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Abstract. We investigate interpolation properties of many-valued proposi-
tional logics related to continuous t-norms. In case of failure of interpolation,
we characterize the minimal interpolating extensions of the languages. For
finite-valued logics, we count the number of interpolating extensions by
Fibonacci sequences.

1. Introduction

1.1. Outline

In this paper, we investigate interpolation theorems for fuzzy and many-
valued logics whose truth functions are defined by continuous triangular
norms [18,19]. Those logics (which we shall calltriangular logicsfor short)
have attracted a lot of research in recent years since on the one hand they
retain a mathematically appealing theory akin to the theory of Boolean
algebras in classical logic, while on the other hand they subsume major fuzzy
formalisms such as L´ ukasiewicz logic, Product logic, and Gödel Logic, as
well as Classical Boolean Logic. In turn, every t-norm is the ordinal sum of
Ĺukasiewicz, Product and G̈odel norms [12]. The most thorough and recent
treatment of triangular logics can be found in [6].
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from the Christian Doppler Laboratory for Expert Systems.



462 M. Baaz, H. Veith

1.2. Interpolation

Ever since Craig’s seminal result on interpolation for classical predicate
logic, interpolation properties have been recognized as important desiderata
of logical systems. In propositional logic, we consider two interpolation
properties of increasing strength.

Interpolation Property. If A −→ B, then there exists a formulaI(A,B)
which contains only common variables ofA andB such that

A −→ I(A,B) −→ B

Uniform Interpolation Property. If A −→ B, andV is the set of common
variables inA andB, then there exist apre-interpolant(or left interpolant)
I(A, V ) and apost-interpolant(or right interpolant) J(B, V ) such that
I(A, V ) andJ(B, V ) depend only onA, V andB, V respectively, both
contain only variables fromV and

A −→ I(A, V ) −→ J(B, V ) −→ B

Remark.The presence of the (uniform) interpolation property is strongly
connected with the existence ofanalytic propertiesof the deduction system.
Suppose that we have a Hilbert style calculus for the logic, where the rule

A −→ B B −→ C

A −→ C

is derivable. Then interpolation implies that there are tree-like proofs of
A −→ B andB −→ C which involve only variables which are already in
A andC respectively.

Classical propositional logic has the uniform interpolation property. Let
A(x,y), B(x, z) be like above, i.e.V contains just the variables from the
tuplex. Then the pre-interpolant and the post-interpolant can be written as
quantified boolean formulas:

J(A, V ) = ∀yA =
∧

y∈{0,1}|y|
A(x,y) (1)

I(B, V ) = ∃zB =
∨

z∈{0,1}|z|
B(x, z) (2)

Since the propositional quantifier in quantified boolean logic can be
eliminated by long disjunctions and conjunctions as indicated above, the
interpolants can be easily constructed.
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For triangular logics, one can define interpolants likewise, by usingfuzzy
existential and universal quantifiers[6] instead of ordinary propositional
quantifiers. Universal (existential) fuzzy quantifiers correspond to taking the
infimum (supremum respectively) of the quantified formula with respect to
the quantified variable. Thus, in a two-valued framework, a fuzzy quantifier
collapses to an ordinary propositional quantifier.

The uniform interpolation in triangular logics can be seen as quantifier
elimination of fuzzy quantifiers in fuzzy formulas. Similarly, interpolation
in modal and intuitionistic logics is related to amalgamation and, thus, quan-
tifier elimination of first order quantifiers [13]. The main difference of the
methods applied in the abovementioned papers is their disregard of syntax;
yet the mere existence or absence of an interpolant (or amalgam) does not
yield explicit and feasible interpolants.

For fuzzy quantifiers, a straightforward elimination of quantifiers as in
formula 1 is not possible even if the language contains truth constants for all
truth values, since such a translation yields infinitary formulas. For finitely-
valued triangular logics, however, it is trivially possible to gain interpolation
by adding all truth constants to the language because the binary truth func-
tions for minimum and maximum are definable; here, it is rather of interest
to consider which minimal sets of truth constants are necessary for interpo-
lation.

This remark extends to logics in general: it is not so much the question
if a logic interpolates, but ratherwhereit interpolates, i.e., in which exten-
sion of the language. For logics with first-order definable semantics such
as modal logics, interpolation indicates that the language in question has
certain closure properties akin to first order logic; consider for example a
modal logic whose Kripke structures are first order definable. Then every
modal propositional statement can be translated into a first order statement,
and thus, a modal implicationA −→ B turns into a first order implication
γ(A) −→ γ(B), yielding, by Craig interpolation, a first order interpolant
Iγ(A,B). Semantically,Iγ(A,B) is an interpolant, yet the question arises
whether this interpolant can be translated back into the language of modal
logic.

Summarizing, the main questions addressed in this paper are:

1. Which triangular logics have (uniform) interpolation?
2. How can the interpolants be constructed?
3. How can a non-interpolating logic be extended to gain interpolation?
4. Which normal forms can be obtained for the logic and for the inter-

polants?
5. Which extensions of finite-valued triangular logics by truth constants

have interpolation?
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Table 1 Interpolation in infinite-valued logics

Pure With2 With 4 With 4 and2

Gödel Interpolation Interpolation Interpolation Interpolation
Ĺukasiewicz x Interpolation x Interpolation
Product x x

1.3. Results

The paper is divided into two parts, the first dealing with infinite-valued
logics, the second with finite-valued logics.

For infinite-valued logicswe first show (Section 3.1) that regardless of
the presence of additional truth constants, Gödel logic is the unique trian-
gular logic with interpolation, and in fact, uniform interpolation.

Moreover (Theorem 4) G̈odel logic has a weak disjunctive normal form.
Note that ordinary interpolation of G̈odel logic has been shown before in [13]
in a non-constructive manner. The failure of interpolation for L´ ukasiewicz
logic was previously demonstrated in [11].

Starting from those negative results, we investigate extensions of tri-
angular logics by0 − 1 projections [1] and root operators [8]. The0 − 1
projection operator is defined by

4 : x 7→ bxc (3)

The projection4 introduces a weak kind of introspection which allows
to express quantifier-free statements about terms in the underlying logic.
For a theory with quantifier-elimination, this means that the addition of4
is quite powerful.

The root operators2i(x) = y are defined as the maximum solution of
the equation

y & . . . & y︸ ︷︷ ︸
i times

= x (4)

Let L + 2 denote the logic obtained by adding all countably many
operators21,22, . . . to L.

Table 1 summarizes the interpolation results for infinite-valued logics.
Finite-valued logicsare treated here as finitely generated sublogics of the

abovementioned logics; they approximate their infinite-valued counterpart
as a Fräısśe-limit [2].

In Sections 4 and 5, general criteria are given when an extension of an
n−valued G̈odel or L´ ukasiewicz logic (Gn andĹn respectively) by a setS
of additional truth constants has uniform interpolation. Apart fromG3, no
Gn or Ĺn has interpolation, while we have seen above that adding all truth
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Table 2 The number and characterization of finite-valued intermediate logics

Gn+1+S L´ n+1 + S

|S| fixed ( |S|+1
n−(|S|+1)) R|S|(n)=

∑
d|n µ( n

d )( d−1
|S|−1)

|S| arbitrary Fn
∑

d|n µ( n
d )2d−1

Characterization gcd(nS)=1 max(nS)≤2

constants trivially leads to uniform interpolation. Therefore, the structure of
the intermediatelogics is of interest. To this end, consider the setS which
is the set of gaps between truth values fromS and0, 1. Interpolation can be
characterized in terms ofS, and the number of intermediate logics can be
determined as summarized in figure 2. Again, we obtain normal forms for
the case of G̈odel logic.

2. Triangular logics and extensions

2.1. Metamathematics of fuzzy logic revisited

This section contains important definitions and background knowledge about
triangular logics. Most of the presentation is based on [6].

2.1.1. Triangular logics In this paper, the truth functions of the logic
(the matrix of the logic) are defined in a generic way from acontinuous
triangular normt, i.e., a two-place function defined on a subsetdt of [0, 1]
which satisfies the following axioms [10]:
T1 t(0, x) = 0 andt(1, x) = x
T2 x ≤ u & y ≤ z =⇒ t(x, y) ≤ t(u, z)

T3 t(x, y) = t(y, x)
T4 t(t(x, y), z) = t(x, t(y, z))

In triangular logics, a t-normt defines the truth function of conjunction;
implication then is defined by the right adjunct oft, i.e., by the unique truth
functioni such that

I1 z ≤ i(x, y) iff t(x, z) ≤ y

If t is continuous, we obtain thati(x, y) = max{z|t(x, z) ≤ y}. Negation
is defined byi(x, 0).

Definition. A logic L is triangular, if it is defined by the connectives

& ,−→,¬, 0, 1 (5)
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Table 3 The truth functions of well-known triangular logics

Constraint Gödel (G) Ĺukasiewicz (L´ ) Product (Π)
x & y min(x, y) max(0, x + y − 1) x × y

x −→ y x ≤ y 1 1 1
x −→ y x > y y 1 − x + y y

x

¬0 1 1 1
¬x x > 0 0 1 − x 0

induced by a continuous t-norm. The tautologiesTautL of L is the set
of formulasφ which evaluate to1 for all assignments to the variables
var(φ). ut
Proviso.We do not distinguish between the truth functions and the syntac-
tical connectives of triangular logics, i.e., we treat formulas as polynomials
in the matrix algebra. When we speak of thefirst order theory of a triangu-
lar logic, then we mean the first order theory of the matrix of the logic. In
such a first order logic, the propositional formulas are the first order terms.
In Section 3.4, we shall see how the introspection operator4 embeds first
order quantifier-free expressions into the propositional logic.

We shall writex ≡ y to abbreviate(x −→ y) & (y −→ x).

2.1.2. Ling’s theorem Triangular logics comprise L´ ukasiewicz, G̈odel, and
Product Logic as special cases; the truth functions of those logics are sum-
marized in Table 3. The following important result shows that they are the
easiest triangular logics, and that they are a basis for all other triangular
logics:

For a given normt, let E be the set{x ∈ [0, 1] : t(x, x) = x}. The
complement[0, 1] − E is is the union of countably many non-overlapping
open intervals, whose closurecl([0, 1]−E)corresponds to a class{Ii, i ∈ I}
of closed intervals. Ling’s theorem [12] says that the triangular logics are
characterized by norms which are isomorphic to either L´ or Π within the
intervalsIj , and behave like the minimum norm (Gödel norm) for arguments
from different intervals. In short:

Theorem 1. The triangular logics are obtained from the ordinal sums of
the L´ ,Π and G t-norms.

Therefore, any investigation of triangular logics will focus on those pro-
totypical cases first.

2.1.3. Disjunction and McNaughton’s theoremWhat about disjunction?
In the framework of t-norms, disjunction can be defined by the co-norm
1−t(1−x, 1−y). However, following previous work [6], we donot include
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disjunction as a basic operation. The following result shows that Gödel
conjunction and disjunction (i.e., arithmetic minimum and maximum) are
definable in all triangular logics, and thus, disjunction is definable in Gödel
logic:
Fact 1 ([6]) .There exists two formulasmin(x, y) andmax(x, y) which are
identic to G̈odel conjunction and G̈odel disjunction in all triangular logics.

Therefore, we can usemin(x, y) and max(x, y) as abbreviations in
propositional formulas. In [6], the minimum and maximum operations are
denoted by∧ and∨ respectively. Typically, we shall also use∨ for Gödel
logic (where the maximum indeed is used as a disjunction), butmin,max for
the other logics, where more algebraic constructions are employed. More-
over,

∨
means iterated maximum, i.e.,iterated G̈odel disjunction.

As for disjunction in L´ ukasiewicz logic, we use a very deep and useful
algebraic characterization due to McNaughton:

Theorem 2 ([14]).The truth functions of L´ ukasiewicz logic coincide with
the continuous piecewise linear functions with integer coefficients on[0, 1].

As a consequence, L´ ukasiewicz logic defines L´ ukasiewicz disjunction.
For product logic, disjunction is not definable, as can be easily seen from
the truth functions.

By McNaughton’s Theorem [14] it is easy to see that cut-off addition
and subtraction can be defined in L´ :

x−̇y ≡ max(0, x− y) (6)

x+̇y ≡ min(1, x+ y) (7)

(8)

2.1.4. Deduction theoremIt is known from [6] that G has a deduction the-
orem like classical propositional logic; i.e., if all assignments which make
trueφ make trueψ as well, thenφ −→ ψ is a G tautology, and vice versa.
Note however, thatno othertriangular logic has a classical deduction the-
orem; but each triangular logic has the generalized deduction thorem (see
[6]).

2.1.5. Finite-valued triangular logics For Gödel logic G and L´ ukasiewicz
logic Ĺ, there exist finite-valued logics which can be constructed as finitely
generated subalgebras of the matrices. Indeed, for each natural number
i ≥ 2, there exist unique finitely generated subalgebras of sizei. The cor-
respondingi−valued logics are denotedGi andĹi respectively. It is clear
that product logic does not have nontrivial finite subalgebras. Therefore, our
treatment of finite-valued logics is confined to L´ ukasiewicz and G̈odel logic.
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2.2. Extensions of triangular logics

2.2.1. Projection operators As additional connectives, we introduce the 0-
1-Projections5,4 from [1]. They are defined by4x = bxc and5x = dxe.

Since5 and4 are mutually definable inĹ (by 4x = ¬ 5 ¬x) and5
is definable already in G andΠ, it suffices to consider extensions of those
logics by4.

x ≤ y = 4(x −→ y) (9)

x = y = 4(x −→ y) & 4 (y −→ x) (10)

x > y = (x ≥ y) & ¬(x = y) (11)

It is easy to see that those formulas have the intended semantics in all
triangular logics, and that they obtain only classical values (they arecrisp).
We say that a formula iscrisp if every atomic subformula is in the scope of
a4 operator.

We see that the4 operator is very powerful in that it allows to formulate
quantifier free statements about terms in the underlying many-valued logic.
Thus,4 is a kind ofintrospectionoperator.

In particular, the crisp formulas of a logic with4 can be considered
as the quantifier free fragment of a first order logic, with the propositional
variables serving as first order variables.

This is illustrated by the following observation:

Proposition 1. All triangular logics with4 express the first order theory
of the linear order over[0, 1].

Proof.Since the first order theory of linear order has quantifier elimination,
it suffices to show that all quantifier-free formulas are expressible. This
follows immediately by virtue of (9) to (11). 2

2.3. Divisibility witnesses

Fact 2.The divisiblity witnesses for L´ are defined by2k(x) = y
k + k−1

k .

Proof.Obvious. 2

Fact 3.The divisiblity witnesses forΠ are defined by2k(x) = x
1
k .

Proof.Obvious. 2

The following Lemma shows that we do not have to deal with2k, but
can use the much simpler function2∗

k = x
k .
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Lemma 1. 2k and2∗
k are mutually expressible inĹ.

Proof. Consider2k(0) = k−1
k . Since−̇ is expressible inĹ, we can define

2∗
k(x) = 2k(x)−̇2k(0). On the other hand,

2k(x) = 2∗
k(x)+̇2∗

k(1)+̇ . . . +̇2∗
k(1)︸ ︷︷ ︸

k−1 times

.

2

In the rest of the paper, by misuse of notation, we shall always tacitly
use2∗

k instead of2k without further notice.

3. Infinite-valued interpolation

3.0.1. Semantic interpolationLet L be a triangular logic. For a formula
φ, let var(φ) denote the set of propositional variables occurring inL.

Definition. L hasinterpolationif for every tautology(φ −→ ψ) ∈ TautL
there exists a formulaα ∈ L (the interpolantof φ andψ), such that

1. var(α) ⊆ var(φ) ∩ var(ψ)
2. (φ −→ α), (α −→ ψ) ∈ TautL

If α depends only onφ andvar(ψ), thenα is called apre-interpolant
(or left interpolant). If α depends only onψ andvar(φ), thenα is called a
post-interpolant(or right interpolant).

If pre-interpolants and post-interpolants always exist, thenL hasuniform
interpolation. If only pre-interpolants (post-interpolants) exist, we speak of
left (right) uniform interpolation. ut
Remark.Let λ andρ be the left and right interpolants respectively. Sinceφ
implies all interpolants, it follows thatφ −→ ρ. Sinceλ depends only onφ,
it follows thatλ is an interpolant ofφ −→ ρ, i.e.,φ −→ λ andλ −→ ρ. We
conclude that the left interpolant in fact implies the right interpolant.

Consider anL−tautology

a(x, z) −→ b(y, z) (12)

where thez are the common variables ofa and b. Then we know that
a(x, z) ≤ b(y, z) under all variable assignments. Consider the truth function

T (z) = sup{a(x, z) : x ∈ [0, 1]r} (13)

wherer is the number of variables inx. Clearly,a(x, z) ≤ T (z) ≤ b(y, z),
and thusT (z) is an interpolant, if (13) is expressible in the underlying logic.
It follows that in every triangular logic,T (z) is the truth function of a
pre-interpolant.
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3.0.2. Fuzzy quantifiersIn classical propositional logic, the supremum and
infimum of truth functions is expressed by propositional quantification. This
correspondence can be extended to triangular logics by usingfuzzy quanti-
fiers. Letφ(x1, . . . , xn, y) be a formula in a triangular logic with variables
x1, . . . , xn, y. Then the truth functions of∃y.φ and∀y.φ are given by

∃y.φ = sup{φ(x1, . . . , xn, y) | y ∈ [0, 1]} (14)

∀y.φ = inf{φ(x1, . . . , xn, y) | y ∈ [0, 1]} (15)

Lemma 2. If a triangular logic has elimination of fuzzy quantifiers, then it
has uniform interpolation.

3.1. Infinite-valued G̈odel logic has left interpolation

The whole section is devoted to the proof of the following result; on the way,
we obtain a new functional complete set of connectives for Gödel logic, and
a normal form (Chain Normal Form) similar to the disjunctive normal form
in classical logic.

Theorem 3. Infinite-valued G̈odel Logic G has left uniform interpolation.

We consider the formulax ≺ y which is defined as follows:

(x −→ y) & ((y −→ x) −→ x) (16)

Intuitively, it almost defines the semantical linear order, i.e., we have

x ≺ y =

{
1 if x < y

x & y otherwise
(17)

Moreover, the ordering≺ induces an evaluation of formulas by virtue of
the following tautologies:

x ≺ y −→ (x −→ y) ≡ 1 (18)

x ≺ y −→ (y −→ x) ≡ x (19)

x ≺ y −→ (x & y) ≡ x (20)

x ≺ y −→ (x ∨ y) ≡ y (21)

x ≺ y & y ≺ z −→ x ≺ z (22)

¬(x ≡ 1) −→ x 6≺ x (23)

x ≺ y ∨ y ≺ x ∨ x ≡ y (24)

Using the deduction theorem, those tautologies follow trivially from the
definition of≺.
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LetV = {v1, . . . , vn} be a set of propositional variables. Then a≺-chain
overV is a formula of the form

(0 10 vπ(1)) & (vπ(1) 11 vπ(2)) & · · ·
& (vπ(n−1) 1n−1 vπ(n)) & (vπ(n) 1n 1) (25)

such thatπ is a permutation of{1, . . . , n} and1i is either≡ or ≺. (The
reader easily checks that there aren!2n+1 different ≺-chains.) Every≺-
chain describes an order type of the variablesV . For a formulaφ, let φζ

denote the value ofφ under an evaluation which has the same order type
as described byζ. Clearly,φζ ∈ V ∪ {0, 1}. By induction on the formula
structure, one easily shows that for each≺-chain ζ and formulaφ, the
following is a tautology:

ζ −→ φ ≡ φζ (26)

Lemma 3. Let φ be a formula, such thatvar(φ) = V , and letζ be a≺-
chain overV . Then there exists an atomic formulav ∈ V ∪ {0, 1} such
that

φ & ζ ≡ v & ζ (27)

Proof. It is easy to check that

(a & b) & (a −→ (b ≡ c)) −→ (a & c) (28)

is a tautology in G. We instantiate formula 28 by settinga = ζ, b = φ,
andc = φζ . Sinceζ −→ φ ≡ φζ (formula 26) is a tautology, we obtain that
ζ & φ −→ ζ & φζ . The converse implication follows analogously.2

Corollary 1. LetC(V ) be the set of all≺-chains forV . Then∨
ζ∈C(V )

ζ (29)

is a tautology.

Proof. Every possible evaluation of the variables inV has an order type
which is described by one of theζ. Therefore, the correspondingζ becomes
true. 2

Theorem 4. (Chain Normal Form) Letφ be a formula, andV = var(φ).
Thenφ is equivalent to a formula∨

ζ∈C(V )

ζ & vζ (30)

such thatvζ ∈ V ∪ {0, 1}.
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Proof. By Corollary 1,φ ≡ φ &
∨

ζ∈C(V ) ζ. By movingφ into the dis-
junction, and applying Lemma 3, the result follows.2

Remark.Note that Theorem 4 is valid for all G̈odel logics, whether they are
finite or not. It is the main tool to prove the interpolation results. Moreover,
it says that every formula is equivalent to aflat formula, i.e., to a formula of
depth4, if we count the large disjunction as one operation.

Lemma 4. Letφ, ψ, γ be formulas such thatx 6∈ var(γ). Then

∃x.φ ∨ ψ ≡ (∃x.φ) ∨ (∃x.ψ) (31)

∃x.φ & γ ≡ (∃x.φ) & γ (32)

Proof.These are obvious properties of the supremum.2

Lemma 5. Gödel logic has interpolation if the quantifiers in

∃x.(a 11 x) & (x 12 b) & x (33)

∃x.(a 11 x) & (x 12 b) (34)

can be eliminated, wherea, b may be either variables or0, 1, and11,1 2
may be either≺ or ≡.

Proof. Consider a formula∃x.φ. By Theorem 4, we may without loss of
generality suppose thatφ is in chain normal form (30). By Lemma 4 we can
distribute the fuzzy quantifier over the disjunction and over those conjuncts
of (30), wherex does not occur. Therefore, only formulas of the form (33)
and (34) are of interest. 2

Proof of Theorem 3.By Lemma 5, it remains to eliminate the quantifier
from (33) and (34). If one of11,12 equals≡, we are done, because we can
replacex by a or b respectively. Thus, suppose that both11=12=≺.

Consider (33) first. It is easy to check that (33) is equivalent to∃x.b& x.
(To see this, one first shows thatz ≺ b & z is equivalent tob & z, and
then notes thata ≺ z is always greater than or equal toz.) Therefore, the
supremum isb in this case, i.e.

∃x.(a ≺ x) & (x ≺ b) & x ≡ b (35)

Let us finally turn to (34). We shall argue that

∃x.(a ≺ x) & (x ≺ b) ≡ a ≺ b (36)

To see this, consider first the case thata < b. Thena ≺ b evaluates to1,
which can be easily witnessed by anyx betweena andb, likex = (a+b)/2.
(Note that this is the only time where we exploit the density of truth values
in G. We shall need this fact later in the proof of Theorem 11.)
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If a ≥ b, thena ≺ b evaluates tob. Supposex ≤ b. Thena ≺ x evaluates
to x, and thus the conjunction remains belowb. If b < x < a, thena ≺ x
evaluates tox, andx ≺ b evaluates tob, so the conjunction again remains
belowb. In the last case,b ≤ a ≤ x. Thenx ≺ b evaluates tob, anda ≺ x
evaluates to1, and again the conjunction evaluates tob. Since in all cases
the conjunction either reachesb or stays below, we have proved that the
supremum equalsb.

Remarks.

– In Gödel logic, implication−→ and negation¬ can be replaced by the
set{≺,≡,∨} of connectives. This is an immediate consequence of the
Chain Normal Form Theorem 4.

– It is not possible to obtain an interpolant∃y.φ(y,x) as a finite disjunction∨
t φ(t,x) of instances ofφ. To see this, consider formula 36 from above.

As the proof shows,x must obtain an intermediate value betweena and
b at the supremum. G̈odel logic, however, cannot define intermediate
truth values. On the other hand, we shall see in Section 4.1 thatG3, the
unique interpolating finite-valued G̈odel logic, has an interpolant of the
form

∨
t φ(t,x).

3.2. G̈odel logic has right interpolation

Unlike classical logic or L´ ukasiewicz logic, G̈odel logic is not symmetric,
i.e., it is not possible to treat existential and universal quantifiers as dual
concepts in a straightforward way.

However, we can use the normal form result in a fortunate manner.

Theorem 5. Gödel logic has right uniform interpolation.

Proof. Consider a formulaφ(x,y) where we are looking for a right inter-
polant using just variables fromx. To this end, we consider all G̈odel logic
formulas in variablesx. By the Chain Normal Form Theorem (Theorem 4)
there exists an enumerationφ1, . . . , φN of these formulas (whereN is the
number of≺-chains using variablesx), and we collect inI = {i : φi(x) −→
φ(x,y)} the indices of those among them which might serve as interpolants.

It follows that for the disjunctionρ =
∨

i∈I φi it holds thatρ −→ φ, and
therefore, there exists ani0 ∈ I, such thatρ ≡ φi0 . Thus, by construction
φ0 is the unique maximal formula containing variablesx which impliesφ.

It remains to show thatφ is an interpolant, i.e. that for allψ(z,x) where
ψ(z,x) −→ φ(x,y) actuallyψ(z,x) −→ φi0(x). Letλ(x) denote the left
interpolant obtained fromψ. Thenλ(x) −→ φ(x,y), and thus,λ(x) is
amongφi, i ∈ I, whenceλ(x) −→ φi0 . 2
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3.3. Failure of interpolation for non-G̈odel logics

In this section, we show that G̈odel logic is the unique infinite-valued trian-
gular logic with interpolation. We shall see in Section 3.4 that only a strong
extension of the language makes logics like L´ andΠ interpolate.

The following result states that interpolation of a logic can be checked
in a very uniform manner for all triangular logics; we say that a tautologyΨ
interpolates if (1) it is of the formφ1 −→ φ2, and (2) it has an interpolant.

Theorem 6. There is a formulaΨ , such that

– Ψ is a tautology in every triangular logic.
– Ψ interpolates in G.
– Ψ does not interpolate in L´ .
– Ψ does not interpolate inΠ.

Proof. The result follows from the Lemmas 6, 7, 8 below and Theorem 3
above. 2

Here is the formulaΨ :

min(max(x, p) −→ p,max(x, p))︸ ︷︷ ︸
φ1

−→ max(max(y, p) −→ p,max(y, p))︸ ︷︷ ︸
φ2

(37)

Lemma 6. Ψ is a tautology in every triangular logic.

Proof.Suppose we have a non-satisfying assignment to the variablesx, y, p.
Then,y > p since otherwiseφ2 = 1, and the formula becomes true. More-
over,x > p, because ifx ≤ p, thenφ1 = p, whileφ2 is always greater than
p since it is computed as a maximum ofp and other values. Also,x 6= y,
because otherwise the minimum inφ1 and the maximum inφ2 are taken
over the same elements.

Sincex > p andy > p we can simplifyΨ to

min(x −→ p, x) −→ max(y −→ p, y) (38)

There are two cases remaining:

1. x > y > p. Then t(x, z) ≥ t(y, z) by axiom T2, andt(x, z) ≤ p
implies t(y, z) ≤ p. Hence{z|t(x, z) ≤ p} ⊆ {z|t(y, z) ≤ p}, and
x −→ p = max{z|t(x, z) ≤ p} ≤ max{z|t(y, z) ≤ p} = y −→ p,
sincet is continuous. Thereforemin(x −→ p, x) ≤ x −→ p ≤ y −→
p ≤ max(y −→ p, y).

2. y > x > p. Thenmin(x −→ p, x) ≤ x < y ≤ max(y −→ p, y). ut
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Lemma 7. Ψ does not interpolate in L´ .

Proof. Setp = 0, thenΨ becomesmin(1 − x, x) −→ max(1 − y, y) by
some obvious simplifications in L´ . The unique interpolant is12 which is not
expressible in L´ . 2

Lemma 8. Ψ does not interpolate inΠ.

Proof. For p 6= 0, Ψ turns into min
(

p
max(x,p) ,max(x, p)

)
−→

max
(

p
max(y,p) ,max(y, p)

)
. Then the unique interpolant isp

1
2 . SinceΠ

does not define square roots, this concludes the lemma.2

By the mentioned characterization of triangular logics as ordinal sums
of the three basic logics, it is easy to obtain the following characterization
of interpolation in triangular logics:

Theorem 7. Gödel Logic is the unique triangular logic with interpolation.

Proof.From Theorem 1 we know that every triangular logic except Gödel’s
logic contains a closed intervalIi which is isomorphic to L´ orΠ. Letp be an
inner point ofIi, i.e., by definition a non-idempotent truth value. Then the
interpolant ofΨ atp is not expressible by virtue of Lemmas 7 and 8.2

Corollary 2. No extension of L´ by constants has interpolation.

Proof. If we don’t fix p, the (unique) interpolant becomes1+p
2 . Since this

function does not have integer coefficients, the result follows from Mc-
Naughton’s Theorem. 2

From the above it may appear that adding a square root operator [8]
might facilitate interpolation. The following corollary shows that this is
not the case. However, we shall see in Section 3.4 that adding all division
operators makes interpolation possible.

Corollary 3. No extension of L´ by a finite number of division operators has
interpolation.

Proof.For a numberk, consider the functionfk(x) = max(1−(k−1)x, 0).
From McNaughton’s Theorem we know that allfk are expressible in L´ . Then
Ψk = min(fk(x), x) −→ max(fk(y), y) is a tautology with interpolant1k .
Now let S be a finite set of division operators, and consider the number
k = 1 +

∏
2s∈S s which is relative prime with respect to alls ∈ S. Then

the tautologyΨk has interpolant1k , and is not expressible using operators
from S. 2
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Corollary 4. No extension ofΠ by constants has interpolation.

Corollary 5. No extension ofΠ by a finite number of root operators has
interpolation.

Proof.Similarly to Corollaries 2 and 3. 2

3.4. Extensions of triangular logics

The last section leaves open the question how to extend triangular logics to
obtain interpolation. We treat the case of the4 operator, and of divisibility
witnesses2k.

Theorem 8.

– G+ 4 has interpolation.
– Ĺ+ 4 does not have interpolation.
– Π + 4 does not have interpolation.

Proof.The failure of interpolation forĹ+4 andΠ+4 is an easy observation
from the proof of Theorem 7. Interpolation forG+4 follows by an extreme
simplification of the argument in Theorem 3. Consider a formula

∃x.φ(x, y1, . . . , yn).

It only depends on the order of the variablesy1, . . . , yn, whether the
supremum equals1, 0 or one of the input valuesy1, . . . , yn. By Propo-
sition 1, the different cases can be described by quantifier-free formulas
φt, t ∈ {0, 1} ∪ {y1, . . . , yn} such thatφt(y1, . . . , yn) is true iff t =
(∃x.φ(x, y1, . . . , yn)). Since allφt are crisp,φt & t evaluates to0 if the
condition described byt is true, and tot otherwise. Therefore, we can com-
bine allφt into a single formula

∃x.φ(x, y1, . . . , yn) =
∨

t∈{0,1}∪{y1,...,yn}
φt & t (39)

The case of∀x.φ(x, y1, . . . , yn) is analogous. 2

Example.Consider∃x.((y1 ≤ y2) & (x ≤ y3) & (y4 ∨ y5)). Is is clear that
this formula has supremummax(y4, y5) if y1 ≤ y2 andy3 6= 0, and has
supremum0 otherwise. Therefore,φy4 is (y1 ≤ y2) & (y3 6= 0) & y4 ≥ y5,
φy5 is (y1 ≤ y2) & (y3 6= 0) & y4 < y5, andφ0 equals¬φy4 & ¬φy5 .

Corollary 6. Theorem 8 holds even, if the language is extended by arbitrary
truth constants.
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Fact 4. In Ĺ+ 2, every rational in[0, 1] is expressible by a closed term.

Proof.Let p
q be a rational. Then2q1 + · · · + 2q1︸ ︷︷ ︸

ptimes

has truth valuepq . 2

Corollary 7. For every rationalq, the first order formulasx > q, x ≥ q,
x = q, x < q, andx ≤ q are expressible inĹ+ 4 + 2. Therefore, for any
(open or closed) subintervalS of [0, 1], x ∈ S is expressible.

3.4.1. Piecewise linear topologyFor the following, we need some easy
facts and definitions from piecewise linear topology: LetB = {x1, . . . ,xm},
be a set ofn−dimensional points. Then the(convex) polytopegenerated by
B is the convex hull of the points inB. Every polytope is representable
as a finite intersection of halfspaces, and we shall see that containments in
polytopes over[0, 1] is expressible inĹ+ 2 + 4.

In the proof to follow, we need the following well-known fact from
piecewise linear topology:

Theorem 9. [17] Let f : P → Q be piecewise linear and continuous, then
there is a locally finite decomposition ofP into polytopes,P =

⋃
Pi, such

thatf � Pi is linear for eachi.

Note that in spaces of the form[0, 1]k, locally finite is equivalent to finite.
Moreover, the functions we are interested in are in general not continuous,
and therefore thef � Pi may be discontinuous on the border ofPi, if Pi

is closed. Therefore we need the following Corollary which generalizes the
situation for piecewise, non-continuous functions.

Corollary 8. Let f : [0, 1]n → [0, 1] be a piecewise linear function, then
there is a finite partition ofP into open polytopesPi, such that for alli,
f � Pi is linear.

The following lemma is the key to our interpolation results. It can be
seen as a generalization of McNaughton’s Theorem, in that it removes the
restrictions on integer coefficients and continuity.

Lemma 9. Letf be a piecewise linear function on[0, 1]n. Then the follow-
ing equivalences hold:

1. f is continuous with rational coefficients ifff is definable inĹ+{21,22,
. . . }.

2. f has rational coefficients ifff is definable inĹ+ 4 + {21,22, . . . }.
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Proof.

1. ⇐=: If f is in Ĺ+ {21,22, . . . }, then an easy induction shows thatf is
continuous, and has rational coefficients.
=⇒: Suppose thatf is continuous with rational coefficients. Letl be the
least common multiple of the denominators of the rational coefficients.
(The least common multiple must exist, becausef is described by a finite
number of linear polynomials.)
Let us now consider the functionlf , i.e. the function obtained by mul-
tiplying f with a constantl. Obviously,lf has integer coefficients, and
lf([0, 1]) ⊆ [0, l].
Consider the functionsf1, . . . , fl which are defined as follows:

fi(c) =



f(c) − (i− 1) iff(c) ∈ [i− 1, i]
0 iff(c) < i− 1
1 iff(c) > i

(40)

It is easy to see thatlf =
∑l

i=1 fi, and therefore

f(c) =
l∑

i=1

fi(c)
l

=
l∑

i=1

2l(fi(c)) (41)

All the fi have range in[0, 1], and are continuous by construction. There-
fore, there exist L´ formulasφ1, . . . ,φl which realize them. From formula
41 we conclude that

2l(φ1)+̇2l(φ2)+̇ · · · 2l(φl) (42)

is the formula we looked for.
2. ⇐=: By induction on the formula structure, it is obvious thatf is piece-

wise linear.
=⇒: Consider a functionf(c), c = c1, . . . , cd, and letP1, . . . , Pn be a
partition of[0, 1]d into polytopes, such thatf is linear on everyPi. By the
first statement of the Theorem, there existĹ+2 formulasφ1(c), . . . , φn(c),
such thatφi coincides withf onPi. Since membership of a tuplec in a
polytopePi is expressible by a Boolean combination of formulasf = g
andf > g wheref, g are linear (and therefore, by the first part of this
Theorem, expressible inĹ+ 2), there existĹ+ 2 + 4 formulasχPi

such that

f(c) =
∨

1≤i≤n

χPi(c) & φi(c) (43)

2

Using Lemma 9, it is easy to prove interpolation forĹ+2 andĹ+2+4.
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Theorem 10. Let2i(x) = x
i . Then

– Ĺ+ {21,22, . . . } has uniform interpolation.
– Ĺ+ 4 + {21,22, . . . } has uniform interpolation.

Proof. It suffices to show that piecewise linear functions are closed under
taking suprema and infima of a single coordinatey; geometrically, this means
taking the upper boundary of the union of orthogonal projections of all
polytopes on the hyperplaney = 0, [15]. Since any parallel projection of a
polytope on a plane is obviously a polytope, and parallel projections retain
continuousness, the theorem is proven.2

4. Finite-valued interpolation

For finite-valued logics, the situation is combinatorially more involved than
for infinite-valued logics. We use both proof theoretic and model theoretic
methods to prove the following characterizations.

For a truth valued, letd− denote the preceding truth value, andd+ denote
the succeeding truth value.

For a set of truth valuesS = { i1
k−1 , . . .

in
k−1} in k−valued logic, we

define itsgradegr(S) by

gr(S) = gcd(i1, . . . , in, k − 1) (44)

S is denseif it contains all truth values except possibly0, 1. S is semidense
if

¬∃x 6∈ S.

(
x+

1
k − 1

)
6∈ S ∪ {1} (45)

holds, i.e., if it does not contain gaps of size greater than one.

4.1. G̈odel logic

Theorem 11. LetC be a (possibly empty) subset of the truth values forGk.
Then the following are equivalent:

– Gk + C has uniform interpolation.
– Gk + C has interpolation.
– C is semidense.

The result follows from the following lemmas.

Lemma 10. All semidense finite-valued Gödel logics have left interpola-
tion.
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Proof. This proof is similar to the proof of Theorem 3. Again, we con-
struct chain formulas to enforce an evaluation of a given formula. Let
V = var(φ) = {v1, . . . , vn}, let C = {c1, . . . , cm} be the set of truth
constants in the language including0, 1, and letP ⊆ C×C be the set of all
pairs(ci, cj) such thatci < cj , and there is exactly one truth value between
them. For every variablevm, we have two possibilities to enforce its value.
Either it is equal to a truth constant

vm ≡ cj (46)

or it is between two constants(ci, cj) ∈ P

ci ≺ vm & vm ≺ cj (47)

A semidense chain formulaζ therefore is a conjunction∧
vm∈V

ζvm (48)

such that everyζvm is of the form (46) or (47).
Like in the proof of Theorem 3, a semidense chain formula corresponds

to an order type of the variables, and therefore it enforces an evaluation

ζ −→ φ ≡ φζ (49)

Therefore, every formula in a semidense Gödel logic is equivalent to a
formula insemidense chain normal form:∨

ζ∈SD(V,C)

ζ & vζ (50)

such thatvζ ∈ V ∪ C andSD(V,C) is the set of semidense chains with
truth constants fromC.

By Lemma 4, we can move the supremum to formulas of the form
(46) & v and (47) & v. Those formulas are subcases of (33) and (34)
in the proof of Theorem 3 (obtained by settinga andb constant). The only
property needed in the proof of Theorem 3 was the existence (yet not the
explicit definability) of a truth value betweena andb. Since(ci, cj) ∈ P
there exists an intermediate element between them, and we conclude that
semidense finite-valued G̈odel logic has interpolation. 2

Corollary 9. All semidense finite-valued Gödel logics have chain normal
forms.

Corollary 10. All semidense finite-valued Gödel logics have right interpo-
lation.
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Proof. Analogous to the proof of Theorem 5, using Lemma 10 and Corol-
lay 9. 2

Lemma 11. Gi, i ≥ 4 does not have interpolation.

Proof. Considering the fact that validity of formulas withn variables is
equivalent in allGi, n+ 1 ≤ i ≤ ω, any counterexampleφn for Gn has to
containn− 1 variables at least. We construct

φn = (An ≡ x1) −→ ((z −→ x1) ∨ z) (51)

whereAn is defined as

x1 ∨ (x1 −→ x2) ∨ . . . ∨ (xn−3 −→ xn−2) ∨ (xn−2 −→ 0) (52)

For simplicity of notation, we sometimes writexn−1 for 0. 1− denotes
the greatest element below 1, i.e.,n−2

n−1 , and similarly0+ = 1
n−1 .

Claim: (An ≡ x1) =

{
1 x1 > x2 > · · · > xn−2 > 0
x1 otherwise

Proof. In the first case,x1 has to be either1 or 1−, because there are only
n truth values available. Sincex1 is larger than all otherxi, An equalsx1,
whenceAn ≡ 1 becomes1.

In the second case, there exists somei, such thatxi ≤ xi+1, and thus
the implicationxi −→ xi+1 evaluates to1. Therefore,An = 1, and we
conclude thatAn ≡ x1 evaluates tox1. 2

Claim: (z −→ x1) ∨ z =

{
1 z ≤ x1

z z > x1

Proof.Obvious. 2

Claim:φn is a tautology ofGn.

Proof.From the above case distinction we see that the only interesting case
appears whenz > x1. If x1 > x2 > · · · > xn−2, then1 = z > 1− = x1,
and therefore the implication holds. Otherwise,An ≡ x1 evaluates tox1,
and the implication holds, too. 2

It remains to show thatφn does not have an interpolant. From the con-
struction it follows that the interpolant is a formula inx1. Like in the three-
valued case, every formula in one variable is equivalent to a formula from
F = {0, 1, x1,¬x1,¬¬x1, x1 ∨ ¬x1}.

Consider the case thatz > x1, and thatx1 > x2 > · · · > xn−2 > 0.
Thenz = 1 andx1 = 1−, and both sides of the implication evaluate to1.
Therefore, every interpolant must map1− to 1. The only functions fromF
with this property are1 and¬¬x1.
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On the other hand, consider the case wherex1 = 0+ andz = 2
n−1 .

ThenAn ≡ x1 becomes0+, becausex1 cannot be larger thanx2 > 0.
On the other hand, the right hand side ofφn becomes 2

n−1 . Therefore, the
interpolant must map0+ to either0+ or 2

n−1 . Since the only functions with
this property arex1 andx1 ∨ ¬x1, there can be no interpolant.2

Lemma 12. Let φ(x) be a formula ofGm + C in one variablex, and let
[a, b] be an interval of the truth values ofGm, such thatC ∩ [a, b] is empty.
Thenφ(x) is either constant on[a, b], such thatφ(a) ∈ C, or φ(x) = x for
all x ∈ [a, b].

Proof.By induction on the formula structure. For atomic formulas, the state-
ment is trivially true. Suppose that it holds for formulasφ(x), ψ(x), and
considerδ(x) = φ(x) −→ ψ(x). If bothφ(x) andψ(x) are projections on
[a, b], thenδ(x) is constant1. If φ(x) andψ(x) are constant on[a, b], then
δ(x) is constant, too.

If φ(x) = d is constant andψ(x) = x on [a, b], thend is either below
[a, b] or above[a, b]. In the first case,d ≤ x forx ∈ [a, b], and thus,δ(x) = 1.
In the second case,d > x for x ∈ [a, b], and therefore,δ(x) = x.

Finally, suppose thatφ(x) = x andψ(x) = d on [a, b]. Again, if d is
below[a, b], thenδ(x) = 1, otherwiseδ(x) equalsd.

The induction steps for conjunction, negation and disjunction are easier,
and left to the reader. 2

Lemma 13. If a finite-valued G̈odel logic has interpolation, then it is semi-
dense.

Proof.We prove the contraposition of the statement. Suppose that the basic
logic isGm +C, such thatC is not semidense, and letc, d ∈ C be two truth
constants, which haven− 2 intermediate values, but no intermediate truth
constants, such thatn ≥ 4. SinceC is not semidense, such a pair must exist.

We introduce a mapping of formulas which is intended to relativize the
formulaφn from the proof of Lemma 11 to the interval[c, d].

a[c,d] = max(c,min(a, d)) (53)

(φ & ψ)[c,d] = φ[c,d] & φ[c,d] (54)

(φ ∨ ψ)[c,d] = φ[c,d] ∨ φ[c,d] (55)

(φ −→ ψ)[c,d] = min(φ[c,d] −→ ψ[c,d]), d) (56)

Consider a formulaφ in Gn, and the formulaφ[c,d] in Gm + C. Then
every assignment to the variables ofφ is mimicked by an assignment to the
variables inφ[c,d], such thatc plays the role of0, andd plays the role of1.
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On the other hand, every assignment of a value less thanc is turned intoc
by virtue of themax operation inφ[c,d], and analogously ford andmin.

We conclude that the formulaφ[c,d]
n is a tautology inGm + C.

Sinceφ[c,d]
n behaves likeφn, an interpolant must mapd− to d andc+

either toc+ or the successor ofc+.
By Lemma 12, no such truth function exists.2

This concludes the proof of Theorem 11.

Corollary 11. – G3 has interpolation.
– Gi, i ≥ 4 does not have interpolation.

With the4 operator, the situation becomes much easier. The reason is
that the4 operator allows to distinguish all truth values.

Theorem 12. The following are equivalent:

– Gn+1 + 4 + S has interpolation.
– S is dense.

Proof. Trivially, density implies interpolation, as explained in Section 1.
Now suppose that in a logicGn+1 + 4 + S, S is not dense, and consider
the formula

Ψ(x1, . . . , xn) = (x1 > 0) & (x2 > x1) & . . . & (xn > xn−1)

(Recall from Section 2.2 that the crisp relation> is definable inGn+1 +
4.) It is obvious, thatΨ is true if and only ifx1 = 0+, x2 = 0++ etc. Leti
be a truth value not inS, and consider the formula

min(Ψ(x1, . . . , xn), xi) −→ max(¬Ψ(y1, . . . , yn), yi) (57)

It is easy to see that that left hand side of formula 57 obtains only values
0, i, and the right hand side only valuesi, 1. Therefore, the unique interpolant
is i. Sincei is not contained inS, the result follows. 2

4.1.1. Interpolation by instancesWe have seen in Section 3.1 that in con-
trast to classical logic, the interpolant of infinite-valued Gödel cannot be
obtained as a disjunction of formula instances; i.e., the interpolant is neces-
sarily more complicated than in classical logic.

ForG3, however, we obtain an interpolant in the classical way. Although
interpolation in the case ofG3 follows from Lemma 10, we close this section
with a direct proof which is completely algebraic and of independent interest.
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Lemma 14. Let φ be a formula inG3, and leta be a new propositional
variable. For every substitutionρ : V ar(φ) → {0, 1, a} it holds that
φρ(1

2) ≤ φρ(1).

Proof. EveryG3 formula in one variablea is equivalent to a formula in
F = {1, 0, a,¬a,¬¬a,¬a∨ a}. The reader can easily check from the table
thatF is closed under truth functions .

1 0 a ¬a ¬¬a ¬a ∨ a
1 0 0 1 0 1
1 0 1

2 0 1 1
2

1 0 1 0 1 1

SinceV ar(φρ) = {a}, it suffices to check the claimed property by
comparing the last two lines of the table.2

Consider like above a tautology

A(x,y) −→ B(x, z) (58)

where we try to express the supremumsup
{
A(x,y)|y ∈ {0, 1

2 , 1}|y|} or,
in terms of fuzzy quantifiers,∃yA(x,y).

LetΓ (A(x,y)) denote the set of all formulas obtained fromA(x,y) by
consistently replacing the variablesy by variables fromx and0, 1.

Theorem 13. G3 has interpolation. In particular

∃yA(x,y) =
∨

I(x)∈Γ (A(x,y))

I(x) (59)

Proof.By considering all possible assignmentsσ to thex. If none of thex
is assigned12 , then by virtue of Lemma 14, every assignment to they can
be majorized by an assignment not involving1

2 . Since all such assignments
are inΓ (A(x,y)), the formula is correct.

Otherwise, there is a variablex among thex, such thatσ(x) = 1
2 .

Therefore, the outcome of every possible assignment to they can be found
in Γ (A(x,y)). 2

4.2. L´ ukasiewicz logic

For Ĺukasiewicz logic, the situation is different, because in contrast to Gödel
logic, its underlying algebra is not locally uniformly finite. On the other hand,
it is sufficient to consider left interpolation only, since right interpolation then
follows from the symmetry of L´ .
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It is well-known that for two natural numbersa, b, their greatest common
divisor gcd(a, b) is expressible in the formka + lb, l, b ∈ Z. The follow-
ing folklore version ofEuclid’s algorithmshows that cut-off subtraction is
sufficient to express the gcd ofa, b.
function gcd(a,b)

if a=b then return a.

if a > b then return gcd( a−̇b, a)

else return gcd( a, b−̇a).

Lemma 15. LetD = {p1
q1
, p2

q2
, · · · , pn

qn
} wheregcd(pi, qi) = 1, qi 6= 1 for

all 1 ≤ i ≤ n. ThenD generates the subalgebraĹl+1 of Ĺ, wherel is the
least common multiple (lcm) of the denominators{q1, . . . , qn}.

Proof.Considerpi

qi
. Using Euclid’s algorithm, we obtain an equation of the

form

1 = (qi−̇(. . . )) (60)

containing onlyqi, pi and−̇. Dividing equation 60 byqi, we obtain a defi-
nition of 1

qi
in terms ofqi

qi
= 1 and pi

qi
.

It remains to show that we can express1
l , since then all other truth

values ofĹl+1 can be expressed by addition+̇. (Recall from Section2.1,
that addition+̇ is definable in L´ .)

Consider 1
q1

and 1
q2

, and letl = lcm(q1, q2). Then

1
q1

+̇
1
q2

=
q1 + q2
q1q2

=
q1+q2

gcd(q1,q2)
q1q2

gcd(q1,q2)
=

q1+q2
gcd(q1,q2)

l
(61)

Sincegcd( q1+q2
gcd(q1,q2) , l) = 1, Euclid’s algorithm gives us a formula for

1
l like in formula 60. This proves the lemma for the case ofn = 2. Since
lcm(q1, . . . , qn) = lcm(qn, . . . lcm(q3, lcm(q1, q2)) . . . ), an easy induction
yields the result for arbitraryn. 2

Theorem 14. LetS be a (possibly empty) subset of the truth values forĹk.
Then the following are equivalent

1. Ĺk + S has interpolation.
2. All truth values ofĹk are explicitly definable inĹk + S.
3. 0+ is explicitly definable inĹk + S.
4. gr(S) = 1.
5. Ĺk + S has uniform interpolation.
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Proof. 1 =⇒ 2: Let v = p
q be someĹk truth value, then we consider the

functionsmax(px, 1 − (q − p)x) andmax(0,min(py, 1 − (q − p)y)). By
McNaughton’s theorem, there areĹ formulasφ(x) andψ(y) which realize
those functions. A short calculation shows thatφ(x) −→ ψ(y) is a tautology
with unique interpolantv in Ĺ, and therefore, inĹk +S. Since by assumption
Ĺk + S has interpolation, we conclude thatv is expressible inĹk + S.

2 =⇒ 5: Consider∃x.A(x,y), and lett1, . . . , tk be the terms for the
truth values ofĹk. Sincemax is definable in everyĹk, the supremum can
be computed by

∨
1≤i≤nA(ti,y).

5 =⇒ 1: Trivial.
3 =⇒ 2: Trivial, because all truth values can be defined as iterated

addition of0+.
4 =⇒ 3: If gr(S) = 1 then we can apply Euclid’s algorithm to obtain a

sequence of subtractions which defines1k−1 = 0+.
2 =⇒ 4: Suppose that for each truth valuev there is a formulatv which

definesv explicitly, yet gr(S) 6= 1. By elementary properties ofgcd it
follows that there is no linear combination of the elements inS which yields
0+.

Now considert0+ . Using the definitions of the truth functions,t0+ can
be written as an arithmetical expression using just subtraction and addition,
because all occurrences ofmax,min can be eliminated for constant argu-
ments. Therefore,t0+ describes a linear combination for0+. Contradiction.

ut
Corollary 12. The results of Theorem 14 remain true, if the logic contains
4.

Proof. To see this, we observe that the addition of4 does not change the
set of explicitly definable truth values. Then, the other equivalences follow
in anology to the proof of Theorem 14.2

Corollary 13 ([11]). Ĺk, k ≥ 3 does not have interpolation.

5. The number of intermediate logics with interpolation

We know from the preceding sections that no finite Gödel logic butG3, and
no finite Ĺukasiewicz logic has interpolation. On the other hand, if we add
truth functions for all truth values, then the logic has interpolation because
maximum and minimum can be expressed.

The surprising fact is that the number of intermediate logics is closely
connected to Fibonacci numbers.

LetS be a set of additional truth constants, i.e., forn+1−valued logics,
S ⊆ { 1

n , . . . ,
n−1

n }, and letS denote the gaps between the truth values, i.e.



Interpolation in fuzzy logic 487

S = {x− y | x ∈ S ∪ {0}, x = min{z | z > y}}
For a setS of rationals, and an integern, letnS denote{ns | s ∈ S}.
For a finite-valued logicL, let L̂ denote the logic with additional truth

constants for all truth values.

Theorem 15. 1. There are exactlyFn+1 intermediate logics betweenGn+1
andĜn+1, whereFn+1 is then+ 1st Fibonacci number.

2. There are exactly

( |S| + 1
n− |S| − 1

)
intermediate logicsGn+1+S between

Gn+1 andĜn+1.

Proof.

1. The result is obtained by the following bijection of truth values to finite
strings: A logicGn+1 + S is represented by a stringw ∈ {0, 1}n+1

such that every position in the string indicates if the corresponding truth
constant is in the language. Let us callw the characteristic stringof
Gn+1 + S.
Thus, for example,G5+{1

4} is represented by11001. By our characteri-
zation from Theorem 11 it follows that a logicGn+1+S has interpolation
if and only if its characteristic string is in the language

I = {10, 1}∗1

because a0 symbol can appear only immediately after a1 symbol, since
otherwise00 would violate the condition on the size of the gaps. There-
fore, the number of intermediate logics is equal to

fn = |{0, 1}n+1 ∩ I| = |{0, 1}n ∩ {10, 1}∗︸ ︷︷ ︸
I′

(62)

The last equation follows from the fact that the symbol1 in the end is
fixed, and cannot contribute to the overall number.
The crucial observation is that every string inI ′ can be written as the
concatenation ofA = 10 andB = 1 in aunique way. This immediately
follows from the fact that the occurrences of0 fix the positions of theA
strings, and hence all other positions are occupied byB strings:

1 1 1 0︸︷︷︸
A

1 0︸︷︷︸
A

1 1 0︸︷︷︸
A

Obviously,f1 = 1, andf2 = 2. Letn ≥ 3. A string of sizen can either
start withA or B. In the first case, there arefn−2 possibilities for the
rest of the string, in the other case there arefn−1 possibilities.
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Thus, we obtain the recursive definition

f1 = 1, f2 = 2, fn+2 = fn+1 + fn (63)

Therefore,fn is equal toFn+1, the Fibonacci sequence.
2. Let|S| = l−1. To obtain the result forl−1 additional truth constants, we

again consider the characteristic string ofGn+1 +S, with the additional
restriction, that it containsl−1+2 = l+1occurrences of1; the additional
2 truth values are for truth and falsity. Like above, it is sufficient to
consider the stringw composed of the firstn symbols of the characteristic
string. Like above,w can be written as the concatenation ofA = 10
andB = 1 in a unique way. Let#A be the number ofAs in this

concatenation, and#B the number ofBs. Then there are

(
#A+ #B

#A

)
possible strings, and it remains to calculate#A and#B to obtain the
result.
Let k = n − l be the number of0 symbols in the string. Since every
occurrence of0 is invoked by anA, it follows that#A = k = n − l,
#B = n−|A|k = n−2k = 2l−n, and therefore#A+#B = l. This
concludes the proof. ut

Remark.From the proof of the Theorem, we immediately obtain that

|S| ≤ n ≤ 2|S|
is a necessary condition for the interpolation ofGn+1 + S.

Corollary 14. Fn+1 =
∑

d n
2 e≤l≤n

(
l

n− l

)

Theorem 16. There areRk(n) =
∑

d|n µ
(

n
d

) (
d− 1
k − 1

)
intermediate log-

ics betweenĹn+1 and Ĺ̂n+1 with exactlyk additional truth constants.

Proof.From Theorem 14 we know that

gcd(nS ∪ {n}) = 1

characterizes the logicsĹi + S with the interpolation property. Evidently,
this condition is equivalent to

gcd(nS) = 1

and thus we obtain very similar characterizations of interpolation in Gödel
and L´ ukasiewicz logic. It is shown in [5,4] that there areRk(n) =

∑
d|n µ

(
n
d

)(
d− 1
k − 1

)
setsS with this property, and thus the result follows.2
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Corollary 15. There are
∑

d|n µ
(

n
d

)
2d−1 intermediate logics betweenĹn+1

and Ĺ̂n+1.
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