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Abstract. We investigate interpolation properties of many-valued proposi-
tional logics related to continuous t-norms. In case of failure of interpolation,
we characterize the minimal interpolating extensions of the languages. For
finite-valued logics, we count the number of interpolating extensions by
Fibonacci sequences.

1. Introduction
1.1. Outline

In this paper, we investigate interpolation theorems for fuzzy and many-
valued logics whose truth functions are defined by continuous triangular
norms [18, 19]. Those logics (which we shall dathngular logicsfor short)

have attracted a lot of research in recent years since on the one hand they
retain a mathematically appealing theory akin to the theory of Boolean
algebrasin classical logic, while on the other hand they subsume major fuzzy
formalisms such asukasiewicz logic, Product logic, andd@el Logic, as

well as Classical Boolean Logic. In turn, every t-norm is the ordinal sum of
Lukasiewicz, Product andd@gel norms [12]. The most thorough and recent
treatment of triangular logics can be found in [6].

* Work supported by FWF Grant P10282-MAeweistheorie und automatisches Be-
weisen fir mehrwertige LogikeAustrian Science Foundation).
** Work partially done while the second author was visiting Cornell University with support
from the Christian Doppler Laboratory for Expert Systems.
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1.2. Interpolation

Ever since Craig’'s seminal result on interpolation for classical predicate
logic, interpolation properties have been recognized as important desiderata
of logical systems. In propositional logic, we consider two interpolation
properties of increasing strength.

Interpolation Property. If A — B, then there exists a formulg A, B)
which contains only common variables 4fand B such that

A—I(A,B) — B

Uniform Interpolation Property. If A — B, andV is the set of common
variables inA and B, then there exist pre-interpolant(or left interpolan)
I(A,V) and apost-interpolant(or right interpolan) J(B, V') such that
I(A,V) and J(B,V) depend only or4, V' and B, V' respectively, both
contain only variables fronv and

A— I(AV)— J(B,V) — B

Remark.The presence of the (uniform) interpolation property is strongly
connected with the existenceafialytic propertie®f the deduction system.
Suppose that we have a Hilbert style calculus for the logic, where the rule

A—B B—C
A—C

is derivable. Then interpolation implies that there are tree-like proofs of
A — B andB — C which involve only variables which are already in
A andC respectively.

Classical propositional logic has the uniform interpolation property. Let
A(x,y), B(x,z) be like above, i.eV contains just the variables from the
tuplex. Then the pre-interpolant and the post-interpolant can be written as
guantified boolean formulas:

J(AV)=vyA = N\ Alxy) (1)
y€<{0,1}1¥l

IB,V)=322B = \/ B(x2) 2)
z€{0,1}I=l

Since the propositional quantifier in quantified boolean logic can be
eliminated by long disjunctions and conjunctions as indicated above, the
interpolants can be easily constructed.
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For triangular logics, one can define interpolants likewise, by Usirzy
existential and universal quantifief§] instead of ordinary propositional
quantifiers. Universal (existential) fuzzy quantifiers correspond to taking the
infimum (supremum respectively) of the quantified formula with respect to
the quantified variable. Thus, in a two-valued framework, a fuzzy quantifier
collapses to an ordinary propositional quantifier.

The uniform interpolation in triangular logics can be seen as quantifier
elimination of fuzzy quantifiers in fuzzy formulas. Similarly, interpolation
in modal and intuitionistic logics is related to amalgamation and, thus, quan-
tifier elimination of first order quantifiers [13]. The main difference of the
methods applied in the abovementioned papers is their disregard of syntax;
yet the mere existence or absence of an interpolant (or amalgam) does not
yield explicit and feasible interpolants.

For fuzzy quantifiers, a straightforward elimination of quantifiers as in
formula 1 is not possible even if the language contains truth constants for all
truth values, since such a translation yields infinitary formulas. For finitely-
valued triangular logics, however, itis trivially possible to gain interpolation
by adding all truth constants to the language because the binary truth func-
tions for minimum and maximum are definable; here, it is rather of interest
to consider which minimal sets of truth constants are necessary for interpo-
lation.

This remark extends to logics in general: it is not so much the question
if a logic interpolates, but rathrhereit interpolates, i.e., in which exten-
sion of the language. For logics with first-order definable semantics such
as modal logics, interpolation indicates that the language in question has
certain closure properties akin to first order logic; consider for example a
modal logic whose Kripke structures are first order definable. Then every
modal propositional statement can be translated into a first order statement,
and thus, a modal implicatioA — B turns into a first order implication
v(A) — ~(B), yielding, by Craig interpolation, a first order interpolant
I,(A, B). Semantically/, (A, B) is an interpolant, yet the question arises
whether this interpolant can be translated back into the language of modal
logic.

Summarizing, the main questions addressed in this paper are:

Which triangular logics have (uniform) interpolation?

How can the interpolants be constructed?

How can a non-interpolating logic be extended to gain interpolation?
Which normal forms can be obtained for the logic and for the inter-
polants?

Which extensions of finite-valued triangular logics by truth constants
have interpolation?

PN

o
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Table 1 Interpolation in infinite-valued logics

Pure WithO With A With A andO
Godel Interpolation  Interpolation Interpolation  Interpolation
1ukasiewicz X Interpolation X Interpolation
Product X X

1.3. Results

The paper is divided into two parts, the first dealing with infinite-valued
logics, the second with finite-valued logics.

Forinfinite-valued logicswe first show (Section 3.1) that regardless of
the presence of additional truth constant8dél logic is the unique trian-
gular logic with interpolation, and in fact, uniform interpolation.

Moreover (Theorem 4) &del logic has a weak disjunctive normal form.
Note that ordinary interpolation ofd@&lel logic has been shown before in[13]
in a non-constructive manner. The failure of interpolation fokadsiewicz
logic was previously demonstrated in [11].

Starting from those negative results, we investigate extensions of tri-
angular logics by — 1 projections [1] and root operators [8]. The- 1
projection operator is defined by

Az x| (3)

The projectionA introduces a weak kind of introspection which allows
to express quantifier-free statements about terms in the underlying logic.
For a theory with quantifier-elimination, this means that the additiof of
is quite powerful.

The root operatorsl;(z) = y are defined as the maximum solution of
the equation

y& ... &y==x (4)
\ﬂ_/
1 times
Let £ + O denote the logic obtained by adding all countably many
operatorsd,, Oy, ... to L.
Table 1 summarizes the interpolation results for infinite-valued logics.
Finite-valued logicsare treated here asfinitely generated sublogics ofthe
abovementioned logics; they approximate their infinite-valued counterpart
as a Fris£-limit [2].
In Sections 4 and 5, general criteria are given when an extension of an
n—valued @del or'lukasiewicz logic (+,, andZ,, respectively) by a sef
of additional truth constants has uniform interpolation. Apart fi@m no
G,, or 1,, has interpolation, while we have seen above that adding all truth
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Table 2 The number and characterization of finite-valued intermediate logics

Gpy1t+S '|n+1 + S
IS| fixed (njﬁ‘;\}rl)) Ris| (">:Ed|n M(%)(Lgi—ll)
|s| arbitrary Fp Sapn w(%)2971
Characterization ged(nS)=1 max(nS)<2

constants trivially leads to uniform interpolation. Therefore, the structure of
theintermediatdogics is of interest. To this end, consider the Sathich

is the set of gaps between truth values frSrand0, 1. Interpolation can be
characterized in terms df, and the number of intermediate logics can be
determined as summarized in figure 2. Again, we obtain normal forms for
the case of @del logic.

2. Triangular logics and extensions
2.1. Metamathematics of fuzzy logic revisited

This section contains important definitions and background knowledge about
triangular logics. Most of the presentation is based on [6].

2.1.1. Triangular logics In this paper, the truth functions of the logic
(the matrix of the logirare defined in a generic way fromcantinuous
triangular normt, i.e., a two-place function defined on a subgetf [0, 1]
which satisfies the following axioms [10]:

T1 ¢(0,2) = 0andt(l,z) = x T3 t(z,y) = t(y, x)

T2 r<uby<z=t(x,y) <tuz) T4 i(t(z,y),2) = t(z,i(y, 2))

In triangular logics, a t-normdefines the truth function of conjunction;
implication then is defined by the right adjuncttof.e., by the unique truth
functionsd such that

11 2z <i(z,y)iff t(z,2) <y
If ¢ is continuous, we obtain thatx, y) = max{z|t(z, z) < y}. Negation
is defined byi(z,0).
Definition. A logic £ is triangular, if it is defined by the connectives
& y Ty T 07 1 (5)
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Table 3 The truth functions of well-known triangular logics

Constraint| Godel (G) 1ukasiewicz (L Product (7)
z &y min(z,y) | max(0,z +y —1) T Xy
r—y <y 1 1 1
T —>y >y y l—xz+y ¥
-0 1 1 1
-z z>0 0 11—z 0

induced by a continuous t-norm. The tautologiesit, of £ is the set
of formulas ¢ which evaluate tal for all assignments to the variables
var(e). 0

Proviso. We do not distinguish between the truth functions and the syntac-
tical connectives of triangular logics, i.e., we treat formulas as polynomials
in the matrix algebra. When we speak of firet order theory of a triangu-
lar logic, then we mean the first order theory of the matrix of the logic. In
such a first order logic, the propositional formulas are the first order terms.
In Section 3.4, we shall see how the introspection operatembeds first
order quantifier-free expressions into the propositional logic.

We shall writex = y to abbreviatdx — y) & (y — x).

2.1.2. Ling’'stheorem Triangular logics compriselkasiewicz, ®@del, and
Product Logic as special cases; the truth functions of those logics are sum-
marized in Table 3. The following important result shows that they are the
easiest triangular logics, and that they are a basis for all other triangular
logics:

For a given nornt, let E be the sef{xz € [0,1] : t(z,z) = x}. The
complement0, 1] — E is is the union of countably many non-overlapping
openintervals, whose closu#[0, 1]— E') correspondstoacla$s;, i € Z}
of closed intervals. Ling’s theorem [12] says that the triangular logics are
characterized by norms which are isomorphic to either I/ within the
intervals/;, and behave like the minimum norm@@el norm) for arguments
from different intervals. In short:

Theorem 1. The triangular logics are obtained from the ordinal sums of
the’l, IT and G t-norms.

Therefore, any investigation of triangular logics will focus on those pro-
totypical cases first.

2.1.3. Disjunction and McNaughton’s theorerihat about disjunction?
In the framework of t-norms, disjunction can be defined by the co-norm
1—t(1—=x,1—y). However, following previous work [6], we dwotinclude
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disjunction as a basic operation. The following result shows thadeG
conjunction and disjunction (i.e., arithmetic minimum and maximum) are
definable in all triangular logics, and thus, disjunction is definableGdeb
logic:

Fact 1 ([6]) .There exists two formulasin(z, y) andmax(z, y) which are
identic to Gdel conjunction and Gdel disjunction in all triangular logics.

Therefore, we can usmin(z,y) and max(z,y) as abbreviations in
propositional formulas. In [6], the minimum and maximum operations are
denoted by\ andV respectively. Typically, we shall also usefor Godel
logic (where the maximum indeed is used as a disjunction)nbutmax for
the other logics, where more algebraic constructions are employed. More-
over,\/ means iterated maximum, i.&erated Gdel disjunction.

As for disjunction in lukasiewicz logic, we use a very deep and useful
algebraic characterization due to McNaughton:

Theorem 2 ([14]). The truth functions ofukasiewicz logic coincide with
the continuous piecewise linear functions with integer coefficiens,dn

As a consequenceukasiewicz logic definesukasiewicz disjunction.
For product logic, disjunction is not definable, as can be easily seen from
the truth functions.

By McNaughton’s Theorem [14] it is easy to see that cut-off addition
and subtraction can be definedin L

r—y = max(0,z — y) (6)
r+y = min(1,z + y) (7)
(8)

2.1.4. Deduction theoremitis known from [6] that G has a deduction the-
orem like classical propositional logic; i.e., if all assignments which make
true ¢ make truey as well, thenp — ¢ is a G tautology, and vice versa.
Note however, thamo othertriangular logic has a classical deduction the-
orem; but each triangular logic has the generalized deduction thorem (see

[6)).

2.1.5. Finite-valued triangular logics For Godel logic G and ukasiewicz

logic 7, there exist finite-valued logics which can be constructed as finitely
generated subalgebras of the matrices. Indeed, for each natural number
i > 2, there exist unique finitely generated subalgebras ofisizbe cor-
responding—valued logics are denote@; and7; respectively. It is clear

that product logic does not have nontrivial finite subalgebras. Therefore, our
treatment of finite-valued logics is confined takasiewicz and Gdel logic.
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2.2. Extensions of triangular logics

2.2.1. Projection operators As additional connectives, we introduce the 0-

1-Projectionsy, A from [1]. They are defined bghx = |z | andyz = [z].
Sincesy and/\ are mutually definable i (by Ax = — <7 —z) andyy

is definable already in G antd, it suffices to consider extensions of those

logics by A.

v <y=Alz—y) (©)
r=y=ANz—y) & Ay — 1) (20)
z>y=(x>y) &(z=y) (11)

It is easy to see that those formulas have the intended semantics in all
triangular logics, and that they obtain only classical values (thegrip).
We say that a formula ierisp if every atomic subformula is in the scope of
a /A operator.

We see that thé\ operator is very powerful in that it allows to formulate
guantifier free statements about terms in the underlying many-valued logic.
Thus,A is a kind ofintrospectionoperator.

In particular, the crisp formulas of a logic witlh\ can be considered
as the quantifier free fragment of a first order logic, with the propositional
variables serving as first order variables.

This is illustrated by the following observation:

Proposition 1. All triangular logics with A express the first order theory
of the linear order ovef0, 1].

Proof. Since the first order theory of linear order has quantifier elimination,

it suffices to show that all quantifier-free formulas are expressible. This
follows immediately by virtue of (9) to (11). O

2.3. Divisibility witnesses

Fact 2. The divisiblity witnesses forare defined byl (z) = £ + £

Proof. Obvious. O

Fact 3. The divisiblity witnesses fdil are defined byJy(x) = k.

Proof. Obvious. O

The following Lemma shows that we do not have to deal Wigh but
can use the much simpler functiorf, = 7.
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Lemma 1. O, and O} are mutually expressible if.

Proof. ConS|deer( ) = ’“T Since— is expressible ir’, we can define
0f (x) = Og(2)—0(0). On the other hand,

Ox(x) = Of(x)+ O5(1)+... +05(1) .

k—1 times

a

In the rest of the paper, by misuse of notation, we shall always tacitly
used; instead ofy;, without further notice.

3. Infinite-valued interpolation

3.0.1. Semantic interpolationLet £ be a triangular logic. For a formula
o, letvar(¢) denote the set of propositional variables occurring in

Definition. £ hasinterpolationif for every tautology(¢ — 1) € Taut,
there exists a formula € £ (theinterpolantof ¢ ands)), such that

1. var(a) C var(¢) Nvar(y)
2. (p — ), (a0 —> ) € Tautp

If o depends only o andvar(v), thena is called apre-interpolant
(or left interpolan). If @ depends only o andvar(¢), thenca is called a
post-interpolan{or right interpolan).

If pre-interpolants and post-interpolants always exist, fhaasuniform
interpolation If only pre-interpolants (post-interpolants) exist, we speak of
left (right) uniform interpolation. O

RemarkLet A andp be the left and right interpolants respectively. Sigce

implies all interpolants, it follows that — p. SinceX depends only og,

it follows that ) is an interpolant o — p, i.e.,¢p — Aand\ — p. We

conclude that the left interpolant in fact implies the right interpolant.
Consider anC—tautology

a(x,z) — b(y, z) (12)

where thez are the common variables af and 5. Then we know that
a(x,z) < b(y, z) under all variable assignments. Consider the truth function

T(z) = sup{a(x,z) : x € [0,1]"} (13)

wherer is the number of variables . Clearly,a(x,z) < T'(z) < b(y, z),
and thusl'(z) is an interpolant, if (13) is expressible in the underlying logic.
It follows thatin every triangular logic,7’(z) is the truth function of a
pre-interpolant
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3.0.2. Fuzzy quantifiersin classical propositional logic, the supremum and
infimum of truth functions is expressed by propositional quantification. This
correspondence can be extended to triangular logics by @ismag quanti-

fiers Let¢(z1,...,xn,y) be a formulain a triangular logic with variables
x1, ..., Ty, y. Then the truth functions afy.¢ andVvy.¢ are given by
Fy.¢ = sup{d(z1,....2n,y) |y € [0,1]} (14)
Vy.¢ = inf{o(z1,...,2n,9) | y € [0,1]} (15)

Lemma 2. If a triangular logic has elimination of fuzzy quantifiers, then it
has uniform interpolation.

3.1. Infinite-valued @del logic has left interpolation

The whole section is devoted to the proof of the following result; on the way,
we obtain a new functional complete set of connectives fideblogic, and

a normal form (Chain Normal Form) similar to the disjunctive normal form
in classical logic.

Theorem 3. Infinite-valued @del Logic G has left uniform interpolation.
We consider the formula < y which is defined as follows:
(@ —y) & ((y — 2) — ) (16)

Intuitively, it almost defines the semantical linear order, i.e., we have

1 ifex<y
T<Yy= 17
Y {ZC & y  otherwise (7

Moreover, the ordering induces an evaluation of formulas by virtue of
the following tautologies:

r<y — (r—y)=1 (18)

r<y — (y—uz)==x (29)

<y — (z&y)= (20)

r<y — (zVy =y (21)
r<y&ky<z — x<z (22)
—(z=1) — x4z (23)
r<yVy<zVzr=y (24)

Using the deduction theorem, those tautologies follow trivially from the
definition of <.
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LetV = {vy,...,v,} beasetof propositional variables. Ther&hain
overV is a formula of the form
(0 ™o vr(1)) & (Vn(1) M1 Vn(e)) & -

& (Vr(n—1) Mn-1 Vr(n)) & (Vn(n) Xn 1) (25)
such thatr is a permutation of1,...,n} andX; is either= or <. (The
reader easily checks that there arf@"*! different <-chains.) Every<-
chain describes an order type of the variatdlesFor a formulag, let ¢¢
denote the value ap under an evaluation which has the same order type
as described by. Clearly,¢¢ € V U {0, 1}. By induction on the formula
structure, one easily shows that for eagkchain ¢ and formulag, the
following is a tautology:

(—¢=9¢ (26)

Lemma 3. Let ¢ be a formula, such thatar(¢) = V, and let{ be a<-
chain overV. Then there exists an atomic formutac V' U {0, 1} such
that

P& C=0v& ¢ (27)

Proof. It is easy to check that
(a&b)&(a— (b=c)) — (a& ) (28)

is a tautology in G. We instantiate formula 28 by setting: ¢, b = ¢,
andc = ¢¢. Since¢ — ¢ = ¢¢ (formula 26) is a tautology, we obtain that
C& ¢ — ¢ & ¢¢. The converse implication follows analogously™

Corollary 1. LetC(V) be the set of alkk-chains forV. Then
\V ¢ (29)
¢eC(V)
is a tautology.
Proof. Every possible evaluation of the variableslinhas an order type

which is described by one of tife Therefore, the correspondigdecomes
true. O

Theorem 4. (Chain Normal Form) Let be a formula, and” = var(¢).
Theng is equivalent to a formula

\V (& (30)
CeC(v)

such that, € V U {0, 1}.
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Proof. By Corollary 1,¢ = ¢ & \/(eC(V) ¢. By moving ¢ into the dis-
junction, and applying Lemma 3, the result followsO

RemarkNote that Theorem 4 is valid for all@lel logics, whether they are
finite or not. It is the main tool to prove the interpolation results. Moreover,
it says that every formula is equivalent tdla formula, i.e., to a formula of
depth4, if we count the large disjunction as one operation.

Lemma 4. Let¢, ¢, v be formulas such that ¢ var(y). Then

3.6V = (32.0) V (3.4)) (31)
Jr.p&y=(Fr.0) &y (32)

Proof. These are obvious properties of the supremuri

Lemma 5. Godel logic has interpolation if the quantifiers in

dfa Xy x) & (z M b) &z (33)
Ifa Xy x) & (z Mg b) (34)

can be eliminated, wherg b may be either variables d, 1, andX, X 2
may be either or =.

Proof. Consider a formul&z.¢. By Theorem 4, we may without loss of
generality suppose thatis in chain normal form (30). By Lemma 4 we can
distribute the fuzzy quantifier over the disjunction and over those conjuncts
of (30), wherex does not occur. Therefore, only formulas of the form (33)
and (34) are of interest. O

Proof of Theorem 3By Lemma 5, it remains to eliminate the quantifier
from (33) and (34). If one 0K, Xy equals=, we are done, because we can
replacer by a or b respectively. Thus, suppose that bbth=X,=<.

Consider (33) first. It is easy to check that (33) is equivalentid & x.
(To see this, one first shows that< b & z is equivalent tob & z, and
then notes that < z is always greater than or equal 49 Therefore, the
supremum i in this case, i.e.

r(a<z)&(x<b)&r=b (35)
Let us finally turn to (34). We shall argue that
r(a<z)&(x<b)=a<b (36)

To see this, consider first the case that b. Thena < b evaluates td,
which can be easily withessed by anpetweeru andb, like z = (a+b)/2.
(Note that this is the only time where we exploit the density of truth values
in G. We shall need this fact later in the proof of Theorem 11.)
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If a > b,thena < bevaluates td. Suppose < b. Thena < x evaluates
to z, and thus the conjunction remains belowf b < = < a, thena < z
evaluates ta, andx < b evaluates t@, so the conjunction again remains
belowb. In the last casd) < a < z. Thenz < b evaluates td, anda < =
evaluates td, and again the conjunction evaluatest@&ince in all cases
the conjunction either reachésor stays below, we have proved that the
supremum equals

Remarks.

— In Godel logic, implication— and negation- can be replaced by the
set{<, =, v} of connectives. This is an immediate consequence of the
Chain Normal Form Theorem 4.

— Itis not possible to obtain an interpolaft.¢(y, x) as afinite disjunction
V, ¢(t, x) of instances of. To see this, consider formula 36 from above.
As the proof showsy must obtain an intermediate value betweend
b at the supremum. @lel logic, however, cannot define intermediate
truth values. On the other hand, we shall see in Section 4.1Gthahe
unique interpolating finite-valuedd@@lel logic, has an interpolant of the

form\/, ¢(t,x).

3.2. (del logic has right interpolation

Unlike classical logic or ukasiewicz logic, @&del logic is not symmetric,
i.e., it is not possible to treat existential and universal quantifiers as dual
concepts in a straightforward way.

However, we can use the normal form result in a fortunate manner.

Theorem 5. Godel logic has right uniform interpolation.

Proof. Consider a formul@(x,y) where we are looking for a right inter-
polant using just variables from To this end, we consider all@lel logic
formulas in variablex. By the Chain Normal Form Theorem (Theorem 4)
there exists an enumeratian, . . ., ¢y of these formulas (wherd is the
number of<-chains using variableg), and we collectid = {i : ¢;(x) —
¢(x,y)} the indices of those among them which might serve as interpolants.

It follows that for the disjunctiom = \/,_; ¢; it holds thatp — ¢, and
therefore, there exists ap € 1, such thap = ¢;,. Thus, by construction
¢y is the unique maximal formula containing variableg/hich impliesq.

It remains to show that is an interpolant, i.e. that for all(z, x) where
Y(z,x) — ¢(x,y) actuallyy(z,x) — ¢;,(x). Let \(x) denote the left
interpolant obtained from). ThenA\(x) — ¢(x,y), and thus\(x) is
amonge;, i € I, whence\(x) — ¢;,. O
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3.3. Failure of interpolation for non-&del logics

In this section, we show thatd@el logic is the unique infinite-valued trian-
gular logic with interpolation. We shall see in Section 3.4 that only a strong
extension of the language makes logics likend 7 interpolate.

The following result states that interpolation of a logic can be checked
in a very uniform manner for all triangular logics; we say that a tautolbgy
interpolates if (1) it is of the fornp; — ¢2, and (2) it has an interpolant.

Theorem 6. There is a formulaZ, such that

— ¥ is a tautology in every triangular logic.
— Vinterpolates in G.

— ¥ does not interpolate in.L

— ¥ does not interpolate /.

Proof. The result follows from the Lemmas 6, 7, 8 below and Theorem 3
above. O

Here is the formula’:

min(max(z, p) — p, max(x,p))

é1
— max(max(y, p) — p, max(y,p)) (37)

¢2

Lemma 6. ¥ is a tautology in every triangular logic.

Proof. Suppose we have a non-satisfying assignment to the variahjes.
Then,y > p since otherwis@, = 1, and the formula becomes true. More-
over,z > p, because i < p, theng,; = p, while ¢, is always greater than
p since it is computed as a maximumfnd other values. Alsa; # v,
because otherwise the minimumdn and the maximum i, are taken
over the same elements.

Sincex > p andy > p we can simplify? to

min(z — p,x) — max(y — p,y) (38)
There are two cases remaining:

1.2 > y > p. Thent(x,z) > t(y,z) by axiom T2, andi(z,2) < p
impliest(y, z) < p. Hence{z|t(z,z) < p} C {z|t(y,2z) < p}, and
v — p = max{z[t(z,2) < p} < max{z[t(y,2z) < p} =y — p,
sincet is continuous. Thereformin(z — p,z) <z —p <y —
p < max(y — p,y).

2. y >z >p. Thenmin(z — p,z) <z <y < max(y — p,y). O
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Lemma 7. ¥ does not interpolate in.L

Proof. Setp = 0, then¥ becomesanin(1l — x,z) — max(1 — y,y) by
some obvious simplifications in The unique interpolant i§ which is not
expressibleinL O

Lemma 8. ¥ does not interpolate ir.

Proof. For p # 0, ¥ turns into min (m,max(:c,p)) —

max (m,max(y,p)). Then the unique interpolant ps% Since IT
does not define square roots, this concludes the lemnia.

By the mentioned characterization of triangular logics as ordinal sums
of the three basic logics, it is easy to obtain the following characterization
of interpolation in triangular logics:

Theorem 7. Godel Logic is the unique triangular logic with interpolation.

Proof. From Theorem 1 we know that every triangular logic except&'s
logic contains a closed intervalwhich is isomorphic to lor I7. Letp be an
inner point of/;, i.e., by definition a non-idempotent truth value. Then the
interpolant of? at p is not expressible by virtue of Lemmas 7 and 80

Corollary 2. No extension of by constants has interpolation.

Proof. If we don't fix p, the (unique) interpolant becomégﬁ. Since this
function does not have integer coefficients, the result follows from Mc-
Naughton’s Theorem. O

From the above it may appear that adding a square root operator [8]
might facilitate interpolation. The following corollary shows that this is
not the case. However, we shall see in Section 3.4 that adding all division
operators makes interpolation possible.

Corollary 3. No extension of by a finite number of division operators has
interpolation.

Proof.For a numbetk, consider the functioffy, () = max(1—(k—1)z,0).
From McNaughton’s Theorem we know that gllare expressible in.Then

¥, = min(fi(z),z) — max(fx(y), y) is a tautology with interpolant.

Now let S be a finite set of division operators, and consider the number
k =1+ [[p,cg s Which is relative prime with respect to alle S. Then

the tautology;, has interpolan%, and is not expressible using operators
fromS. O
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Corollary 4. No extension off by constants has interpolation.

Corollary 5. No extension of] by a finite number of root operators has
interpolation.

Proof. Similarly to Corollaries 2 and 3. O

3.4. Extensions of triangular logics

The last section leaves open the question how to extend triangular logics to
obtain interpolation. We treat the case of theoperator, and of divisibility
withesses,,.

Theorem 8.

— G + A has interpolation.
— L+ A does not have interpolation.
— IT + A does not have interpolation.

Proof.The failure of interpolation fof+ A andI/+A is an easy observation
from the proof of Theorem 7. Interpolation fér+ A follows by an extreme
simplification of the argument in Theorem 3. Consider a formula

HLL'.Qb(x,yl, s 7yn)

It only depends on the order of the variablgs. . ., y,, whether the
supremum equal$, 0 or one of the input valuess,...,y,. By Propo-
sition 1, the different cases can be described by quantifier-free formulas
¢, t € {0,1} U {y1,...,yn} such thate,(yi,...,yn) is true iff t =
(Fz.d(z,y1,...,yn)). Since allg; are crisp,¢; & t evaluates td) if the
condition described byis true, and ta otherwise. Therefore, we can com-
bine all ¢, into a single formula

.oz, Y1, Yn) = \/ o &t (39)

te{0,1}U{y1,...,yn}
The case ofz.¢(x, y1, . .., y,) is analogous. O

Example.Considedz.((y1 < y2) & (x < y3) & (y4 V ys)). Isis clear that
this formula has supremumax(y4, y5) if y1 < y2 andys # 0, and has
supremunt otherwise. Therefore),, is (y1 < y2) & (y3 # 0) & ya > ys,

bys 1S (11 < y2) & (y3 # 0) & ya < y5, andgo equals—g,, & =y, .

Corollary 6. Theorem 8 holds even, if the language is extended by arbitrary
truth constants.
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Fact 4.In 7.4 O, every rational in0, 1] is expressible by a closed term.

Proof.Let £ be a rational. Thefl,1 + - -- + 0,1 has truth valug’. O

ptimes

Corollary 7. For every rationalg, the first order formulag > ¢, ¢ > ¢,
r=gq,zr < q,andx < q are expressible ir. + A + O. Therefore, for any
(open or closed) subintervd of [0, 1], z € S is expressible.

3.4.1. Piecewise linear topologyFor the following, we need some easy
facts and definitions from piecewise linear topology: Bet {xi,...,Xm},
be a set oh—dimensional points. Then t{eonvex) polytopgenerated by
B is the convex hull of the points if. Every polytope is representable
as a finite intersection of halfspaces, and we shall see that containments in
polytopes ovef0, 1] is expressible ir. + O + A.

In the proof to follow, we need the following well-known fact from
piecewise linear topology:

Theorem 9. [17] Let f : P — Q be piecewise linear and continuous, then
there is a locally finite decomposition &finto polytopesp = |J P;, such
that f | P; is linear for each:.

Note thatin spaces of the foriy, 1]*, locally finite is equivalent to finite.
Moreover, the functions we are interested in are in general not continuous,
and therefore thg | P, may be discontinuous on the border@f if P;
is closed. Therefore we need the following Corollary which generalizes the
situation for piecewise, non-continuous functions.

Corollary 8. Let f : [0,1]™ — [0, 1] be a piecewise linear function, then
there is a finite partition of? into open polytope#;, such that for alli,
f I P;islinear.

The following lemma is the key to our interpolation results. It can be
seen as a generalization of McNaughton’s Theorem, in that it removes the
restrictions on integer coefficients and continuity.

Lemma 9. Let f be a piecewise linear function g, 1]™. Then the follow-
ing equivalences hold:

1. fiscontinuous with rational coefficients ffiis definable ir”.4- {0, Os,

1.

2. f has rational coefficients iff is definable inL + A + {0y, 0y,... }.
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Proof.
1. <:If fisinZ+ {0y, 04,... }, then an easy induction shows tffas

continuous, and has rational coefficients.

—: Suppose thaf is continuous with rational coefficients. Lidbe the
least common multiple of the denominators of the rational coefficients.
(The least common multiple must exist, becafisedescribed by a finite
number of linear polynomials.)

Let us now consider the functidrf, i.e. the function obtained by mul-
tiplying f with a constant. Obviously,l f has integer coefficients, and

Lf([0,1]) € [0,1].
Consider the functiong,, . .., f; which are defined as follows:
fle)=(i—1) iff(c)€i—1,i]
file) =<0 iff(c)<i—1 (40)
1 iff(c) >

It is easy to see thadff = Zﬁzl fi, and therefore

= file) _ §
fle)y=>_ =77 =2 Bulfi(c) (41)
=1 1=1

Allthe f; have range if0, 1], and are continuous by construction. There-
fore, there exist formulase, . . . , ¢; which realize them. From formula
41 we conclude that

Oi(¢1)+0i(d2)+ - - - Oi(n) (42)

is the formula we looked for.

. <=: By induction on the formula structure, it is obvious tlfat piece-

wise linear.

—: Consider a functiorf(c),c = c1,...,cq, and letPy, ..., P, be a
partition of[0, 1]¢ into polytopes, such thatis linear on eveny;. By the
first statement of the Theorem, there eistD formulasp; (c), . . ., ¢, (c),

such thatp; coincides withf on P;. Since membership of a tuptein a
polytopeP; is expressible by a Boolean combination of formufas ¢
and f > g wheref, g are linear (and therefore, by the first part of this
Theorem, expressible ifi 4+ 0O), there existL. + O + A formulasyp,
such that

fe) =\ xp(e) & di(e) (43)

1<i<n

a

Using Lemma9, itis easy to prove interpolationfer 0 andZ+ 0O+ A.
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Theorem 10. LetO;(x) = £. Then

— L+ {0y, 0y,... } has uniform interpolation.
— L+ A+ {01,0y,... } has uniform interpolation.

Proof. It suffices to show that piecewise linear functions are closed under
taking suprema and infima of a single coordingtgeometrically, this means
taking the upper boundary of the union of orthogonal projections of all
polytopes on the hyperplane= 0, [15]. Since any parallel projection of a
polytope on a plane is obviously a polytope, and parallel projections retain
continuousness, the theorem is proveril

4. Finite-valued interpolation

For finite-valued logics, the situation is combinatorially more involved than
for infinite-valued logics. We use both proof theoretic and model theoretic
methods to prove the following characterizations.

For atruth valuel, letd— denote the preceding truth value, ahddenote
the succeeding truth value.

For a set of truth values' = {;“;,... =} in k—valued logic, we
define itsgradegr(.S) by

gr(S) = ged(iy, ..., in, k —1) (44)

S is densdf it contains all truth values except possiltlyl. S is semidense
if
1

holds, i.e., if it does not contain gaps of size greater than one.

4.1. Gbdel logic
Theorem 11. LetC be a (possibly empty) subset of the truth value€fpr
Then the following are equivalent:

— G} + C has uniform interpolation.
— G} + C has interpolation.
— (C'is semidense.

The result follows from the following lemmas.

Lemma 10. All semidense finite-valuedd@el logics have left interpola-
tion.
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Proof. This proof is similar to the proof of Theorem 3. Again, we con-
struct chain formulas to enforce an evaluation of a given formula. Let
V = wvar(¢) = {vi,...,vn}, letC = {ci,...,cn} be the set of truth
constants in the language includiagl, and letP C C x C be the set of all
pairs(c;, ¢;) such that; < ¢;, and there is exactly one truth value between
them. For every variable,,, we have two possibilities to enforce its value.
Either it is equal to a truth constant

Um = ¢ (46)
or it is between two constants;, c;) € P
¢ = vm & vy <cj 47

A semidense chain formultatherefore is a conjunction

N Gom (48)

vm €V

such that every,, . is of the form (46) or (47).
Like in the proof of Theorem 3, a semidense chain formula corresponds
to an order type of the variables, and therefore it enforces an evaluation

(—¢=9¢ (49)

Therefore, every formula in a semidensadal logic is equivalent to a
formula insemidense chain normal form

Vo & (50)

CeSD(V,C)

such thaty, € V .U C andSD(V,C) is the set of semidense chains with
truth constants frond’.

By Lemma 4, we can move the supremum to formulas of the form
(46) & v and (47) & v. Those formulas are subcases of (33) and (34)
in the proof of Theorem 3 (obtained by settimgndb constant). The only
property needed in the proof of Theorem 3 was the existence (yet not the
explicit definability) of a truth value betweenandb. Since(c;, ¢;) € P
there exists an intermediate element between them, and we conclude that
semidense finite-valuedd@el logic has interpolation. O

Corollary 9. All semidense finite-valuedd@el logics have chain normal
forms.

Corollary 10. All semidense finite-valuedd@el logics have right interpo-
lation.
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Proof. Analogous to the proof of Theorem 5, using Lemma 10 and Corol-
lay9. O

Lemma 11. GG;,i > 4 does not have interpolation.

Proof. Considering the fact that validity of formulas with variables is
equivalent in allG;,n + 1 < i < w, any counterexamplg, for G,, has to
containn — 1 variables at least. We construct

on= (Ap=11) — ((z — 1) V 2) (51)
whereA,, is defined as
x1 V (xl — 1’2) V...V (a:n_3 — an_g) V (mn_g — 0) (52)

For simplicity of notation, we sometimes writg, _; for 0. 1~ denotes

the greatest element below 1, 857, and similarly0™ = —3.

Claim: (A, =x;) = { T > Ty > > Tyg >

x1 otherwise

Proof. In the first casey; has to be eithet or 1-, because there are only
n truth values available. Since is larger than all other;, A,, equalsz,
whenceA,, = 1 becomed.

In the second case, there exists samsuch thatr; < z;41, and thus
the implicationz; — z;41 evaluates td. Therefore,A,, = 1, and we
conclude that4,, = z; evaluates ta;;. O
1 z<2

Claim:(z — z1)Vz = {
z z>m

Proof. Obvious. O
Claim: ¢,, is a tautology of=,,.

Proof. From the above case distinction we see that the only interesting case
appearswhen > 1. If 21 > 29 > -+ > x,,_9,thenl = z > 17 = x4,

and therefore the implication holds. Otherwisk, = x; evaluates tacq,

and the implication holds, too. O

It remains to show that,, does not have an interpolant. From the con-
struction it follows that the interpolant is a formulaan. Like in the three-
valued case, every formula in one variable is equivalent to a formula from
F={0,1,21, a1, —xy, 21 V 21}

Consider the case that> z1, and thatzy > 29 > --- > 2,0 > 0.
Thenz = 1 andz; = 17, and both sides of the implication evaluatelto
Therefore, every interpolant must mép to 1. The only functions fron¥
with this property ard and——x;.
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On the other hand, consider the case where= 0" andz = 2.

Then A,, = x; become9™, becauser; cannot be larger tham, > 0.
On the other hand, the right hand sideqﬁquecomesﬁ—l. Therefore, the

interpolant must map™ to either0* or % Since the only functions with
this property are:; andz; Vv —z1, there can be no interpolant. 0

Lemma 12. Let ¢(z) be a formula oiG,, + C' in one variablez, and let
[a, b] be an interval of the truth values 6f,,,, such thatC N [a, b] is empty.
Theng(z) is either constant oifu, b], such that(a) € C, or ¢(z) = z for
all z € [a, b].

Proof.By induction on the formula structure. For atomic formulas, the state-
ment is trivially true. Suppose that it holds for formulage), ¢ (x), and
considers(z) = ¢(x) — (). If both ¢(z) andy(x) are projections on
[a, b], thend(x) is constant. If ¢(x) andwy(x) are constant ofu, b], then
d(x) is constant, too.

If ¢(z) = dis constant and)(x) = z on [a, b], thend is either below
[a, b] or abovéa, b]. Inthe firstcase] < zforz € [a, b],and thusy(x) = 1.
In the second casé,> x for = € [a, b], and thereforej(z) = x.

Finally, suppose thap(xz) = = and«(x) = d on [a, b]. Again, if d is
below|a, b], thend(x) = 1, otherwised(x) equalsd.

The induction steps for conjunction, negation and disjunction are easier,
and left to the reader. O

Lemma 13. If a finite-valued @del logic has interpolation, then it is semi-
dense.

Proof. We prove the contraposition of the statement. Suppose that the basic
logicisG,,, + C, such that” is not semidense, and letd € C be two truth
constants, which have — 2 intermediate values, but no intermediate truth
constants, such that> 4. SinceC'is not semidense, such a pair must exist.

We introduce a mapping of formulas which is intended to relativize the
formula¢,, from the proof of Lemma 11 to the intervigl d).

al*¥ = max(c, min(a, d)) (53)

(¢ & p)lod = glod] g gled] (54)
(o v g)led = gledl v gled (55)
(¢ — ) = min(glod — plod), d) (56)

Consider a formula in G,,, and the formulapl©? in G,,, + C. Then
every assignment to the variablesgois mimicked by an assignment to the
variables ingl“?, such that: plays the role of), andd plays the role ofl.
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On the other hand, every assignment of a value lessdlgturned intoc
by virtue of themax operation inp[4, and analogously faf andmin.

We conclude that the formul;éif’d] is a tautology inG,,, + C.
Sinceqﬁﬁf’dl behaves likep,,, an interpolant must mag~ to d andc™
either toc™ or the successor eft.

By Lemma 12, no such truth function exists.0
This concludes the proof of Theorem 11.

Corollary 11. — G35 has interpolation.
— (4,1 > 4 does not have interpolation.

With the A operator, the situation becomes much easier. The reason is
that theA operator allows to distinguish all truth values.

Theorem 12. The following are equivalent:

— Gpt1 + A + S has interpolation.
— Sis dense.

Proof. Trivially, density implies interpolation, as explained in Section 1.
Now suppose that in a logiG,,+1 + A + .S, S is not dense, and consider
the formula

U(xy,...,xp) =(x1>0) & (22 >21) & ... & (T > 1)

(Recall from Section 2.2 that the crisp relatisns definable inz,, 1 +
A.) Itis obvious, that? is true if and only ifz; = 0T, 2o = 07 etc. Leti
be a truth value not i, and consider the formula

min(gp(xlv R xn)’ xz) — maX(_'W(yla o ayn)’ yz) (57)

Itis easy to see that that left hand side of formula 57 obtains only values
0,4, and the right hand side only valugg. Therefore, the unique interpolant
is ¢. Sincei is not contained irY, the result follows. O

4.1.1. Interpolation by instanceswe have seen in Section 3.1 that in con-
trast to classical logic, the interpolant of infinite-valuedd@l cannot be
obtained as a disjunction of formula instances; i.e., the interpolant is neces-
sarily more complicated than in classical logic.

For G, however, we obtain an interpolant in the classical way. Although
interpolation in the case ©f; follows from Lemma 10, we close this section
with adirect proof whichis completely algebraic and of independent interest.
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Lemma 14. Let ¢ be a formula inG3, and leta be a new propositional
variable. For every substitutiop : Var(¢) — {0,1,a} it holds that

op(3) < op(1).

Proof. Every G3 formula in one variable: is equivalent to a formula in
F =1{1,0,a,-a,——a,—aV a}. The reader can easily check from the table
that F' is closed under truth functions .

1‘0‘&‘_@‘_'—'61,‘—\0,\/&

tjofol 1] o0 1
1jofz] 0] 1 | 3
1jof1]o0]| 1 1

SinceVar(¢p) = {a}, it suffices to check the claimed property by
comparing the last two lines of the table.C

Consider like above a tautology
A(x,y) — B(x,2) (58)

where we try to express the supremsap { A(x,y)|y € {0,1,1}!} or,
in terms of fuzzy quantifiersjy A(x,y).

Let I'(A(x,y)) denote the set of all formulas obtained freffix, y) by
consistently replacing the variablg<y variables fronx ando, 1.

Theorem 13. (G5 has interpolation. In particular

Iy A(x,y) = Vo I (59)
I(x)el'(A(x,y))

Proof. By considering all possible assignment$o thex. If none of thex
is assignedj, then by virtue of Lemma 14, every assignment toyhean
be majorized by an assignment not invoIvi%mgSince all such assignments
areinl'(A(x,y)), the formula is correct.

Otherwise, there is a variable among thex, such thato(z) = 1.
Therefore, the outcome of every possible assignment tg tan be found

inI'(A(x,y)). O

4.2.’lukasiewicz logic

For1lukasiewicz logic, the situation is different, because in contrasbtec
logic, its underlying algebra s not locally uniformly finite. On the other hand,
itis sufficientto consider leftinterpolation only, since rightinterpolation then
follows from the symmetry of L
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Itis well-known that for two natural numbetisb, their greatest common
divisor gcd(a, b) is expressible in the forma + (b, [,b € Z. The follow-
ing folklore version ofEuclid’s algorithmshows that cut-off subtraction is
sufficient to express the gcd ofb.
function gcd(a,b)

if a=b then return a.
if a>b then return gcd(  a—b, a)
else return gcd(  a, b—a).

Lemma 15. Let D = {Z—i, %"" ,p—z} whereged(p;, q;) = 1,q; # 1 for
all 1 < i < n. ThenD generates the subalgebra, ; of 1, wherel is the

least common multiplédm) of the denominator§qs, . . ., ¢, }.

Proof. Consider%. Using Euclid’s algorithm, we obtain an equation of the
form

1=(g—(...)) (60)

containing onlyg;, p; and—. Dividing equation 60 byy;, we obtain a defi-
nition of qi in terms of - = 1 and%:.

It remains to show that we can expreﬁssince then all other truth
values ofZ;, ; can be expressed by additian (Recall from Sectior2.1,
that addition+- is definable in L)

Consider.- and -, and letl = lem (g1, ¢2). Then

q1+42 q1+q2
Ll _ate  sdne) _ eedoe) (61)

Q1 G2 q1q2 m l

Sincegcd(%, 1) = 1, Euclid’s algorithm gives us a formula for

% like in formula 60. This proves the lemma for the case.of 2. Since
lem(qi,...,qn) = lem(gy, .. . lem(gs, lem(qi, ¢2)) - . . ), an easy induction
yields the result for arbitrary. O

Theorem 14. Let S be a (possibly empty) subset of the truth valuegfor
Then the following are equivalent

1. 14 + S has interpolation.

2. All truth values ofl;, are explicitly definable iri; + S.
3. 07 is explicitly definable irfy, + S.

4. gr(S) =1.

5. 14 + S has uniform interpolation.
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Proof.1 — 2: Letv = % be someiy, truth value, then we consider the
functionsmax(px,1 — (¢ — p)x) andmax (0, min(py, 1 — (¢ — p)y)). By
McNaughton’s theorem, there afdformulas¢(z) andq)(y) which realize
those functions. A short calculation shows that) — (y) is a tautology
with unique interpolant in 7, and therefore, i, +.S. Since by assumption
1 + S has interpolation, we conclude thats expressible il + S.

2 — 5: Considerdz.A(x,y), and lett, ..., t; be the terms for the
truth values of7,,. Sincemax is definable in everyy, the supremum can
be computed by/, ., ., A(t:,y).

5= 1: Trivial.

3 = 2: Trivial, because all truth values can be defined as iterated
addition of0 .

4 = 3:If gr(S) = 1 then we can apply Euclid’s algorithm to obtain a
sequence of subtractions which defilﬂké_§ =0T,

2 = 4: Suppose that for each truth valu¢here is a formula, which
definesv explicitly, yet gr(S) # 1. By elementary properties qfed it
follows that there is no linear combination of the elements wihich yields
0r.

Now considetty+. Using the definitions of the truth functiong, can
be written as an arithmetical expression using just subtraction and addition,
because all occurrences wfix, min can be eliminated for constant argu-
ments. Therefore+ describes a linear combination fotr. Contradiction.

O

Corollary 12. The results of Theorem 14 remain true, if the logic contains
A.

Proof. To see this, we observe that the additionfofdoes not change the
set of explicitly definable truth values. Then, the other equivalences follow
in anology to the proof of Theorem 14.0

Corollary 13 ([11]). 7k, k > 3 does not have interpolation.

5. The number of intermediate logics with interpolation

We know from the preceding sections that no finit&d@l logic butGs, and
no finite‘lukasiewicz logic has interpolation. On the other hand, if we add
truth functions for all truth values, then the logic has interpolation because
maximum and minimum can be expressed.

The surprising fact is that the number of intermediate logics is closely
connected to Fibonacci numbers.

Let S be a set of additional truth constants, i.e.,”ier 1—valued logics,
S C {%, ceey %}, and letS denote the gaps between the truth values, i.e.
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S={z—y|zeSU{0},z=min{z |z > y}}

For a setS of rationals, and an integer, letn.S denote{ns | s € S}.
For a finite-valued logidZ, let £ denote the logic with additional truth
constants for all truth values.

Theorem 15. 1. There are exactly/;, 1 intermediate logics betwee&#, |
andG),+1, whereF,, ;1 is then + 1st Fibonacci number.
S|+ 1

2. There are exactl
(n — 15 —-1

> intermediate logicér,, 11 +.S between
Gry1 andGhi1.

Proof.

1. The result is obtained by the following bijection of truth values to finite
strings: A logicG,, 1 + S is represented by a string € {0,1}"*!
such that every position in the string indicates if the corresponding truth
constant is in the language. Let us callthe characteristic stringof
Gpy1+S.

Thus, for exampleizs + {i} is represented by1001. By our characteri-
zation from Theorem 11 itfollows that alodig, 1 + S has interpolation
if and only if its characteristic string is in the language

I={10,1}*1

because & symbol can appear only immediately after symbol, since
otherwise00 would violate the condition on the size of the gaps. There-
fore, the number of intermediate logics is equal to

fn= ’{071}n+1 ﬁI| = ‘{Oﬂl}n N {1071}* (62)
I/

The last equation follows from the fact that the symbah the end is
fixed, and cannot contribute to the overall number.

The crucial observation is that every stringlincan be written as the
concatenation oA = 10 andB = 1 in aunigue way This immediately
follows from the fact that the occurrencesidiix the positions of thed
strings, and hence all other positions are occupie®srings:

1110 10110
N~ =~
A A A
Obviously, fi = 1, andf, = 2. Letn > 3. A string of sizen can either
start with A or B. In the first case, there ang,_- possibilities for the
rest of the string, in the other case there Are; possibilities.
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Thus, we obtain the recursive definition

f1:15f2:27 fn+2:fn+1+fn (63)

Therefore,f,, is equal toF;, 1, the Fibonacci sequence.

2. Let|S| = (—1.Toobtain the result fdr— 1 additional truth constants, we
again consider the characteristic string®f;; + 5, with the additional
restriction, thatitcontains-1+2 = [+1 occurrences df; the additional
2 truth values are for truth and falsity. Like above, it is sufficient to
consider the string composed of the first symbols of the characteristic
string. Like abovew can be written as the concatenationA4f= 10
and B = 1 in a unique way. Let#A be the number ofds in this

#A+#B
#A
possible strings, and it remains to calculgtd and# B to obtain the
result.

Let k = n — [ be the number of symbols in the string. Since every

occurrence of) is invoked by an4, it follows that#A = k = n — I,

#B =n—|Alk =n—2k = 2]l —n, and therefor¢t A+ #B = [. This

concludes the proof. O

RemarkFrom the proof of the Theorem, we immediately obtain that
S| <n <25

concatenation, ang B the number oBs. Then there aré

is a necessary condition for the interpolation®f, 1 + S.

Corollary 14. F, 11 = Z]—%-\Slﬁn < l )

n—1

Theorem 16. There areRy.(n) = 3 ;,, 11 (%) (Z:

ics betweert,, ,; and i, 1 with exactlyk additional truth constants.

1Y . .
1> intermediate log-

Proof. From Theorem 14 we know that
ged(nSuU{n}) =1

characterizes the logids + S with the interpolation property. Evidently,
this condition is equivalent to

ged(nS) =1

and thus we obtain very similar characterizations of interpolationadeb
andlukasiewiczlogic. Itis shownin [5, 4] thatthere dg(n) = >, 1 (%)

(Z : 1) setsS with this property, and thus the result follows.O
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Corollary 15. Thereare)_,,, u () 2¢~" intermediate logics betwedp , ,
and,, .
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