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Abstract. A lattice-valued set theory is formulated by introducing the log-
ical implication→ which represents the order relation on the lattice.

1. Introduction

The aim of this paper is to formulate a set theory on a lattice valued universe,
by introducing a natural form of implication. For a given complete latticeL,
the lattice valued universeV L is constructed in the same way as the Boolean
valued universe or Heyting valued universe.

Generally, an operator→∗ on a lattice is called animplicationif it satisfies
the following conditions :

(1) (a→∗ b) = 1 iff a 6 b
(2) a ∧ (a→∗ b) 6 b.

For example, the operator→I on a complete Heyting algebra(cHa)Ω, de-
fined by

(a→I b) =
∨
{c∈Ω | a ∧ c 6 b},

is an implication, which is an interpretation of intuitionistic implication. The
operator→Q on a orthomodular latticeQ, defined by

(a→Q b) = a⊥ ∨ (a ∧ b),
is also an implication. Implication on a lattice is not necessarily unique. In
fact, every complete lattice has at least the implication→ defined by

(a→ b) =
{

1 if a 6 b
0 otherwise,
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which is the strongest implication, in the sense that

(a→ b) 6 (a→∗ b) for any implication→∗ .

We call the strongest implication thebasic implication. The basic implication
represents the order relation6 on the lattice.

In a sequentΓ =⇒ ∆ of Gentzen’s logical system LK or LJ,=⇒ is a
metamathematical implication, which is interpreted as the basic implication
on a lattice. That is, the metamathematical implication=⇒ is represented
by the lattice order on the Lindenbaum algebra, and hence by the basic
implication on the Lindenbaum algebra.

Now we introduce the logical operator→which corresponds to the basic
implication on the Lindenbaum algebra, and call it also thebasic implica-
tion. By introducing the logical basic implication→, we can formalize the
metamathematics of the theory of lattice valued sets.

Equality onV L has a close relation to implication. For example, ifΩ
is a complete Heyting algebra (cHA), the equality=I and the membership
relation∈I of the intuitionistic set theory onV Ω are defined so that

u=I v↔I ∀x(x∈Iu↔I x∈Iv) and u∈Iv↔I ∃x(u=I x ∧ x∈Iv)

hold onV Ω. That is, the set theory with→I,=I,∈I as its implication, equality
and membership relation on the Heyting valued universeV Ω is an intuition-
istic set theory.

In [5], we extended the intuitionistic set theory by introducing the basic
implication→ besides the regular intuitionistic implication→I, and showed
that the metamathematics of the set theory can be discussed in itself. In this
paper, we generalize the result of [5] to lattice valued set theory.

Now we fix a universeV of ZFC as our standpoint. That is, we assume
that our metamathematics isZFC. Let L be any complete lattice in the
universeV , andV L be theL-valued universe constructed inV . Let→ be
the basic implication onL, and¬ be the complement corresponding to the
basic implication :

¬a = (a→ 0).

Our lattice-valued set theory( LZFZ ) is a set theory onV L with the
basic implication→ and the corresponding negation¬. The last letter Z in
LZFZ means Zorn’s lemma.

Since the order relation onL is expressed by the logical operator→ in
LZFZ , we can express properties of the latticeL in the language ofLZFZ .

Here we denote(1→ a) by 2a, that is,

2a =
{

1 if a = 1
0 if a 6= 1.

An elementa of L is said to be2-closedif 2a = a.



A lattice-valued set theory 397

In the same way as the case of Boolean valued universe or Heyting valued
universe, the external universeV can be embedded inV L as follows: For
each setu in our external universeV we defineǔ∈V L by{Dǔ = {x̌ | x∈u}

ǔ(x̌) = 1.

Then for setsu, v∈V , [[ǔ = v̌]] and[[ǔ∈ v̌]] are2-closed and

u = v ⇐⇒ [[ǔ = v̌]] = 1 ; u∈v ⇐⇒ [[ǔ∈ v̌]] = 1.

A set in V L of the form ǔ is called acheck set. The subclasšV of V L
consisting of all check sets is a copy ofV .

The introduction of the basic implication enables us to express the sen-
tence “u is a check set”, denoted byck(u), in the language of the set theory
LZFZ :

ck(u)⇐⇒ ∀t (t∈u↔ 2(t ∈ u) ∧ ck(u)) .

This means that we can construct a copy of the universeV , L, and hence a
copy ofV L in LZFZ .

Now we say that “a sentence holds” if the sentence is provable in our
metamathematicsZFC. So, for a sentenceϕ of LZFZ , we mean by “ϕ is
valid on lattice valued universe” that

“ [[ϕ]] = 1 onV L for all complete latticeL” is provable inZFC.

Then we prove the “completeness” ofLZFZ in the sense that every valid
sentense ofLZFZ is provable inLZFZ :

ZFC ` “ [[ϕ]] = 1 onV L for all complete latticeL” =⇒ LZFZ ` ϕ.
That is, we have the equiprovability :

LZFZ ` ϕ ⇐⇒ ZFC ` “ [[ϕ]] = 1 onV L for all complete latticeL”,

and we can see thatLZFZ is a set theory with double structure : one is the
structure of theory ofL-valued sets, and the other is the structure ofZFC
on the external universeV . In other words,LZFZ is a set theory with an
expression of its metamathematics in itself.

The sets of natural numbers, rational numbers, and real numbers, and
also ordinals are defined in the set theoryLZFZ , and they are all check sets.

If we introduce another implication→∗ in LZFZ , then the corresponding
equality=∗ and the membership relation∈∗ can be defined inLZFZ by∈-
induction:

u=∗ v
def⇐⇒ ∀x(x∈u→∗ x∈∗v) ∧ ∀x(x∈v →∗ x∈∗u) ;

u∈∗v
def⇐⇒ ∃x(u=∗x ∧ x∈v).
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Then we have

u=∗ v ⇐⇒ ∀x(x∈∗u←→∗ x∈∗v).

In the set theoryLZFZ on V Ω, whereΩ is a cHa, we can express the
sentence “P(1) is a cHa”, which holds onV Ω, and define the intuitionistic
implication→I in the language ofLZFZ by

ϕ→I ψ
def⇐⇒ 0 ∈ {u∈P(1) | ϕ ∧ (0∈u)→ ψ}.

Thus,LZFZ +“P(1) is a cHa” is an extension of intuitionistic set theory.
That is, axioms of intuitionistic set theory with→I as its implication and with
=I,∈I as equality and membership relation, are provable inLZFZ +“P(1)
is a cHa”.

Let →∗ be any implication. As for check sets, the weak equality=∗
and the corresponding membership relation∈ ∗ are identical with= and∈,
respectively:

ǔ=∗ v̌ ⇐⇒ ǔ= v̌ ; ǔ∈∗v̌ ⇐⇒ ǔ∈ v̌.

It follows that natural numbers, rational numbers which are defined in the set
theory with→∗,=∗,∈∗ as its implication, equality and membership relation
coincide with those defined inLZFZ , i.e. they are check sets.

We will discuss numbers inLZFZ in the sequel paper.

2. Complete lattices

LetL be a complete lattice. For a subset{aα}α of a complete latticeL, the
least upper bound of{aα}α is denoted by

∨
α aα, and the greatest lower

bound of{aα}α is denoted by
∧

α aα. The smallest element and the largest
element ofL are denoted by 0 and 1, respectively.

Define the operator→ onL by

(a→ b) =
{

1 if a 6 b
0 otherwise.

→ is an implication, i.e,
I1 : (a→ b) = 1 iff a 6 b
I2 : a ∧ (a→ b) 6 b.

We call→ the basic implicationonL. The complement corresponding to
→ is defined by

¬a = (a→ 0)
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Theorem 2.1. For all elementsa, b ofL,
N1 :¬0 = 1, ¬1 = 0
N2 : a ∧ ¬a = 0
N3 : a 6 ¬¬a
N4 :¬(a ∨ b) = ¬a ∧ ¬b

Definition 2.1 Here we denote the formula(1→ a) by 2a, that is,

2a =
{

1 if a = 1
0 if a 6= 1.

This operator2 is called thestandard globalization.

Theorem 2.2. For all elementsa, b, ak, bk, ck (k∈K) ofL,
G1 : 2a 6 a
G2 :¬a = 2¬a
G3 :

∧
k 2ak 6 2

∧
k ak

G4 : If 2a 6 b, then2a 6 2b
G5 : 2a ∧∨

k bk =
∨

k(2a ∧ bk) ; a ∧∨
k 2bk =

∨
k(a ∧2bk) ;

2a ∨∧
k bk =

∧
k(2a ∨ bk) ; a ∨∧

k 2bk =
∧

k(a ∨2bk)
G6 : 2a ∨ ¬2a = 1
G7 : If a ∧2c 6 b, then¬b ∧2c 6 ¬a.
G8 : (a→ b) =

∨{c∈L | c = 2c, a ∧ c 6 b}
The following theorem follows from I1–I2, N1–N4 and G1–G8.

Theorem 2.3. Leta, b ∈ L and{ak}k∈K , {bk}k∈K ⊂ L. Then

(1) If a 6 b then2a 6 2b
(2) 2(

∧
k ak) =

∧
k 2ak

(3) 2a = 22a
(4)

∧
k 2ak = 2

∧
k 2ak

(5)
∨

k 2ak = 2
∨

k 2ak

(6) 2(a→ b) = (a→ b).
(7) (a→ b) 6 (¬b→ ¬a)
(8) If 2a ∧ b 6 c then2a 6 (b→ c)

We denote¬2¬ by ♦. Then we have

Theorem 2.4. Leta, b ∈ L and{ak}k∈K⊂L.

(1) a 6 ♦a
(2) If a 6 2b then♦a 6 2b
(3) ♦

∨
k ak =

∨
k ♦ak

(4) ♦(2a ∧ b) 6 2a ∧ ♦b
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3. L-valued universeV L

LetL be a complete lattice with the basic implication→ and the correspond-
ing negation¬. L-valued universeV L is constructed by induction:

V L
α = {u | ∃β<α ∃Du⊂V L

β (u : Du→ L)}
V L =

⋃
α∈On

V L
α

The leastα such thatu∈V L
α is called therank of u. Foru, v∈V L, [[u=v]]

and[[u∈v]] are defined by induction on the rank ofu, v.

[[u=v]] =
∧

x∈Du

(u(x)→ [[x∈v]]) ∧
∧

x∈Dv

(v(x)→ [[x∈u]])

[[u∈v]] =
∨

x∈Dv

[[u=x]] ∧ v(x).

We say an elementp of L is 2-closedif p = 2p. As an immediate conse-
quence of the definition of[[u = v]] we have:

Lemma 3.1. For everyu, v∈V L, [[u=v]] is 2-closed.

Lemma 3.2. For u, v ∈ V L and{bk}k ⊂ L, [[u= v]] ∧ ∨
k bk =

∨
k[[u=

v]] ∧ bk ; and
for u, vk∈V L andb∈L, (

∨
k[[u = vk]]) ∧ b =

∨
k([[u = vk]] ∧ b).

Proof. By Theorem 2.2.G5. ut
Lemma 3.3. Letu, v ∈ V L. Then

(1) [[u=v]] = [[v=u]]
(2) [[u=u]] = 1
(3) If x ∈ Du thenu(x) ≤ [[x∈u]].

Proof. (1) is obvious. (2) and (3) are proved by induction on the rank ofu.
Let x ∈ Du. Since[[x=x]] = 1 by induction hypothesis,

u(x) ≤
∨

x′∈Du

[[x=x′]] ∧ u(x′) 6 [[x∈u]],

and hence,[[u=u]] = 1. ut
Theorem 3.4. For u, v, w ∈ V L,

(1) [[u=v ∧ v=w]] ≤ [[u=w]]
(2) [[u=v ∧ v∈w]] ≤ [[u∈w]]
(3) [[u=v ∧ w∈v]] ≤ [[w∈u]]
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Proof. (1) We proceed by induction. Assume thatu, v, w ∈ V L
α . By Theo-

rem 2.3.(8),

[[u=v]] ∧ u(x) 6 (u(x)→ [[x∈v]]) ∧ u(x) 6 [[x∈v]]
for x ∈ Du. Hence, by using Lemma 3.2,

[[u=v ∧ v=w]] ∧ u(x) 6 [[v=w]] ∧
∨

y∈Dv

[[x=y]] ∧ v(y)

6
∨

y∈Dv

([[x=y]] ∧ [[v=w]] ∧ v(y))

6
∨

y∈Dv

([[x=y]] ∧
∨

z∈Dw

[[y=z]] ∧ w(z))

6
∨

y∈Dv

∨
z∈Dw

[[x=y ∧ y=z]] ∧ w(z).

By using induction hypothesis,

6
∨

z∈Dw

[[x=z]] ∧ w(z)

6 [[x∈w]].

Since [[u=v ∧ v=w]] is 2-closed,

[[u=v ∧ v=w]] 6
∧

x∈Du

(u(x)→ [[x∈w]]).

Similarly, we have

[[u=v ∧ v=w]] 6
∧
z∈D

(w(z)→ [[z∈x]]).

Hence,[[u=v ∧ v=w]] 6 [[u=w]].
(2) and (3) follows from (1) and Lemma 3.2. ut
By lattice valued set theory we mean a set theory on VL whose atomic

formulas are of the formu = v or u ∈ v ; and logical operations are∧, ∨,
¬,→, ∀x, ∃x. We extend the definition of[[ϕ]] in natural way:

[[¬ϕ]] = ¬[[ϕ]]
[[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∧ [[ϕ2]]
[[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∨ [[ϕ2]]
[[ϕ1 → ϕ2]] = [[ϕ1]]→ [[ϕ2]]
[[∀xϕ(x)]] =

∧
u∈V L [[ϕ(u)]]

[[∃xϕ(x)]] =
∨

u∈V L [[ϕ(u)]]



402 S. Titani

We denote a formula(ϕ→ ϕ)→ ϕ by 2ϕ. Then[[2ϕ]] = 2[[ϕ]].
The equality axioms are valid onV L :

Theorem 3.5. For any formulaϕ(a) andu, v ∈ V L,

[[u=v ∧ ϕ(u)]] 6 [[ϕ(v)]].

Proof. If ϕ(a) is an atomic formula, then it is immediate from Theorem
3.3 and 3.4. Other cases follows from the fact that[[u = v]] is 2-closed and
Theorem 2.2. ut
Theorem 3.6. For any formulaϕ(a) andu∈V L,

(1) [[∀x(x∈u→ ϕ(x))]] =
∧

x∈Du[[x∈u→ ϕ(x)]]

(2) [[∃x(x∈u ∧ ϕ(x))]] =
∨

x∈Du[[x ∈ u ∧ ϕ(x)]]

Proof. (1): [[∀x(x ∈ u → ϕ(x))]] 6
∧

x∈Du[[x ∈ u → ϕ(x)]] is obvious.
Now we show(≥). By using the fact that[[x∈u]] 6

∨
x′∈Du[[x = x′]], and

Lemma 3.2, Theorem 3.4, we have

(
∧

x′∈Du

[[x′∈u→ ϕ(x′)]]) ∧ [[x∈u]]

= (
∧

x′∈Du

[[x′∈u→ ϕ(x′)]]) ∧ [[x∈u]] ∧
∨

x′′∈Du

[[x = x′′]]

=
∨

x′′∈Du

(
∧

x′∈Du

[[x′∈u→ ϕ(x′)]] ∧ [[x∈u]] ∧ [[x=x′′]])

6 [[ϕ(x)]]

Since
∧

x∈Du[[x∈u→ ϕ(x)]] is 2-closed, we have
∧

x∈Du

[[x∈u→ ϕ(x)]]) 6 [[∀x(x ∈ u→ ϕ(x))]].

(2): By using[[x∈u]] 6
∨

x∈Du[[x = x′]] again,

[[∃x(x∈u ∧ ϕ(x))]] 6
∨

x∈V L

∨
x′∈Du

([[x=x′]] ∧ [[x∈u ∧ ϕ(x)]])

6
∨

x′∈Du

[[x′∈u ∧ ϕ(x′)]]. ut

Definition 3.1 Restrictionu�p of u∈V L by p∈L is defined by{D(u�p) = {x�p | x∈Du}
(u�p)(x�p) =

∨{u(x′) ∧ p | x′∈Du, x�p = x′ �p} for x∈Du.
If u is of rank6 α ( i.e.u ∈ V L

α ), so isu � p, and we have
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Theorem 3.7. If u, x ∈ V L, p, q ∈ L, andp is 2-closed (i.e,p = 2p), then

(1) p 6 [[u = u�p]]
(2) [[x∈u�p]] = [[x∈u]] ∧ p
(3) (u�q)�p = u�(p ∧ q).

Proof. We proceed by induction on the rank ofu,

(1) : Forx∈Du,

p ∧ u(x) 6 (u�p)(x�p) ∧ [[x=x�p]] 6 [[x∈u�p]]
(u�p)(x�p) =

∨
x′∈Du, x�p=x′�p

u(x′) ∧ p ∧ [[x=x′ =x�p]] 6 [[x�p∈u]].

Therefore,p ≤ [[u=u�p]].
(2) : By (1) and Theorem 3.5,

[[x∈u]] ∧ p 6 [[x∈u�p]].

(6) follows from the fact thatx′′ �p = x′ �p impliesp 6 [[x′′ =x′]] :

[[x∈u�p]] =
∨

x′∈Du

[[x=x′ �p]] ∧
∨

x′′∈Du, x′′�p=x′�p
u(x′′) ∧ p

6 [[x∈u]] ∧ p

(3) :D ((u�q)�p) = D (u�(q ∧ p)), by the induction hypothesis, and

((u�q)�p) ((x�q)�p) = (u�(q ∧ p)) (x�(q ∧ p))
by using the fact :(

∨
x′(u(x′) ∧ q))∧p =

∨
x′ (u(x′) ∧ q) ∧ p) . ut

The following axioms of set theory are valid on the universeV L.

Axiom of extensionality: ∀x(x∈u↔ x∈v)→ u=v.

Proof. We have[[∀x(x∈ u ↔ x∈ v)]] = [[u= v]] by Theorem 3.6 and the
definition of[[u = v]]. Hence,[[∀x(x∈u↔ x∈v)→ u=v]] = 1. ut
Axiom of pair: ∀u, v∃z ∀x(x∈z ↔ x=u ∨ x=v).

Proof. Foru, v ∈ V L definez by{Dz = {u, v}
z(t) = 1 for t∈Dz

Then[[x∈z]] =
∨

t∈Dz[[x= t]] ∧ z(t) = [[x=u]] ∨ [[x=v]].
Therefore,[[∀x(x∈z ↔ x=u ∨ x=v)]] = 1. ut
Axiom of union: ∀u∃v∀x(x∈v ↔ ∃y(y∈u ∧ x∈y)).
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Proof. Foru ∈ V L definedv by

{Dv =
⋃

y∈DuDy
v(x) = [[∃y(y∈u ∧ x∈y)]].

Then, by Theorem 3.6,

[[∃y(y∈u ∧ x∈y)]] =
∨

y∈Du

[[y∈u]] ∧ [[x∈y]]

=
∨

y∈Du

[[y∈u]] ∧ [[x∈y]] ∧
∨

x′∈Dy

[[x = x′]]

=
∨

y∈Du, x′∈Dy

[[x=x′]] ∧ [[x′∈y ∧ y∈u]]

= [[x∈v]]

ut
Definition 3.2 For each setx we definex̌∈V L by

{Dx̌ = {ť | t∈x}
x̌(ť) = 1.

x̌ is called thecheck set associated withx. For check setšx, y̌, we have

[[x̌= y̌]] =
{

1 if x = y
0 if x 6= y

; [[x̌∈ y̌]] =
{

1 if x ∈ y
0 if x 6∈ y.

Definition 3.3 Let

ck(u) def⇐⇒ ∀t(t∈u → t
2∈ u ∧ ck(t)).

Then[[ck(x̌)]] = 1 for all x.

Axiom of infinity: ∃u (∃x(x∈u) ∧ ∀x(x∈u→ ∃y∈u(x∈y))) .
Proof. ω̌ associated with the setω of all natural numbers satisfies

[[∃x(x∈ ω̌) ∧ ∀x(x∈ ω̌ → ∃y∈ ω̌(x∈y))]] = 1.

ut
Axiom of power set: ∀u∃v∀x(x∈ v ↔ x⊂u), wherex⊂u def⇐⇒ ∀t(t∈
x→ t∈u).
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Proof. Let u ∈ V L
α . For everyx ∈ V L, definex∗ by

{Dx∗ = Du
x∗(t) = [[x⊂u ∧ t∈x]].

Since

[[x⊂u ∧ t∈x]] 6 [[t∈u]] 6
∨

t′∈Du

[[t= t′]],

we have

[[x⊂u ∧ t∈x]] 6
∨

t′∈Du

[[t= t′ ∧ x⊂u ∧ t′∈x]]

6 [[t∈x∗]].

It follows that for everyx∈V L there existsx∗∈V L
α+1 such that[[x⊂u]] ≤

[[x=x∗]]. Now we definev by

{Dv = {x∈V L
α+1 | Dx = Du}

v(x) = [[x⊂u]].

Then

[[∀x(x∈v ↔ x⊂u)]] = 1.

ut
Axiom of separation: ∀u∃v (∀x(x∈v ↔ x∈u ∧ ϕ(x))).

Proof. For a givenu∈V L definev by

{Dv = Du
v(x) = [[x∈u ∧ ϕ(x)]]

Then

[[∀x(x∈v ↔ x∈u ∧ ϕ(x))]] = 1.

ut

We denote2(a ∈ b) by a
2∈ b.

Axiom of collection:

∀u
(
∀x(x∈u→ ∃yϕ(x, y))→ ∃v∀x(x∈u→ ∃y 2∈vϕ(x, y))

)
.
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Proof. Let

p = [[∀x(x∈u→ ∃yϕ(x, y))]] =
∧

x∈Du

([[x∈u]]→
∨
y

[[ϕ(x, y)]]).

It suffices to show that there existsv such that

p 6 [[∀x(x∈u→ ∃y 2∈vϕ(x, y)]].

SinceL is a set, for eachx∈Du there exists an ordinalα(x) such that

p ∧ [[x∈u]] 6
∨

y∈V L
α(x)

[[ϕ(x, y)]].

Hence, by using the axiom of collection externally, there exists an ordinal
α such that

p ∧ [[x∈u]] 6
∨

y∈V L
α

[[ϕ(x, y)]] for all x∈Du.

Now we definedv by
{Dv = V L

α

v(y) = 1

Then

p ∧ [[x∈u]] 6
∨

y∈Dv

[[y
2∈v ∧ ϕ(x, y)]] = [[∃y 2∈vϕ(x, y)]] for all x∈Du.

Sincep = 2p, we have

p 6 [[∀x(x∈u→ ∃y 2∈vϕ(x, y)]].

ut

Axiom of ∈-induction: ∀x (∀y(y∈x→ ϕ(y))→ ϕ(x))→ ∀xϕ(x).

Proof. Letp = [[∀x (∀y(y∈x→ ϕ(y))→ ϕ(x)]]. We provep 6 [[∀xϕ(x)]]
=

∧
x∈V L [[ϕ(x)]] by induction on the rank ofx. Let x ∈ V L

α . Sincep ≤
[[ϕ(y)]] for all y∈Dx ⊂ V L

<α by induction hypothesis,

p ∧ [[y∈x]] 6 [[ϕ(y)]] for all y ∈ Dx.
Hence, by usingp = 2p, we have

p 6 [[∀y(y∈x→ ϕ(y))]].
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It follows thatp 6 [[∀xϕ(x)]]. ut

Zorn’s Lemma: Gl(u) ∧ ∀v[Chain(v, u) → ⋃
v ∈ u] → ∃zMax(z, u),

where

Gl(u) def⇐⇒ ∀x(x∈u→ x
2∈u),

Chain(v, u) def⇐⇒ v⊂u ∧ ∀x, y(x, y∈v → x⊂y ∨ y⊂x),
Max(z, u) def⇐⇒ z∈u ∧ ∀x(x∈u ∧ z⊂x→ z=x).

Proof. Foru ∈ V L
α , let

p = [[Gl(u) ∧ ∀v(Chain(v, u)→
⋃
v∈u)]],

and let U be a maximal subset ofV L
α such that

∀x, y∈U([[x∈u ∧ ∃t(t∈x) ∧ y∈u ∧ ∃t(t∈y)]] ∧ p 6 [[x⊂y ∨ y⊂x]]).
U is not empty. Definev by{Dv = U

v(x) = p ∧ [[x∈u ∧ ∃t(t∈x)]].
Now we prove thatp 6 [[Max(

⋃
v, u)]]. Sincep = 2p andp ∧ v(x) 6

[[x∈u]] for all x∈Dv, we havep 6 [[v⊂u]]. Hence, by the definition ofv,
p 6 [[Chain(v, u)]]. Therefore,p ≤ [[

⋃
v∈u]]. Now it suffices to show that

p ∧ [[x∈u ∧
⋃
v⊂x]] 6 [[x⊂

⋃
v]] for x ∈ Du.

Let x∈Du andr = p ∧ [[x∈ u ∧ ⋃
v⊂ x]]. Thenr is 2-closed, and we

haver 6 [[x= x � r]] by Theorem 3.7. Hencex � r ∈ U . In fact, for each
y ∈ U , we have

[[y∈u ∧ ∃t(t∈y) ∧ (x�r)∈u ∧ ∃t(t∈x�r)]] ∧ p
6 [[y∈v]] ∧ r
6 [[y⊂

⋃
v⊂x]] ∧ [[x=x�r]]

6 [[y⊂x�r]]
6 [[y⊂x�r ∨ x�r⊂y]].

It follows that

r ∧ x(t) 6 [[x=x�r ∧ x∈u ∧ t∈x]] ∧ p
6 [[x=x�r ∧ x�r∈u ∧ ∃t(t∈x�r)]] ∧ p
6 [[x=x�r]] ∧ v(x�r)
6 [[x∈v]] ≤ [[x⊂

⋃
v]]

Therefore,r 6 [[x⊂⋃
v]]. ut
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Definition 3.4 ♦ is the logical operation defined by♦ϕ def⇐⇒ ¬2¬ϕ.

Axiom of ♦: ∀u∃v∀x(x∈v ↔ ♦(x∈u)).
Proof. For a givenu∈V L, definedv by{Dv = Du

v(x) = [[♦(x∈u)]].
By using Theorem 2.4,

[[♦(x∈u)]] = ♦
∨

x′∈Du

[[x=x′]] ∧ u(x′)

6
∨

x′∈Du

[[x=x′]] ∧ [[♦(x′∈u)]] = [[x∈v]].

Hence[[∀x(x∈v ↔ ♦(x∈u))]] = 1. ut

4. Lattice-valued set theory

Now we formulate a set theory onV L, and call itlattice valued set theory
LZFZ .

Atomic symbols ofLZFZ are:

(1) variablesx, y, z, · · ·
(2) predicate constants=, ∈
(3) logical symbols∧, ∨, ¬, →, ∀, ∃
(4) parentheses (, ).

Formulasof LZFZ are constructed from atomic formulas of the form
x=y or x∈y by using the logical symbols.

We denote a sentence(ϕ→ ϕ)→ ϕ by 2ϕ.

4.1. Lattice valued logic

Lattice valued logic, shortly L , is a logic onL-valued universeV L. The
rules ofL are given by restrictingLK . First we define2-closed formulas
inductively by :

(1) A formula of the formϕ→ ψ or¬ϕ is 2-closed.
(2) If formulasϕ andψ are2-closed, thenϕ∧ψ andϕ∨ψ are2-closed.
(3) If a formulaϕ(x) is a 2-closed formula with free variablex, then
∀xϕ(x) and∃xϕ(x) are2-closed.

(4) 2-closed formulas are only those obtained by (1)–(3).

ϕ,ψ, ξ, · · · , ϕ(x), · · · are used to denote formulas ;Γ,∆,Π,Λ, · · · to
denote finite sequences of formulas ;ϕ,ψ, · · · to denote2-closed formulas
; andΓ ,∆,Π,Λ, · · · to denote finite sequences of2-closed formulas. A
formal expression of the formΓ =⇒ ∆ is called asequent.
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Logical axioms :Axioms of L are sequents of the formϕ =⇒ ϕ.

Structural rules:

Thinning :
Γ =⇒ ∆

ϕ,Γ =⇒ ∆

Γ =⇒ ∆

Γ =⇒ ∆,ϕ

Contraction :
ϕ,ϕ, Γ =⇒ ∆

ϕ,Γ =⇒ ∆

Γ =⇒ ∆,ϕ, ϕ

Γ =⇒ ∆,ϕ

Interchange :
Γ, ϕ, ψ,Π =⇒ ∆

Γ,ψ, ϕ,Π =⇒ ∆

Γ =⇒ ∆,ϕ, ψ, Λ

Γ =⇒ ∆,ψ, ϕ, Λ

Cut :
Γ =⇒ ∆,ϕ ϕ,Π =⇒ Λ

Γ,Π =⇒ ∆,Λ

Γ =⇒ ∆,ϕ ϕ,Π =⇒ Λ

Γ,Π =⇒ ∆,Λ

Γ =⇒ ∆,ϕ ϕ,Π =⇒ Λ

Γ,Π =⇒ ∆,Λ

Logical rules:

¬ :
Γ =⇒ ∆,ϕ

¬ϕ, Γ =⇒ ∆

Γ =⇒ ∆,ϕ

¬ϕ, Γ =⇒ ∆

ϕ,Γ =⇒ ∆

Γ =⇒ ∆,¬ϕ
ϕ, Γ =⇒ ∆

Γ =⇒ ∆,¬ϕ

∧ :
ϕ, Γ =⇒ ∆

ϕ ∧ ψ, Γ =⇒ ∆

ψ,Γ =⇒ ∆

ϕ ∧ ψ, Γ =⇒ ∆

Γ =⇒ ∆,ϕ Γ =⇒ ∆,ψ

Γ =⇒ ∆,ϕ ∧ ψ

Γ =⇒ ∆,ϕ Γ =⇒ ∆,ψ

Γ =⇒ ∆,ϕ ∧ ψ

∨ :
ϕ, Γ =⇒ ∆ ψ,Γ =⇒ ∆

ϕ ∨ ψ, Γ =⇒ ∆

Γ =⇒ ∆,ϕ

Γ =⇒ ∆,ϕ ∨ ψ
Γ =⇒ ∆,ψ

Γ =⇒ ∆,ϕ ∨ ψ

ϕ, Γ =⇒ ∆ ψ,Γ =⇒ ∆

ϕ ∨ ψ, Γ =⇒ ∆

→:
Γ =⇒ ∆,ϕ ψ,Π =⇒ Λ

(ϕ→ ψ), Γ,Π =⇒ ∆,Λ

ϕ, Γ =⇒ ∆,ψ

Γ =⇒ ∆, (ϕ→ ψ)

∀ :
ϕ(t), Γ =⇒ ∆

∀xϕ(x), Γ =⇒ ∆

wheret is any term

Γ =⇒ ∆,ϕ(a)
Γ =⇒ ∆,∀xϕ(x)

Γ =⇒ ∆,ϕ(a)
Γ =⇒ ∆,∀xϕ(x)

wherea is a free variable which does
not occur in the lower sequent.
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∃ :
ϕ(a), Γ =⇒ ∆

∃xϕ(x), Γ =⇒ ∆

ϕ(a), Γ =⇒ ∆

∃xϕ(x), Γ =⇒ ∆

wherea is a free variable which does
not occur in the lower sequent.

Γ =⇒ ∆,ϕ(t)
Γ =⇒ ∆,∃xϕ(x)

wheret is any term

We use the following abbreviations :

ϕ↔ ψ
def⇐⇒ (ϕ→ ψ) ∧ (ψ → ϕ).

Theorem 4.1. The following sequents are provable inL .

(1) ϕ ∧ (ϕ→ ψ) =⇒ ψ
(2) ϕ ∧ ¬ϕ =⇒
(3) ϕ =⇒ ¬¬ϕ
(4) ¬(ϕ ∨ ψ)⇐⇒ (¬ϕ ∧ ¬ψ)
(5) 2ϕ =⇒ ϕ
(6) ¬ϕ⇐⇒ 2¬ϕ
(7) ∀x2ϕ(x) =⇒ 2∀xϕ(x)
(8) (2ϕ→ ψ)⇐⇒ (2ϕ→ 2ψ)⇐⇒ (¬2ϕ ∨2ψ)
(9) (2ϕ ∧ ∃xψ(x))⇐⇒ ∃x(2ϕ ∧ ψ(x));

(ϕ ∧ ∃x2ψ(x))⇐⇒ ∃x(ϕ ∧2ψ(x))
(10) =⇒ 2ϕ ∨ ¬2ϕ
(11) ((ϕ ∧ 2ξ)→ ψ) =⇒ ((¬ψ ∧ 2ξ)→ ¬ϕ)

4.2. Nonlogical axioms

Nonlogical axioms ofLZFZ are GA1–GA11 from the preceeding section,
which are valid on lattice valued universe:

GA1. Equality ∀u∀v (u=v ∧ ϕ(u)→ ϕ(v)) .
GA2. Extensionality∀u, v (∀x(x∈u↔ x∈v)→ u=v).
GA3. Pairing ∀u, v∃z (∀x(x∈z ↔ (x=u ∨ x=v))).

The setz satisfying ∀x(x ∈ z ↔ (x= u ∨ x= v)) is denoted by
{u, v}.

GA4. Union ∀u∃z (∀x(x∈z ↔ ∃y∈u(x∈y))) .
The setz satisfying ∀x(x∈z ↔ ∃y∈u(x∈y)) is denoted by

⋃
u.

GA5. Power set∀u∃z (∀x(x∈z ↔ x ⊂ u)), where

x⊂u def⇐⇒ ∀y(y∈x→ y∈u).
The setz satisfying ∀x(x∈z ↔ x⊂u) is denoted byP(u).

GA6. Infinity ∃u (∃x(x∈u) ∧ ∀x(x∈u→ ∃y∈u(x∈y))) .
GA7. Separation∀u∃v (∀x(x∈v ↔ x∈u ∧ ϕ(x))).

The setv satisfying ∀x(x∈v ↔ x∈u ∧ ϕ(x)) is denoted by
{x∈u | ϕ(x)}.
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GA8. Collection
∀u∃v

(
∀x(x∈u→ ∃yϕ(x, y))→ ∀x(x∈u→ ∃y 2∈ vϕ(x, y))

)
.

GA9.∈-induction ∀x (∀y(y ∈ x→ ϕ(y))→ ϕ(x))→ ∀xϕ(x).
GA10. Zorn Gl(u)∧∀v (Chain(v, u)→⋃

v ∈ u)→∃zMax(z, u), where

Gl(u) def⇐⇒ ∀x(x ∈ u→ x
2∈ u),

Chain(v, u) def⇐⇒ v⊂u ∧ ∀x, y(x, y∈v → x⊂y ∨ y⊂x),
Max(z, u) def⇐⇒ z ∈ u ∧ ∀x(x∈u ∧ z⊂x→ z = x).

GA11. Axiom of♦ ∀u∃z∀t(t∈z ↔ ♦(t∈u)).
The setz satisfying∀t(t∈z ↔ ♦(t∈u)) is denoted by♦u.

We say that a formulaϕ is global, if (ϕ → 2ϕ), and a setu is global
(Gl(u)), if x∈u is global for allx.

4.3. Well-founded relations inLZFZ

Any formula with two free variables determines a binary relation. For a
binary relationA(x, y), we use the following abbreviations:

x ∈ DomA
def⇐⇒ ∃yA(x, y), x ∈ RgeA def⇐⇒ ∃yA(y, x),

x ∈ FldA def⇐⇒ ∃y(A(x, y) ∨A(y, x)).

A binary relation≺ is said to bewell-foundedif the following conditions
are satisfied:

WF1 ∀x, y¬(x ≺ y ∧ y ≺ x)
WF2 ∀x[x∈Fld(≺) ∧ ∀y(y≺ x→ ϕ(y))→ ϕ(x)]→ ∀x(x∈Fld(≺)→

ϕ(x))
WF3 ∀x∃y∀z(z ≺ x→ z∈y)
In view of the axiom GA9 (∈-induction), it is clear that the relation∈ is

itself a well-founded relation, and so is
2∈.

Singlton{x} and ordered pair〈x, y〉 are defined as usual:

{x} def= {x, x}, 〈x, y〉 def= {{x}, {x, y}}
so thatx∈{y} ⇐⇒ x=y and〈x, y〉=〈x′, y′〉 ⇐⇒ x=x′ ∧ y=y′ hold.

We say a binary relationF (x, y) isglobal, if ∀x, y(F (x, y)→2F (x, y));
and a global relationF (x, y) is functional, if

∀x, y, y′(F (x, y) ∧ F (x, y′)→ y=y′).
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For a global functional relationF , we writeF (x)= y instead forF (x, y).
If F is a global functional relation and≺ is a well-founded relation, then
{〈x, y〉 | F (x, y) ∧ ♦(x ≺ u)} is denoted byF≺u, for each setu∈Fld(≺).
F≺u is a set by WF3, GA11(♦) and GA8(Collection).

The following theorem can be proved in the usual way, by using the fact
that

(y ≺ x→ 2ϕ(y))⇐⇒ (♦(y ≺ x)→ 2ϕ(y)).

Theorem 4.2 (Recursion Principle).Let≺ be a well-founded relation and
H be a global functional relation such that∀x∃yH(x, y). Then there exists
a unique global functional relationF such that

DomF =Fld(≺) ∧ ∀x (x ∈ Fld(≺)→ (F (x)=H(F≺x))) .

Definition 4.1 We define the formulaOrd(α) (“α is an ordinal”) inLZFZ
as follows:

Tr(α) def⇐⇒ ∀β, γ(β∈α ∧ γ∈β → γ∈α),

Ord(α) def⇐⇒ Gl(α) ∧ Tr(α) ∧ ∀β(β∈α→ Gl(β) ∧ Tr(β)),

whereGl(α) def⇐⇒ ∀β(β∈α→ β
2∈ α).

As an immediate consequence of the above definition, we have:

Lemma 4.3.

(1) Ord(α) ∧ β∈α→ Ord(β)
(2) Gl(X) ∧ ∀x(x∈X → Ord(x))→ Ord(

⋃
X)

Definition 4.2 A global well-founded relation≺ is called awell-ordering
on a setu if

(Fld(≺) = u) ∧ (≺ is transitive) ∧ (≺ is extensional),

where

≺ is transitive
def⇐⇒ ∀x, y, z[(x≺y) ∧ (y ≺ z)→ (x ≺ z)]

≺ is extensional
def⇐⇒ ∀x, y[x, y∈u ∧ ∀z(z≺x↔ z≺y)→ x = y].

Theorem 4.4. Every global set can be well-ordered, i.e. for every global
setu, there exists a global well-ordering relation≺ onu.

Proof. SupposeGl(u), and let

P
def= {〈v, w〉 | Gl(v) ∧Gl(w) ∧ v ⊂ u ∧ (w is a well-ordering onv)},
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and let〈v, w〉≺ 〈v′, w′〉 mean thatw = w′dv andv is an initialw′-section
of v′, i.e.

〈v, w〉≺〈v′, w′〉 def⇐⇒ (v⊂v′) ∧ (w=w′ ∩ (v×v)) ∧ (v×(v′ − v) ⊂ w′).

If 〈v, w〉∈P , sinceGl(v) ∧ ¬¬(y∈v) =⇒ y∈v, we have

〈v, w〉≺〈v′, w′〉 ∧ x∈v ∧ 〈y, x〉∈w′ =⇒ y∈v.

Let

I def= {I ⊂ P | ∀p, q(p, q∈I → p≺q ∨ p=q ∨ q≺p)
∧ ∀p, q(p∈I ∧ q≺p→ q∈I)}.

Then

(I ′ ⊂ I) ∧ ∀I, I ′(I, I ′∈I ′ → I ⊂ I ′ ∨ I ′ ⊂ I) =⇒
⋃
I ′ ∈ I.

By using GA10, there exists a maximalI0 ∈ I. Let

v0 =
⋃
{v | 〈v, w〉 2∈ I0}, w0 =

⋃
{w | 〈v, w〉 2∈ I0}.

Then 〈v0, w0〉 ∈ P . By maximality of I0 we have∀x¬(x ∈ u − v0)).
∀x(x∈u→ x∈v0 ∨ ¬(x∈v0)). It follows thatu = v0. ut

Theorem 4.5. If u is a global set and≺ is a global well-ordering relation
onu, then〈u,≺〉 is isomorphic to an ordinal〈α,∈〉, i.e. there existsρ such
that

(ρ :u→ α) ∧ ρ(u) = α ∧
∀x, y[x, y ∈ u→ (x ≺ y ↔ ρ(x) ∈ ρ(y)) ∧ (x = y ↔ ρ(x) = ρ(y))].

Proof. We define by recursion in≺

ρ(x) =
⋃
{ρ(y) + 1 | y ≺ x}.

It is easy to see by WF2 (≺-induction) that∀x(x∈u→ Ord(ρ(x)), and

∀x[x∈u→ ∀t(t∈ρ(x)→ ∃y ≺ x(t = ρ(y)))].

Setα = {ρ(x) | x∈u}. ThenOrd(α), and〈u,≺〉 is isomorphic to(α,∈).
ut

We callρ(x) therank ofx.
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4.4. Check sets

We define the notion of check set inLZFZ , by
2∈-recursion:

ck(x) def⇐⇒ ∀t
(
t∈x ↔ t

2∈ x ∧ ck(t)
)
.

That is, set

H(u, v) def⇐⇒ v={t | 〈t, t〉∈u}.
H is a global functional relation such that∀u∃vH(u, v). Let≺ be

2∈ . ≺ is
a global well founded relation. Since∀x(x∈Fld(≺)), there exists a unique
global functional relationC(x, y) such that

∀x [x∈Dom(C) ∧ C(x)=H(C≺x)] ,

by recursion principle. If a setx satisfiesC(x, x) then we sayx is acheck
setand writeck(x). i.e.

ck(x) def⇐⇒ x=C(x).

The class of check sets will be denoted byW , i.e.

x∈W def⇐⇒ ck(x).

Theorem 4.6. The followings are provable inLZFZ .

(1) y∈C(x) ↔ (y
2∈ x) ∧ ck(y)

(2) ck(x)↔ ∀t[t∈x↔ (t
2∈ x ∧ ck(t))]

(3) C(x)=CC(x)

Proof. (1) and (2) are immediate results of definition ofC.

(3) : y ∈ CC(x)⇐⇒ y
2∈ C(x) ∧ ck(y)

⇐⇒ y
2∈ x ∧ ck(y)

⇐⇒ y∈C(x) ut
4.5. The modelW of ZFC in LZFZ

An interpretation ofZFC in LZFZ is obtained by relativizing the range of
quantifiers to check sets. Namely “the classW of check sets is a model of
ZFC ” is provable inLZFZ .

We denote quantifiers relativized on check sets by∀W ,∃W , i.e.

∀Wxϕ(x) def⇐⇒ ∀x(ck(x)→ ϕ(x))

∃Wxϕ(x) def⇐⇒ ∃x(ck(x) ∧ ϕ(x)).
For a formulaϕ of LZFZ ,ϕW is the formula obtained fromϕ by replacing
all quantifiers∀x, ∃x, by∀Wx, ∃Wx, respectively.



A lattice-valued set theory 415

Theorem 4.7. The following (1)–(9) are provable inLZFZ , for any formula
ϕ.

(1) ∀Wx, y(x∈y → x
2∈y)

(2) ∀Wx1 · · ·xn[ϕW (x1, · · · , xn)→ 2ϕW (x1, · · · , xn)]

(3) ∀Wx(∀Wy(y∈x→ ϕW (y))→ ϕW (x))→ ∀WxϕW (x)

(4) ∀α[Ord(α) ↔ ck(α) ∧OrdW (α)]

(5) ck(∅), where∅ is the empty set.

(6) ∀Wx, y[ck({x, y}) ∧ ck(
⋃
x) ∧ ck({z∈x | 2ϕ(z))})]

(7) The set of natural numbersω is defined as follows:

Suc(y) def⇐⇒ (y=∅ ∨ ∃z(y=z + 1)), where z + 1 = z ∪ {z},
HSuc(y) def⇐⇒ (Suc(y) ∧ ∀z(z∈y → Suc(z)), and

ω
def= {y : HSuc(y)}.

ThenOrd(ω) ∧ ∀Wn∈ω(n = ∅ ∨ ∃Wm∈n(n = m+ 1)).

(8) If u is a global set, then there exists an ordinalα∈On with a bijection

ρ :u→α, whereα∈On def⇐⇒ Ord(α), i.e.

∃Wα∈On∃ρ [ ρ :u→α ∧ ρ(u) = α

∧ ∀x, y(x, y∈u ∧ ρ(x)=ρ(y)→ x=y].

Proof. (1): It follows from

ck(x) ∧ ck(y) ∧ x∈y ⇐⇒ ∃t(ck(x) ∧ ck(y) ∧ ck(t) ∧ x = y ∧ t 2∈y).
(2): By induction on complexity ofϕ. If ϕ has no logical symbol, thenϕ is
of the formx=y or x∈y, and henceϕ→ 2ϕ by (1). Now we prove only
the case thatϕ is of the form∃xψ(x, x1, · · · , xn), since the other cases are
similar. Letck(x1) ∧ · · · ∧ ck(xn).

ψW (x, x1, · · · , xn) ∧ ck(x) =⇒ 2
(
ck(x) ∧ ψW (x, x1, · · · , xn)

)
,

by using induction hypothesis. Hence,

∃WxψW (x, x1, · · · , xn) =⇒ 2∃WxψW (x, x1, · · · , xn).
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(3): Letψ(x) be the formulack(x)→ ϕW (x). Then, using∈-induction, we
have

∀Wx[∀W y(y ∈ x→ ϕW (y))→ ϕW (x)]
=⇒ ∀x(∀y(y∈x→ ψ(y))→ ψ(x)]
=⇒ ∀xψ(x).

(4): By∈-induction.

(5): ck(∅) follows from:

x∈∅ =⇒ ¬(x = x)

=⇒ x
2∈ ∅ ∧ ck(x).

(6) ck({x, y}) : Assumeck(x) ∧ ck(y). Then we have

z∈{x, y} ⇐⇒ (z=x ∨ z=y)

=⇒ ck(z) ∧ z 2∈ {x, y}).

z∈
⋃
x =⇒ ∃t∈x(z∈ t)

=⇒ ∃t[ck(t) ∧ t 2∈ x ∧ z∈ t]
=⇒ ck(z) ∧ z 2∈

⋃
x.

t∈{z∈x | 2ϕ(z)} =⇒ ck(t) ∧ t 2∈ x ∧2ϕ(t)

=⇒ ck(t) ∧ t2∈{z∈x | 2ϕ(t)}.
(7): ω is a set by GA6 (Infinity). Letψ(x) be the formula

x∈ω → ck(x) ∧ x2∈ω.
Now we prove∀y(y∈x→ ψ(y))→ ψ(x): We have
x∈ω =⇒ x=∅ ∨ ∃z(x=z + 1), x = ∅ → ψ(x) and

∀y(y∈x→ ψ(y)) ∧ x∈ω ∧ x=z + 1 =⇒ z∈x ∧ ck(z) ∧ z 2∈ω
=⇒ ck(z + 1) ∧ (z + 1)

2∈ω
=⇒ ck(x) ∧ x2∈ω.

Hence,ck(ω).
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It is easy to see∀y(y ∈ω → Tr(y) ∧ (y⊂ω)), by ∈-induction, where

Tr(y) def⇐⇒ ∀s, t(s∈y ∧ t∈s→ t∈y). HenceTr(ω)∧∀y(y∈ω → Tr(y))
andOrd(ω). It is obvious that

∀Wn∈ω(n=∅ ∨ ∃Wm∈n(n=m+ 1)).

(8): By Theorem 4.4, there exists a global well-ordering relation≺ on u.
Defineρ(x) =

⋃{ρ(y)+1 | y ≺ x}. By Theorem 4.5,ρ is an isomorphism
between(u,≺) and(α, ∈), whereα = {ρ(x) | x∈u}. ut
Theorem 4.8 (Interpretation of ZFC ). If ϕ is a theorem ofZFC , then
ϕW is provable inLZFZ .

Proof. For a formulaϕ(x1, · · · , xn) of ZFC ,

∀Wx1, · · · , xn(ϕW → 2ϕW )

is provable by Theorem 4.7(2), hence,

∀Wx1, · · · , xn(ϕW ∨ ¬ϕW )

is provable inLZFZ . Now it suffices to show that for each nonlogical axiom
A of ZFC ,AW is provable inLZFZ .

(Equality axiom)W and(Extensionality)W are obvious.

(Pairing)W : By Theorem 4.7(6),

ck(u) ∧ ck(v)→ ck({u, v}) ∧ ∀Wx(x ∈ {u, v} ↔ x = u ∨ x = v).

(Union)W : Similarly.
(Power set)W : We have∀Wu, x[x ∈ C(P(u))↔ ∀Wt(t ∈ x→ t ∈ u)].
(∈ -induction)W : By Theorem 4.7(3).
(Separation)W : If ck(u), by Theorem 4.7(6),ck({x ∈ u | ϕW (x)}) and

∀Wu, x
[
x ∈ {x ∈ u | ϕW (x)} ↔ x ∈ u ∧ ϕW (x)

]
.

(Collection)W: Supposeck(u)∧∀Wx∈u∃WyϕW(x, y). By GA8(Collection),

∃v∀x∈u∃y2∈v(ck(y) ∧ ϕW(z, y)).

Sincey
2∈v ∧ ck(y) → y∈C(v) ∧ ck(C(v)), we have

∃Wv∀Wx∈u∃Wy∈vϕW(z, y).

(Infinity)W : By Theorem 4.7(7).
(Choice)W , i.e.∀Wu∃Wf∀Wx∈ u[x 6= ∅ → ∃!Wy ∈ x(〈x, y〉 ∈ f)], where
x 6= ∅ stands for∃W y(y∈x). By Theorem 4.6(8). there exists an ordinalα
and a bijectionρ :

⋃
u→α. Definef :u→⋃

u by

f(x) = ρ−1(
⋂
{ρ(t) | t∈x}).

ut
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4.6. Lattice-valued modelWP(1) in W

The power setP(1) of 1 (= {∅}) is a global set and a complete lattice with
respect to the inclusion⊂. We write6 instead of⊂. Then(P(1),6) is a
comlpete lattice. Let

(p→ q) = {x∈1 | 0∈p→ 0∈q}, ¬p = {x∈1 | ¬(0∈p)}.
→ is the basic implication and¬ is the corresponding negation onP(1).

For a sentenceϕ, let

|ϕ| def= {t∈1 | ϕ}.
|ϕ| is an element ofP(1), andϕ ⇐⇒ 0 ∈ |ϕ|. Thus, the complete lattice
P(1) represents the truth value set ofLZFZ .

The relation≺ defined by

α ≺ β def⇐⇒ α, β∈On ∧ α∈β
is a well founded relation andFld(≺) = On. Thus, the induction onα∈On
is justified inLZFZ . Now we construct theP(1)-valued sheaf model by
induction onα∈On as follows:

WP(1)
α = {u | ∃β∈α∃Du⊂WP(1)

β (Gl(Du) ∧ u :Du→P(1))}
WP(1) =

⋃
α∈On

WP(1)
α

OnWP(1), the atomic relation= and∈ are interpreted as

[[x=y]] =
∧

t∈Dx

(x(t)→ [[t ∈ y]]) ∧
∧

t∈Dy

(y(t)→ [[t ∈ x]])

[[x ∈ y]] =
∨

t∈Dy

[[x= t]] ∧ y(t).

Logical operations∧, ∨, →, ¬,∀, ∃ are interpreted as the correspondent
operations onP(1). Then every sentence onWP(1) has its truth value in
P(1), and we have

Theorem 4.9. For every sentenceϕ, “ (0 ∈ [[ϕ]])←→ ϕ” is provable in
LZFZ .

Proof. We prove that there exists a global functional relationF such that:
(i) DomF =WP(1), and
(ii) for every formulaϕ(x1, · · · , xn) of LZFZ onWP(1),

[[ϕ(x1, · · · , xn)]] = |ϕ(F (x1), · · · , F (xn))|.
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Forx ∈WP(1), defineF (x) by

F (x)={F (t) | t ∈ Dx ∧ 0∈ [[t ∈ x]]}.
Then we have:

(1) 0 ∈ [[x=y]]⇐⇒ F (x)=F (y),
0 ∈ [[x∈y]]⇐⇒ F (x)∈F (y).

(2) ∀u∃x(F (x)=u).
Proof: LetΨ(u) def⇐⇒ ∃x(x∈WP(1) ∧ u=F (x)). Then by using
GA8 (Collection) we have

∀v(v∈u→ Ψ(v)) =⇒ ∃α[∀v(v∈u→ ∃y∈WP(1)
α (v = F (y))].

Let {
Dx = W

P(1)
α

x(y) = {t∈1 | F (y)∈u}
Thenx∈WP(1) andF (x) = u. Hence,∀u∃x(F (x)=u).

(3) 0∈ [[ϕ(x1, · · · , xn)]]⇐⇒ ϕ(F (x1), · · · , F (xn))
Proof: We proceed by induction on the complexity ofϕ. If ϕ is
atomic, then it is (1). Ifϕ is of the formϕ1 ∨ ϕ2, ϕ1 → ϕ2, ¬ϕ1 or
2ϕ1, then it follows from induction hypothesis. Ifϕ(x1, · · · , xn) is
of the form∀xψ(x, x1, · · · , xn), then, by using (2),

0 ∈ [[ϕ]]⇐⇒ 0 ∈
∧
x

[[ψ(x, x1, · · · , xn)]]

⇐⇒ ∀x(ψ(F (x), F (x1), · · · , F (xn))
⇐⇒ ∀zψ(z, F (x1), · · · , F (xn)).

Similarly,

0 ∈ [[∃xψ(x, x1, · · · , xn)]]⇐⇒ ∃zψ(z, F (x1), · · · , F (xn)).

ut

4.7. “Completeness” ofLZFZ

Now we will prove inLZFZ thatP(1) is lattice-isomorphic to a complete
latticeH which is a check set. (Theorem 4.10). As mentioned in the intro-
duction, we mean by “a sentenceϕ of LZFZ is valid” that

“ [[ϕ]] = 1 onV L for all complete latticeL” is provable inZFC .

Then the “completeness” ofLZFZ in the sense that every valid sentense
of LZFZ is provable inLZFZ :

ZFC ` “ [[ϕ]] = 1 onV L for all complete latticeL” =⇒ LZFZ ` ϕ
can be proved (Theorem 4.11).
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Theorem 4.10. There exists a complete latticeH which is a check set and
a lattice-isomorphismρ :P(1)→H.

Proof. SinceP(1) is a global set, there exists a check setH together with
a bijectionρ :P(1)→H, by Theorem 4.7(8). Define operations

∧
,
∨

onH
as follows: ∧

A = ρ(
⋂
a∈A

ρ−1(a)),
∨
A = ρ(

⋃
a∈A

ρ−1(a)),

a→ b =
{

1, if ρ−1(a) ⊂ ρ−1(b)
0, if ¬(ρ−1(a) ⊂ ρ−1(b))

forA ⊂ H such thatck(A), anda, b ∈ H. Thenρ is a lattice-isomorphism.
ut
Theorem 4.11 (“Completeness” of LZFZ). If a sentenceϕ is valid in
every lattice-valued universe, thenϕ is provable inLZFZ :

ZFC ` “ [[ϕ]] = 1 onV L for all complete latticeL” =⇒ LZFZ ` ϕ
Proof. Suppose that a sentenceϕ is valid in every lattice valued universe.
This means that “[[ϕ]] = 1 on every lattice valued universe” is provable in our
external universe ofZFC. SinceW is isomorphic toV , (ϕ is valid in every
lattice valued universe)W is provable isLZFZ . LetH ∈W be a complete
lattice with the basic implication which is lattice-isomorphic toP(1). That
is, there exists a lattice-isomorphismρ :P(1)→H. Construct theH-valued
universeWH in W . Then [[ϕ]] = 1 on WH . It follows that [[ϕ]] = 1 on
WP(1), andϕ is provable inLZFZ by Theorem 4.9. ut

By Theorem 4.11, a sentenceϕ holds inLZFZ iff [[ϕ]] = 1, on every
lattice valued universeV L. Therefore, in order to discussLZFZ , it suffices
to discuss the set theory on lattice valued universe.

4.8. Another implication

Let→∗ be any implication defined in the language ofLZFZ . We define the
corresponding=∗ and∈∗ by induction:

u =∗ v
def⇐⇒ ∀x(x∈u→∗ x∈∗v) ∧ ∀x(x∈v →∗ x∈∗u)

u∈∗v
def⇐⇒ ∃x(x∈v ∧ u =∗ x).

If we assume “P(1) is a cHa”, i.e.“P(1) is distributive”, inLZFZ , then
we have the distributive law of the logic:

ϕ ∧ ∃xψ(x)←→ ∃x(ϕ ∧ ψ(x))
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In fact: let[[ϕ]] be the truth value ofϕ inWP(1). then the following sentences
are provable inLZFZ .

ϕ ∧ ∃xψ(x)↔ 0 ∈ [[ϕ ∧ ∃xψ(x)]]

↔ 0 ∈ [[ϕ]] ∧
∨

x∈V P(1)

[[ψ(x)]]

↔ 0 ∈
∨

x∈V P(1)

[[ϕ ∧ ψ(x)]]

↔ 0 ∈ [[∃x(ϕ ∧ ψ(x))]]
↔ ∃x(ϕ ∧ ψ(x))

It follows that the intuitionistic implication→I can be defined by

(ϕ→I ψ) def⇐⇒ 0 ∈
⋃
{u∈P(1) | ϕ ∧ (0∈u)→ ψ}.

The corresponding=I and∈I are defined by induction inLZFZ :

u=I v
def⇐⇒ ∀x(x∈u→I x∈Iv) ∧ ∀x(x∈v→I x∈Iu)

u∈Iv
def⇐⇒ ∃x(x∈v ∧ u=I x).

Then we have:

Theorem 4.12. It is provable inLZFZ +“ P(1) is a cHa” that the set theory
in (→I,=I,∈I) is an intuitionistic set theory. that is,

ϕ ∧ ∃xψ(x)←→ ∃x(ϕ ∧ ψ(x))

and axioms of intuitionistic set theory are provable inLZFZ .

Proof. For each axiomϕ of intuitionistic set theory,[[ϕ]] = 1 on V P(1).
cf. [5] ut
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