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Abstract. We prove that the Sacks forcing collapses the continuum ontod, an-
swering the question of Carlson and Laver. Next we prove that if a proper forcing
of the size at most continuum collapsesω2 then it forces♦ω1.

0 Introduction

In 1979 Baumgartner and Laver proved that after addingω2 Sacks reals (by
the countable support iteration) to a model of CH one gets a model in which
the Sacks forcing forces CH (see theorem 5.2 of [2]). The question arose when
the Sacks forcing may collapse cardinals and which of them. In 1989 Carlson
and Laver posed a hypothesis that the Sacks forcing collapses the continuum at
least onto the dominating numberd (see [3]). In the same paper they proved
that, assuming CH, the Sacks forcing forces♦ω1. In the present paper we give
an affirmative answer to the question of Carlson and Laver proving that the
continuum is collapsed at least onto a cardinal number called hereb

+ε when a
Sacks real is added. The cardinalb

+ε is one of the cardinal invariants laying
between the unbounded numberb and the dominating numberd which were
introduced in [7]. After we got the answer we proved that ifb

+ε = ω1 then
the Sacks forcing forces♦ω1. That naturally suggested the question if this is an
accident and the answer we obtained says that it is a reflection of a more general
theorem.

The main result of this paper says that if a proper forcing notionP of size
not greater than the continuum collapsesω2 thenP ♦ω1.

Notation. Our notation is rather standard and is compatible with that of [5] or
[4]. However, there are some exceptions. In a forcing notionP we writep ≤ q to
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say that “the conditionq is stronger thanp”. The canonicalP-name for a generic
filter is denoted byΓP or justΓ . For a formulaϕ of the forcing language and a
conditionp ∈ P we say thatp decidesϕ (p ‖ ϕ) if either p  ϕ or p  ¬ϕ.

A forcing notion (P,≤) satisfies the Axiom A of Baumgartner (see [1]) if
there are partial orders≤n on P (for n ∈ ω) such that

1. p ≤0 q if and only if p ≤ q
2. if p ≤n+1 q thenp ≤n q
3. if a sequence〈pn : n ∈ ω〉 ⊆ P satisfies (∀n ∈ ω)(pn ≤n pn+1) then there

exists a conditionp ∈ P such that (∀n ∈ ω)(pn ≤ p).
4. if A ⊆ P is an antichain,p ∈ P, n ∈ ω then there exists a conditionq ∈ P

such thatp ≤n q and the set{r ∈ A : q and r are compatible} is countable.

It is well known that ifP satisfies the Axiom A thenP is proper.
The size of the continuum is denoted byc. We will use the quantifiers (∀∞n)

and (∃∞n) as abbreviations for

(∃m ∈ ω)(∀n > m) and (∀m ∈ ω)(∃n > m),

respectively. The Baire spaceωω of all functions fromω to ω is endowed with
the partial order≤∗:

f ≤∗ g ⇐⇒ (∀∞n)(f (n) ≤ g(n)).

A family F ⊆ ωω is unbounded in (ωω,≤∗) if

¬(∃g ∈ ωω)(∀f ∈ F )(f ≤∗ g)

and it is dominating in (ωω,≤∗) if

(∀g ∈ ωω)(∃f ∈ F )(g ≤∗ f ).

The unbounded numberb is the minimal size of an unbounded family in the
partial order (ωω,≤∗), the dominating numberd is the minimal size of a domi-
nating family in that order (for more information about these cardinals see [10]
or [7]).

The set of all infinite subsets ofω is denoted by [ω]ω . A tree onX is a
set of finite sequencesT ⊆ X < ω such thats ⊆ t ∈ T implies s ∈ T. A tree
T on X is perfect if for eachs ∈ T there aret0, t1 ∈ T extendings, both in
T and such that neithert0 ⊆ t1 nor t1 ⊆ t0. The body [T] of a treeT is the set
{x ∈ X ω : (∀n ∈ ω)(x�n ∈ T)}.

1 Antichains of skew trees

The Sacks forcingS consists of all perfect treesT ⊆ 2<ω . These trees are
ordered by inclusion (a stronger tree is the smaller one). ForT ∈ S and t ∈ T
we say thatt ramifies in T (or t is a ramification point in T) whenever bothtˆ0
and tˆ1 are inT. For s ∈ T ∩ 2n, n < k we say thats ramifies in T below kif
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there ist ∈ T of length less thank − 1 such thats ⊆ t and t ramifies inT. A
nodet ∈ T is a ramification point of rankn in T if t ramifies inT and exactly
n initial segments oft ramify in T. Orders≤n on S are defined by

T ≤n T ′ if and only if
T ≤ T ′ and if t ∈ T is a ramification point of the rank≤ n then t ∈ T ′.

The Sacks forcingS together with orders≤n (for n ∈ ω) satisfies Axiom A of
Baumgartner (see [1]).

For T ∈ S and t ∈ T we put (T)t = {s ∈ T : s ⊆ t or t ⊆ s}.

Definition 1.1. A tree T ∈ S is skew if for each n∈ ω at most one node from
T ∩ 2n ramifies in T.

Clearly the set of all skew perfect trees is dense inS.

Carlson and Laver proved that CH impliesS ♦ω1. A detailed analysis of
their proof shows that the result can be formulated as follows.

Theorem 1.2 (T.Carlson, R.Laver, [3]). Assume thatb = ω1 and every max-
imal antichainA ⊆ S consisting of skew trees is of the sizec.
ThenS ♦ω1.

Since skew trees are very small (e.g. their bodies are both meager and null) the
question appeared if the second assumption is always satisfied. The answer is
negative:

Theorem 1.3. It is consistent that there exists a maximal antichain{Tα : α <
ω1} ⊆ S such that each tree Tα is skew whileω1 < c.

Proof. Let T̄ = 〈Tα : α < α0〉 be a sequence of skew trees,α0 < ω1 and let
S = {T ∈ S : (∀α < α0)(Tα,T are incompatible )}. We define a forcing notion
Q(T̄):

Conditionsare triples (n,F , S̄) such that

F ⊆ 2≤n is a finite skew tree of heightn ∈ ω,
S̄ = 〈St : t ∈ F ∩ 2n〉, t ⊆ root(St ) andSt ∈ S .

The orderis defined by

(n0,F 0, S̄0) ≤ (n1,F 1, S̄1) if and only if
F 1�n0 = F 0 and (∀t ∈ F 0∩2n0)(∃s ∈ F 1∩2n1)(S1

s = (S0
t )s)

Claim 1.3.1. The forcing notionQ(T̄) satisfies the ccc.

Why? Suppose that〈(ni ,F i , S̄i ) : i < ω1〉 ⊆ Q(T̄). First we findA ∈ [ω1]ω1,
n ∈ ω and a finite skew treeF ⊆ 2≤n of the heightn such that for eachi ∈ A
we haveni = n,F i = F . Next we findA′ ∈ [A]ω1, n∗ > n and a finite skew tree
F∗ ⊆ 2n∗ such thatF∗ ∩ 2n = F ∩ 2n and for eachi ∈ A′
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each nodet ∈ F ∩ 2n ramifies inF∗ (below n∗) and
Si

t ∩ 2≤n∗ ⊇ (F∗)t .

For eacht ∈ F ∩ 2n choose two distinctl (t), r (t) ∈ (F∗)t ∩ 2n∗ . Let i , j ∈ A′.
For t ∈ F ∩2n put S∗l (t) = (Si

t )l (t) andS∗r (t) = (Sj
t )r (t). Clearly (n∗,F∗, S̄∗) ∈ Q(T̄)

and this condition is stronger than both (ni ,F i , S̄i ) and (nj ,F j , S̄j ). The claim
is proved.

Suppose thatG ⊆ Q(T̄) is a generic filter overV. Then a density argument
shows thatTG =

⋃{F : (∃n, S̄)((n,F , S̄) ∈ G)} is a skew perfect tree. LeṫTΓ
be the canonicalQ(T̄)-name for the treeTG.

Claim 1.3.2. If (n,F , S̄) ∈ Q(T̄), t ∈ F ∩ 2n

then(n,F , S̄)  “ ṪΓ ,St are compatible”.

Why? Suppose (n0,F 0, S̄0) ∈ Q(T̄), t0 ∈ F 0∩2n0
. Taken1 such thatt0 ramifies

in S0
t0 below n1. Take two distinct extensionst0

0 , t
1
0 of t0, t0

0 , t
1
0 ∈ S0

t0 ∩ 2n1
and

for t ∈ (F 0 ∩ 2n0
) fix an extensiont1 ⊇ t , t1 ∈ S0

t . Put

F 1 = {t1�m : m ≤ n1} ∪ {t i
0�m : m ≤ n1, i = 0, 1}, S1

t1 = (S0
t )t1, S1

t i
0

= (S0
t0)t i

0
.

Then (n1,F 1, S̄1) ∈ Q(T̄) is a condition stronger than (n0,F 0, S̄0) and

(n1,F 1, S̄1)  t0
0 , t

1
0 ∈ ṪΓ ∩ S0

t0.

SinceS1
t0
0
,S1

t1
0
⊆ S0

t0 easy density argument proves the claim.

Claim 1.3.3. Q(T̄) (∀α < α0)(Tα, ṪΓare incompatible).

Why? Letα < α0, (n,F , S̄) ∈ Q(T̄). Since eachSt (for t ∈ F ∩ 2n) is incom-
patible with Tα we find n∗ > n and v(t) ∈ St ∩ 2n∗ for t ∈ F ∩ 2n such that
v(t) /∈ Tα. Let

F∗ = {v(t)�m : m ≤ n∗, t ∈ F ∩ 2n} andS∗v(t) = (St )v(t) for t ∈ F ∩ 2n.

Then (n∗,F∗, S̄∗) ≥ (n,F , S̄) and (n∗,F∗, S̄∗)  ṪΓ ∩ Tα ⊆ F∗. The claim is
proved.

Now we start withV |= ¬CH. Let 〈Pα, Q̇α : α < ω1〉 be the finite support
iteration such that

α Q̇α = Q(〈Ṫβ : β < α〉)
whereṪβ is thePβ+1-name for the generic tree added byQ̇β . Let G ⊆ Pω1 be a
generic overV. SincePω1 satisfies ccc (by Claim 1.3.1) we haveV[G] |= ¬CH.
By Claim 1.3.3,〈ṪG

α : α < ω1〉 is an antichain inS. We claim that it is a maximal
antichain (inV[G]).
Suppose thaṫT is a Pω1-name for an element ofS. Then Ṫ is a Pα-name for
someα < ω1. Assume thatp ∈ Pω1 is such that

p ω1 (∀α < ω1)(Ṫ, Ṫα are incompatible).
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Takeα0 > α such thatp ∈ Pα0. Since

p α0 (∀α < α0)(Ṫ, Ṫα are incompatible)

we can extendp to q = p ∪ {(α0, (0, {∅}, 〈Ṫ〉))} ∈ Pω1. It follows from claim
1.3.2 thatq ω1 “ Ṫα0, Ṫ are compatible” - a contradiction. The theorem is proved.
ut

2 When Sacks forcing forces CH

In this section we show that ifd = ω1 thenSCH, and hence applying the result
of the next section we will be able to concludeS ♦ω1 providedd = ω1. [To be
more precise, if CH holds thenS ♦ω1 by Theorem 1.2 of Carlson and Laver. If
we are in the situation ofd = ω1 < c then, by Corollary 2.6,c is collapsed toω1

and henceω2 is collapsed (by forcing withS). Now Theorem 3.4 applies.] This
answers the question of T.Carlson and R.Laver (see [3]).

We start with the following general observation.

Lemma 2.1. LetP be a forcing notion,κ a cardinal. Suppose that there exist
antichainsAζ ⊆ P for ζ < κ such that

(*) (∀p ∈ P)(∃ζ < κ)(|{q ∈ Aζ : p ≤ q}| = |P|).
ThenP |PV | ≤ κ.

Proof. For eachζ < κ, by an easy induction, one can construct a function
φζ : Aζ −→ P such that for everyp, p′ ∈ P

if |{q ∈ Aζ : p ≤ q}| = |P|
thenφζ(q) = p′ for someq ∈ Aζ , q ≥ p.

Now let φ̇ be aP-name for a function fromκ into PV such that

q  φ̇(ζ) = φζ(q) for ζ < κ, q ∈ Aζ .

Clearly for eachp, p′ ∈ P, if ζ < κ witnesses(*) for p then there isq ≥ p such
that q  φ̇(ζ) = p′. ConsequentlyP rng(φ̇) = PV and we are done. ut

Thus to prove that the Sacks forcing collapses continuum we will construct
the respective sequence of antichains inS. The sequence will be produced from
a special family of subsets of [ω]ω

For a setX ∈ [ω]ω let µX : ω
onto−→ X be the increasing enumeration of the

setX.

Definition 2.2. (1) A family F ⊆ [ω]ω is dominating in[ω]ω if

(∀Y ∈ [ω]ω)(∃X∈F )(∀∞n)(|[µX (n), µX (n + 1))∩ Y | ≥ 2).
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(2) A family F ⊆ [ω]ω is weakly dominating in[ω]ω if for every setY ∈ [ω]ω

(∃X∈F )(∃∞i )(∀j <2i )(|[µX (2i +j ), µX (2i +j +1))∩ Y | ≥ 2).

(3) b
+ε = min{|F | : F ⊆ [ω]ω is weakly dominating}.

Remarks. 1) Note that ifF is a dominating family in [ω]ω then{µX : X ∈
F } is a dominating family in the order〈ωω,≤∗〉. And conversely, ifF ⊆ ωω is
a dominating family of increasing functions,Xf ,n = {f (n), f (f (n)), f (f (f (n))) . . .}
(for f ∈F , n∈ω) then{Xf ,n : f ∈F , n∈ω} is a dominating family in [ω]ω . In
particular the minimal size of a dominating family in [ω]ω is the dominating
numberd. Clearly each dominating family is weakly dominating. Consequently
b

+ε ≤ d.
2) We have the following inequalities:

b ≤ b
+ε ≤ min{|X| : X ⊆ 2ω is not meager}.

Moreover, the inequalityb < b
+ε is consistent with ZFC (see [7];b+ε is the

cardinald(S+ε) of that paper).
3) One can replace “≥ 2” in the definition of a weakly dominating family (and
b

+ε) by “≥ 1” (and replace the functioni 7→ 2i by any other increasing function)
and still the results of this section could be carried on (with this newb

+ε). The
reason why we use this definition ofb+ε is that it fits to a more general schema of
cardinal invariants studied in [7]. For example note that the unbounded number
b equals to

min{|F | : F ⊆ [ω]ω & (∀Y ∈ [ω]ω)(∃X∈F )(∃∞i )(|[µX (i ), µX (i +1))∩Y | ≥ 2)}

and “≥ 2” in the above cannot be replaced by “≥ 1”.

Definition 2.3. Let T ∈ S, X ∈ [ω]ω . We say that the conditionT weakly obeys
the setX if

(∃∞i )(∀j <2i )(∀t ∈T ∩ 2µX (2i +j ))(tramifies inT belowµX (2i + j + 1)).

Lemma 2.4. Suppose X∈ [ω]ω . Then there exists an antichainA ⊆ S such
that
(∗X ) if T ∈ S weakly obeys X then|{S ∈ A : T ≤ S}| = c.

Proof. Let {Tα : α < c} = {T ∈ S : T weakly obeysX} be an enumeration
with c repetitions. Let{hα : α < c} ⊆ ωω be a family of functions such that

(∀α<c)(∀i <ω)(hα(i ) < 2i ) and (∀α<β<c)(∀∞i )(hα(i ) /= hβ(i )).

SinceTα weakly obeysX we have that for infinitely manyi , for eachj < 2i

each nodet ∈ Tα ∩ 2µX (2i +j ) ramifies inTα belowµX (2i + j + 1). Consequently,
for eachα < c we can construct a conditionSα ≥ Tα such that for everyi ∈ ω:
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if some t ∈ Sα ∩ 2µX (2i +j ) ramifies belowµX (2i + j + 1), j < 2i

then j = hα(i ).

Note that (∀∞n)(hα(n) /= hβ(n)) implies that conditionsSα,Sβ are incompatible.
ThusA = {Sα : α < c} is an antichain. Clearly thisA works. ut
Theorem 2.5. S c = |(b+ε)V |.
Proof. SinceS c = |cV | it is enough to show that

S “there exists a functionφ from (b+ε)V onto c
V” .

By the definition of the cardinalb+ε there exists a sequence〈Xζ : ζ < b
+ε〉 ⊆

[ω]ω which is weakly dominating. Apply Lemma 2.4 to construct antichains
Aζ ⊆ S such that

if T ∈ S weakly obeysXζ then |{S ∈ Aζ : T ≤ S}| = c.
Since each treeT ∈ S weakly obeys someXζ we can conclude the assertion
from Lemma 2.1. ut
Corollary 2.6. Assume thatd = ω1. ThenSCH.

The Marczewski idealS0 is aσ-ideal of subsets of the Cantor space 2ω . This
ideal is connected with the Sacks forcing. It consist of all setsA⊆ 2ω such that

(∀T ∈ S)(∃T ′ ≥ T)([T ′] ∩ A = ∅),

where [T ′] = {x ∈ 2ω : (∀n ∈ ω)(x�n ∈ T ′)}.
Some connections between the Marczewski idealS0 and the Sacks forcingS

were established in [6].

Corollary 2.7. add(S0) ≤ b
+ε

Proof. The crucial fact for this inequality is the existence of a sequence〈A∗
ζ :

ζ < b
+ε〉 ⊆ S of maximal antichains inS such that

(∀T ∈ S)(∃ζ < b
+ε)([T] \

⋃
{[S] : S ∈ A∗

ζ} /= ∅).

For this first, as in the proof of Theorem 2.5, find antichainsAζ ⊆ S for ζ < b
+ε

such that
(∀T ∈ S)(∃ζ < b

+ε)(|{S ∈ Aζ : T ≤ S}| = c).

Now fix ζ < b
+ε. To constructA∗

ζ take an enumeration{Tα : α < c} of S and
an enumeration{T∗

α : α < c} of {T ∈ S : |{S ∈ Aζ : T ≤ S}| = c}. Next by
induction onα < c choose treesSα ∈ S and branchesxα ∈ 2ω such that (for
α < c):

xα ∈ [T∗
α] \⋃β<α[Sβ ],

either (∃S ∈ Aζ)(Sα ≥ S) or Aζ ∪ {Sα} is an antichain,
if Tα is incompatible with allSβ (for β < α) thenSα ≥ Tα,
Sα is incompatible with eachSβ for β < α and
[Sα] ∩ {xβ : β ≤ α} = ∅.
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At stageα < c we easily find a suitablexα ∈ [T∗
α] since continuum many

members ofAζ is stronger thanT∗
α and eachSβ (for β < α) is either stronger

than some member ofAζ or incompatible with all elements ofAζ . (Remember
that two conditionsS,T ∈ S are incompatible inS if and only if [S] ∩ [T] is
countable.) If the conditionTα is compatible with someSβ for β < α then we
put Sα = Sβ . Otherwise we chooseS ∈ S such thatTα andS are compatible and
either S ∈ Aζ or S is incompatible with all members ofAζ . As each perfect
set contains continuum many disjoint perfect sets we can find a treeSα ≥ Tα,S
such that [Sα] ∩ {xβ : β ≤ α} = ∅.
Then {Sα : α < c} = A∗

ζ is a maximal antichain (note that there could be
repetitions in{Sα : α < c}). The pointsxα (for α < c) witness that no [T∗

α] is
covered by

⋃{[S] : S ∈ A∗
ζ}.

Now, having antichainsA∗
ζ as above, we putAζ =

⋃{[T] : T ∈ A∗
ζ}. Since

A∗
ζ is a maximal antichain the complement ofAζ is in the idealS0. Moreover,

for eachT ∈ S there isζ < b
+ε with [T]\Aζ /= ∅. Hence

⋃
ζ<b+ε

(2ω\Aζ) /∈ S0.

ut

Remark. Recently P. Simon has proved that in the results of these section one
can replaceb+ε by the unbounded numberb.

3 Collapseω2 – the continuum will fall down

In this section we will prove that if the Sacks forcing (or any proper forcing of
size≤ c) collapsesω2 then it forces♦ω1. First we will give combinatorial tools
needed for the proof. Let us start with fixing some notation.

For an ordinalκ by IS(κ) we will denote the set of finite incresing sequences
with values inκ. χ stands for a “sufficiently large” cardinal,H (χ) is the family
of all sets hereditarily of the cardinality less thanχ.

For ζ < ω1 let ζ = {eζn : n ∈ ω} be an enumeration.

Let S2
i = {δ < ω2 : cf(δ) = ωi } for i = 0, 1.

Lemma 3.1 (S.Shelah, see 2.3 of [9]). There exists a (“club–guessing”) se-
quenceC̄ = 〈Cδ : δ ∈ S2

0 〉 such that

1. Cδ ⊆ δ, supCδ = δ,
2. the order type of Cδ is ω,
3. for every closed unbounded subset E ofω2 there existδ ∈ S2

0 such that
Cδ ⊆ E.

We fix a club–guessing sequencēC = 〈Cδ : δ ∈ S2
0 〉 as in 3.1. Forδ ∈ S2

0 let
Cδ = {αδn : n ∈ ω} be the increasing enumeration.

Definition 3.2. Let δ ∈ S2
0 and letζ < ω1 be limit.
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1. A sequence〈Nη : η ∈ IS(ω)〉 is a semi-(ζ, δ)-creature(for the sequencēC)
if
α) Nη is a countable elementary submodel ofH (χ), Nη ∩ ω1 ⊆ ζ and⋃

n∈ω Nh�n ∩ ω1 = ζ for every increasing functionh ∈ ωω ,
β) if η ⊆ ν thenNη ≺ Nν ,
γ) Nη ∩ ω2 ⊆ αδ0 ∪

⋃
n<lh(η)[α

δ
η(n), α

δ
η(n)+1),

δ) for eachn < lh(η) the intersectionNη ∩ [αδη(n), α
δ
η(n)+1) is non empty.

2. Let P be a forcing notion,X ∈ H (χ). A (ζ, δ)-creature forP,X is a system
{(Nη, τη, kη) : η ∈ IS(ω)} such that
α) the sequence〈Nη : η ∈ IS(ω)〉 is a semi-(ζ, δ)-creature and

X,P,≤P, ω2, ω1, . . . ∈ N∅,
β) kη ∈ ω, {eζk : k < kη} ⊆ Nη, and for every increasing functionh ∈ ωω

the sequence〈kh�n : n ∈ ω〉 is unbounded,
γ) τη is a function such that dom(τη) ∈ [P× ω]≤ω , for eachk ∈ ω the set

{p ∈ P : (p, k) ∈ dom(τη)} is an antichain inP and rng(τη) ⊆ 2,
δ) if η ⊆ ν thenkη ≤ kν andτη ⊆ τν .

3. Let CRζδ(P,X) be the family of all (ζ, δ)-creatures forP,X.

Remarks. 1. A P-name for a subset ofζ < ω1 can be thought of as a function
τ such that rngτ ⊆ 2 and domτ ⊆ P× ζ has the following property:

for eachξ ∈ ζ the set{p ∈ P : (p, ξ) ∈ domτ} is an antichain inP

(and then for (p, ξ) ∈ τ : p  ξ ∈ τ if τ (p, ξ) = 1 andp  ξ /∈ τ otherwise). If
the forcing notionP is proper every such a name can be (above each condition)
forced to be equal to a countable name.

2. Thus in a (ζ, δ)-creature{(Nη, τη, kη) : η ∈ IS(ω)} for P the functionsτη
can be thought of as approximations of a name for a subset ofζ. Note that we
demand no relations between functionsτη and modelsNη. The last are only
“side parameters”. The parameter will decide above which conditions the name
is described by the functionsτ determined by a branch through the creature.

Lemma 3.3. For every X∈ H (χ) and a closed unbounded set D⊆ ω1 for
someζ ∈ D andδ ∈ S2

0 there exists a semi-(ζ, δ)-creature〈N∗
η : η ∈ IS(ω)〉 such

that X ∈ N∗
∅ .

Proof. The following special case of Theorem 2.2 of [8] is a main tool for
constructing semi-creatures:

Claim 3.3.1 (M.Rubin and S.Shelah, [8]). Suppose thatT ⊆ ω< ω
2 is a tree

such that for each node t∈ T the setsuccT (t) of successors of t is of the size
ω2. Assume thatφ : T −→ ω1. Then there exists a subtreeT0 of T such that

(∀t ∈ T0)(|succT0(t)| = ω2) and supφ[T0] < ω1.

If additionally φ is increasing (i.e. t⊆ s ∈ T impliesφ(t) ≤ φ(s)) then we can
demand thatlimn φ(x�n) is constant for all infinite branches x∈ [T0].

For v ∈ IS(S2
1 ) chooseNv such that
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(0) X ∈ N∅;
(1) Nv is an elementary countable submodel ofH (χ);
(2) Nv ∩ ω1 ∈ D , [max(v), ω2) ∩ Nv /= ∅;
(3) if v ⊆ w thenNv ≺ Nw.

Now we will inductively define a treeT ⊆ IS(S2
1 ) and ordinalsδv < ω2 for

v ∈ T such that:

(4) if v ∈ T then |succT (v)| = ω2 and

(5) if v ∈ T , φv : S2
1

onto−→ succT (v) is the increasing enumeration of succT (v)
then for everyα ∈ S2

1 andw ∈ T , w ⊇ vˆφv(α)

Nw ∩ α ⊆ δv.

To start with we put∅ ∈ T . For eachv ∈ IS(S2
1 ) let ρv = sup(Nv ∩ v(0)).

Applying Claim 3.3.1 for eachα ∈ S2
1 we find a treeT 〈α〉 ⊆ IS(S2

1 ) and
ρα < α such that

(6) root(T 〈α〉) = 〈α〉;
(7) each node extending〈α〉 hasω2 successors inT 〈α〉;
(8) for eachv ∈ T 〈α〉, ρv < ρα.

Applying Fodor’s lemma we findδ∅ andA∅ such that

(9) A∅ ∈ [S2
1 ]ω2;

(10) δ∅ = ρα for α ∈ A∅.

We put A∅ = succT (∅) and we decide that (T )〈α〉 ⊆ T 〈α〉 for eachα ∈ A∅.
Note that at this moment we are sure that if〈φ∅(α)〉 ⊆ w then Nw ∩ α ⊆
Nw ∩ φ∅(α) ⊆ δ∅ for eachα ∈ S2

1 .
Suppose we have decided thatv ∈ T and (T )v ⊆ T v.
Let φ′v : S2

1
onto−→ succT v (v) be the increasing enumeration. For eachα ∈ S2

1
we apply Claim 3.3.1 to findρα < α and a treeT v ˆφ′v(α) ⊆ T v such that

(11) root(T v ˆφ′v(α)) = vˆφ′v(α);
(12) each node inT v ˆφ′v(α) extendingvˆφ′v(α) hasω2 successors inT v ˆφ′v(α);
(13) for eachw ∈ T v ˆφ′v(α), w ⊇ vˆφ′v(α) we have sup(Nw ∩ α) < ρα.

Next we chooseδv andAv such that

(14) Av ∈ [S2
1 ]ω2;

(15) δv = ρα for all α ∈ Av.

We put succT (v) = φ′v[Av] and we decide that forα ∈ Av

(T )v ˆφ′v(α) ⊆ T v ˆφ′v(α).

Note that at this moment we are sure that ifw ∈ T , vˆφv(α) ⊆ w thenNw∩α ⊆
Nw∩β ⊆ δv, whereφ′v(β) = φv(α) (clearlyα ≤ β). This finishes the construction
of the treeT (satisfying (4), (5)).
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For v ∈ T let ζv = Nv ∩ ω1 ∈ D . We apply Claim 3.3.1 once again to find
ζ < ω1 and a treeT ∗ ⊆ T such that each node inT ∗ hasω2 successors in
T ∗ and for eachω-branchz throughT ∗ we have sup{ζz�n : n ∈ ω} = ζ. Then

ζ ∈ D . For v ∈ T ∗ let ψv : S2
1

onto−→ succT ∗ (v) be the increasing enumeration
and letδ∗v = sup(Nv ∩ ω2). Let

E = {δ<ω2 : δ is limit & ( ∀v∈ IS(δ) ∩ T ∗)(δv < δ & δ∗v < δ) &
& (∀v∈T ∗ ∩ IS(δ))(∀β<δ)(∃γ∈S2

1 )(β < γ ≤ ψv(γ) < δ)}.
SinceE is a closed unbounded subset ofω2 we find δ ∈ E such thatCδ ⊆ E.

Now we may define the semi-(ζ, δ)-creature we are looking for by construct-
ing an embeddingπ : IS(ω) −→ T ∗ such that lh(π(η)) = lh(η) and choosing
corresponding modelsNπ(η). This is done by induction on the length of a se-
quenceη ∈ IS(ω):
Putπ(∅) = ∅. Note thatδ∅ < αδ0 (asαδ0 ∈ E).
Suppose we have definedπ(η) ∈ T ∗ such thatδπ(η) < αδnk−1+1, whereη =
〈n0, n1, . . . , nk−1〉. Given nk > nk−1.
Take anyγ ∈ (αδnk

, αδnk +1) ∩ S2
1 and putπ(ηˆnk) = π(η)ˆψπ(η)(γ) ∈ T ∗. By the

choice ofγ we haveδπ(η ˆnk ) < αδnk +1.

Finally let N∗
η = Nπ(η) for η ∈ IS(ω).

Sinceδ∅ < αδ0, δ∗π(〈n0〉) < αδn0+1 we have that for everyn0 ∈ ω

N∗
〈n0〉 ∩ ω2 ⊆ αδ0 ∪ [αδn0

, αδn0+1) and N∗
〈n0〉 ∩ [αδn0

, αδn0+1) /= ∅
(we use here (2) and (5)). Similarly, ifη = 〈n0, . . . , nk−1, nk〉 ∈ IS(ω) then

N∗
η ∩ αδni +1

⊆ αδni +1 for i < k and

N∗
η ∩ [αδni

, αδni +1) /= ∅ for i ≤ k.

Consequently the sequence〈N∗
η : η ∈ IS(ω)〉 is a semi-(ζ, δ)-creature (and we

are done asX ∈ N∗
∅ , ζ ∈ D). ut

Theorem 3.4. AssumeP is a proper forcing notion,|P| ≤ c. SupposeP

|ωV
2 | = ω1. ThenP ♦ω1.

Proof. Let P be a proper forcing notion collapsingω2 and of size|P| ≤ c. Since
P collapsesω2 and |P| ≤ c we havec ≥ ω2. Let Θ be aP-name such that

P “Θ : ω1 −→ ωV
2 is an increasing unbounded function”.

Our aim is to construct a sequence〈Ȧζ : ζ < ω1〉 of P-names which witnesses
♦ω1 in VP. In the construction we will use (ζ, δ)-creatures which can be thought of
as countable “trees” of possible fragments of names for subsets ofζ (together with
some parameters for controlling their behaviour). Each infinite branch through
the creature will define a (countable) name for a subset ofζ. Next we will choose
continuum many branches together with conditions inP. Our choice will ensure
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that the conditions form an antichain inP and all antichains involved in the
name determined by a single branch (in important cases) are predense above the
corresponding condition. This will define the nameȦζ for a subset ofζ. The
main difficulty will be in proving that the sequence〈Ȧζ : ζ < ω1〉 is (a name for)
a ♦ω1–sequence. But this we will obtain right from the existence of creatures
which was proved in Lemma 3.3.

Before we define the nameṡAζ we have to identify some creatures (as the
set CRζδ(P, Θ) can be very large):

For a (ζ, δ)-creatureS = {(Nη, τη, kη) : η ∈ IS(ω)} ∈ CRζδ(P, Θ) let

U (S) =
⋃

η∈IS(ω)

Nη ∩ P.

ClearlyU (S) is a countable subset ofP and hence there is at mostc possibilities
for U (S). Let Si = {(N i

η, τ
i
η, k

i
η) : η ∈ IS(ω)} ∈ CRζδ(P, Θ), i = 0, 1. We say that

the creaturesS0,S1 areequivalent(S0 ≡ S1) whenever

(i) U (S0) = U (S1) and
(ii) for eachη ∈ IS(ω): N 0

η ∩ P = N 1
η ∩ P, k0

η = k1
η , τ0

η = τ1
η and

{A0 ∩ U (S0) : A0 ∈ N 0
η is a maximal antichain inP}

= {A1 ∩ U (S1) : A1 ∈ N 1
η is a maximal antichain inP}.

(Note that actually condition (ii) implies (i).) Since for eachη ∈ IS(ω) there is
at mostc possibilities forkη, τη, Nη ∩ P and{A∩ U (S) : A ∈ Nη is a maximal
antichain inP} the relation≡ has at mostc equivalence classes.

The following claim should be clear:

Claim 3.4.1. Let Si = {(N i
η, τ

i
η, k

i
η) : η ∈ IS(ω)} ∈ CRζδ(P, Θ) (for i = 0, 1)

be equivalent creatures. Let h∈ ωω be an increasing function. Then

1.
⋃

n∈ω N i
h�n is an elementary (countable) submodel ofH (χ),

2.
⋃

n∈ω N 0
h�n ∩ P =

⋃
n∈ω N 1

h�n ∩ P,
3. if A0 ∈ N 0

h�n is a maximal antichain inP then for some maximal antichain
A1 ∈ N 1

h�n we have A0 ∩⋃n∈ω N 0
h�n = A1 ∩⋃n∈ω N 1

h�n,
4. {A0 ∩⋃n∈ω N 0

h�n : A0 ∈ ⋃n∈ω N 0
h�n is a maximal antichain inP}

= {A1 ∩⋃n∈ω N 1
h�n : A1 ∈ ⋃n∈ω N 1

h�n is a maximal antichain inP},
5. if p ∈ P is (

⋃
n∈ω N 0

h�n,P)-generic then it is(
⋃

n∈ω N 1
h�n,P)-generic.

Fix a limit ordinal ζ < ω1.

We are going to define a nameȦζ for a subset ofζ.
Suppose that

⋃
δ∈S2

0
CRζδ(P, Θ) /= ∅.

Let pi ∈ P, Si ∈ ⋃δ∈S2
0

CRζδ(P, Θ) (for i < c) be such that{(pi , [Si ]≡) : i <

c} lists of all members ofP× (
⋃
δ∈S2

0
CRζδ(P, Θ)/≡) with c repetitions. Take any

family {hi : i < c} ⊆ ωω of increasing functions such that for distincti , j < c

the intersection rng(hi ) ∩ rng(hj ) is finite.
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Now for eachi < c we putMi =
⋃

n<ω N i
hi �n, τi =

⋃
n∈ω τ

i
hi �n.

EachMi is a countable elementary submodel ofH (χ) andτi is a function.
SinceP is proper we findpi ∈ P such thatpi is (Mi ,P)-generic. If we can find
such a conditionpi above the conditionpi then we also demandpi ≥ pi . Note
that Mi ∩ω1 = ζ andMi ∩ω2 ⊆ δi is cofinal inδi (what is a consequence of (γ),
(δ) of Definition 3.2(1)), whereδi ∈ S2

0 is such thatSi ∈ CRζδi
(P, Θ). Hence

pi  “rng(Θ�ζ) ⊆ Mi is unbounded inδi ” .

If δi /= δj then the conditionspi , pj force inconsistent sentences (unboundness
of rng(Θ�ζ) in δi , δj , respectively). Ifδi = δj but i /= j then the choice of
the functionshi , hj guaranties (by (γ), (δ) of 3.2(1)) that setsMi ∩ [α, δi ) and
Mj ∩ [α, δi ) are disjoint for someα < δi . Consequently ifi /= j then pi , pj are
incompatible.

Let Aζ be a maximal antichain inP extending{pi : i < c} and letȦζ be a
name for a subset ofζ such that for each (p, k) ∈ dom(τi )

pi  “if p ∈ ΓP then Ȧζ(eζk ) = τi (p, k)”

(we identify a subset ofζ with its characteristic function).
If
⋃
δ∈S2

0
CRζδ(P, Θ) = ∅ then take any maximal antichain and a name for a

subset ofζ.
We want to show that the sequence〈Ȧζ : ζ < ω1〉 is a (name for a)♦ω1-sequence.
For this suppose thaṫA is a P-name for a subset ofω1, Ḋ is a P-name for a
closed unbounded subset ofω1, p ∈ P. We have to prove:

Claim 3.4.2. There exist a limit ordinalζ < ω1 and a condition p∗ ∈ Aζ

such that p∗ ≥ p and p∗ “ Ȧζ = Ȧ∩ ζ & ζ ∈ Ḋ”.

To prove the claim we use Lemma 3.3 to find a semi-(ζ, δ)-creature〈N∗
η : η ∈

IS(ω)〉 such thatΘ, Ȧ, Ḋ ,P, p, . . . ∈ N∗
∅ . Next:

let kη = min{l : eζl /∈ N∗
η }.

For eachη ∈ IS(ω) and k < kη we fix a maximal antichainB k
η in P such

that B k
η ∈ N∗

η and (∀p ∈ B k
η )(p ‖ eζk ∈ Ȧ). Moreover we demand thatη ⊆ ν

implies B k
η = B k

ν (for k < kη). Now we define functionsτη for η ∈ IS(ω) by

dom(τη) =
⋃

k<kη
((B k

η ∩ N∗
η )× {k}),

τη(p, k) = 1 if and only if p  eζk ∈ Ȧ.

It should be clear thatS = {(N∗
η , τη, kη) : η ∈ IS(ω)} is a (ζ, δ)-creature for

P, Θ. Thus we findi < c such thatS ≡ Si andp = pi (whereSi ∈ CRζδ(P, Θ),
pi ∈ P are as in the definition of the antichainAζ and the namėAζ). Then the
condition p∗ = pi ∈ Aζ is (

⋃
n∈ω N∗

hi �n,P)-generic,p∗ ≥ pi = p ∈ N∗
∅ . The

nameȦζ agrees with decissions ofτhi �n (or B k
hi �n). By the genericity ofp∗ we

conclude thatp∗ “ Ȧ∩ ζ = Ȧζ & ζ ∈ Ḋ”. Thus the claim is proved.

The theorem follows from the claim. ut
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4 Laver forcing, Miller forcing, Silver forcing...

Results of the second section can be formulated for other forcing notions. With-
out any problems we can prove the respective facts for the Silver forcing (and
generally for forcing notions consisting of compact trees).

Recall that the Silver forcing notion consists of partial functionsp such that
dom(p) ⊆ ω, ω\dom(p) is infinite and rng(p) ⊆ 2. These functions are ordered
by the inclusion.

Theorem 4.1. The Silver forcing notion forces “c = |(b+ε)V |”.
We have to be more carefull when we work with trees onω. Nevertheless

even in this case we get the similar result
The Laver forcingL consists of infinite treesT ⊆ ω<ω such that for each

t ∈ T, root(T) ⊆ t we have|succT (t)| = ω.

Definition 4.2. We say that a conditionT ∈ L weakly obeysa setX ∈ [ω]ω

whenever for each ramification pointt ∈ T

(∃∞i )(∀j < 2i )(succT (t) ∩ [µX (2i + j ), µX (2i + j + 1)) /= ∅).

Fix T ∈ L . TakeX0 ∈ [ω]ω such that for each ramification pointt ∈ T

(∀∞i )(succT (t) ∩ [µX0(i ), µX0(i + 1)) /= ∅).

Suppose thatX ∈ [ω]ω is such that

(∃∞i )(∀j < 2i )(|[µX (2i + j ), µX (2i + j + 1))∩ X0| ≥ 2).

Then clearlyT weakly obeysX. Consequently ifF ⊆ [ω]ω is a weakly domi-
nating family thenT weakly obeys someX ∈ F .

Suppose now thatT weakly obeysX ∈ [ω]ω and h : ω −→ ω is such that
(∀i )(h(i ) < 2i ). Then we can easily construct a conditionTh ≥ T such that

if t ∈ Th is a ramification point inTh, tˆn ∈ Th and j < 2i , 2i + j ≤ n <
2i + j + 1
thenh(i ) = j .

Moreover, if h0, h1 are such that (∀∞i )(h0(i ) /= h1(i )) then the respective con-
ditions Th0,Th1 are incompatible – their intersection has no node with infinitely
many immediate successors. Consequently we can repeat the proof of 2.4 and
we get

Theorem 4.3. L c = |(b+ε)V |.
The argument above applies for the Miller forcing too. Recall that this order

consists of perfect treesT ⊆ [ω]<ω such that

(∀t ∈ T)(∃s ∈ T)(t ⊆ s & |succT (s)| = ω).

Thus we can conclude

Theorem 4.4. The Miller forcing collapses the continuum onto(b+ε)V .

Acknowledgements.Special thanks are due to the referee for very valuable comments.
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