ : δ is κ strong} ∈ µ.
Fix now δ < κ so thatV � “δ is κ strong”. We show that ifλ > κ

is arbitrary,V � “δ is λ strong”. Letλ′ > λ be so that any extenderE
witnessing theλ strongness ofδ is such thatE ∈ Vλ′ . By the strongness of
κ, let j∗ : V → M∗ be an embedding having critical pointκ witnessing
that κ is λ′ strong. SinceV � “δ is κ strong”,M∗ � “j∗(δ) = δ is
j∗(κ) > λ′ > λ strong”. AsVλ′ ⊆ M∗ andM∗ � “δ is λ strong”,V � “δ
is λ strong”. This proves Lemma 2.1.��
We observe that in the above proof, it will actually be the case that

M � “κ is a strong limit of strong cardinals”. This is sinceM � “κ is j(κ)
strong andj(κ) is strong”, so by the second paragraph of the above proof,
M � “κ is strong”. Further, ifδ < κ is so thatV � “δ is strong”, then
M � “j(δ) = δ is strong”. Thus, by reflection, we have the more powerful
fact that{δ < κ : δ is a strong limit of strong cardinals} ∈ µ.
We turn now to the proof of Theorem 1.

Proof. Let V � “ZFC + κ is supercompact”. Without loss of generality,
by first doing a preliminary forcing if necessary, we may also assume that
V � GCH.
By Lemma 2.1, letA = 〈δα : α < κ〉 be an enumeration of the strong

cardinals belowκ. The partial orderingPκ we use in the proof of Theorem
1 given in this section is the Easton support iteration〈〈Pκ

α, Q̇
κ
α〉 : α <

κ〉, wherePκ
0 is the partial orderingAdd(ω, 1) and�Pκ

α
“Q̇κ

α adds a non-
reflecting stationary set of ordinals of cofinalityω to δα”.

Lemma 2.2. V Pκ � “No cardinalδ < κ is strong”.

Proof. Let δ < κ be so thatV � “δ is strong”. It must therefore be the case
thatδ = δα for someα < κ. This allows us to writePκ = Pκ

α ∗ Q̇κ
α ∗ Ṙ =

Pκ
α+1 ∗ Ṙ.
By the definition ofPκ and the fact that any stationary subset of a mea-

surable (or weakly compact) cardinalmust reflect,V Pκ
α+1 � “δ isn’t measur-

able (and hence isn’t strong) since there isS ⊆ δ which is a non-reflecting
stationary set of ordinals of cofinalityω”. Since by the definition ofPκ,
�Pκ

α+1
“Ṙ is δ′-strategically closed forδ′ the least inaccessible aboveδ”,

V Pκ
α+1 = V Pκ � “S ⊆ δ is a non-reflecting stationary set of ordinals of

cofinality ω, soδ isn’t measurable”. Thus,V Pκ � “No V -strong cardinal
δ < κ is measurable”. The proof of Lemma 2.2 will therefore be complete
once we have shown there is no cardinalδ < κ so thatV Pκ � “δ is strong”.
WritePκ asPκ

0 ∗ Q̇. By the definition ofP, |Pκ
0 | = ω and�Pκ

0
“Q̇ isℵ1-

strategically closed”. Therefore, using Hamkins’ terminology of [12], [13],
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and [14],Pκ is a “gap forcing admitting a very low gap”, so by the results
of [12], [13] and [14],V Pκ � “Any strong cardinal was already strong in
V ”. This meansV Pκ � “No cardinalδ < κ is strong”. This proves Lemma
2.2. ��
Lemma 2.3. V Pκ � “No cardinalδ < κ is strongly compact”.

Proof. By Lemmas 2.1 and 2.2,V Pκ � “There are unboundedly inκmany
cardinalsδ < κ containing a non-reflecting stationary set of ordinals of
cofinality ω”. It is a theorem of [22] that if a cardinalγ contains a non-
reflecting stationary set of ordinals of cofinalityρ, then there are no strongly
compact cardinals in the interval(ρ, γ]. Thus,V Pκ � “No cardinalδ < κ is
strongly compact”. This proves Lemma 2.3.��
Lemma 2.4. V Pκ � “κ is strongly compact”.

Proof. The proof of Lemma 2.4 uses the unpublished ideas of Magidor
referred to at the beginning of this paper. (See also the proof of Lemma 4
of [6].) Let λ > 2κ = κ+ be an arbitrary successor of a regular cardinal,
and letk1 : V → M be an embedding witnessing theλ supercompactness
of κ so thatM � “κ is< λ supercompact butκ isn’t λ supercompact”.λ
has been chosen large enough so that we may assume by choosing a normal
ultrafilter of Mitchell order0 overκ that k2 : M → N is an embedding
witnessing the measurability ofκ definable inM so thatN � “κ isn’t
measurable”. It is the case that ifk : V → N is an elementary embedding
with critical pointκ and for anyx ⊆ N with |x| ≤ λ, there is somey ∈ N
so thatx ⊆ y andN � “|y| < k(κ)”, then k witnesses theλ strong
compactness ofκ. Using this fact, it is easily verifiable thatj = k2 ◦ k1
is an elementary embedding witnessing theλ strong compactness ofκ. We
show thatj extends toj : V Pκ → N j(Pκ). Since this extended embedding
witnesses theλ strong compactness ofκ in V Pκ

, this proves Lemma 2.4.
To do this, writej(Pκ) asPκ ∗ Q̇κ ∗ Ṙκ, whereQ̇κ is a term for the

portion of j(Pκ) betweenκ and k2(κ) and Ṙκ is a term for the rest of
j(Pκ), i.e., the part abovek2(κ). Note that sinceN � “κ isn’t measurable”,
κ �∈ field(Q̇κ). Also, since Lemma 2.1 and the succeeding paragraph imply
thatM � “κ is strong”, by elementarity,N � “k2(κ) is strong”. Thus, the
field of Q̇κ is composed of allN -strong cardinals in the interval(κ, k2(κ)]
(so k2(κ) ∈ field(Q̇κ)), and the field ofṘκ is composed of allN -strong
cardinals in the interval(k2(κ), k2(k1(κ))).
LetG0 beV -generic overPκ. We construct inV [G0] anN [G0]-generic

objectG1 overQκ and anN [G0][G1]-generic objectG2 overRκ. SincePκ is
an Easton support iteration of lengthκ, a direct limit is taken at stageκ, and
no forcing is done at stageκ, the construction ofG1 andG2 automatically
guarantees thatj′′G0 ⊆ G0 ∗G1 ∗G2. This means thatj : V → N extends
to j : V [G0] → N [G0][G1][G2].
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To buildG1, note that sincek2 can be assumed to be generated by an
ultrafilter U over κ and since in bothV andM , 2κ = κ+, |k2(κ+)| =
|k2(2κ)| = |{f : f : κ → κ+ is a function}| = |[κ+]κ| = κ+. Thus, as
N [G0] � “|℘(Qκ)| = k2(2κ)”, we can let〈Dα : α < κ+〉 enumerate in
V [G0] the dense open subsets ofQκ present inN [G0]. Since theκ closure
of N with respect to eitherM or V implies the least element of the field
of Qκ is > κ+, the definition ofQκ as the Easton support iteration which
adds anon-reflecting stationary set of ordinals of cofinalityω to eachN [G0]-
strong cardinal in the interval(κ, k2(κ)] implies thatN [G0] � “Qκ is≺ κ+-
strategically closed”. By the fact the standard arguments show that forcing
with theκ-c.c. partial orderingPκ preserves thatN [G0] remainsκ-closed
with respect to eitherM [G0] or V [G0], Qκ is≺ κ+-strategically closed in
bothM [G0] andV [G0].
We can now constructG1 in eitherM [G0] or V [G0] as follows. Player

I picks pα ∈ Dα extendingsup(〈qβ : β < α〉) (initially, q−1 is the empty
condition) and player II responds by pickingqα ≥ pα (so qα ∈ Dα). By
the≺ κ+-strategic closure ofQκ in bothM [G0] andV [G0], player II has
a winning strategy for this game, so〈qα : α < κ+〉 can be taken as an
increasing sequence of conditions withqα ∈ Dα for α < κ+. Clearly,
G1 = {p ∈ Qκ : ∃α < κ+[qα ≥ p]} is ourN [G0]-generic object overQκ.
It remains to construct inV [G0] the desiredN [G0][G1]-generic object

G2 overRκ. To do this, we first note that asM � “κ is strong”, we can write
k1(Pκ) asPκ ∗ Ṡκ ∗ Ṫκ, where�Pκ “Ṡκ adds a non-reflecting stationary set
of ordinals of cofinalityω to κ”, and Ṫκ is a term for the rest ofk1(Pκ).
Note now thatM � “No cardinalδ ∈ (κ, λ] is strong”. To see this,

assume to the contraryδ ∈ (κ, λ] is so thatM � “δ is strong”. If� : M →
M∗ is an elementary embedding witnessing theλ′ strongness ofδ for some
cardinalλ′ > λ ≥ δ > κ, then asM � “κ is < λ supercompact”,M∗ �
“�(κ) = κ is < �(λ) supercompact”. Since�(δ) can be made arbitrarily
high in the universe by increasing the amount of strongness� witnesses,
�(λ) can be made arbitrarily high in the universe also, so by choosingλ′
large enough, the factM∗ � “κ is < �(λ) supercompact” is sufficient to
deduce thatκ isλ supercompact inM . As this contradicts the choice ofM ,
we must have thatM � “δ isn’t strong”. Thus, the field oḟTκ is composed
of allM -strong cardinals in the interval(λ, k1(κ)), which implies that inM ,
�

Pκ∗Ṡκ “Ṫκ is≺ λ+-strategically closed”. Further, sinceV � GCH andλ
is regular,|[λ]<κ| = λ and2λ = λ+. Therefore, ask1 can be assumed to be
generated by an ultrafilterU overPκ(λ), |k1(λ+)| = |k1(2λ)| = |2k1(λ)| =
|{f : f : Pκ(λ) → λ+ is a function}| = |[λ+]λ| = λ+.
Work until otherwise specified inM . Consider the “term forcing” partial

orderingT∗ (see [10], Sect. 1.2.5, page 8) associatedwithṪκ, i.e.,τ ∈ T∗ iff
τ is a term in the forcing language with respect toPκ ∗ Ṡκ and�

Pκ∗Ṡκ “τ ∈
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Ṫκ”, ordered byτ ≥ σ iff �
Pκ∗Ṡκ “τ ≥ σ”. Clearly,T∗ ∈ M . Also, since

�
Pκ∗Ṡκ “Ṫκ is≺ λ+-strategically closed”, it can easily be verified thatT∗

itself is≺ λ+-strategically closed inM and, sinceMλ ⊆ M , in V as well.
Therefore, as�

Pκ∗Ṡκ “|Ṫκ| = k1(λ) and2k1(λ) = (k1(λ))+ = k1(λ+)”,
we can assume without loss of generality that inM , |T∗| = k1(λ). This
means we can let〈Dα : α < λ+〉 enumerate inV the dense open subsets of
T∗ present inM and argue as before to construct inV anM -generic object
H2 overT∗.
Note now that sinceN can be assumed to be given by an ultrapower ofM

viaanormal ultrafilterU ∈ M overκ, Fact 2ofSect. 1.2.2of [10] tells us that
k′′

2H2 generates anN -generic objectG∗
2 overk2(T∗). By elementariness,

k2(T∗) is the term forcing inN defined with respect tok2(k1(Pκ)κ+1) =
Pκ ∗ Q̇κ. Therefore, sincej(Pκ) = k2(k1(Pκ)) = Pκ ∗ Q̇κ ∗ Ṙκ, G∗

2 is
N -generic overk2(T∗), andG0 ∗ G1 is k2(Pκ ∗ Ṡκ)-generic overN , Fact
1 of Sect. 1.2.5 of [10] tells us that forG2 = {iG0∗G1(τ) : τ ∈ G∗

2}, G2
is N [G0][G1]-generic overRκ. Thus, inV [G0], j : V → N extends to
j : V [G0] → N [G0][G1][G2]. This proves Lemma 2.4.��
Lemma 2.5. V Pκ � “κ is strong”.

Proof. We use for the proof of this lemma notation and terminology from
the introductory section of [10]. Fixλ > κ+,λa cardinal so thatλ = ℵλ. Let
j : V → M be an elementary embedding witnessing theλ strongness ofκ
generatedbya(κ, λ)-extender ofwidthκ so thatM � “κ isn’tλ strong”, and
let i : V → N be the elementary embedding witnessing the measurability
of κ generated by the normal ultrafilterU = {x ⊆ κ : κ ∈ j(x)}. We then
have the commutative diagram

wherej = k ◦ i and the critical point ofk is aboveκ.
Observe thatM � “No cardinalρ ∈ (κ, λ] is strong”, for if this were

false, then sinceVλ ⊆ M , M � “κ is < ρ strong”. By the argument
in the second paragraph of the proof of Lemma 2.1,M � “κ is strong”,
contradicting thechoiceofM . Thismeans that inM , the least strongcardinal
δ > κ is so thatδ > λ.
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For any ordinalα, defineσα as the least ordinal> α so thatα isn’t σα

strong if such an ordinal exists, andσα = 0 otherwise. Definef : κ → κ
asf(α) = The least inaccessible cardinal> σα. By our choice ofλ and
the preceding paragraph,κ < λ < j(f)(κ) < δ, whereδ is the least strong
cardinal inM ≥ κ, i.e., the least element of the field ofj(Pκ) − κ.
Note now thatM = {j(g)(a) : a ∈ [λ]<ω, dom(g) = [κ]|a|, g :

[κ]|a| → V } = {k(i(g))(a) : a ∈ [λ]<ω, dom(g) = [κ]|a|, g : [κ]|a| → V }.
By definingγ = i(f)(κ), we havek(γ) = k(i(f)(κ)) = j(f)(κ) > λ. This
meansj(g)(a) = k(i(g))(a) = k(i(g) � [γ]|a|)(a), i.e.,M = {k(h)(a) :
a ∈ [λ]<ω, h ∈ N , dom(h) = [γ]|a|, h : [γ]|a| → N}. By elementariness,
we must haveN � “κ isn’t strong andκ < γ = i(f)(κ) < δ0 = The least
strong cardinal inN ≥ κ = The least element of the field ofi(Pκ) − κ”,
sinceM � “k(κ) = κ isn’t strong andk(κ) = κ < k(γ) = k(i(f)(κ)) =
j(f)(κ) < k(δ0) = δ”. Therefore,k can be assumed to be generated by an
N -extender of widthγ ∈ (κ, δ0).
Write i(Pκ) = Pκ ∗ Q̇0, whereQ̇0 is a term for the portion ofi(Pκ)

whose field is composed of ordinals in the interval[κ, i(κ)). SinceN � “κ
isn’t a strong cardinal”, the field oḟQ0 is actually composed of ordinals in
the interval(κ, i(κ)), or more precisely, of ordinals in the interval[δ0, i(κ)).
This means that ifG0 is once againV -generic overPκ, the argument from
Lemma 2.4 for the construction of the generic objectG1 can be applied
here as well to construct inV [G0] anN [G0]-generic objectG∗

1 overQ
0.

Sincei′′G0 ⊆ G0 ∗ G∗
1, i extends toi : V [G0] → N [G0][G∗

1], and since
k′′G0 = G0 andk(κ) = κ, k extends tok : N [G0] → M [G0]. By Fact
3 of Sect. 1.2.2 of [10],k : N [G0] → M [G0] can also be assumed to be
generated by an extender of widthγ ∈ (κ, δ0).
In analogy to the preceding paragraph, writej(Pκ) = Pκ ∗ Q̇1. By the

last sentence of the preceding paragraph and the factδ0 is the least ordinal
in the field of Q̇0, we can use Fact 2 of Sect. 1.2.2 of [10] to infer that
H = {p ∈ Q1 : ∃q ∈ k′′G∗

1[q ≥ p]} isM [G0]-generic overk(Q1). Thus,k
extends tok : N [G0][G∗

1] → M [G0][H], and we get the new commutative
diagram
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SinceM � “No cardinalρ ∈ [κ, λ] is strong”, the field ofQ̇1 is
composed of ordinals in the interval(λ, j(κ)). Therefore, asVλ ⊆ M ,
Vλ[G0] ⊆ M [G0], and as the field ofQ1 is composed of ordinals in the
interval (λ, j(κ)), Vλ[G0] is the set of all sets of rank< λ in M [G0][H].
Hence,j is aλ strong embedding. Sinceλwas arbitrary, this proves Lemma
2.5. ��
Lemma 2.6. V Pκ � “κ isn’t 2κ = κ+ supercompact”.

Proof. By Lemmas 2.2 and 2.5,V Pκ � “κ is a strong cardinal so that
no cardinalδ < κ is strong”. Thus, by Lemma 2.1,V Pκ � “κ isn’t 2κ

supercompact”. Since|Pκ| = κ andV � “2κ = κ+”, V Pκ � “2κ = κ+”.
This proves Lemma 2.6.��
Lemmas 2.1 - 2.6 complete the proof of Theorem 1 for one cardinal.��
We remark that the use of non-reflecting stationary subsets of ordinals

of cofinality ω in the preceding proof was completely arbitrary. We could
just as easily have added non-reflecting stationary subsets of ordinals of
cofinality γ, where forδ0 < κ the least strong cardinal,γ ∈ (ω, δ0) is an
arbitrary regular cardinal. Also, an easy induction shows that sinceV �
GCH, V Pκ � GCH as well.
We conclude this section by noting that the large cardinal structure above

κ in V can be completely arbitrary by the proof just given. This is quite
different from the situation in Magidor’s original proof of the consistency
of the firstn ∈ ω strongly compact cardinals being the firstn measurable
cardinals and the situation in [6], in which severe limitations are of necessity
placed on the large cardinal structure of the ground model. The reason for
this is that strongness, unlike measurability, is not a local property, so in
the proofs of Lemmas 2.4 and 2.5, we don’t have to worry about unwanted
cardinals having a non-reflecting stationary set of ordinals added to them.
The fact that these limitations don’t exist will allow us in the next section to
prove Theorem 1 for a proper class of cardinals.

3. The proof of Theorem 1 in the general case

We turn now to the proof of Theorem 1 for a proper class of cardinals.

Proof. LetV � “ZFC+〈κα : α ∈ Ord〉 is the proper class of supercompact
cardinals”.Without loss of generality, we assume in addition thatV � GCH
and that by “cutting off” the universe if necessary at the least inaccessible
limit of supercompact cardinals, forγ0 = ω andγα = ∪β<ακβ for α > 0,
γα < κα is singular ifα is a limit ordinal. Further, by the methods of either
[4] or [1] (both of which generalize Laver’s result of [17]), we can also
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assume without loss of generality that forR = Add(ω, 1)∗ Ṙ∗, V1 = V R �
“GCH + The supercompactness of eachκα is indestructible under forcing
with κα-directed closed set or class partial orderings not destroying GCH”.
Since it will be the case that�Add(ω,1) “Ṙ∗ is ℵ1-strategically closed” and
|Add(ω, 1)| = ω, R is a gap forcing admitting a very low gap. Thus, once
again by Hamkins’ results of [12], [13], and [14],V1 � “Any cardinal which
is supercompact or strong must have been supercompact or strong inV ”.
Work in V1. For each ordinalα, let 〈δα

β : β < κα〉 be an enumeration of
theV -strong cardinals in the interval(γα, κα), and letPκα = 〈〈Pκα

β , Q̇κα
β 〉 :

β < κα〉 be the Easton support iteration wherePκα
0 = {∅} and�P

κα
β

“Q̇κα
β

adds a non-reflecting stationary set of ordinals of cofinalityγ+
α to δ

α
β ”. We

defineP as the Easton support product
∏

α∈Ord Pκα . Since everyPκα is
γ+

α -directed closed, the definition of eachP
κα together with the standard

Easton arguments showV P
1 � ZFC + GCH.

For each ordinalα, write P = P<α × Pκα × P>α, whereP<α =∏
β<α Pκβ andP>α is the remainder ofP. By the definition ofP and the

fact the supercompactness ofκα is indestructible under set or class forc-
ing not destroying GCH,V P>α

1 � “GCH +κα is supercompact”. Further,
sinceR ∗ (Ṗ>α × Ṗκα) = Add(ω, 1) ∗ (Ṙ∗ ∗ (Ṗ>α × Ṗκα)) is so that
�Add(ω,1) “Ṙ∗ ∗(Ṗ>α ×Pκα) isℵ1-strategically closed”, the results of [12],
[13], and [14] once more apply to show that any cardinal which is strong in
V P>α×Pκα

1 must have been strong inV . Thus, we can apply the results of
Sect. 2 to show thatV P>α×Pκα � “κα is both strongly compact and strong,
there are no strongly compact or strong cardinals in the interval(γα, κα), and
κα isn’t 2κα = κ+

α supercompact”. SinceV1 � “|P<α| < 2γ+
α ”, the Lévy-

Solovay results [18] show thatV P>α×Pκα×P<α
1 = V P

1 � “κα is both strongly
compact and strong, there are no strongly compact or strong cardinals in the
interval(γα, κα), andκα isn’t 2κα = κ+

α supercompact”. Therefore, since
any cardinalδ which is strongly compact or strong and is not aκα must be
so thatδ ∈ (γα, κα), V P

1 is our desired model. This proves Theorem 1 for a
proper class of cardinals.��
Weconclude this sectionbynoting that a result ofMenas from [21] shows

that anymeasurable limit of strongly compact cardinals is strongly compact.
This has as a consequence that if we assume large enough cardinals in the
universe, there can never be a precise coincidence between the notions of
strongly compact and strong. This is shown by the following, whose proof is
essentially the same as Menas’ proof of [21] that the least measurable limit
κ of strongly compact or supercompact cardinals isn’t2κ supercompact.

Fact 3.1. If κ is the least measurable limit of cardinals which are both
strongly compact and strong, thenκ isn’t κ+ 2 strong.
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Proof. Assume to the contrary thatκ isκ+2 strong, and letj : V → M be
anelementaryembeddingwitnessing this fact. SinceM � “κ ismeasurable”
andj � κ = id,M � “κ is a measurable limit of cardinals which are both
strongly compact and strong”. This contradicts thatM � “j(κ) > κ is the
least measurable limit of cardinals which are both strongly compact and
strong”. This proves Fact 3.1.��

4. Possible generalizations and concluding remarks

Weobserve that by combining the techniques of this paper with those of [2],
it is possible to prove the following.

Theorem 2.Let V � “ZFC + Ω is an inaccessible limit of measurable
limits of supercompact cardinals +f : Ω → 3 is a function”. There is then
a partial orderingP ∈ V so that forV = V P

Ω , the universe ofV P truncated
at Ω, V � “ZFC + If f(α) = 0, then theαth compact cardinalγα isn’t
2γα supercompact orγα + 2 strong + If f(α) = 1, then theαth compact
cardinalγα is supercompact + Iff(α) = 2, then theαth compact cardinal
γα is strong but isn’t2γα supercompact”.

For Theorem 2, we take a compact cardinal as being one which is either
supercompact or non-supercompact strongly compact. Also, since we will
be able to assume GCH inV , V � GCH, so whenf(α) = 0 or f(α) = 2,
γα won’t beγ+

α supercompact.
We will not give a detailed proof here, but we will explicitly describe the

forcing conditionsP used in the construction ofV . Readers of this paper
and [2] should then fairly easily be able to combine the methods of these
two papers to prove Theorem 2.
We begin as in the proof of Theorem 1 given in Sect. 3 by assumingV �

GCH and that by using a partial ordering of the formR = Add(ω, 1) ∗ Ṙ∗
that V R � “GCH + The supercompact and strongly compact cardinals
coincide except at measurable limit points + Every supercompact cardinal
κ is indestructible underκ-directed closed forcing not destroying GCH”.
Since the work of [1] and [2] tells usR can be presumed to preserve all
V -supercompact cardinals, their measurable limits, and the regularity ofΩ,
we can assume without loss of generality thatΩ is in V R the least regular
limit of measurable limits of supercompact cardinals.
Working inV R, we let〈δα : α < Ω〉 enumerate the measurable limits

of supercompact cardinals belowΩ. For an arbitraryα < Ω, let 〈κα
β :

β < δα〉 enumerate theV = V R-supercompact cardinals in the interval
(∪γ<αδγ , δα). Defineρα = ω whenα = 0 andρα = (∪γ<αδγ)+ when
α ∈ (0, Ω). If f(α) = 0, takePα as the Easton support iteration of partial
orderings which add a non-reflecting stationary set of ordinals of cofinality
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ρα to eachκα
β . If f(α) = 1, takePα as the partial orderingwhich adds a non-

reflecting stationary set of ordinals of cofinalityκα
0 to δα. If f(α) = 2, take

Pα asQα
1 ×Qα

2 , whereQ
α
1 is the partial orderingwhich adds a non-reflecting

stationary set of ordinals of cofinalityκα
0 toδα, andQ

α
2 is the Easton support

iteration of partial orderings which add a non-reflecting stationary set of
ordinals of cofinalityρα to eachV -strong cardinal in the interval(ρα, κ

α
0 ).

Let P∗ be the Easton support product
∏

α<Ω Pα. P = R ∗ Ṗ∗ is our desired
partial ordering.
We remark that another possible generalization of Theorem 1 that one

might wish to obtain is the construction, relative to a proper class of super-
compact cardinals, of a model in which not only do the strongly compact
and strong cardinals precisely coincide, but each strongly compact cardinal
κ is κ+ supercompact. In such a model, GCH would of necessity have to
fail, since by Lemma 2.1, no strongly compact cardinalκ could be2κ super-
compact. The techniques used to build this sort of model would doubtlessly
involve a melding of the ideas of [6] and [8] with the ideas of this paper,
along with the construction of the appropriate kinds of supercompact and
strong embeddings. Although we feel attaining this result is within reach,
we have not yet been able to come up with a concrete proof.
In conclusion to this paper, we note that it is tempting to want to prove an

analogue to Theorem 1 for superstrong cardinals, i.e., to want to construct
a model in which the strongly compact and superstrong cardinals precisely
coincide. That this can’t be, however, is shown by the following.

Fact 4.1.Supposeκ is both strongly compact and superstrong. Thenκ has
a normal measure concentrating on strongly compact cardinals.

Proof. Let j : V → M be an elementary embedding witnessing thatκ is
superstrong. SinceVj(κ) ⊆ M , V � “j(κ) is a strong limit cardinal”. Thus,
Vj(κ) � “κ is < j(κ) strongly compact”, i.e.,M � “κ is < j(κ) strongly
compact”. This means, by elementarity, thatM � “κ is < j(κ) strongly
compact andj(κ) is strongly compact”, so by a theorem of DiPrisco [11],
M � “κ is strongly compact”. Fact 4.1 now follows by reflection.��
Thus, an analogue to Theorem 1 for superstrong cardinals is impossible.

We finish by asking, however, if an analogue to Theorem 1 can be proven
for Woodin or Shelah cardinals, i.e., if it is consistent, relative to some
large cardinal hypothesis, for the classes of strongly compact and Woodin
cardinals or strongly compact and Shelah cardinals to coincide precisely.
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