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In this paper, we develop a system of typed lambda-calculus for the Zermelo-
Framnkel set theory, in the framework of classical logic. The first, and the simplest
system of typed lambda-cal culusisthe system of simple types, which usestheintui-
tionistic propositional calculus, with the only connective — . It is very important,
because the well known Curry-Howard correspondence between proofs and pro-
grams was originally discovered with it, and because it enjoys the normalization
property: every typed term is strongly normalizable. It was extended to second
order intuitionistic logic, in 1970, by J.-Y. Girard [4], under the name of systemF,
still with the normalization property.

More recently, in 1990, the Curry-Howard correspondence was extended to
classical logic, following Felleisen and Griffin [6] who discovered that the law of
Peirce corresponds to control instructions in functional programming languages.
It is interesting to notice that, as early as 1972, Clint and Hoare [1] had made an
analogous remark for the law of excluded middle and controlled jump instructions
in imperative languages.

There are now many type systems which are based on classical logic; among
the best known are the system LC of J.-Y. Girard [5] and the Au-calculus of
M. Parigot [11]. We shall use below a system closely related to the latter, called
the 1.-calculus [8, 9]. Both systems use classical second order logic and have the
normalization property.

Inthesequel, we shall extend the A.-cal culusto the Zermel o-Fraenkel set theory.
The main problem isdueto the axiom of extensionality. To overcomethisdifficulty,
wefirst give theaxiomsof Z F in asuitable (equivaent) form, whichwecall Z F;.

1. The ZF; set theory

Thistheory iswritteninthefirst order predicate cal culuswithout equality, with only
threebinary relation symbols: €, C (which havetheir usual meaning), and & (which
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isakind of “ strong membership” relation). The formulax = y isan abbreviation
forx C y Ay C x. Weshall usethe notation (Vx e a) F(x) for Vx(x ea — F(x)),
and (Ax ca)F(x) fordx(x e a A F(x)).

The axioms are the following :

0. Equality and extensionality axioms.
VaxVy[x € y < (Fzey)x =z] ; VaxVy[x C y < (Vzex)z € yl.
1. Foundation scheme.
Va[(Vx e a) F (x) > F(a)] — Va F(a) (foreveryformulaF (x, x1, . . ., xu)).

Theintuitive meaning of axioms0 and 1isthat ¢ isawell founded relation, and that
therelation € is obtained by “ collapsing” ¢ into an extensional binary relation.

The following axioms essentially express that the relation ¢ satisfies the axioms of
Zermel o-Framkel except extensionality.

2. Comprehension scheme.
Va3abVx[x eb <> (x e a A F(x))] (for every formula F (x, x1, ..., x,)).

3. Pairing axiom.
VaVb3Ix[aex A bex]

4. Union axiom.
Yaab(Vx ea)(Vyex) yeb.

5. Power set scheme.
Va3bVx(3y e b)Vz(zey < (zea A F(z, x)))
(for every formula F (z, x, x1, ..., X))

6. Collection scheme.
Ya3db(Vx e a)[Ay F(x,y) — @yeb)F(x,y)]
(for every formula F (x, y, x1, . .., X))
7. Infinity scheme.
Yadb{aeb A (Vx e b)[Ty F(x,y) - @yeb)F(x, )]}
(for every formula F (x, y, x1, . .., X))

Remark. These axioms are clearly very redundant: indeed, the power set
scheme contains the comprehension scheme, and the collection scheme could
easily be merged in the infinity scheme. We give the axioms in this manner only
in order to show the relation with Z F.

Let us show that this theory is a conservative extension of ZF + AF (AF is
the axiom of foundation : Va(3x € a)(Vy € x) y ¢ a). Inthefirst place, itis clear
that, if ZF, - F,where F isaformulaof ZF (i.e. written only with € et C), then
ZF 4+ AF | F;indeed, it is sufficient to notice that, if wereplacee by € in Z F,
we obtain atheory equivalentto ZF + AF.

Conversely, we must show that each axiom of ZF 4+ AF is a consequence of
ZF,.
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Theorem 1. ZF, a C a (andthusa = a).

We use the foundation scheme (thismethod iscalled “ induction on therank of a ).

We assume Vx(x ea — x C x), and we must show a C a; therefore, we add the

hypothesisx ¢ a. It followsthat x C x,thenx = x, andthereforedy(x = yAyea),

thatisto say x € a. Thus, wehaveVx(x ea — x € a), and thereforea C a.
Q.E.D.

Lemma2. ZF.,FaCb,Vx(xeb—>x€ec)—>acCec.

We must show x sa — x € ¢, whichfollowsfromxesa — x e bandx € b —
X €.
Q.E.D.

If wereplace a with b in Lemma 2, we get
Corollary 3. ZF, -Vx(x €eb—> x €c¢) > b Cc.

Therefore, we have proved, in ZF ., thefirst axiom of ZF, namely:
e Extensiondity axiom : VxVy(Vz(z € x <> 2 € y) = x = y)).

Theorem4. ZF. - VyVz(y =a,a€z—>y€z);VyVz(a Cy, z€a—>z € y).

Call F(a), F'(a) these two formulas. We show F(a) by induction on the rank of
a. Thus, we suppose Vx(x e a — F(x)).

We first show F’(a): by hypothesis, we havea C y, z € a; thus, there exists
a’ suchthat z = a’ and @’ s a, and thus F (a"). Froma’ea and a C y, we deduce
a €y . Fromz=a anda’ € y,wededucez € y by F(a').

Then, we show F(a): by hypothesis, we have y = a, a € z,thusa = y’ and
y' e z for some y’. In order to show y € z, itissufficient to show y = y'.

Now, wehave y = a,a = y’, andthusy’ C a,a C y. From F'(a), we get
Vz(z €a — z € y); fromy’ C a, wededuce y’ C y by Lemma?2.

Wehavealsoy C a,a C y'. From F'(a), we get Vz(z € a — z € y’); from
y C a,wededucey C y’ by lemma2.

Q.E.D.

With Corollary 3, we obtain:
Corollary5. ZF, b Cc < Vx(x €b — x € ¢).

It is now easy to deduce the equality axioms of Z F, namely:
e Equality axioms: Vx(x = x), VxVy(x = y - y = x),
VxVyVz(x = y,y =z — x = 2),

VaVyVx'Vy (x =x", y=y > (x Cy <o xX' Cy)A(x ey < x' €y)).
Remark. The equality = is an eguivalence relation, which is compatible with the
relations € et C but not with the relation «.

e Foundation axiom: asiswell known, it is equivalent to the scheme
Va[Vx(x € a — F(x)) - F(a)] — Va F(a)
(for every formula F (x, x1, . . ., x,,) which iswritten only with € and ).
From axiom scheme 1, it is sufficient to show:
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[Vx(x €a — F(x)) = F(a)] — [Vx(xea — F(x)) — F(a)], or else
Vx(xea — F(x)) »> Vx(x € a — F(x)).

From x € a,wededucex = x’ and x’ ¢ a for somex’, thus F (x’), andfinaly F (x),
since F is compatible with =.

e Comprehension scheme: Va3bVx[x € b < (x € a A F(x))]

(for every formula F (x, x1, . .., x,,) written with C, €).
From the axiom scheme 2 (comprehension scheme), we get Vx[x eb <> (xea A
F(x)]. If x € b,thenx = x/, x’¢b for some x’. Thus x’ ¢ a and F(x’). From
x = x’ and x" ¢ a, we deduce x € a. Since the axioms of equality are satisfied for
C and €, and therefore for F', we obtain F(x).
Conversely, if we have F(x) and x € a, we have x = x’ and x’ ¢ a for some x’.
Since F is compatible with equality, we get F(x'), thusx’ e b and x € b.

e Pairing axiom: VxVy3z[x e z A y € z].
Trivial consegquence of axiom 3, and

Lemmab6. ZF,Fxecy — x € y.

Trivia conseguence of axiomsO and x = x.
Q.E.D.

e Union axiom: Va3bVxVy[x caAny e x — y € b].

From x € a we have x = x’ and x’ ¢ a for some x’; we have y € x, therefore
y € x/,thusy = y’ and y’ ¢ x’. From axiom 4, x’ea and y’ ¢ x’, we get y’ ¢ b;
thereforey e b,by y = y'.
e Power set scheme: Va3abVx3Iy[y e bAVz(z € y <> (z € a A F(z, x)))]
(for every formula F(z, x, x1, . . ., x,) written with € and C).

From axiom scheme 5, wehave y ¢ b, andthusy € b.If z € y, wehavez = 7/ and
7' ¢y for somez/, therefore 7’ e a and F (7', x), thusz € a and F(z, x) (because F
is compatible with =). Conversely, if z € a and F(z, x), wehavez =z’ and 7' ¢ a
for some 7/, therefore F(z/, x), thusz’ e yand z € y.

Remark. The usual statement of the power set axiom is the particular case of this
axiom scheme, where F(z, x) istheformulaz € x.

e Collection scheme: Va3bVx[x € a Ay F(x,y) — Jy(y € b A F(x, y))]
(for every formula F (x, y, x1, . .., x,) Written with € and ).

Fromx € aand3y F(x, y),wegetx = x’,x’ ¢ a for somex’, andthus3y F (x’, y)
since F iscompatible with = . From axiom scheme 6, weget 3y(y e b A F(x', y)),
and thereforedy(y € b A F(x, y)), because yeb — y € b and F is compatible
with =.

e Infinity scheme : Va3b{a € b AVx[x € b ATy F(x,y) — Iy(y € b A
F(x, y)]} (for every formula F (x, y, x1, . .., x,) written with € and ).

Same proof.

Remark. The usual statement of the axiom of infinity is the particular case of this
scheme, wherea = @, et F(x, y) istheformulay = x U {x}.
Q.E.D.
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2. The A.-calculus
2.1. A-terms

Wearegivenaset of A-variablesx, y, . . ., aset of stack constants, and two symbols
ccand /. We defineinductively the set A of A-terms by the following rules:

1. Each A-variable x, and the constant cc are A-terms.
2.1ft, u are A-termsand x isa A-variable, then (r)u and Ax ¢ are A-terms.
3. S risaAi-term and 7 astack constant, then (.«7) (¢1)7 isaA-term.

We consider a-equivalent A-termsasidentical. The A-term (¢)u will beal so denoted
by tu; the A-term (... (()u1) ...u,—1)u, will be also denoted by (#)uy...u, or
fuyg...uy.

A stackisafinite sequence (¢4, ..., t,, ), wherery, ..., t, are A-terms, and =
isastack constant. The set of stacks is denoted by IT.

An expression like ()7, wherer € A and & is a stack constant, is called a
program. Therefore, by rule 3, we have </t € A for every program 7. If o =
(t1,...,1,, ) isastack and t isaA-term, then the program (¢¢1 . . . t,,) isdenoted
by (t)o or to. The set of programs will be denoted naturally by ATI.

Remark. According to the context, an expression liketr withr € A and € T1
may represent either a program or a stack (obtained by “ pushing ” the A-term ¢ on
the top of the stack ).

A A-term built by the only rules 1 and 2, i.e. which does not involve the symbol
</, or equivalently a stack constant, will be called a classical A-term. The set of
thesetermsisdenoted by A .. A pureor intuitionistic A-termisaa-term which does
not involve cc or .«7. The set of pure A-termsis denoted by A;.

The execution of aprogram t € ATl isthe weak cc-reduction, denoted by >,
which is defined as follows (¢, u € A are arbitrary A-terms, and 7, 7’ € I are
arbitrary stacks):

Axu)tmw > ult/x]w;

CCtmr > (t Ax(Z) (X)),

()T > t.

Remark. Theserulesexplain the notation for cc and .7, which behave respectively
astheingtructionsCal | / cc and abor t , in the language SCHEME (a variant of
LISP).

Now we give ourselvesasubset I of ATI, the elements of which will be called
executable programs or briefly executable. We assume that 1L is cc-saturated,
which means that:

tme L, t/n’ >ctm =t'n’ e L.

Let  C I1;, wedenoteby & — I theset{r € A; (Vr € &) tx € L}. Such
asubset of A will be called atruth value; we shall denote by % the set of truth
vaues,ief | ={Z — 1, Z c I}.

f2,% c A,wedefine? — % ={t e A; Yu € 2)tu € %}, whichisalso
asubset of A.
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9Ny isclosed by —; moreprecisely,if 7 c Aand 2’ € Ry, then( X — 27) €
Np:indeed,if 2/ = (2 — L), then( X — 27) = (Z" — L), withZ” = {tm;
teZ,weZ'}.

9 isaso closed by arbitrary intersection: indeed, if Z; = (Z; — L), then
N2 =W Zi — L).

Theleast truth valueisIT — ; itisdenoted by | L|.
Definitions. The weak head reduction is the least reflexive and transitive binary
relation on A, denoted by >, such that (Ax u)tt1...t, > u[t/x]t1...1,. A subset
Z of Aiscaledsaturatedifr € 2,t' =t =1t € 2.

Lemma 7. Every truth valueis saturated.

Easy conseguence of the fact that L is cc-saturated.
Q.E.D.

2.2. Types

In our system of typed A-calculus, the types are the formulas of Z F, written with
the only logical symbols —, V and the three binary relation symbol ¢, ¢ and C.
Noticethat 1 and = are not symbols of the language. They are defined as follows:

TheformulaVxVy(x ¢ y) isdenoted by L. Theformulax Cc y, y C x — Fis
denoted by x = y — F; x = y isthus considered as an ordered pair of formulas:
(xCy, yCx).

In the same way, the formula A < B is considered as the ordered pair of
formulas (A — B, B — A).

Theformulasx ¢y — L,x ¢ y —> Landx = y — | aredenotedrespectively
byxey,x e yandx # y.

Let us consider a standard model % of ZF + AF. To each closed type
F(aa, ..., a,) with parametersin % (i.e. first order formula, written with the sym-
bolsV, —, ¢, ¢ and C), we associate its truth value, denoted by | F(az, .. ., ay)l,
which isan element of % . Wewriter |- F(a1,...,a,) fort € |F(ax, ..., ay)l;
thisisalfirst order formula F’(¢, as, . . . , a,) inthelanguage of Z F (i.e. without &)
which can be interpreted in %/. The definition is given by induction on F’:

|F — G| = (IF| = |G]); IVx F| =, |Fla/x]I.
Therefore:

t |- (F — G)istheformula(Vu € A)(u |- F — tu |- G);
t |- Vx F istheformulaVvx(t |- F).

For atomic formulas, we put:

lagb| = ({x € II; (a,n) € b} — 1); inother words

t | x¢yistheformula(vr € I)((x, ) € y — twr € L).
Noticethat, if a ¢ CI(b), then |a ¢ b| = A, and therefore |F1, ..., Fy — a¢b| =
A.
Noticealsothat [VxVy(x ¢ y)| = (), ,a#b =T — L whichtheleast truth value.
This explains the notation | L | for this truth value.

The case of the two remaining atomic formulasa ¢ b anda C bislesssimple;
it will be treated in section 4, by defining the formulas? |-x ¢ y,t |-x C yina
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manner anal ogous to the well known definition of forcing in set theory [7,10].
Another method isgiven in section 5, by showing that there exist first order formu-
lasx € y and x C y, which satisfy axioms 0, and which are written with the only
relation symbol €.

Definition. Let F beaclosed formula, and ¢ € A aclassical A-term (i.e. aA-term
which does not involve the symbol .o7). We shall say that ¢ realizes F (notation
t || F)if wehaver |- F for any choice of % and L.

Remark. In particular, taking 1L = ¢, we see that, if F involves only the relation
symbols¢ and C and¢ || F,then% = F foreveryuniverse%,i.e. ZF+AF + F.

A closedformula F will besaidrealizableif thereexistst € A suchthatz || F.

Realizability is compatible with deduction in classical logic. Indeed, let us
define now a system of typed A-calculus by the following rules:

Lx1:A1,...,xp Ay x; A (L<i <n).
2.x1 A1, ..., xn LA A X1 AL Xy Ay FuiA— B
=x1.A1,...,x, - A, Fut . B.
3 x1:A1,...,x, Ay, x ALt B
= x1:A1,...,x, - Ay FAxt: A— B.
4 x1:A1,...,xp: Ap,k:A—> BFt: A
= x1:A1,...,x, Ay F(COAk? : A.
5.x1: A1, ...,x, Ayt A = x1: A1, . x, t A EEIVXA
if x isavariablewhichisnot freein A, ..., A,.
6.x1: A1, ..., X i AL T IVXA = x1: AL, ., XL Ap BTl Aly/x]
for every variable y.

Therules above are exactly the deduction rules of the classica first order predicate
calculus. Then we have:

Theorem 8. Let Ay, ..., A,,A beformulas, the free variables of which are among
Y1, ..-, yp,andletby, ..., b, besetsinamodel % of ZF + AF. 1fx1 : A1,....x, :
A, Ft . Aisobtained with the aboverules, and if 11 |- A1[b1/y1.. . .bp/ypl.- -
tn = Aulb1/y1,. . bp/ypls thentty/xa,. . .tu/xn] = Alb1/y1,. . bp/yp].

Inparticular, if Aisaclosedformulaandt-z: A isobtained by the aboverules,
thent || A.

We prove the theorem by induction on the length of the derivationof "' -7 : A
(T being the context x; : A1,...,x, : A,). We shal use the notations ¢’ for
t[ty/x1, ..., tn/x,], and A’ for A[b1/y1,...,b,/yp]. We consider the last rule
used; for the sake of brevity, we shall consider only the case of rules 3 and 4.

Inthecaseof rule3, wehavet = Axu,A=B — CandT',x: B+u:C.By
the induction hypothesis, u’[v/x] |- C’ and therefore (Ax u")v |- C’ (lemma 7.),
for every v such that v |- B’. It followsthat ¢’ | B’ — C',i.e.t' |- A'.

Inthecaseof rule4, wehaver = (cOMkuandI',k: A — B u: A.Bythe
induction hypothesis, u’[v/k] |~ A’ and therefore (Ak u')v |~ A’ (lemma 7.), for
every v suchthat v |- A’ — B’. If weset w = Ak u, wehave w'v |- A’ for every
such v.
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Let|A| =2 — L,withZ cI.If 7 € Z,wehavew'vr € L for every v
suchthatv € |A” — B/|.
Letvg = Ax(A)(x)mr;if& € |A'|,andrn’ € I1,then ((vp)é) ' >c (L) (E)m)m’ >,
(&) € L. Since 1L is(cC)-saturated, it followsthat ((vo)é)n’ € I forevery ' €
IT; therefore voé € |L| and thus voé € |B’|. Finally, we seethat vg € |A” — B/|.
It follows that w'vomr € L, in other words (w’ Ax(.Z)(x)r)mw € L. Since UL is
(co)-saturated, it follows that ccw’z € L. Since thisistrue for every & € Z, it
followsthat ccw’ € |A’|, which isthe desired result, sincer = ccw.

Q.E.D.

3. Realization of axioms1to7of ZF.

We will show below that the axioms of Z F, are realizable. It will result that the
axiomsof ZF + AF arerealizable, sincethey are consequencesof Z F . inclassical
logic.

We first prove this for the axioms 1 to 7 of Z F ., because we do not need for

thisthe definitions of |a ¢ b| and |a C b|, provided, of course, that ¢ |- x ¢ y and
t|-x C yaeformulasof ZF.
Notation. We shall write 7 for (11, ...,1,) (1 € An = 2 by default), and A
for (A1, ..., A,). Therefore, we shall write7 |- A fors; |- A; (i = 1,...,n).In
particular, the notation 7 |-a = b means 1 |—a C b, t2 |- b C a; the notation
f|-A< Bmeansty |- A — B, 1 |- B — A.

3.1. Foundation scheme

Theorem 9. Let Y be a fixed point operator, i.e. Yo > ¢.Y¢. For every formula
F (x) with one free variable with parameters (written with the symbols ¢, ¢, ©),
we have:

Y |- Va[Vx(F(x) — x{a), F(a) > 1] — Ya(F(a) — L1).

Indeed, let ¢ |- Va[Vx(F(x) — x¢a), F(a) — L]; we show, by induction
on the rank of a, that Y¢ |- F(a) — L. Infact, if (x,7) € a for a stack =,
we have Y¢ |- F(x) — L by induction hypothesis; thus Y¢ |- F(x) — x#a.
If (x,7) ¢ a for every stack =, we have |x §a| = A, and therefore, of course
Yo |- F(x) —> xfa. Findly, Yo |- Vx[F(x) — x¢a]; thuse.Yo |- F(a) —
1.SinceY¢ = ¢.Yp,weget Yo |- F(a) — L by Lemma7.

Q.E.D.

Remark. Thesameresult iseasily proved for any A-term which hasthe same Bohm
treeasY.

3.2. Comprehension scheme
Leta beaset, and F (x) aformulawith parameters. Weputbh = {(x, tx); (x, 7) € a,
t |- F(x)}; weshow |x ¢b| = |F(x) — x £al. Indeed:

tl-x¢b<s Vu; ul-Fx)(Vr; (x,m) € a)tur € 1L &
Yu(u |- F(x) > tu|-x¢a) st F(kx)— xfa.

Therefore (1, I) |-Vx[x ¢b <> (F(x) = x ¢a)], with I = Ax x.
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3.3. Pairing axiom

We consider two sets a and b, and we put ¢ = {a, b} x 1. Wehavet |-afc <
tr € 1 for every n € I, therefore |a¢c| = |L|,thus I |Faec (asc isthe
formulaa ¢c — L).Inthesameway, I |bec.

3.4. Union axiom

Givenaseta,letbh = Cl(a) (theleast transitive set which containsa). Wewill show
lygx — xfa|l C|yéb — x¢al: wemay assumex € Cl(a), since, otherwise
|xfal = A,andthus |y¢b — x¢a|l = A. Therefore, we have x C Cl(a) = b,
thus |y ¢ b| C |y ¢ x|. Thisgivesimmediately the result we are looking for.

It followsthat 7 |- VxVy[(y¢x — x¢a) > (y¢b — xfa)l.

3.5. Power set scheme

Givenaset a, let b = 2(Cl(a) x IT) x 1. For every set x, we put y = {(z, tm);
(z, ) € a,t |- F(z, x)}. Itfollowsfromwhat we have seen above (comprehension
scheme) that (1, I) |- Vz[z ¢y < (F(z,x) = z#a)].

Now, itisobviousthat y € 2(Cl(a)xI1),andtherefore(y, 7) € bforevery r € II.
Thus,ift |-y ¢b, wehaverr € 1L forevery m,andsor € L ; in other words, we
have|y ¢ b| = | L|. Thereforel |y e b,andfinally (I, (I, I)) |-y ebAVz[z¢y <
(F(z,x) = z¢a)].

3.6. Collection Scheme

Given aset a, and an arbitrary formula F (x, y), let:

b =J{®(x, p)xCl(a); x € Cl(a), p € A}, with

®(x, p) = {y of minimumrank ; p |- F(x, y)}, or ®(x, p) = ¢ if thereisno
such y.
We show that |Vy(F (x, y) — y#b)| C [Vy(F(x,y) — x ¢a)l:
Supposeindeed that t |- Vy(F(x,y) — y#¢b)and p |- F(x, y). By definition of
®(x, p), thereexists y/ € ®(x, p). Let ¥ € 1 suchthat (x, 7) € a; thenx, 7w €
Cl(a),andtherefore (y', ) € b;itfollowsthat |y’ #b| C |x ¢a|.Buty’ € ®(x, p),
and therefore p |- F(x, y"); thustp |-y ¢b, andfindly p |- x £ a.
We have proved that 7 | Vy(F(x,y) — y¢b) — VYy(F(x,y) — x {a).

3.7. Infinity scheme

Given a set a, we define b = the least set such that {a} xIT C b and Vx(Vzr € IT)
[(x,7) € b = ®(x, p)xIT C b]. Wehave {a} xIT C b, thus|a¢b| = |L|, and
therefore I |- a ¢ b.

We now show that |Vy(F (x, y) — y£b)| C [Vy(F(x,y) — x ¢b)|: let usassume
that ¢ |- Vy(F(x,y) = y£b),and p |- F(x, y). By definition of ®(x, p), there
existsy’ € ®(x, p). Wewant to show that p |~ x ¢ b; we may assume (x, ) € b
for somen € IT, since otherwise |x ¢ b| = A. It followsthat (y', w) € b for every
7 € I, thus|y’ ¢ b| = | L|. Now, wehave p | F(x, y') andthereforetp |- y' ¢ b.
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Therefore zp |- L and thus, obviously, tp |- x ¢ b.
It followsthat I |- Vy(F(x,y) = y£b) — Vy(F(x,y) — x ¢b) and therefore:
(I, D) IFaeb AVX[Vy(F(x,y) = y¢b) = Vy(F(x,y) = x ¢b)].

4, Realization of axiomsO0of ZF .
We define |a ¢ b| and |a C b| in the following way:

lagbl= () (laCecl lcCal— |cgbl)

ceCl(b)

lachl= () (c¢bl—lcgal
ceCl(a)
whichisacorrect definition, by induction on (rk(a) Urk(b), rk(a) Nrk(b)) (rk(a)
istherank of a).
Then we have:

la ¢ bl =|Vx(a=x —> x¢b)| =|Vx(a Cx, x Ca— x¢b);
laCbl=|Vx(x ¢ b — xfa)l.

Indeed

[Vx(a Cx, x Ca— x¢b)| = ﬂ(la Ccl,lc Cal — |cgbl)
c
= () UacellcCal— |cgb])
ceCl(b)

since|c¢b| = A whenc ¢ CL(b).

Therefore, we have
(I,)IFaé¢b<Vx(a=x— x¢b)and
I,D|FaCb<Vx(x ¢b— xfa)

which isthe desired resuilt.

From these definitions, we get the following equival ences:
pllaéb & VxVi[f |Fa=x — pr|—x¢b];
glFacCb & VxVp[pl-x¢b—qpl-x¢al.

or else

pllaéb & VivaVr[r |Fa=x, (x,7) € b— prm € LJ;
glFacbhb & VpVxVr[p|kx ¢ b, (x,71) €a — gpr € L].

With these definitions, we can find A-terms which realize any given theorem
of ZF + AF, sincetheaxioms of ZF + AF have been seen to be consequences
of ZF,. Let us give two ssimple examples, namely theorems 1 and 4. We simply
follow the proof of these theorems.

Theorem 10. Let 6 € A suchthat Op = p66. Then 6 || Vx(x C x).
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Theproof of 6 |- a C aisdonebyinductiononrk(a).Letp € A, p | x ¢ a;we
must show that 6p | x ¢a. Thisisobviousif rk(x) > rk(a), Since |x ¢al = A.
If rk(x) < rk(a), we have 6 | x C x by induction hypothesis, and therefore
@,0) |-x = x.Since p |x ¢ a, wededuce pdo |- x fa,andthusép | x ¢a
sincefp > pdo (lemma’.).

Q.E.D.

Notation. The A-term AfAgix(f)(g)x isdenoted by fog.
Lemmall. Arixrox |- Vabcla C b, Vx(x ¢ c > x ¢ b) > a C ].

The proof isimmediate, if we noticethat |a C b|is|Vx(x ¢ b — x {a)|, and
la C clis|Vx(x ¢ ¢ = x {a)l.
Q.E.D.

Itfollowsthat Ax 6ox |Vx(x ¢ ¢c > x ¢ b) —> b C ¢ (puta = binLemma 11).

Theorem 12. Leté, n € Abesuchthatérps > (r)(n) psandnprs > p.rio&sy. sz
ofr2. Then§ [|-Vxyz[x Cy.z ¢ y > z ¢ x]andn ||=-Vxyz[y ¢ 2,y = x —
x ¢z].

We prove, by induction on rk(a) that:
El-VyzlaCy,z¢y—>z¢alandn |-Vyz[y ¢z, y=a—a ¢z].

1 Letussupposethat r |-a C y, plz ¢ y,and§ |-z = 7/; we want to
show &rps |7/ #a. Thisis clear when rk(z') > rk(a), since |z ¢a] = A. If
rk(z) < rk(a),wehavenps |-z’ ¢ y by theinduction hypothesis.Butr |-a C y
and nps |-z’ ¢ v, thus (r)(n) ps |-z’ £ a, which gives the desired result by Lem-
ma7,sinceérps > (r)(n)ps.
2. Letussupposethat pl-y ¢ z, 7 |-y = aand s |-a = y'; we want to
show np7s |-y ¢z. Butwe haveri -y C a and sy |~a C y'. By 1, we get
Es1|-Vz[z ¢ ¥ — z ¢ a]. From Lemma 11, it followsthat ri0&s1 |-y C y'.
In the same manner, we have sp |-y C a et r2 |la C y. From 1, we get
Erp |-Vz[z ¢ y — z ¢ a]. From Lemma 11, it followsthat sp0&rp |-y C y.

We have proved that (r10&s1, s20&r2) |-y = y'. Since p |y ¢ z, we have:

p-r10és1.5208r2 |-y £z,
which givesthe desired result by lemma 7, since (n) prs > p.rio&sy. s20€r2.
Q.E.D.

5. Definition of € and C by meansof £

This section is not used in the sequel, and may be skipped at first reading. It is
devoted to a method of defining the formulas x € y and x C y by means of ¢,
which isdueto H. Friedman [2], and which was pointed out to me by G. Gonthier.
We will use an improvement due to him of the proof in [2].

The advantage of this method isthat it does not make use of the foundation axiom.
Itsdrawback isthat the A-terms obtained in thisway for axioms0 of Z F, aremuch
more complicated than with the preceding method. It is the reason why we do not
useit in the following sections.
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It isinteresting to notice that, with this method, we can define the notion of forcing
in set theory without using the axiom of foundation.

We consider afirst order theory, whichwecall Z F~, which iswritten with the only
relation symbol ¢. Itsaxiomsaretheaxioms 2 to 7 of thetheory Z F,, but, of course,
in the axiom schemes 2, 5, 6 and 7, the variable formula F' is now written with the
only relation symbol €.

Therefore, thetheory Z F~ isessentialy thetheory Z F without extensionality.
We neither assume the foundation axiom.

We shall show below, following H. Friedman [2], that this theory is equicon-
sistent with Z F. Asacorollary of this proof, we obtain two formulas C(x, y) and
E(x, y) with two free variables, written with the only relation symbol ¢, such that

ZF~ FVxVy[C(x, y) < (Vzex)E(z, y)] and

ZF~ EVxVy[E(x, y) < 3zey)(C(x, z2) A C(z, x)]

Therefore, if we define |x € y| = |[E(x, y)| and |[x C y| = |C(x, y)|, then
axioms 0 of ZF, are realized : indeed, we have already realized the axioms of
ZF~ (when we realized axioms 2 to 7 of ZF,, in section 3) and we know that
realizability is compatible with classical deduction.

We begin by defining a predicate of equality = in ZF~. Let x = y be the
formulaVvz(x ¢ z — y ¢ z) (Leibniz equality). Then we have :

a =b — (F(a) —> F (b)) for every formula F (x) with parameters.

Indeed, if a = b and F (a), take c such that a ¢ ¢ by the pairing axiom. Then take d
suchthatx e d <> x € ¢ A F(x) by thecomprehension scheme. Thena ¢ d, therefore
bed, and thuswe get F (b).

Now, if wetakefor F(x) theformulax = a,weobtaina = b — b = a. Therefore,
= isan equivaence relation which satisfy the axioms of equality.

We define now the following formulas:

a Cbis(Vxea)xeb (aisasubset of b);

¢~ {a,b}isVx(xec < x =aVvx=b)(givena andb, cissomepair {a, b});

b ~ Ua isVx(xeb < (Jyea)xey) (given a, b is some union of al the
elements of a);

b~{xeca; F(x)}isVx(xeb < xsa A F(x)).

Lemmal3. i) ZF~ + Va3db(b ~ Ua).
i) ZF~ = YaVb3c(c ~ {a, b}).
i) ZF~ = Va3dbb ~ {xea ; F(x)}).

i) Follows immediately from the union axiom and the comprehension scheme.
ii) Follows immediately from the pairing axiom and the comprehension scheme,
applied to theformulax = a v x = b.
iii) It isthe comprehension scheme.
Q.E.D.

Lemmald. ZF~ +Va3ba C b A (Vxeb)(NVyex)yeb) (every set is a subset
of some transitive set).
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By Lemma 13(i), we have ZF~ + Vx3y(y ~ Ux). Therefore, it follows from
the infinity scheme that, for every set a, there exists a set b such that a ¢ b and
(Vxeb)(Jyeb)(y ~ Ux). Let ¢ besuch that ¢ ~ Ub. Thena C ¢ and ¢ istran-
sitive: if x' e xsc, wehave x ¢ y ¢ b, so there exists z ¢ b such that z ~ Uy. Since
x'exey,wehavex’ ez andzeb, and therefore x’ ¢ c.

Q.E.D.

Taking a such that b ¢ a and ¢ ¢ a by the pairing axiom, we deduce that, given
any two sets b, ¢, there exists atransitive set d suchthat bed and c e d.

For every set u, we define the reflexive and symmetric binary relation ~,, inthe
followingway : x >~, yisx =y Vv (Jacu)(xea A yea).

Let D(u) betheformula: VaxVy[x ~, y = (Vx' e x)@y e y)x’ >, y'].

Then, wedefinethebinary relation~: x ~ yistheformula3u (D (u) Ax =, y).
The relation ~ is clearly symmetric. It is also reflexive, as can be seen by taking
for u an empty set : thenwehavex ~, y <> x = y, and thus D (u).

Lemma15. Let R(x, y) beareflexiveand symmetricrelationsuchthat VxVy[ R (x,
y) = (Vx ex)@y' e y)R(x', y)]. Then R(x, y) — x >~ y.

Suppose R(xg, yo); let A be a transitive set such that xg, yoe A (Lemma 14).
Let B be a set such that (Vx, ye A)(3ze B)(z ~ {x, y}) (which is obtained by
lemma 13(ii) and the collection scheme). Let u ~ {ze B; (Vx,yez)(x,ye A A
R(x, y))}, which is obtained by the comprehension scheme. Then we have:

(%) x>,y x=y)vx,yeAAR(X,Yy)).

Indeed, if x ~, yetx # y, wehave x,yezeu,thusx,ye A A R(x, y)
by definition of u. Conversely, if x, ye A A R(x, y), there exists z ¢ B such that
z ~ {x, y}, andwehave z ¢ u by definition of u (wehave R(x, x), R(y, y), R(x, y)
and R(y, x) because R isreflexive and symmetric) thus x ~,, y.

It follows that we have xg ~,, yo. Therefore, it is sufficient to prove D(u) in
order to deduce xg >~ yo. But, if x ~, yandx # y, wehavex, ye A and R(x, y).
If x’&x, by hypothesis on R, there exists y’ ¢ y such that R(x’, y’). Since A is
transitive, we have x’, y’ ¢ A, and therefore x” ~, y’ by (»).

Q.E.D.

Theorem 16. i)Wehavex >~ y < (Vx' e x)@y e y)(x’ =~ y)A (VY € y)(Ex’ e x)
x>~ y).
ii) Therelation >~ is an equivalence relation.

i) Proof of — : obvious by definition of ~.
Proof of < : let us define
R, y) = (Vx'ex)@ e )X = y) A (VY e y)Ex" e x)(x" = ).

We check the hypothesis of Lemma 15: R is clearly reflexive and symmet-
ric. If we have R(x, y) and x’ ¢ x, then there exists y’ ¢ y such that x” >~ y’. But
we have just shown (proof of —) that x’ ~ y’ — R(x’, y’). Therefore we have
(Vx"ex)3y e y)R(', ).

From Lemma 15, we get R(x, y) — x =~ y, which isthe desired result.



202 J.-L. Krivine

ii) It is sufficient to prove that ~~ is transitive. Let us define R(x, y) by the
formula3z(x ~ z A z =~ y). We check the hypothesis of Lemma 15: R is clear-
ly reflexive and symmetric. If R(x, y) and x"ex, then x ~ z and z >~ y. Thus,
thereexists z’ e z such that x” ~ 7/, and y’ ¢ y such that 7/ ~ y’. Therefore we get
R, ).

From Lemma 15, we have R(x, y) — x ~ y, which isthe desired result.

Q.E.D.

We can now write the two formulas:

E(x,y): (@ ey)(x ~y)and

C(x,y): (vVx e x)E(X, y).

Then C(x, y) isthe formula (Vx' e x)(3y’ e y) x’ >~ y’, and therefore x ~ y is
equivalent to C(x, y) A C(y, x) by theorem 16. Therefore, we have E(x, y) <
3y e y)(C(x, y) ACHY', x)).

Wehavex ¢ y — E(x, y) since~ isreflexive. Therefore, if wedefinex € y by
E(x,y)andx C y by C(x, y), it is easy to show that the axioms of Z F (without
foundation) are satisfied : you only have to repeat the proof, already done, that the
axioms of Z F are consequences of Z F, beginning at the comprehension scheme.

6. Typed A-calculusin ZF

We add the following symbols of function to the language of ZF;.: U, 2 (una
ry symbols), {} (binary symbol), ¢, ¥ r, xr (for each formula F), the arity of
which depends on F : if F iswritten F(x, x1, ..., x,) with a particular variable
x (x1, ..., x, are parameters), then ¢ has the arity n + 1. For brevity, we write
F(x) for F(x, x1,...,x,), and ¢p(a) for ¢pp(a, x1, ..., x,). In the same way, if
F iswritten F(x, y, x1, ..., x,) With two particular variables x and y (we write it
F(x,y)), then yrg isof arity (n + 1) (wewriteyr(a) for ¥r(a, x1, ..., x,)) ; the
samefor yr.
We take the typing rules of the A.-calculus (at the end of section 2), with the sixth
rule modified in the following way:
6.x1: A1, ..., Xxn i AL EEIVXA = x1: AL, ., X LA B AlT/X]

for every term t built with the function symbols U, 2, {}, ¢r, ¥F, xF.
We add the following rules, one for each axiom of Z F,; we use the symbol +,
to denote this new system of types; x is a A-variable; a, b, y, z are set theoretic
variables:

0. Equality and extensionality axioms
tag¢bbex:Vz(a Cz,zCa— z¢b) and
Vz(aCz,zCa—>z¢b)Fex:aé¢b,
aCblyx:Vz(z¢b—> z¢a) and x :Vz(z ¢ b — z¢a) . x :a Cb.

1. Foundation scheme
Fe Y i Va[Vz(F(z) = z¢a), F(a) > 1] — Va(F(a) —> 1)
(for every formula F (z, x1, . . ., X5)).

2. Comprehension scheme

x:z¢pp@ bex: F(2) > zfda and x: F(2) > zfdate x4 dp(a)
(for every formula F (z, x1, . . ., X,)).

= ox o=
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3. Pairing axiom
x:iafla,b}Fex: L and x :bg{a, b} e x: L.
4, Union axiom
x:yfz—>zédabx:y¢fUa— z4a.

5. Power set scheme
x:¢p(a)fP) . x: L (forevery formula F(z, x1, ..., xp)).

6. Collection scheme
X IVZ(F(y,2) > 2¢¥r(a) e x 1VZ(F(y,2) > yfa)
(for every formula F (y, z, x1, . . ., Xn)).
7. Infinity scheme
x:afxrla) ke x: 1,
X VZ(F(y,2) = 2 xr(@) Fe x 1 V2(F(y,2) = y £ xr(a))
(for every formula F (y, z, x1, . . ., X»)).
From the above, it follows that theorem 8 remains true with these new typing rules.
In particular;

Theorem 17. If Aisaclosed formulaand . ¢ : A, thenr || A.

Remark. i) In this system of types, for every formula A we have:
x 1l kg Axy...Ax, x : Afor someinteger n.
Thisis easily proved by induction on A, remembering that L isVxVy(x ¢ y): for
an atomic formula A, thisistrivial if A ist ¢ u, and thisfollowsfrom rules 0 above
if Aist ¢ uort C u. Thecaseswhere A = B — C or A = Vx B aretrivid.
But, since|L| C |A| for every formula A, we might use the following simpler rule:
x 1l k. x: Aforevery formula A
and the theorem 17 remains valid.
ii) Inthistype system, theaxioms of Z F,, are“ inhabited” by very simple A-terms,
infact Ax x or Y. But thisis no longer the case for the axiomsof ZF + AF, since
these axioms are theorems of Z F, which are not completely trivial. For example,
the power set axiom of ZF can be written asVx(x C a — x € Z(a)), and it
appears that no intuitionistic A-term (i.e. not involving cC) realizesit.

7. Normalization properties

It is easy to see that no general normalization theorem is possible for this typed
A-calculus. Consider, for example, the following simple theorem, which uses only
the comprehension scheme :

Theorem 18. Let F(y) betheformula y ¢ y, and § = Ax(x)x. Then:

Fe 88 : Vx(pr(x) £ x).
Letbbegr(a);then,wehavex : y¢gbt.x:y¢y — yéa.Thereforex : b¢b -,
x:b¢b—bga. Thus x :bgbt, xx :b¢a,andthereforet, § : b¢b — bfa.
It followsthat . § : b¢b, andthust, 88 : bfa.

Q.E.D.

Infact, it can be proved that, if any A-term r issuchthat -, 7 : Vx(¢r(x) ¢ x), this
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typing being obtained without using the foundation scheme, then = has the same
reduction behaviour as §5.

Nevertheless, theimportant fact i sthat thistyped A-cal culusleadsto correct compu-
tations, asfar asdatatypesare concerned. Thisisshown by the following theorems,
about booleans and integers.

Consider first two symbols of constant 0 and 1, that we add to the language of
ZF,. TheformulaVX (1¢ X,0¢ X — x ¢ X) isdenoted by Bool(x) (read“ x isa
Boolean”).

Theorem 19. If =, t : Bool(1), then for any A-terms ¢, u and any stack =, we
have ttum >, t7r. In other words, T behaves like the boolean Ax 1y x. Of course,
the same result holds for the formula Bool (0).

We take a model % such that O £ 1. Define IL = {¢§ € AIl ; & >, tx}, and

X ={(@1,m)}. Thent |- 1¢ X, and every A-termrealizes0 ¢ X. From theorem 17.,

weget t |- Bool(1). It followsthat tru |- 1¢ X, which meansthat trur € L.
Q.E.D.

Consider now a symbol of constant O, and a unary function symbol s, that we
addtothelanguageof Z F,. TheformulaVX[Vy(y ¢ X — sy ¢ X), 04 X — x ¢ X]
isdenoted by I'nt(x) (read“ x isaninteger ”).

A simple method for computing classical integershasbeen given by M. Parigot,
in the framework of second order logic and A u-calculus. The following theorem
shows that it remains valid in the typed A-calculusin Z F.

Theorem 20. Letn e Nandt € A.If, t : Int(s"0), then T representsthe clas-
sical Church integer n in the sense of [8, 9]. In particular, ((t)Af foo)ptm =
((¢)(o)"t)m for every A-termsa, ¢, t and every stack 7.

Let usonly provethelast assertion. Takeamodel % inwhichtheinterpretation of
s andOaresuchthat sy # Oandsy = s¥t10 — y = s¥Oforall y. Define L = {¢ <
ATl ;& > ((p)o"t)w} and X = {(0, 6"t7), ... (sk0, o Ktr), ..., (s"0, t7)}.

Therefore,wehavee |-0¢ X.Letusshowthat Af foo |FVy(y¢X —> sy ¢ X):
thisisclearif sy # 0, ..., s"0,sincethen|sy ¢ X| = A.Ifsy = s/0,then j = k+1
ety = sK0(0 < k < n). Supposethat u |- y ¢ X ; thus, wehave ((u)o" *t)m € L.
But, if weset v = (Af foo)u, we have (v)o" * ) >, ((w)o" *t)m, and
therefore (v)o" ¥ 1) € L. Thisshowsthat v |- s**10¢ X, and wehave proved
that Af foo |- s¥0¢ X — skt10¢ X.

Fromtheorem17.,wegett |- Int(s"0).ltfollowsthat (tAf foo)g |- s"0¢ X,
and therefore (tAf foo)ptm € 1L, whichisthe desired result.

Q.E.D.
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