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Abstract. Let d be a Turing degree, R[d] and Q[d] denote respectively
classes of recursively enumerable (r.e.) and all degrees in whichd is rel-
atively enumerable. We proved in Ishmukhametov [1999] that there is a
degreed containing differences of r.e.sets (briefly, d.r.e.degree) such that
R[d] possess a least elementm>0. Now we show the existence of a d.r.e.d
such that R[d] has no a least element. We prove also that for any REA-degree
d below0′ the class Q[d] cannot have a least element and more generally is
not bounded below by a non-zero degree, except in the trivial cases.

Introduction

The recursively enumerable (r.e.) degrees play an important role in Math-
ematical Logic, since they are exactly the degrees in which axiomatizable
theories lie. Relativising this class to some oracleA we obtain so called
A-REA (or a-REA, we replaceA by its degree) degrees. The hierarchy of
a-REA degrees was defined in Jockusch and Shore [1984]. Clearly, if a de-
greed is a-REA, then it isb-REA for everyb, a<b, so the problem arises
to find, given a degreed, a least degreea such thatd is a-REA. If sucha
exists it plays for the degreed the same role as0 for the r.e.degrees, namely,
any setA ∈a contains a minimum of information necessary to enumerate
some set fromd.

We say, a degreed is non-trivially REA (or simply REA), ifd>0 and
there is a degreeb<d in which d is relatively enumerable.

The distribution of REA-degrees is not studied completely. It follows
from the Friedberg Inversion Theorem that any degree greater than or equal
to 0′ is REA. By a result of Posner [1972] each high degree below0′ is
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enumerable in a low degree, so all degrees, located sufficiently high, are
REA. On the other hand, since the r.e. degrees are REA, such degrees exist
in all jump classes. The most important latest result concerning REA degrees
is Cooper’s characterization of the relation of relative enumerability in terms
of the relation≤ (Cooper [1990]):

A degreed is relatively enumerable inc, if and only if for any degreesa
andb greater thanc, d∪a is splittable overa avoidingb.

In Ishmukhametov [1999] we studied the class R[d] for a d.r.e. degree
d>0. It is known that d.r.e. degrees form a proper subclass of 2-REA degrees
(see Jockusch and Shore [1984]). We proved that for somed R[d] is an upper
cone with an r.e. basea>0. We proved also, uniting our method with the
Cooper and Yi construction of isolated d.r.e. degree [1995] that there is a
d.r.e. degreed which is enumerable just in one r.e. degreea belowd.

We conjectured that thisa bounds not only r.e. but all degrees in whichd
is recursively enumerable. Our conjecture was based on a proposition (see
Ishmukhametov [1999) that, given a d.r.e. setD, there exists a least degree
a in whichD is enumerable (in the class of all degrees).

Now we refute our conjecture and show that there is no a REA-degree
d below 0′ such that the class Q[d] possess a least element greater than
0. Moreover, for no suchd Q[d] is bounded below by a non-zero degree.
Namely, we show that, given a REA degreed anda, 0<a<d, there exists
a degreec in which d is enumerable anda6≤c. By the relativized Sacks
Splitting Theorem (see Soare [1987], p.124),d is splittable overc avoiding
a (into somed0 andd1). At least one ofdi is incomparable witha. So we
obtain as a corollary to our theorem that, given a REA-degreed≤0′, for any
a, 0<a<d, there exists a degree incomparable witha.

For other results concerning this subject see Cooper and Yi [1995], Ar-
slanov, Lempp and Shore [1996a], [1996b], La Forte [1995], [1996], Ar-
slanov, La Forte, and Slaman [1998]. We follow notations and terminology
of Soare [1987].

1. Studying class R[d]

Let D be a d.r.e. set, and a recursive approximation ofD denoted by{Ds}
is given.Ds(x) is a current (at stages) guess ofD(x). We assume that for
any x D0(x) = 0, and there are no more than two differents such that
Ds(x) 6= Ds+1(x). Assume also that for anys there is no more than one
x such thatDs(x) 6= Ds+1(x). Denote by[D] the set of all numbers such
that there iss, Ds(x) = 1 and bys(x) a stage at whichx enters[D].

Definition. B[D] = {s(x) : x ∈ [D] − D} is the associated set forD.
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Clearly, B[D] is r.e. and recursive inD. It is known also (see Ish-
mukhametov [1999]) that the degree of the setB is a least degree in which
D is r.e. Below we show the latter cannot be said about all d.r.e.sets from
the degree ofD.

Theorem 1. There is a d.r.e.degreed, for which R[d] has no a minimum
element.

Proof. We shall build d.r.e.setsD and{De}e∈ω such that ifD is T-equivalent
to a 2-REA setA ⊕ WA

k thenDe ≡T D andA 6≤T Be, whereBe is the
associated set forDe. We set the following list of requirements:

Ne,j : (D = Φ
A⊕W A

k
m ∧ A ⊕ WA

k = ΦD
n ) → (De ≡T D ∧ A 6= ΦBe

j ),

wheree =< m, n, k, i >, A = Wi, {Φj , Wj}j∈ω is a recursive enumera-
tion of all partial recursive functionals and r.e.sets.

Define length functions as follows (we drop everywhere an indexs):

l(e, s) = max{x : (∀y < x)D(y) = Φ
(A⊕W A

k )�τy
m (y)

∧(A ⊕ WA
k ) � τ∗

y = ΦD
n � τ∗

y },

whereτ∗
y = max{τy, use{WA

k � τy}},

l(e, j, s) = max{x : (∀y < x) A(y) = ΦBe
j (y)},

wheree = < m, n, k, i >, A = Wi.

Assume that all parameters of computations defined at a stages do not
exceeds. We begin with a description of the basic module for a requirement
Ne,j in isolation.

Basic module
(1) Choose a pairx, x + 1 of unused witnesses.
(2) Wait for a stages′, l(e, s′) > x + 1, then enumeratex into bothD and
De. RestrainD up tos′.
(3) Wait for a stages′′ > s′, l(e, s′′) > x + 1, then restrainD up tos′′.
(4) Wait for a stages′′′, l(e, j, s′′′) > s′′. Removex from D, enumerate
x + 1 into De , and restrainBe up tos′′′.

DefineDe(y) for all y which are not witnesses ofNe,j- requirements,
j ∈ ω, equal toD(y).

Clearly, eachNe,j acts finitely often and restrains a finite interval so the
cooperation of differentNe,j can be organized in the usual way.

Now we verify the Basic Module.

Lemma 1.1. EachNe,j is met.
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Proof. Fix k =< e, j > and assume the Lemma for allk′ < k. Assume, the
left part ofNe,j holds, and lets0 be a least stage after which no requirement
with higher priority acts.

Consider witnessesx andx + 1 of Ne,j defined after stages0. Since,
lim inf l(e, s) = ∞, each step 1,2, and 3 of the Basic Module occurs. IfNe,j

fails thenlim inf l(e, j, s) = ∞, and step 4 also occurs.
We shall prove, thatAs′′′ � s′′ 6= A � s′′. (∗)

SinceD(x) = Φ
A⊕W A

k
m (x) at stagess′, s′′ ands′′′, then when we putx

intoD, and then remove it from there,Φ
A⊕W A

k
m (x) subsequently takes values

0,1,0. This means,A ⊕ WA
k � τx changes between stagess′ ands′′, (τx is

the use of computationΦ
A⊕W A

k
m (x) at stages′) and after stages′′ returns its

old value becauseΦD
m � τ∗

x returns the old value after removingx from D.
So there is somez < τx, A ⊕ WA

k (z) changes between stagess′ ands′′,
and then returns. Since,A is r.e., thenWA

k (z′) changes forz′ = (z − 1)/2.
If the first value ofWA

k (z′) was 1, then the change ofWA
k (z′) is possible

only if A � τ∗
x changes. ButA � τ∗

x is equal toΦD
m � τ∗

x at stagess′ ands′′′
and cannot change between stagess′ ands′′′.

So the first valueWA
k (z′) was 0, andz was enumerated inWA

k between
stagess′ ands′′. In order to returnWA

k (z′) to 0 it is necessary to change the
oracleA � s′′, and(∗) holds.

SinceA � s′′ = Φ
B∗

e
j � s′′ at stages′′′, afterA � s′′ change, we get the

disagreementA � s′′ 6= Φ
B∗

e
j � s′′, andNe,j is met.

This finishes the proof.

Lemma 1.2. If lim inf l(e, s) = ∞, thenDe ≡T D.

Proof. If x is not a witness of someNe,j-requirement, thenx ∈ D ↔ x ∈
De.

Assume,x andx + 1 are witnesses of a requirementNe,j . Wait for a
stages′, at whichl(e, s) exceedsx+1. At stages′, eitherx is put intoD and
De or it is restrained by a higher priority requirement. In the latter case, both
x andx + 1 are not ever put intoD andDe. Assume the first case occurs.
By the construction, ifx is ever removed fromD, thenx + 1 is enumerated
into De. Therefore,x 6∈ D ↔ x + 1 ∈ De.

The proof of the Theorem follows immediately from the lemmas.

2. Studying classQ[d]

Now we study, for a given∆0
2 degreed>0, the class Q[d] of all degrees,

lessd, in whichd is r.e. Our main result concerning such classes we divide
into two parts. First we show that for any proper d.r.e degreed and any r.e.
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a<d there is anω-r.e.c such thatd=c-REA, anda6≤c. Then we generalize
this result to all REA degrees below0′

Let D be a d.r.e. set. Fix a recursive enumeration ofD, and letB[D] be
the set associated withD, ands(x) a stage, at whichx enters[D].

Definition 2.1. Numberx ∈ D is called minimal (under the given enumer-
ation of D), if

(∀y < x)y ∈ D → y ∈ Ds(x).

Denote byM [D] the set of all minimal elements ofD. By definition,
M [D] ⊆ D.

Lemma 2.1. For any setE such thatM [D] ⊆ E ⊆ [D],
D ≤T E ⊕ B[D].

Proof. To computeD(x) for x ∈ ω, find a leasts0 such that for anyy ≤ y
y ∈ E → s(y) ≤ s0. If x 6∈ Ds0 , thenx 6∈ D. Assumex ∈ Ds0 . Then

x ∈ D ↔ s(x) 6∈ B[D].

This finishes the proof.

Theorem 2. Given a properly d.r.e.d and a r.e.a such that0<a< d, there
exists anω-r.e. c<d such thatd is r.e. inc anda6≤c.

Proof. LetA be a r.e.set froma, D a d.r.e.set fromd. Fix recursive enumera-
tions of setsA andD. Assume, the enumeration ofD satisfies requirements
under which lemma 2.1 holds.B is the associated set forD, b is its degree.
We assume thata≤b, otherwise, the theorem is established. The latter allows
us to assume that there is a recursive functionh such that each time when a
numbern is enumerated inA h(n) entersB.

We construct anω-r.e.setE ⊂ [D] and defineC = {s(y) : y 6∈ E}
(where as befores(x) is a stage whenx enters[D]). Then,E is C-REA. To
guaranteeD ≤T E ⊕B we buildE satisfying the conditionMin(D) ⊆ E.

To ensure the backwards reducibility, both setsE andC are permitted
by numbers enteredD. This also ensures thatE andC areω-r.e.

To meetA 6≤T C we set an infinite list of requirements:

Nj : A 6= ΦC
j , j ∈ ω.

Define the length function as follows:

l(j, s) = max{x : (∀y < x) A(y) = ΦC
j (y) at stage s}

Our general strategy for satisfying requirementsNj , j ∈ ω, is based on
the next lemma:
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Lemma 2.2. Let A = ΦC
j and{Cs}s∈ω be a recursive approximation for

C. For any naturaln there is a triple〈x, s′, s′′〉 such thatCs′ � n = Cs′′ �
n = C � n, andΦCs′

j (x) ↓6= ΦCs′′
j (x) ↓.

Proof. If the lemma fails, then there is a stages0 such that any valueΦCs

j,s (x),
computed after this stage, is valid andA is recursive contrary to assumptions
of the theorem.

Below we consider a module for a requirementNj , j ∈ ω, in isolation.

Basic module
The basic module consists of a list of procedures. Procedure〈0〉 starts first.
Each next procedure is started by the previous one. Procedure〈n〉 defines a
valueΣB(n) of a recursive functionalΣB in such a way that if the procedure
fails to satisfyNj then D(n) = ΣB(n). Fix a numbern and consider
instructions for procedure〈n〉:
(1) If D(n) changed twice till this stage, then it cannot change more. In this
case defineΣB(n) = 0 with useσ(n) = 0. Start procedure〈n + 1〉.

If the current valueD(n) is 1, then defineΣB(n) = 1 with useσ(n) =
s(n) + 1. RestrainC(s(n)). Start procedure〈n + 1〉.

If later D(n) takes value0, thens(n) entersB andΣB(n) is destroyed.
Redefine it then equal to0.

If n 6∈ Ds′
, s′ ≤ s, go to the next step.

(2) Wait for D(n) to change or for a stages′′, at which there is a triple
〈xn, s′, s′′〉 such that:

2.1.l(j, s′′) > xn,

2.2.ΦCs′
j,s (xn) 6= ΦCs′′

j,s (xn),
2.3. Numbersx0 = µx[s(x) < φs′

(xn) ∧ Cs′
(s(x)) 6= Cs′′

(s(x))]
and z0 = µz[Cs′

(z) 6= Cs′′
(z)] exceed all parameters of the previous

procedures.
If there are several triples satisfying 1-3 choose among them triple with least
xn andcn = max{φs′

(xn), φs′′
(xn)}.

If D(n) changes first return to step 1, otherwise go to the next step.

(3) Letu be a least stage such thatCt � cn = Cs � cn for u ≤ t ≤ s. Define
ΣB(n) = 0 with useσ(n) = max{u, h(n) + 1}. RestrainC � σ(n) and
start procedure〈n + 1〉.
(4) Wait for D(n) or B � σ(n) to change. If the latter occurs first, drop
restraint onC � σ(n), stop procedures> n and return to step 2. Otherwise
go to the next step.

(5) Simultaneously return allC(y), y < cn, to their values at stages′ or s′′
forcingΦC

j (xn) to take the value different fromAs(xn). This action includes
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also the change of appropriateE(x), s(x) = y. Stop procedures> n. Go
to the next step.

6. Wait forB � σ(n) to change, then return to 1.
This establishes the module. Notice that due to the module we change

some valuesC(y) andE(x) such thatx is not an element ofMin(Ds). But
if later D(n) returns to 0, conditionMin(Ds) ⊆ Es can become invalid. In
order to prevent it each time when somen is removed fromD we add toE
all elements ofMin(Ds). This causes an infinte injury to the basic module.
Nevertheless the following lemma ensures a satisfaction of the requirement
Nj :

Lemma 2.3. If for everyk ≤ n ΦC
j (k) = A(k) thenΣB(n) ↓= D(n).

Proof. Fix somen ∈ ω. Assume the lemma for allk < n. If n was enumer-
ated inD before the stage when procedure〈n〉 is started the proof is clear.
Assumen was not inD before a stages when a triple〈xn, s′, s′′〉 satisfying
conditions 2.1-2.3 of the basic module appears. The restraint onC � σ(n)
posed at stages can be destroyed in the following cases:

1. Some requirement of higher priority acts. By inductive assumptions
we can assume that this case does not occur after some stages0.

2. Restoring conditionMin(D) ⊆ E we return some numberx to E
and removes(x) from C. This happens if somem is removed fromD. Let
u be such as in the Basic Module. Clearly, thism was put intoD before
stageu ands(m) < u ≤ σ(n). Therefore, when the restraint onC � z0 is
destroyedΣB(n) becomes undefined, and procedure〈n〉 can be initialized.

Procedure〈n〉 eventually finds a triple〈xn, s′, s′′〉 such thatCs � cn =
C � cn (this is ensured by lemma 2.2 and the way of selection of such triples).
At this stage we defineΣB(n) = D(n). If later n is enumerated inD then
we get the disagreementA(xn) 6= ΦC

j (xn). Since the restraint onC � cn is
not injured,A(n) must be changed and become equal toΦC

j (xn). Thenh(n)
is enumerated inB andΣB(n) becomes undefined. Again,D(n) = ΣB(n).
This finishes the proof.

Since D 6≤T B, there is a (least)n such that eitherΣB(n) ↑, or
ΦC

j (xn) ↓6= A(xn).
In the full construction we use a linear ordering of requirements. Each

requirement can have two possible outcomes: finite and infinite due to de-
fined or undefined is the valueΣB(n) wheren is a least number such that
D(n) 6= ΣB(n). The finite case is clear. In the caseΣB(n) ↑ we arrange
a construction in such a way that all valuesΣB(k), k ≥ n, becomes unde-
fined simultaneosly atB-true stages (i.e such stagess thatBs � bs = B � bs,
bs is a number enumerated at stages in B). This causes a delay ofC(y)-
changes relating toD(n)-change but again we are able to proveE ≤T D
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sinceC(y)-changes happen no later than at the nearestB-true stage after
D(n) has changed.

We leave details to the reader. This establishes the theorem.

Theorem 3. For any ∆0
2 degreesa,d, a<d, if d is REA, then there is a

degreec such thatd=c-REA anda6≤c.

Proof. Assume,d=b-REA,b<d anda≤b, otherwise the theorem is estab-
lished.

Let A ∈a, B ∈b, D ∈d, andD = WB is r.e. inB.
We shall construct setsC andE = C − REA such thatE ≡T D and

A 6≤T C. A list of priority requirements will be the same as in the previous
theorem:

Nj : A 6= ΦC
j , j ∈ ω.

SinceD is r.e. inB, there is a total 1-1 functionf = ΦB, with range(f)
= D. Define a recursive functionf(s, x) = ΦBs

s (x). Clearly, f(x) =
lim f(s, x). Define a new set (a kind of the associated set forD) as fol-
lows:

B̂ = {〈s+1, y〉 : ∃x < s, f(s, x) 6= f(s+1, x) = y∧Ds(y) 6= D(y)}.
Clearly,B̂ ≤T B, andD is B̂-REA.
If A 6≤T B̂, then the theorem is established. Assume,A ≤T B̂.
We constructC as a subset of a setP = {〈s+1, y〉 : ∃x < s, f(s, x) 6=

f(s + 1, x) = y}. Define forx = 〈s, y〉 ∈ P the values(y) = x, and let
E = {y : s(y) 6∈ C}.

In our construction we need to know in advance a recursive approxi-
mation for setC. SinceC ∈ ∆0

2, some recursive approximation exists. To
find it we use the Fixed Point Theorem applied to a recursive enumeration
WK

0 , WK
1 , WK

2 ... , K is a creative set, of allΣ0
2 -sets. More exactly, given

a naturale, we construct a∆0
2-setCe. Then computing a fixed pointe0 of the

functionh, (∀e) WK
h(e) = Ce, we find a requiredC = WK

f(e0). Fix a number

e. DenoteCe = WK
e , C is the constructed set, andCs is its approximation

defined at the end of stages.
Define the length function as follows:

l(j, s) = max{x : (∀y < x) A(y) = ΦCs

j,s (y)

Notice that since our construction now is recursive inB, we use in
definition of l real valuesA(y) (not approximations). LetDs be a finite
subset ofD enumerated fors stages (using oracle B).

Our main strategy for constructingE andC is same as earlier. We enu-
merateD and put intoE all enumerated numbers.
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Any other change of aE(x) is possible only simultaneously with ap-
propriate change ofC(y), y = s(x), and is permitted by a numberz < x
enteredD.

LetK = {ko, k1, k2, ...} be a recursive approximation of the creative set
K. DefineCe,s = WKs

e,s . We assume that ifx ∈ WKs

e,s (x), thenφ(x) < ks.
We say, Ce,s, s ∈ ω, is aΣ0

2 - approximation forCe.
Our module for requirementsNj , j ∈ ω, is based on the next lemma:

Lemma 2.4. LetCs, s ∈ ω, is aΣ0
2 - approximation for a setC, andΦC

j is
total and non-recursive. Then for any naturaln there is a triple〈x, s, s′〉′
such that

Φ
Cs′
j,s′ (x) 6= Φ

Cs′′
j,s′′ (x), andCs′ � n = Cs′′ � n = C � n. (∗∗)

Proof. Notice that for anyx there are infinitely manys such thatCs � x =
C � x. So for anyx there are infinitely manys such thatΦCs

j,s(x) = ΦC
j (x).

If the lemma is false then there is an0 such that for each triple〈x, s′, s′′〉
satisfying(∗∗) there existsn < n0 such that eitherCs′(n) or Cs′′(n) is
incorrect. Then any computationΦCs

j,s(x) using correct valuesC(n) for n <

n0 is correct, andΦC
j is recursive contrary to our assumptions.

The basic module for an isolated requirementNj consists of a list of
procedures. Procedure〈0〉 starts first. Each next procedure is started by
the previous one. Procedure〈n〉 defines a valueΣ(n) of a functionalΣ a
recursive inA in such a way that if the procedure fails to satisfyNj then
D(n) = Σ(n). All computations (except approximation forCe) are made
using oracleB. Consider instructions for a procedure〈n〉:
(1) If n ∈ Ds, then defineΣ(n) = 1 with useσ(n) = 0. Start procedure
〈n + 1〉. Otherwise go to the next stage.

(2) Wait for n to be enumerated inD or for a stages, at which there is a

pair 〈xn, s′〉, s′ < s, such thatl(j, s) > xn, Φ
Ce,s′
j,s′ (xn) ↓6= ΦCs

j,s (xn) and
zn = µz[z < s ∧ s(z) ↓= y → Ce,s′(z) 6= Cs(z)] exceedsn.

Additionally we assume thatun = µu[u < φCe,s′
j (xn) ∧ Cs(u) 6=

Ce,s′(u)] exceeds all parameters of the previous procedures. IfD(n) is
enumerated first return to step 1, otherwise go to the next step.

(3) DefineΣ(n) = 0. RestrainC � s and start procedure〈n + 1〉.
(4) Wait forD(n) to change, then change allC(y), y < φCe

j,s′(xn), to compat
them withCe,s′(y). Change simultaneouslyE(x)such thatC(s(x))has been
changed. Notice that for any changedE(x) x exceedsn. This establishes
the module.

Since by the construction a change ofE(x) is permitted by a change of
D(n), n ≤ x, thenE is recursive inD. Besides, for anyx, if x entersD at
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a stages andDs � x = D � x, then by the constructionx ∈ E, andD is
recursive inE.

As in the previous theorem, if procedure〈n〉 fails to satisfyNj then
D(n) = Σ(n) and if all procedures fail thenD is recursive inB contrary to
assumptions of the theorem. Since now using oracleB we avoid the infinite
case there is a leastn such that procedure〈n + 1〉 is never started andNj

is satisfied in a finite number of stages. The satisfaction of all requirements
can be proved by induction fore = e0 being a fixed point of functionh.

This establishes the theorem.

We proved that in non-trivial cases the classQ[d] has no a least element.
We don’t know, whether there is a REA-degreed (in particular, a d.r.e.degree
d) such thatQ[d] possess minimal elements.
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