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Abstract. A lattice-valued set theory is formulated by introducing the log-
ical implication— which represents the order relation on the lattice.

1. Introduction

The aim of this paper is to formulate a set theory on a lattice valued universe,
by introducing a natural form of implication. For a given complete latfice
the lattice valued universé” is constructed in the same way as the Boolean
valued universe or Heyting valued universe.

Generally, an operates, on alattice is called amplicationif it satisfies
the following conditions :

(1) (a—«b)=1iff a <b
(2) aA(a—=,b)<b.

For example, the operates; on a complete Heyting algebra(cH&) de-
fined by

(a—>1b):\/{c€(2]a/\c§b},

is an implication, which is an interpretation of intuitionistic implication. The
operator— o on a orthomodular lattic®, defined by

(a =g b)=atV(anb),

is also an implication. Implication on a lattice is not necessarily unique. In
fact, every complete lattice has at least the implicationefined by

(a—b) = 1ifa<bd
] 0 otherwise,
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which is the strongest implication, in the sense that
(a — b) < (a—, b) foranyimplication—,.

We call the strongestimplication thasicimplication The basic implication
represents the order relati@hon the lattice.

In a sequeni” = A of Gentzen'’s logical system LK or L3=-is a
metamathematical implication, which is interpreted as the basic implication
on a lattice. That is, the metamathematical implicatiess is represented
by the lattice order on the Lindenbaum algebra, and hence by the basic
implication on the Lindenbaum algebra.

Now we introduce the logical operater which corresponds to the basic
implication on the Lindenbaum algebra, and call it alsolihsic implica-
tion. By introducing the logical basic implication, we can formalize the
metamathematics of the theory of lattice valued sets.

Equality onV* has a close relation to implication. For exampleg2if
is a complete Heyting algebra (cHA), the equatity and the membership
relationey of the intuitionistic set theory ol are defined so that

u=t1v 1 Ve(z€u+rxew) and wu€w <y Iz(u=rx A z€W)

holdonV ¥, Thatis, the settheory with1, =1, €1 asits implication, equality
and membership relation on the Heyting valued univéi€ds an intuition-
istic set theory.

In [5], we extended the intuitionistic set theory by introducing the basic
implication— besides the regular intuitionistic implicaties;, and showed
that the metamathematics of the set theory can be discussed in itself. In this
paper, we generalize the result of [5] to lattice valued set theory.

Now we fix a universé” of ZFC as our standpoint. That is, we assume
that our metamathematics &-C. Let £ be any complete lattice in the
universeV/, andV* be theL-valued universe constructed i Let — be
the basic implication o, and— be the complement corresponding to the
basic implication :

—a = (a —0).

Our lattice-valued set theory LZFZ ) is a set theory oV * with the
basic implication— and the corresponding negatienThe last letter Z in
LZFZ means Zorn's lemma.

Since the order relation off is expressed by the logical operaterin
LZFZ , we can express properties of the lattite the language dfZFZ .

Here we denoté¢l — a) by Oa, that is,

lifa=1
D“—{o if 0 # 1.

An elementy of £ is said to bed-closedif Ja = a.
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Inthe same way as the case of Boolean valued universe or Heyting valued
universe, the external univerdécan be embedded Wi as follows: For
each set in our external univers& we definei € V- by

(Bt

Then for setsi, v €V, [a = 0] and[a € v] areO-closed and
u=v<=u=0]=1; ucv< [uer]=1.

A set in V4 of the form is called acheck setThe subclas§” of V-
consisting of all check sets is a copyof
The introduction of the basic implication enables us to express the sen-
tence “u is a check set”, denoted &(«), in the language of the set theory
LZFZ:
ck(u) <=Vt (teu < O(t € u) A ck(u)).

This means that we can construct a copy of the universé, and hence a
copy of V£ in LZFZ .

Now we say that “a sentence holds” if the sentence is provable in our
metamathematicEFC. So, for a sentencg of LZFZ , we mean by & is
valid on lattice valued universe” that

“[¢] = 1 on V'~ for all complete latticeC” is provable inZFC.

Then we prove the “completeness” lIafFZ in the sense that every valid
sentense of ZFZ is provable inLZFZ :

ZFC F “[¢] = 1 onV* for all complete latticeC” = LZFZ F o.
That is, we have the equiprovability :
LZFZ ¢ <= ZFC I “[¢] = 1 onV* for all complete latticeC”,

and we can see thaZFZ is a set theory with double structure : one is the
structure of theory ofZ-valued sets, and the other is the structur@ie
on the external universg. In other wordsLZFZ is a set theory with an
expression of its metamathematics in itself.
The sets of natural numbers, rational numbers, and real numbers, and
also ordinals are defined in the set thebAFZ , and they are all check sets.
Ifwe introduce another implicatiors. in LZFZ , then the corresponding
equality=, and the membership relatian. can be defined ihZFZ by e-
induction:

U=y V <d:ef>v.r(a:€u — TELW) AVEZ(TEV —4 TE L) ;

ue v &L Jr(u=.x N TEWD).
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Then we have
U=4 ¥ <= V(T E LU <>, TE V).

In the set theory.ZFZ on V¥, wheref? is a cHa, we can express the
sentenceP(1) is a cHa”, which holds o?, and define the intuitionistic
implication — in the language dfZFZ by

010 &L 0 e fueP) | A (0cu) — ¥}

Thus,LZFZ +“P(1) is a cHa” is an extension of intuitionistic set theory.
Thatis, axioms of intuitionistic settheory withy as its implication and with
=1, €1 as equality and membership relation, are provableZRZ +“P(1)
isacHa".

Let —, be any implication. As for check sets, the weak equality
and the corresponding membership relatdqrare identical with= ande,
respectively:

U=y 0 <> U=D0; UE I <> UED.

Itfollows that natural numbers, rational numbers which are defined in the set
theory with—,, =, €, asits implication, equality and membership relation
coincide with those defined InZFZ , i.e. they are check sets.

We will discuss numbers ibZFZ in the sequel paper.

2. Complete lattices

Let £ be a complete lattice. For a subget, }, of a complete lattice?, the
least upper bound ofa, }. is denoted by\/  a,, and the greatest lower
bound of{a, } is denoted by\ , a,. The smallest element and the largest
element ofL are denoted by 0 and 1, respectively.

Define the operator> on L by

1ifa<b
(@ =)= {0 otherwise.

— is an implication, i.e,
1:(a—b)=1Iiff a<b
2:aA(a—Db)<hb.

We call — the basic implicationon £. The complement corresponding to
— is defined by

—a = (a = 0)
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Theorem 2.1. For all elementsy, b of L,
Nl:-=0=1, —-1=0
N2:aAN—-a=0
N3:a < —a
N4 :=(aVb) =-aA-b

Definition 2.1 Here we denote the formuld — «) by Oq, that is,

lifa=1
Da:{OWa#L

This operato] is called thestandard globalization

Theorem 2.2. For all elementsa, b, a, by, cx, (k€ K) of L,

Gl:Oa<a

G2:—qg=0-q

G3: A\, Oar <O\, ak

G4 : If Oa < b, thenOa < Ob

G5:0a AV, by, =Vi(Oanbg); anV,Ob, =\, (aADbg);
OaV Apbe = Ap(DaVbg); aV A\,DOby = A(aV Oby)

G6:0aV-Oa=1

G7:lfanOc<b, then-b A Oc < —a.

G8:(a—b)=\{cel|c=0c, aNec<b}

The following theorem follows from 11-12, N1-N4 and G1-G8.

Theorem 2.3. Leta,b € £ and{ax }kex, {bx}rex C L. Then

(1) If a < bthenOa < Ob

(2) O(A\y ar) = Ay, Dag

(3) Da = 00a

(4) A\, Bar, =0\, Oag

() V, Ba, =0V, Oay

(6) O(a — b) = (a — D).

(7) (a — b) < (—|b — —|a)

(8) If daAb < cthenda < (b— ¢)

We denote-0O- by ¢. Then we have
Theorem 2.4. Leta,b € £ and{ay }rerx C L.

Q) a < 0a

(2) If a < Obthenda < Ob
Q) OVyar =V, Oak

(4) O(OaAb) <OaAN b
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3. £-valued universeV £

Let £ be a complete lattice with the basic implicatienand the correspond-
ing negation-. £-valued univers& ~ is constructed by induction:

VE = {u]| EIﬂ<aEIDuCVBE(u :Du— L)}
ve= ] V£
acOn

The leasty such that: € V.~ is called therank of u. Foru,ve V-, [u=1]
and[u € v] are defined by induction on the rank@afv.

[u=v]= A (u(z) = [zev]) A N\ (v(z) = [z€u])

zE€Du x€Dv

[uev] = \/ [u=z] Av(x).

z€Dv

We say an elementof £ is O-closedif p = Op. As an immediate conse-
quence of the definition dfu = v] we have:

Lemma 3.1. For everyu, v € V>, [u=uv] is O-closed.
Lemma 3.2. For u,v € VX and {by}x, C £, [u=v] AV, br = V,[u=

v] A by, ; and
for u, v, € VE andbe L, (\/[u = vi]) A b= \,([u=vk] AD).

Proof. By Theorem 2.2.G5. O

Lemma 3.3. Letu,v € V£. Then

(1) [u=+] = [v=1]
2) [u=u] =1
(3) If x € Duthenu(z) < [z €u].

Proof. (1) is obvious. (2) and (3) are proved by induction on the rank. of
Letz € Du. Since[x=z] = 1 by induction hypothesis,

u(z) < \/ [z=2"] Au(z') < [z €],
z'€Du
and hencefu=u] = 1. 0
Theorem 3.4. For u,v,w € V-,

1) [u=vAv=w] < [u=w]
(2) [u=vAvew] < [ucw]
(B) [u=vAwev] < [weu]
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Proof. (1) We proceed by induction. Assume that, w € V~. By Theo-
rem 2.3.(8),

[u=v] Au(z) < (u(z) = [rev]) ANu(x) < [xrev]
for x € Du. Hence, by using Lemma 3.2,

[u=vAv=w] Au(z) < [v=w] A \/ [x=y] Av(y)

yEDv
<V (lr=y] A [v=w] Av(y))
yEDv
<V (lz=9lr V y=2] A w(z))
yeDv z€Dw
< \/ \/ [x=y Ay=z] ANw(z).
yEDv z€Dw

By using induction hypothesis,

<V [r=2] Aw(2)

z€Dw
< [zew].

Since [u=v A v=w] is O-closed,

[u=vAv=w] < /\ (u(z) = [rew]).

z€Du

Similarly, we have

[u=vAv=w] < /\ (w(z) = [zex]).
z2€D
HenceJu=v Av=w] < [u=w].
(2) and (3) follows from (1) and Lemma 3.2. O

By lattice valued set theory we mean a set theory énaose atomic
formulas are of the forma = v oru € v ; and logical operations arg, Vv,
-, —, Vz, 3z. We extend the definition dfy] in natural way:

[=¢] = =[]

o1 A o] = [e1] A e
[e1V @] = [e1] V [p2
o1 = w2l = [p1] = w2l
[Vzp(z)] = Auevele()]
[Fze()] = Vyeyele(w)]

[===1

2

26
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We denote a formul&p — ¢) — ¢ by Op. Then[Og] = O[¢].
The equality axioms are valid di* :

Theorem 3.5. For any formulap(a) andu, v € V4,

[u=v A p(w)] < e()]-

Proof. If ¢(a) is an atomic formula, then it is immediate from Theorem
3.3 and 3.4. Other cases follows from the fact that v] is O-closed and
Theorem 2.2. ]

Theorem 3.6. For any formulap(a) anduc V*,
(1) Ve(zeuw = ¢(2))] = Asepulren = ¢(2)]

(@) Ba(zeurp@)] = Viepulr € un p(@)]

Proof. (1): [Vz(z € u — ¢(x))] < A,cpulr € u — ()] is obvious.
Now we show(>). By using the fact thafz € u] < \/_,cp, [ = 2], and
Lemma 3.2, Theorem 3.4, we have

( /\ [v'€eu — o(a")]) A [z €]
z'€Du

= ( /\ [v'€u — o(z")]) A [xeu] A \/ [z = 2"]

z'€Du z"€Du

= V (A [eu= p@ Alreu] Afle=2"])

z""€Du z’'€Du
< [e(@)]
Since/\ ,cp,[r€u — ¢(z)] is O-closed, we have
/\ [reu— p(z)]) < [Ve(z € u — (x))].
z€Du
(2): By using[z €u] <\, cp, [z = 2] again,

Breeunp@Nl <\ \ ([e=2Tr[zcunp()])

zeVEL x'€Du

<V Weung@)] 0

z'€Du
Definition 3.1 Restrictionu [ p of uc€ V- by pe L is defined by

{D(u 'p) = {zp| z€Du}
(ulp)(zIp) = V{uw(@') Ap|2'€Du, z[p=2"[p} for z€Du.

If u is of rank< a (i.e.u € V/X), soisu | p, and we have
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Theorem 3.7. If u,z € V£, p,q € £, andpis O-closed (i.ep = Op), then

(1) p<[u=ulp]
() [reulp] =[reu] Ap
Q) (ulg)Ip=ul(pAq).

Proof. We proceed by induction on the rankwf
(1) : ForxeDu,

pAu(z) < (ulp)(zip) Ar=xlp] < [rculp]

@ipein= \  w@)rpAlz=2'=2ip] < e peu].
' €Du, x|p=z'p

Thereforep < [u=wu|p].
(2) : By (1) and Theorem 3.5,

[xeu] Ap < [xeulp].
(<) follows from the fact that” | p = 2’ [ p impliesp < [z =2'] :
[zeutp] = \/ [z=2"Tp] A \V u(@”) Ap

z'€Du z" €Du, x' [p=z'|p
<[zeu] Ap

(3) :D((ulq)p) =D (ul(gAp)), by the induction hypothesis, and
((ulq)Ip) ((z ) Ip) = (ul(aAp)) (z](qgAp))
by using the fact(\/_, (u(z") A g))Ap =V, (u(z’) ANg) Ap) . O
The following axioms of set theory are valid on the unive¥rge
Axiom of extensionality: Vz(x € u <> x€v) = u=v.

Proof. We have[Vz(z € u <+ x € v)] = [u=v] by Theorem 3.6 and the
definition of [u = v]. Hence [Vz(z € u <> z€v) — u=v] = 1. 0

Axiom of pair: Vu,v3z Ve(rx€z <> z=uV r=0).

Proof. Foru,v € V* definez by

{Dz: {u, v}

z(t) =1 forte Dz

Then[zcz] = V,cp. [r=t] A 2(t) = [r=u] V [z=1].
Therefore[Vz(z €z <> x=uVr=v)] = 1. 0

Axiom of union: VudvVz(xev + Jy(ycu Az ey)).
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Proof. Foru € V* definedv by

{DU = UyEDu Dy
v(z) = [Fylyeurrey)].

Then, by Theorem 3.6,

Bylyeunzey)] = \/ [yeu] Afzey]

yEDu

= \/ lyeul Alzey]n \/ [z =2']
y€Du x'e€Dy

= \/ [z=2] N[ €y Ayen]
yEDu, ' €Dy

= [z €]

Definition 3.2 For each set we definei € V£ by

{ng: {t|tex}

() = 1.

7 is called thecheck set associated with For check sets, ¢, we have
. Jr it =y o |1 if zey
[[x—y]]—{o if £y ’ [[‘Tey]]_{() if zdvy.

Definition 3.3 Let

ck(u) PN Vi(teu — t € u A ck(t)).

Then[ck(£)] = 1 for all .

Axiom of infinity: Ju (Fz(zeu) AVe(zeu — Jyeu(zey))).

Proof. & associated with the setof all natural numbers satisfies
[Fr(rew) AVe(zew — Jyew(zey))] = 1.

O
Axiom of power set: VudvVz(x €v < x Cu), wherez Cu &1 Vi(t e
x —teu).
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Proof. Letu € V£, For everyr € V-, definex* by

Dx* = Du
z*(t) = [x CuNntex].
Since
[rcuntea] < [teu] < \/ [t=t],
t'€Du
we have

[rCcuntex] < \/ [t=t' NeCunt ex]
t'eDu
< [teax].

It follows that for everyx € V£ there exists* € V.4 | such thaflz C u] <
[x=2*]. Now we definev by

{Dv = {zeVE, | Dz = Du}
v(x) = [z Cul.

Then

[Vz(zev < zCu)] = 1.

O

Axiom of separation: Vu3v (Vz(z€v <> x€u A o(x))).

Proof. For a givenu € V* definev by

{Dv = Du
v(@) = [reun o(@)]
Then
Vez(zev <> xcun p(x))] =1.

O

We denoted(a € b) by a e b,
Axiom of collection:

Yu (Vw(:L"Eu — Jyp(z,y)) — IVz(reu — Elygmp(x,y))) :
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Proof. Let

p=Me(eeu—3yp(z,y)l = N ([zeu] = \/lo(z,y)])

z€Du Y

It suffices to show that there existsuch that
O
p < [Vz(reu — Jycvp(x,y)].

Sincel is a set, for each € Du there exists an ordinal(x) such that
pAfzeud] <\ [p(=y)].
yeVE

a(x)

Hence, by using the axiom of collection externally, there exists an ordinal
« such that

pAJreu] < \/ [e(z,y)] forall z€Du.

yeVE
Now we defined by
{DU = Vaﬁ
v(y) =1

Then

o o
pAJreu] < \/ [yev A p(z,y)] = [Bycve(x,y)] forall xeDu.
yeDv

Sincep = Op, we have

O
p < [Va(zeu — Iy Evpla,y)].

Axiom of e-induction: Vz (Vy(yex — ¢(y)) — ¢(x)) — Yap(z).

Proof. Letp = [Vz (Vy(y€x — ¢(y)) — ¢(z)]. We provep < [Vap(x)]
= Asevzle(2)] by induction on the rank of. Let = € V£. Sincep <
[¢(y)] for all y € Dz C V£, by induction hypothesis,

pAJyex] < [p(y)] forally € Dz.

Hence, by using = Op, we have

p < [Vy(yex — o(y))].
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It follows thatp < [Vazp(z)]. 0

Zorn's Lemma: Gl(u) A Vo[Chain(v,u) — (Jv € u] — 3z Max(z,u),
where

Gl(u) ng(xEU — xeu)

Chain(v, u) L, vCuAVr,y(z,ycv - xCy V yCx),
Max(z, u) &4 zeuAVe(reuhzCor — z=x).
Proof. Foru € V%, let

= [Gl(u) A Vv(Chain(v,u) — U veu)]
and let U be a maximal subset Bf such that
Ve,yeU(JreuATttex) NycuATt(tey) ] Ap < [zCyVyCz]).
U is not empty. Define by

Dv=U
{v(w) =pAJreunIt(ten)].

Now we prove thap < [Max(|Jv,u)]. Sincep = Op andp A v(x) <
[« € u] for all x € Dv, we havep < [v C u]. Hence, by the definition af,
p < [Chain(v, u)]. Thereforep < [|Jv €u]. Now it suffices to show that

pA [[:Ueu/\Uva]] < [[:ECUU]] for x € Du.

Letz € Duandr = p Az eu A |Jv C z]. Thenr is O-closed, and we
haver < [z =« | r] by Theorem 3.7. Hence [ r € U. In fact, for each
y € U, we have

[yeunIttey) A(zlr)eunIttez|r)|Ap
<[yev] Ar
<[[yCUUC:E]]/\[[x:a:[r]]
<lyczir]
<yczir Vv alrcy].
It follows that

Thereforey < [z CJv]. 0
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Definition 3.4 ¢ is the logical operation defined Kyp PN —O—¢.
Axiom of ¢: VuTwVz(zev < O(xcu)).
Proof. For a givenu e V<, definedv by

{Dv =Du
v(z) = [O(zcu)].

By using Theorem 2.4,
Oaew)] =0 \/ [z=2"]Au()

z’'€Du
< \/ [z=2"] A [O(2' €u)] = [zev].

z'€Du
Hence[Vz(zcv + O(zeu))] = 1. 0

4. Lattice-valued set theory

Now we formulate a set theory dri®, and call itlattice valued set theory
LZFZ .
Atomic symbols olLZFZ are:

(1) variablest,y, z, - - -
(2) predicate constants, €
(3) logical symbols\, v, -, —, V, 3
(4) parentheses (, ).
Formulasof LZFZ are constructed from atomic formulas of the form
x =y orx €y by using the logical symbols.
We denote a sentence — ¢) — ¢ by Ogp.

4.1. Lattice valued logic

Lattice valued logicshortly L, is a logic onC-valued universéd’~. The
rules ofL are given by restrictingK . First we defined-closed formulas
inductively by :

(1) Aformula of the formp — 1 or - is O-closed.

(2) Ifformulasy andy ared-closed, therp A1 andy Vv ) ared-closed.

(3) If a formulap(x) is aOd-closed formula with free variable, then

Vap(z) and3zp(x) ared-closed.
(4) O-closed formulas are only those obtained by (1)—(3).

o, 0, &, -+, o(z),--- are used to denote formulad’; A, I1, A, - - - to
denote finite sequences of formulas, 3/, - - - to denoted-closed formulas
;andI', A, II, A, - - - to denote finite sequences Gfclosed formulas. A
formal expression of the forl = A is called asequent
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Logical axioms : Axioms of L are sequents of the fornp =— ¢.
Structural rules:
Thinning : '=a I'= A
Contraction : pol=A4 I'=A49¢¢
I I A r A A
Interchange : 0%, I — — A,9,9,
Fa¢7¢7H:>A F:>A71/}7(‘p’/1
Cut: F=A4¢ oll=A TI'= Ay ¢ I= A
: Il = A A T = A A

I'= Ao 9,11 = A
il= AA

Logical rules:

= A¢ I'= A7p ol = A o, = A

o = A W, [ = A I'=A¢ I'= A2
TN, T = A oA, = A I''= Ao A

= A3 I = A%

I = AGAY
" ol =A [ —=A I = A, I = Az
' oV, T = A = AoV I = AoV
. =A Y, —= A
VY, I = A

. = Ay ¢,JI1=—= A o, I = A

(o= ), T = A, A I = A, (p—1)
v o), = A I = A, p(a) I' = A, %(a)

Vep(z), I = A I = AVzp(zr) I = A Vap(z)
wheret is any term whereq is a free variable which does
not occur in the lower sequent.
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o(a), = A Pla), = A I' = A, p(t)
Jrp(z), = A Jop(x), ' = A I = A, Jzp(x)

whereq is a free variable which does  wheret is any term
not occur in the lower sequent.

We use the following abbreviations :

def,
peop—= (¢ 2N W @)
Theorem 4.1. The following sequents are provablelin

1) oA (=) =
(2) pA—p =
B) p = —p
(4) =(p V) = (—p A )
() Op = ¢
(6) ~¢ < O~y
(7) VzOp(x) = OVze(x)
(8) (Bp — ) <= (Op — DY) <= (—Op vV Oy)
(9) (Op A Frp(x)) <= Fx(Op A(z));
(o A 20y (z)) == Jz(p A OY(2))
(10) = Op Vv -Op
(11) ((p A BE) = ¥) = ((=¢ A OE) = —p)

4.2. Nonlogical axioms

Nonlogical axioms of.ZFZ are GA1-GA11 from the preceeding section,
which are valid on lattice valued universe:

GAL. Equality YuVv (u=v A p(u) = ¢(v)).
GA2. ExtensionalityVu, v (Vz(z €u <> x €v) = u=0).
GA3. Pairing Vu, v3z (Vz(z €z <> (x=u V x=0))).
The setz satisfying Vz(rx € z <+ (r=u V x =v)) is denoted by
{u,v}.
GA4. Union Yu3z (Vz(z €z < Jycu(xey))).
The setz satisfying Vz(x €z <» Jycu(xcy)) is denoted by Ju.
GAS. Power setvu3z (Vx(z €z < © C u)), where

vCu S Vy(yex — yEu).

The setz satisfying Vz(x €z <+ xCu) is denoted byP(u).
GAG. Infinity Ju (Jz(zcu) AVe(zcu — Jycu(rey))).
GA7. Separationvudv (Vx(z€v <> z€u A ¢(x))).

The set satisfying Vz(x v <> x€u A p(z)) is denoted by

{reulp(r)}.
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GA8. Collection 5
VuTv <Vx(m€u — Jyp(z,y)) = Ve(zeu — Jy € vgo(x,y))).

GA9. e-induction Vz (Vy(y € x — ¢(y)) = ¢(z)) = Vzp(x).
GA10. Zorn Gl(u)AYv (Chain(v, u) — Jv € u) — 3z Max(z, u), where

Gl(u) &L Ve(xr € u—x e u),

Chain(v, u) ety vCu AV, y(r,yev - xCyVyCr),

Max(z, u) &L e uANVz(reuNzCx — 2z =x).

GAl1l. Axiom of § VuIzVi(tez +» O(tew)).
The setz satisfyingvt(t € z <» O(t €u)) is denoted bydu.

We say that a formula is global, if (¢ — Oy), and a set is global
(Gl(u)), if z€w is global for allz.

4.3. Well-founded relations ibZFZ

Any formula with two free variables determines a binary relation. For a
binary relationA(z, y), we use the following abbreviations:

2 € Dom A &L yA(z,y), x € RgeA gt yA(y, x),

z e FldA €L 3y(A(z, y) Vv Ay, 7).

A binary relation< is said to bevell-foundedf the following conditions
are satisfied:
WF1 Vz,y—(z <y Ay < x)
WF2 Vz[z e Fld(<) AVy(y< z — ¢(y)) = ¢(x)] = Ve(zeFld(<) —
p(x))
WF3 VadyVz(z < x — z€y)
In view of the axiom GA9 (z-inductiog), it is clear that the relatios is

itself a well-founded relation, and sods
Singlton{z} and ordered paifz, y) are defined as usual:

(o} €z, 2}, (2,9) Y ({2}, {2, 9}}

sothatzre{y} < z=yand(z,y)=(2',y') < z=2' Ay=y' hold.
We say abinary relatioR (z, y) isglobal, if Vz, y(F(x,y) = OF (z,y));
and a global relatiod’(x, y) is functional if

Vo, y,y (F(z,y) AN F(z,y) = y=y).



412 S. Titani

For a global functional relatiod’, we write F'(x) =y instead forF'(x, y).
If F'is a global functional relation and is a well-founded relation, then
{{z,y) | F(x,y) AN O(x < u)} is denoted by, for each seti € Fld(<).
F., is aset by WF3, GAL1Y) and GA8(Collection).

The following theorem can be proved in the usual way, by using the fact
that

(y <z — Op(y)) <= (O(y < z) = Dp(y)).

Theorem 4.2 (Recursion Principle)Let< be a well-founded relation and
H be a global functional relation such thst:3y H (x, y). Then there exists
a unique global functional relatio” such that

Dom F'=FIld(<) A Vz (z € Fld(<) — (F(x)=H(F<3))) -

Definition 4.1 We define the formul®rd(«) (“« is an ordinal”) inLZFZ
as follows:

Tr(«) ety VB, v(BeaNyeES — yEQ),

Ord(e) €& Gl(a) A Tr(a) AVB(BEa — GI(B) A Tr(3)),

whereGl(a) 4L va(Bea — 5 € a).

As an immediate consequence of the above definition, we have:

Lemma 4.3.

(1) Ord(a) A Bea — Ord(B)
(2) CL(X) AVa(zeX — Ord(x)) — Ord(JX)

Definition 4.2 A global well-founded relation is called awell-ordering
on a sety if

(F1d(<) = u) A (< is transitivg A (< is extensional
where

< is transitive<<% V,y, z[(z<y) A (y < z) = (z < 2)]

< is extensional®s. Ve, ylx,yeu AVz(z<x <> 2<y) = x = y|.

Theorem 4.4. Every global set can be well-ordered, i.e. for every global
setu, there exists a global well-ordering relatior on w.

Proof. Supposésl(u), and let

p def {{v,w) | Gl(v) A Gl(w) Av C u A (w is a well-ordering on)},



A lattice-valued set theory 413

and let(v, w)< (v',w') mean thatw = w'[v andv is an initial w’-section
of v/, i.e.

(v,w)=< (v, w'") PR (vCv') A (w=w"N(vxv)) A (vx (¥ —v) Cw).

If (v, w)e P, sinceGl(v) A ==(y€v) = y<v, we have
(v,w)< ", W) ANxev A (y,x)ew = yew.
Let
TE{ICP | Vpq(p,gel —p=qVp=qV q=p)
AVD,q(pel Ng=<p — q€l)}.
Then
(T cOAVLT(I, el »IcI'vIcl)=|JT T

By using GA10, there exists a maximil € Z. Let

v = U{U | (v, w) e I}, wo= U{w | (v, w) e In}.

Then (vp, wp) € P. By maximality of I, we haveVz—(z € u — wvp)).
Vz(z€u — x€vy V =(zE1vp)). It follows thatu = vy. 0

Theorem 4.5. If uis aglobal setandk is a global well-ordering relation
onu, then(u, <) is isomorphic to an ordinala, €), i.e. there existp such
that

(pru— a) A plu) =a A
Va,ylz,y € u— (x <y < p(a) € p(y)) N (x =y < plz) = p(y))]-
Proof. We define by recursion ir
p(x) = o) +1 |y < z}.
It is easy to see by WF24-induction) thatvz(z € u — Ord(p(x)), and
Ve[zeu = Vt(tep(z) — Ty < z(t = p(y)))]-

Seta = {p(z) | x€u}. ThenOrd(«a), and(u, <) is isomorphic to(c, €).
O

We callp(x) therank ofz.
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4.4. Check sets

We define the notion of check seti@FZ , by g-recursion:

ck(z) L (tex “ tg:z/\ck(t)) .

That is, set
H(u,v) €5 v={t| (t,t) cu}.

H is a global functional relation such thét3vH (u, v). Let < beg. < is
a global well founded relation. Sinte:(x € F1d(<)), there exists a unique
global functional relatior (x, y) such that

Vz [x€Dom(C) A C(x)=H(C<:)],
by recursion principle. If a set satisfiesC'(x, ) then we say: is acheck
setand writeck(z). i.e.
ck(z) €L 2 =C(a).
The class of check sets will be denotediby i.e.

zew &L ck(x).

Theorem 4.6. The followings are provable ibZFZ .
O
(1) yeC(z) « (y € x) Ack(y)

) ck(z) & Vijter o (t € x A ck(t))]
(3) C(x)=CC(x)

Proof. (1) and (2) are immediate results of definition(of

(3) : yECC(x)b)ng(w) A ck(y)
<:>yg:13 A ck(y)
= yel(x) 0

4.5. The modelW of ZFC in LZFZ

An interpretation oZFC in LZFZ is obtained by relativizing the range of
guantifiers to check sets. Namely “the cl&Esof check sets is a model of
ZFC " is provable inLZFZ .

We denote quantifiers relativized on check sety/By 3", i.e.

YWap(z) €5 Va(ck(z) — ¢(z))

Map(z) €L Iz(ck(z) A p(2)).
For a formulap of LZFZ , "V is the formula obtained from by replacing
all quantifiersvz, 3z, by V"z, 3%z, respectively.
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Theorem 4.7. The following (1)—(9) are provable itZFZ , for any formula
@,

(1) VWo,y(zey — zey)

2) YWy aoW (w1, an) = 0P (21,0 2]
3) VWa(WWy(yex — ¢ (y)) = @ (2)) = VW (2)
(4) Va[Ord(a) < ck(a) A Ord™ (a)

(5) ck(D), wheref) is the empty set.

(6) V"2, ylck({z,y}) A ck(Uz) A ck({z€x | Dp(2))})]
(7) The set of natural numbetsis defined as follows:

Suc(y) PLN (y=0 Vv Fz(y=2z+1)), where z + 1 = 2z U {z},
HSuc(y &1, (Suc(y) AVz(z€y — Suc(z)), and

w {y : HSuc(y)}.

ThenOrd(w) AVWnew(n =0 v 3IVmen(n =m +1)).

(8) If uis aglobal set, then there exists an ordinat On with a bijection
p:u— a, wherea € On &L Ord(a), i.e.

WacOndp | pru—aApu)=a
A Ve, y(zyeuh ple)=ply) = r=yl.

Proof. (1): It follows from
ck(x) A ck(y) Az €y <= 3t(ck(z) A ck(y) A ck(t) Az =y Atey).

(2): By induction on complexity op. If ¢ has no logical symbol, thep is

of the formxz =y or z €y, and hence> — Oy by (1). Now we prove only
the case thap is of the form3xvy(x, z1, - - -, z,), Since the other cases are
similar. Letck(x1) A -+ - A ck(xy,).

ww(a:,xl, <o) Aek(x) = O (ck(x) A ww(m‘,xl, e ,mn)) ,
by using induction hypothesis. Hence,

Elwxww(xa T1,- - 7$n) — D3W$¢W($7[Ij‘17 Tt 7:1:71)-
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(3): Letyy(x) be the formulak(x) — " (x). Then, using=-induction, we
have

VWalyy ez — " (y) = o (2)]
— Va(Vy(yex — P(y)) = ()]
= Vap(x).

(4): By e-induction.
(5): ck() follows from:

rel) = ~(z=ux)

:>a:g@/\ck(a:).

(6) ck({x,y}) : Assumeck(x) A ck(y). Then we have

ze{z,y} < (z=zV z=y)

= ck(z) Az e {z,9}).

zGUx = Jtex(zet)

= Jt[ck(t) /\tngzet]
O
:>ck(z)/\z€Ux.

te{ze€x | Op(z)} = ck(t) At gz A Oy(t)
— ck(t) Ate{zex | Op(t)).

(7): w is a set by GA6 (Infinity). Let)(x) be the formula

:L‘ch—)(:k(:n)/\xgw.
Now we provevy(ycx — ¢(y)) — ¢ (x): We have
rew= =0V Iz(z=2+1), 2 =0 — ¢(z) and
Vy(lyex - Y(y)) N\eewhe=2z+1 :>z€:n/\ck(z)/\zgw
— ck(z+ DA (24 1) ew
:>ck(:c)/\:cgw.

Henceck(w).
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It is easy to se&®y(y cw — Tr(y) A (y Cw)), by €-induction, where

Tr(y) &t Vs, t(seyNntes — tey). HenceTr(w) AVy(y ew — Tr(y))
andOrd(w). It is obvious that

YWnewn=0 Vv IVmen(n=m+1)).

(8): By Theorem 4.4, there exists a global well-ordering relatioon w.
Definep(z) = U{p(y) +1 | y < =}. By Theorem 4.5p is an isomorphism
between(u, <) and(a, €), wherea = {p(x) | x €u}. 0

Theorem 4.8 (Interpretation of ZFC ). If ¢ is a theorem oZFC , then
oW is provable inLZFZ .

Proof. For a formulap(zy, -, z,) of ZFC ,

VW, -, xn(npw — Dch)
is provable by Theorem 4.7(2), hence,
val’ ) "L‘H(QOW \ _'SOW)

is provable inLZFZ . Now it suffices to show that for each nonlogical axiom
Aof ZFC , AW is provable inLZFZ .

(Equality axiom" and (Extensionality"”" are obvious.
(Pairing"V': By Theorem 4.7(6),

ck(u) A ck(v) = ck({u, v}) AVVa(z € {u,v} o z=uVz =)
(Union)V: Similarly.
(Power set”: We havevWu, z[z € C(P(u)) + VWt(t € x — t € u)].
(€ -inductionV': By Theorem 4.7(3).

(Separatiop’V': If ck(u), by Theorem 4.7(6)k({z € u | ¢"V(z)}) and
vWu, z [z ef{zeul V(@) o zeun ch(x)] .
(Collection'V: Supposek(u) AYWz € um3"yoV(x, y). By GA8(Collection),
EIviEuElygv(ck(y) Ao (z,9)).

Sinceygv ANck(y) — yeC(v) Ack(C(v)), we have
oWz eudy evpW(z, y).
(Infinity)"V': By Theorem 4.7(7).
(Choice", i.e. VVuaWvWe cufz # 0 — Iy e z((x, y) € )], where

x # ) stands foB"y(y € 2). By Theorem 4.6(8). there exists an ordinal
and a bijectiorp: | u— «. Definef:u—|Ju by

f@)=p (o) | tea}).
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4.6. Lattice-valued modél’”M in W

The power seP(1) of 1 (= {(}) is a global set and a complete lattice with
respect to the inclusioa. We write < instead ofC. Then(P(1),<) is a
comlpete lattice. Let

(p—q) ={zel|0ep—0eq}, —p={zel|-(0ep)}

— is the basic implication and is the corresponding negation &{1).
For a sentence, let

def
o] = {tel| ¢}

|| is an element ofP(1), andy <= 0 € |p|. Thus, the complete lattice
P(1) represents the truth value setldfFZ .
The relation< defined by

a%ﬂga,ﬁGOn ANa€ef

is a well founded relation ariflld(<) = On. Thus, the induction on € On
is justified inLZFZ . Now we construct thé>(1)-valued sheaf model by
induction ona € On as follows:

WI'W = {u | 3p€azDuc W] (GI(Du) A u:Du—P(1))}

wPO — U wPm
a€On

onwWPW the atomic relatior= ande are interpreted as

[e=y]l= A @O = Tteyhr A (wt) = [t €a])

teDx teDy

[eeyl =\ [e=t] Ayt

teDy

Logical operations\, v, —, —,V, J are interpreted as the correspondent
operations or?(1). Then every sentence dii”(!) has its truth value in
P(1), and we have

Theorem 4.9. For every sentence, “ (0 € [¢]) <— ¢"is provable in
LZFZ .

Proof. We prove that there exists a global functional relatfosuch that:
(i) Dom F=W7PM and
(ii) for every formulay(z1, - - -, z,) of LZFZ on WP,

[[(p(l’l, e ',:Zin)]] - ‘@(F(x1)7 T ,F(an))|
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Forz € WP, defineF(z) by
F(x)={F(t)|te Dz AN 0€]t € x]}.
Then we have:

(1) 0€ [z=y] < F(z)=F(y),
0€[zey] < F(z)eF(y).
(2) Yudz(F(x)=u).
Proof:  Let?(u) €% 3u(z e WPW A u=F(z)). Then by using
GAS8 (Collection) we have
Vo(veu — ¥(v)) = Ja[Vo(veu — Jye WD (v = F(y))).
Let
{Dx = ng(l)
z(y) = {tel| F(y)cu}
Thenz c WP andF(x) = u. HenceYu3z(F(z) =u).
(3) 0e [[So(xla T vxn)ﬂ — @(F(xl)’ T ,F(I‘n))
Proof: We proceed by induction on the complexity @f If ¢ is
atomic, then it is (1). lfp is of the formep; V a2, ©1 — @2, 1 OF
O, then it follows from induction hypothesis. #f(z1, - - -, x,) IS
of the formVz(z, x1, - - -, ), then, by using (2),

0€ ] = 0e A\ a1, -, z0)]
— V$(¢(F($)a F(xl)v T 7F(xn))
— VZi/J(Zv F(:El)a U ’F(:L'n))
Similarly,
0€ [Fey(z, 21, - 2p)] <= F2(2, F(21),- -+, F(xn)).

4.7. “Completeness” oEZFZ

Now we will prove inLZFZ thatP(1) is lattice-isomorphic to a complete
lattice H which is a check set. (Theorem 4.10). As mentioned in the intro-
duction, we mean by “a sentengeof LZFZ is valid” that

“[¢] = 1 on V'~ for all complete lattice” is provable inZFC .

Then the “completeness” 6ZFZ in the sense that every valid sentense
of LZFZ is provable inLZFZ :

ZFC F “[¢] = 1 on V'~ for all complete latticet” = LZFZ F ¢
can be proved (Theorem 4.11).
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Theorem 4.10. There exists a complete latticH which is a check set and
a lattice-isomorphism: P (1) — H.

Proof. SinceP(1) is a global set, there exists a check Betogether with
a bijectionp:P(1) — H, by Theorem 4.7(8). Define operatiofs \/ on H

as follows:
ANA=p( @), VA=olJr @)

acA acA

C(1,if pa) € pA()
ab= {o, f (o1 () C 1 (8)

for A C H such thatk(A), anda,b € H. Thenp is a lattice-isomorphism.
0

Theorem 4.11 (“Completeness” of LZFZ). If a sentencey is valid in
every lattice-valued universe, theris provable inLZFZ :

ZFC I- “[p] = 1 onV~ for all complete latticel” = LZFZ ¢

Proof. Suppose that a sentenges valid in every lattice valued universe.
This means that[{o] = 1 on every lattice valued universe”is provable in our
external universe aZFC. SinceW is isomorphic td/, (y is valid in every
lattice valued universé” is provable i ZFZ . Let H ¢ W be a complete
lattice with the basic implication which is lattice-isomorphicRe1). That

is, there exists a lattice-isomorphigmP (1) — H. Construct theé{ -valued
universeW in W. Then[y¢] = 1 on W, It follows that[¢] = 1 on
WP, andy is provable inLZFZ by Theorem 4.9. 0

By Theorem 4.11, a sentengeholds inLZFZ iff [¢] = 1, on every
lattice valued univers&~. Therefore, in order to discusZFZ , it suffices
to discuss the set theory on lattice valued universe.

4.8. Another implication

Let —. be any implication defined in the language . @FZ . We define the
corresponding=, ande , by induction:

U =y v<d:ef>Vx(x€u — TELW) AVZ(TEV —4 TE Lu)
UE LU ey Jz(rev Au =, x).

If we assume P (1) is a cHa”, i.e.”P(1) is distributive”, inLZFZ , then
we have the distributive law of the logic:

o A Jzp(z) +— Jx(p A (x))
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In fact: let[] be the truth value ap in W7 () then the following sentences
are provable inLZFZ .
e A Jzp(x) <> 0 € [ A Jzp(x)]
woefeln \/ @]

zeVPO)

c0e \/ [prv()]

zeVPD)
< 0 € [Fz(p A ()]
< Jz(p A (2))

It follows that the intuitionistic implicatior—; can be defined by

(p—=19) €5 0 | JlueP(1) | o A (0€u) — v},
The corresponding-; ande; are defined by induction ibZFZ :

def
u=rv <= Va(xeu—yxew) AVe(z v —1x€u)
f
UETV PN Jr(zev Au=rx).
Then we have:

Theorem 4.12. Itis provable inLZFZ +“ P(1)is acHa” that the settheory
in (—1, =1, €1) is an intuitionistic set theory. that is,

o A Jzp(z) +— (e A(x))
and axioms of intuitionistic set theory are provableLiiFZ .

Proof. For each axiomp of intuitionistic set theory]y] = 1 on vPQ),
cf. [5] O
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