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Abstract. Let d be a Turing degree, R] and Q[d] denote respectively
classes of recursively enumerable (r.e.) and all degrees in whishrel-
atively enumerable. We proved in Ishmukhametov [1999] that there is a
degreed containing differences of r.e.sets (briefly, d.r.e.degree) such that
R[d] possess a least elemeant-0. Now we show the existence of a d.Ice.
such that Rfl] has no a least element. We prove also that for any REA-degree
d below0' the class @] cannot have a least element and more generally is
not bounded below by a non-zero degree, except in the trivial cases.

Introduction

The recursively enumerable (r.e.) degrees play an important role in Math-
ematical Logic, since they are exactly the degrees in which axiomatizable
theories lie. Relativising this class to some oradleve obtain so called
A-REA (ora-REA, we replaced by its degree) degrees. The hierarchy of
a-REA degrees was defined in Jockusch and Shore [1984]. Clearly, if a de-
greed is a-REA, then it isb-REA for everyb, a<b, so the problem arises
to find, given a degred, a least degrea such thaid is a-REA. If sucha
exists it plays for the degraktthe same role a3for the r.e.degrees, namely,
any setA €a contains a minimum of information necessary to enumerate
some set frondl.

We say, a degred is non-trivially REA (or simply REA), ifd>0 and
there is a degrele<d in which d is relatively enumerable.

The distribution of REA-degrees is not studied completely. It follows
from the Friedberg Inversion Theorem that any degree greater than or equal
to 0’ is REA. By a result of Posner [1972] each high degree beloig
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enumerable in a low degree, so all degrees, located sufficiently high, are
REA. On the other hand, since the r.e. degrees are REA, such degrees exist
in all jump classes. The mostimportant latest result concerning REA degrees
is Cooper’s characterization of the relation of relative enumerability in terms
of the relation< (Cooper [1990]):

A degredl is relatively enumerable ig, if and only if for any degreea
andb greater thare, dUa is splittable over avoidingb.

In Ishmukhametov [1999] we studied the classlRpr a d.r.e. degree
d>0. Itis known thatd.r.e. degrees form a proper subclass of 2-REA degrees
(see Jockusch and Shore [1984]). We proved that for sbRiel] is an upper
cone with an r.e. basg>0. We proved also, uniting our method with the
Cooper and Yi construction of isolated d.r.e. degree [1995] that there is a
d.r.e. degred which is enumerable just in one r.e. degegaelowd.

We conjectured that thesbounds not only r.e. but all degrees in whith
is recursively enumerable. Our conjecture was based on a proposition (see
Ishmukhametov [1999) that, given a d.r.e. Betthere exists a least degree
ain which D is enumerable (in the class of all degrees).

Now we refute our conjecture and show that there is no a REA-degree
d below 0’ such that the class @] possess a least element greater than
0. Moreover, for no sucld Q[d] is bounded below by a non-zero degree.
Namely, we show that, given a REA degmanda, 0O<a<d, there exists
a degreec in which d is enumerable andZc. By the relativized Sacks
Splitting Theorem (see Soare [1987], p.12#js splittable ovec avoiding
a (into somedy andd,). At least one ofl; is incomparable witla. So we
obtain as a corollary to our theorem that, given a REA-dedre®, for any
a, O<ax<d, there exists a degree incomparable veith

For other results concerning this subject see Cooper and Yi [1995], Ar-
slanov, Lempp and Shore [1996a], [1996b], La Forte [1995], [1996], Ar-
slanov, La Forte, and Slaman [1998]. We follow notations and terminology
of Soare [1987].

1. Studying class Rd]

Let D be a d.r.e. set, and a recursive approximatio afenoted by{ D*}

is given.D*(x) is a current (at stag® guess ofD(z). We assume that for
any x D°(x) = 0, and there are no more than two differensuch that
D3(x) # D**1(x). Assume also that for anythere is no more than one
x such thatD*(z) # D**!(x). Denote by D] the set of all numbers such
that there iss, D*(z) = 1 and bys(z) a stage at whick enters|D].

Definition. B[D] = {s(z) : = € [D] — D} is the associated set f@r.
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Clearly, B[D] is r.e. and recursive iD. It is known also (see Ish-
mukhametov [1999]) that the degree of the Bat a least degree in which
D is r.e. Below we show the latter cannot be said about all d.r.e.sets from
the degree oD.

Theorem 1. There is a d.r.e.degre@, for which R@d] has no a minimum
element.

Proof. We shallbuild d.r.e.set® and{ D. }.c., such thatifD is T-equivalent
to a 2-REA setd @ W' thenD, =r D andA %r B,, whereB, is the
associated set fdp.. We set the following list of requirements:

A
Nej: (D= "C NA@WA = 0D) — (Do =r D A A# 0P,

wheree =< m,n, k,i >, A=W, {®;, W;};c. is arecursive enumera-
tion of all partial recursive functionals and r.e.sets.
Define length functions as follows (we drop everywhere an ingex

l(e,s) = max{a : (vy < 2)D(y) = " (y)

NASWH [ =df 17},

wherer, = max{7,, use{Wi | 7,}},
(e, j,s) = max{z : (Vy < ) A(y) = &7 ()},
wheree = < m,n,k,i >, A=W;.

Assume that all parameters of computations defined at a stdgenot
exceeds. We begin with a description of the basic module for a requirement
N, ; in isolation.

Basic module

(1) Choose a pait, z + 1 of unused witnesses.

(2) Wait for a stage’, i(e,s’) > = + 1, then enumerate into both D and
D.. RestrainD up tos’.

(3) Wait for a stage” > ¢, l(e, s”) > = + 1, then restrairD up tos”.

(4) Wait for a stages”, I(e, j,s") > s”. Removez from D, enumerate
x + 1into D, , and restrain3, up tos".

Define D, (y) for all y which are not witnesses d¥. ;- requirements,
J € w, equal toD(y).

Clearly, eachV, ; acts finitely often and restrains a finite interval so the
cooperation of differeniV, ; can be organized in the usual way.

Now we verify the Basic Module.

Lemma 1.1. EachlV, ; is met.
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Proof. Fix k =< e, j > and assume the Lemma for &ll< k. Assume, the
left part of V.. ; holds, and let, be a least stage after which no requirement
with higher priority acts.

Consider witnesses andx + 1 of N, ; defined after stagey. Since,
liminf (e, s) = oo, each step 1,2, and 3 of the Basic Module occur®.lf
fails thenlim inf [(e, j, s) = oo, and step 4 also occurs.

We shall prove, thatts” | s” # A | s". (%)

A
SinceD(z) = qﬁﬁ@wk

A
into D, and then remove itfrom ther@fﬁwk (x) subsequently takes values
0,1,0. This meansd & W,j‘ I 7. changes between stagésands”, (7, is

(z) at stages’, s” ands”, then when we put

the use of computatioﬁﬁl@w’? (x) at stages’) and after stage” returns its
old value because? | 7 returns the old value after removiagfrom D.
So there is some < 7, A ® W(z) changes between stagésands”,
and then returns. Sincd, is r.e., theni?{(2') changes for’ = (» — 1)/2.
If the first value ofi/A(z’) was 1, then the change 8f/!(z') is possible
only if A | 7¥ changes. Butl | 7 is equal to®? | 7* at stages’ ands"’
and cannot change between stageands’.

So the first valué?} (') was 0, andt was enumerated iV between
stages’ ands”. In order to returfi?{(2') to 0 it is necessary to change the
oracleA | s”, and(x) holds.

SinceA | s = qﬁfz | s” at stages”, after A | s” change, we get the

disagreementl | s” # 45;3; [ s, andN, ; is met.
This finishes the proof.

Lemma 1.2. If liminf (e, s) = oo, thenD, =¢ D.

Proof. If x is not a witness of som&. ;-requirement, ther € D < z €
De.

Assume,z andz + 1 are witnesses of a requirement ;. Wait for a
stages’, at whichi(e, s) exceeds: + 1. At stages’, eitherz is putintoD and
D, oritisrestrained by a higher priority requirement. In the latter case, both
x andz + 1 are not ever put intd and D.. Assume the first case occurs.
By the construction, i is ever removed fronD, thenz + 1 is enumerated
into D.. Thereforex ¢ D <>z + 1 € D..

The proof of the Theorem follows immediately from the lemmas.

2. Studying classQ[d]

Now we study, for a givem\ degreed>0, the class Q] of all degrees,
lessd, in whichd is r.e. Our main result concerning such classes we divide
into two parts. First we show that for any proper d.r.e degraad any r.e.



On relative enumerability of Turing degrees 149

a<d there is anv-r.e.c such thad=c-REA, andaZc. Then we generalize
this result to all REA degrees beld

Let D be a d.r.e. set. Fix a recursive enumeratioofnd letB[D] be
the set associated with, ands(x) a stage, at which enters D).

Definition 2.1. Numberz € D is called minimal (under the given enumer-
ation of D), if
(Vy <z)ye D —ye D@,

Denote byM|[D] the set of all minimal elements ab. By definition,
M[D] C D.

Lemma 2.1. For any setE such thatM [D] C E C [D],
D <r E ® B[D].

Proof. To computeD(z) for z € w, find a least, such that for any < y
y€FE — s(y) <sp. If x g D%, thenz ¢ D. Assumer € D*°. Then

x € D« s(x) € B[D].
This finishes the proof.

Theorem 2. Given a properly d.r.ed and a r.e.a such thatD<a< d, there
exists arw-r.e. c<d such that is r.e. inc anda£c.

Proof. Let Abe ar.e.setfrom, D ad.r.e.setfrond. Fix recursive enumera-
tions of setsA andD. Assume, the enumeration bfsatisfies requirements
under which lemma 2.1 hold® is the associated set f@r, b is its degree.
We assume tha<b, otherwise, the theorem is established. The latter allows
us to assume that there is a recursive functiguch that each time when a
numbern is enumerated il h(n) entersB.

We construct anv-r.e.setE C [D] and defineC' = {s(y) : y ¢ E}
(where as before(z) is a stage whem enterg D]). Then,E is C-REA. To
guaranted < E'® B we build E satisfying the conditiod/in(D) C E.

To ensure the backwards reducibility, both setandC' are permitted
by numbers enterefd. This also ensures th&t andC' arew-r.e.

To meetd £ C we set an infinite list of requirements:

Nj:A#d5, jew.
Define the length function as follows:
1(j, s) = max{z : (Vy < 2) A(y) = &5 (y) at stage 5

Our general strategy for satisfying requiremeNts j € w, is based on
the next lemma:
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Lemma2.2. LetA = qﬁf and {C*}s¢,, be a recursive approximation for
C.. For any naturaln there is a triple(z, s, s”) such thatC® | n = C*" |
n=C|n,and®§" (z) |# 85" (z) |.

Proof. Ifthe lemmafails, then there is a stagesuch that any valuéf: (z),
computed after this stage, is valid aAds recursive contrary to assumptions
of the theorem.

Below we consider a module for a requireméft j € w, in isolation.

Basic module

The basic module consists of a list of procedures. Proce@yistarts first.
Each next procedure is started by the previous one. Procédudefines a
valueX'Z (n) of arecursive functional? in such a way thatif the procedure
fails to satisfy N; then D(n) = XB(n). Fix a numbern and consider
instructions for proceduré):

(1) If D(n) changed twice till this stage, then it cannot change more. In this
case defines B (n) = 0 with uses (n) = 0. Start procedurén + 1).

If the current valueD(n) is 1, then define” (n) = 1 with useo(n) =
s(n) + 1. RestrainC'(s(n)). Start procedurén + 1).

If later D(n) takes valud, thens(n) entersB and X7 (n) is destroyed.
Redefine it then equal @

If n ¢ D5, s’ < s, go to the next step.

(2) Wait for D(n) to change or for a stag€’, at which there is a triple
(xn, s, s") such that:

2.1.0(4,5") > xp,

2.2.95 (xn) # @CS (),

2.3. Numberszy = pz[s(z) < ¢* (x,) A C¥ (s(z)) # C¥"(s(z))]
andzy = pz[C¥(z) # C*"(2)] exceed all parameters of the previous
procedures.

If there are several triples satisfying 1-3 choose among them triple with least
T, ande, = max{¢® (z,,), ¢* (zn)}.

If D(n) changes first return to step 1, otherwise go to the next step.
(3) Letu be aleast stage such tt@t | ¢, = C¢ | ¢, foru < t < s. Define
XB(n) = 0 with uses(n) = max{u, h(n) + 1}. RestrainC' | o(n) and
start procedurén + 1).

(4) Wait for D(n) or B | o(n) to change. If the latter occurs first, drop

restraint ornC' | o(n), stop procedures n and return to step 2. Otherwise
go to the next step.

(5) Simultaneously return all'(y), y < ¢,, to their values at stage or s”
forcing@f(:rn) to take the value different from*(x,, ). This action includes
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also the change of appropriatgx), s(z) = y. Stop procedures n. Go
to the next step.

6. Wait for B | o(n) to change, then return to 1.

This establishes the module. Notice that due to the module we change
some value¢’(y) andE(x) such that: is not an element ai/in(D?). But
if later D(n) returns to O, conditiod/in(D*) C E*® can become invalid. In
order to prevent it each time when someés removed fromD we add toF
all elements of\/in(D?®). This causes an infinte injury to the basic module.
Nevertheless the following lemma ensures a satisfaction of the requirement
Nj:

Lemma 2.3. If for everyk < n &$ (k) = A(k) thenX”(n) |= D(n).

Proof. Fix somen € w. Assume the lemma for al < n. If n was enumer-
ated inD before the stage when procedyre is started the proof is clear.
Assumen was not inD before a stage when a triple(z,,, s', s”) satisfying
conditions 2.1-2.3 of the basic module appears. The restraiat pwr(n)
posed at stage can be destroyed in the following cases:
1. Some requirement of higher priority acts. By inductive assumptions
we can assume that this case does not occur after somesgtage
2. Restoring conditionMin(D) C E we return some numberto E
and removes(x) from C. This happens if some: is removed fromD. Let
u be such as in the Basic Module. Clearly, thiswas put intoD before
stageu ands(m) < u < o(n). Therefore, when the restraint 61 | zj is
destroyed”? (n) becomes undefined, and proced(irgcan be initialized.
Proceduren) eventually finds a tripléz,,, s’, s”) such thatC® | ¢, =
C | ¢, (thisisensured by lemma 2.2 and the way of selection of such triples).
At this stage we defin&?(n) = D(n). If later n is enumerated i) then
we get the disagreemeHt(x,,) # (Df(:cn). Since the restraint ofi' | ¢, is

notinjured,A(n) must be changed and become equdiﬁcéxn). Thenh(n)

is enumerated ifs and X (n) becomes undefined. Agaib(n) = X5 (n).
This finishes the proof.

Since D £ B, there is a (least) such that eithetS?(n) 1, or
@Jc(xn) 1# A(zy).

In the full construction we use a linear ordering of requirements. Each
requirement can have two possible outcomes: finite and infinite due to de-
fined or undefined is the valug” (n) wheren is a least number such that
D(n) # XB(n). The finite case is clear. In the ca&¥ (n) 1 we arrange
a construction in such a way that all valug$ (k), & > n, becomes unde-
fined simultaneosly aB-true stages (i.e such stagabatB® | by, = B | bs,
bs is a number enumerated at stagm B). This causes a delay ¢f(y)-
changes relating t®&(n)-change but again we are able to prave<; D
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sinceC(y)-changes happen no later than at the neaBeBue stage after
D(n) has changed.
We leave detalils to the reader. This establishes the theorem.

Theorem 3. For any A) degreesa,d, a<d, if d is REA, then there is a
degreec such thatd=c-REA anda<c.

Proof. Assumed=b-REAb<d anda<b, otherwise the theorem is estab-
lished.

Let A €a, B €b, D €d,andD = W¥ isr.e. inB.

We shall construct setS andE = C — RE A such thatt = D and
A L7 C. Alist of priority requirements will be the same as in the previous
theorem:

Nj:A#d5, jew.

SinceD isr.e.inB, there is a total 1-1 functiofi = 7, with range(f)
= D. Define a recursive functiorf(s,z) = ®5s(x). Clearly, f(z) =
lim f(s,z). Define a new set (a kind of the associated set/#ras fol-
lows:

B={({stly): dx <s, f(s,x) # f(s+1,2) =yAD*(y) # D(y)}.

Clearly, B < B, andD is B-REA.

If A <1 B, then the theorem is established. Assumes; B.

We construcC as asubsetofaset= {(s+1,y) : o <s, f(s,x) #
f(s+1,z) = y}. Define forx = (s,y) € P the values(y) = z, and let
E={y:s(y) ¢C}.

In our construction we need to know in advance a recursive approxi-
mation for setC. SinceC' € AY, some recursive approximation exists. To
find it we use the Fixed Point Theorem applied to a recursive enumeration
Wi, Wk, Wi, K isacreative set, of all9-sets. More exactly, given
a naturak, we construct a\3-setC,.. Then computing a fixed poiag of the
functionh, (Ve) W,;ffe) = C,, wefind arequired’ = Wﬁeo). Fix a number
e. DenoteC, = WX, C is the constructed set, adtf is its approximation
defined at the end of stage

Define the length function as follows:

1(j, ) = max{z : (Vy < 2) Ay) = 95, (y)

Notice that since our construction now is recursiveBnwe use in
definition of I real valuesA(y) (not approximations). LeD* be a finite
subset ofD enumerated fos stages (using oracle B).

Our main strategy for constructing andC' is same as earlier. We enu-
merateD and put intoE' all enumerated numbers.
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Any other change of &(z) is possible only simultaneously with ap-
propriate change of'(y),y = s(x), and is permitted by a number< x
enteredD.

Let K = {k,, k1, k2, ...} be arecursive approximation of the creative set
K. DefineC. ; = WX. We assume that it € W/ (), theng(z) < k.

We say, C, s, s € w, is aX3- approximation foiC.
Our module for requirementy;, j € w, is based on the next lemma:

Lemma 2.4. LetCy, s € w, is a X9- approximation for a se€, and@f is
total and non-recursive. Then for any naturathere is a triple(z, s, s')’
such that

Co(a) £ 9 (), andCy [ n = Cy [n=C [ n. ()

Proof Notice that for anyr there are infinitely many such that’

C | z. So for anyz there are infinitely many such thatlic@( ) =

If the lemma is false then there isng such that for each triplér,

satisfying (xx) there exists: < ng such that eithet’s (n) or Cy»
incorrect. Then any computatidrf; (x) using correct value§'(n) for

ng is correct, an@jc iS recursive contrary to our assumptions.

|z =
o ().
s, 8"
(n) is
rn <

The basic module for an isolated requireméfjt consists of a list of
procedures. Procedur®) starts first. Each next procedure is started by
the previous one. Procedufe) defines a value’(n) of a functionalX’ a
recursive inA in such a way that if the procedure fails to satigfy then
D(n) = X(n). All computations (except approximation fot.) are made
using oracleB. Consider instructions for a procedure):

(1) If n € D?, then define¥(n) = 1 with usec(n) = 0. Start procedure
(n + 1). Otherwise go to the next stage.

(2) Wait for n to be enumerated i or for a stages, at which there is a
pair (x,,, s'), s’ < s, such thati(j,s) > x,, @jC;;S' (zn) 1# 05, (xn) and
z2n = pz(z < sNAs(z) l=y = Ceg(2) # C*(2)] exceedsu.

Additionally we assume that,, = pufu < d)c"’ (xn) A C3%(u) #

Ce. s (u)] exceeds all parameters of the previous proceduref)(if) is
enumerated first return to step 1, otherwise go to the next step.

(3) DefineX(n) = 0. RestrainC' | s and start procedurg: + 1).

(4) Wait for D(n) to change, then change él(y), y < ¢jc7;,(a:n), to compat
themwithC, ¢ (y). Change simultaneousi(x) suchthat’(s(x)) hasbeen
changed. Notice that for any changédz) x exceeds:. This establishes
the module.

Since by the construction a changeffr) is permitted by a change of
D(n), n < z,thenE is recursive inD. Besides, for any, if x entersD at
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a stages andD?® | x = D | x, then by the construction € E, andD is
recursive ink.

As in the previous theorem, if procedu(e) fails to satisfyN; then
D(n) = ¥(n) and if all procedures fail theD is recursive inB contrary to
assumptions of the theorem. Since now using or&ckee avoid the infinite
case there is a leastsuch that procedurg: + 1) is never started andy;

is satisfied in a finite number of stages. The satisfaction of all requirements

can be proved by induction fer= eq being a fixed point of function.
This establishes the theorem.

We proved that in non-trivial cases the cléjsl] has no a least element.
We don’t know, whether there is a REA-degk@n particular, ad.r.e.degree

d) such that)[d] possess minimal elements.
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