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Abstract
In this article we investigate the complexity of isomorphisms between scattered linear
orders of constructive ranks. We give the general upper bound and prove that this
bound is sharp. Also, we construct examples showing that the categoricity level of
a given scattered linear order can be an arbitrary ordinal from 3 to the upper bound,
except for the case when the ordinal is the successor of a limit ordinal. The existence
question of the scattered linear orders whose categoricity level equals the successor
of a limit ordinal is still open.
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1 Introduction

IfA and B are two isomorphic algebraic structures then they have the same algebraic
properties. However, the algorithmic properties of isomorphic algebraic structures can
be strictly different. One of the first such examples was obtained by A. I. Mal’tsev
[1]. These kinds of results led to lot of questions in modern computable structure
theory. One of such questions can be stated as follows: what is the simplest possible
presentation of a given structure A?

For well-orders, there is a nice answer. In 1955, C. Spector [2] showed that every
hyperarithmetic well-order is isomorphic to a computable one. In light of this result,
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a new question arises: how hard is it to compute an isomorphism between two com-
putable well-orders or even between two computable algebraic structures? This leads
to the concept of computable categoricity. A computable algebraic structure is called
computably categorical if for any two computable representations of the structure there
is a computable isomorphism between them. The investigation of effective categoric-
ity of computable algebraic structures is one of the central questions in the field of
computable models and structures.

In this paper, we study computable categoricity of countable scattered linear orders
with constructive ranks. The definition of computable categoricity can be generalized
to an arbitrary oracle.

Definition 1 A computable linear order is called x-categorical, if for any two com-
putable representations of it there exists an x-computable isomorphism between
them.

Similarly, a computable linear order is called �0
α-categorical, if for any two com-

putable representations of it there exists a �0
α-isomorphism between them (α can be

a natural number as well as an infinite ordinal).
The least ordinalα such that a linear order is�0

α-categorical is called its categoricity
level.

Along with this definition, the notion of the relative categoricity is also considered.

Definition 2 A computable linear order is called relatively �0
α-categorical, if for any

two x-computable representations of it there exists a �0
α(x)-isomorphism between

them.
A relatively�0

1-categorical linear order is called relatively computably categorical.

Immediately from the definitions it follows that relatively �0
α-categoricity implies

�0
α-categoricity. For arbitrary algebraic structures, the inverse implication is not true

[3]. In the class of computable linear orders for n = 0 these two notions coincide.
Namely, the following theorem holds.

Theorem 1 ([4–6]) For a computable linear order, the notions of relative computable
categoricity and computable categoricity coincide and are equivalent to the fact that
the linear order contains only finitely many pairs of successors.

C.McCoy gave the following description of relatively�0
2-categorical linear orders.

Theorem 2 ([7]) A computable linear order L is relatively �0
2-categorical if and only

if it is a finite sum of linear orders having one of the following order types 1, ω, ω∗
or n · η, where the infimum and the supremum of n · η are contained in L with the
possible exception when n · η is an initial or a final segment of L, correspondingly.

A bold face version of these results were also recently proved in Theorem 2.5 and
Corollary 2.9 of [8].1

In addition, in the same paper C. McCoy showed that if a linear order has a com-
putable copy with computable successors, left and right limit points, then this linear
order is �0

2-categorical if and only if it is relatively �0
2-categorical.

1 We thank anonymous rewiever for this reference.
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In general, the coincidence question of the classes of �0
2-categorical and relatively

�0
2-categorical linear orders is still open. It should be noted that for some other struc-

tures such classes are different, for example, equivalence structures [9]. A.N. Frolov
(to appear, see also [10]) pointed out that there exist a �0

3-categorical linear order
which is not relatively �0

3-categorical. At the same time, the result [11, Theorem 2.1]
demonstrates that the description of relatively �0

3-categorical linear orders should be
extremely difficult or even impossible.

This work is devoted to another approach to the study of the effective categoricity
of algebraic structures, which consists of describing their levels of categoricity. The
most general results here are C. Ash’s results [12], which gave the description of
the categoricity levels for constructive ordinals. Later, N. Bazhenov [13] modified
Ash’s methods and gave the description of the degrees of categoricity for constructive
ordinals.

We briefly discuss our results. In Sect. 3 we provide the upper bound of the cate-
goricity level for scattered linear orders of a constructive rank α. Note that this bounds
are sharp (it is follows from Ash’s results for ordinals [5]). Namely, we prove that
such linear orders are relatively �0

2α-categorical. To prove these result it is natural to
introduce the notion of uniformly relatively �0

α-categoricity for classes of structures
(see definition 7). The study of this concept could be independently interesting. For
example, it is not konwn how it relates to the known concepts of categoricity (see,
for example, [14, 15]) or whether there is a syntactic description of this concept. In
particular, it is easy to see that if a structure A belongs to a uniformly relatively �0

α-
categorical class of structures then it is uniformly boldface �0

α-categorical (see [16]).
For instance, the description of relative categoricity using Scott’s sentence [17] is well
known [18, 19].

In Sect. 4 for every constructive ordinal α > 1 and every β from the interval [3, 2α]
excluding successors of limit ordinals we construct examples of computable relatively
�0

β -categorical scattered linear orders of rank α which are not �0
γ -categorical for any

γ < β. Thus, the categoricity level of a scattered linear order of rank α can be anything
from 3 to the upper bound, with the possible exception of successors of limit ordinals.
Another interesting connection to [8] is Question 3.13; in particular, the successor
of a limit case is also open in the boldface version of the question.2 The constructed
examples say that high rank scattered linear orders can have a fairly simple Scott’s
sentence ([20], Proposition 27).

It follows from Theorem 1 that �0
1-categorical scattered linear orders can be only

finite orders. The authors suggest that the existence question of scattered linear orders
whose categoricity level is the successor of a limit ordinal is as difficult as the existence
question of a�0

2-categorical, but not relatively�0
2-categorical computable linear order.

These questions are both still open.
In contrast to these results, there is a strong connection between the complexity

of embeddings between bi-embeddable linear orders and Hausdorff rank of linear
orders at least at finite levels. Namely, in [21] it was shown that if L is a computable
linear order of Hausdorff rank n, then for every bi-embeddable copy of it there is an
embedding computable in (2n−1)-jumps from the atomic diagrams. Moreover, it has

2 We thank anonymous rewiver for this remark.
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been shown that this is the best that can be done: let L be a computable linear order
of Hausdorff rank n ≥ 1, then 0(2n−2) does not compute embeddings between it and
all of its computable bi-embeddable copies.

At the end of the introduction we list the open questions.

Questions 1. Let α be a limit constructive ordinal, n be a finite ordinal such that
α + n > 1. Is there a computable scattered linear order with the constructive
rank α + n which is relatively �0

β -categorical, but is not �
0
γ -categorical for every

γ < β, where β is the successor of a limit ordinal and 3 ≤ β ≤ α + 2n?
2. Is there a syntactic description of uniformly categorical classes of algebraic

structures from Definition 7?

2 Preliminaries

We follow to [22] for the definitions and notation of the computability theory and to
[23] for the linear orders definitions and notation. See survey [24] for foundations of
computable linear orders.

A linear order L is given by a pair (L,≤L), where L is a set and ≤L is a binary
relation on L satisfying the usual axioms of linear orders. All linear orders considered
here are finite or countable. A linear order L = (L,≤L) is computable if L and ≤L
are computable. Unless otherwise specified we assume that L = ω for infinite L.
Given L, we let <L be the induced strict ordering, i.e., for all x, y ∈ L , we have
x <L y if and only if x ≤L y and y �L x . We will also use interval notation:
[x, y]L = {z | x ≤L z ≤L y}; and we make use of the following additional relations
on linear orders.

• The successor relation SL is given by

SL(x, y) ⇔ (x <L y) & ∀z(z ≤L x ∨ y ≤L z).

• The block relation FL(x, y) is defined by

FL(x, y) ⇔
{

[x, y]L is finite if x ≤L y;
[y, x]L is finite if y ≤L x .

• The right limit point relation P+
L (x) is given by

(∀z >L x)(∃y)[x <L y <L z].

• The left limit point relation P−
L (x) is defined by

(∀z <L x)(∃y)[z <L y <L x].

We will drop subscripts if the order is clear from context.
It is not hard to see that the block relation is an equivalence relation on L which

agrees with ≤L, and that it is definable by a computable �0
2 formula in Lω1,ω. We
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call its equivalence classes blocks and denote the block of x ∈ L as [x]L. Since the
block relation agrees with the order, we can take the quotient structure and obtain
the factor order or the condensation. It is denoted by L/FL and defined as usual by
[x]L ≤L/FL [y]L ⇔ x ≤L y.

Taking condensations can be iterated finitely often in the obviousway—by factoring
through the block relation of the previous condensation. In order to obtain a notion of
iterated condensation for all ordinals, we define the α-block relation for all ordinals
α.

Definition 3 Given a linear order L, the α-block relation Fα
L and the Fα

L-equivalence
class [x]αL of x ∈ L are defined by induction as follows: for any x, y ∈ L ,

1. F0
L(x, y) ⇔ x = y,

2. if α = β + 1, then Fα
L(x, y) ⇔ FL/Fβ

L
([x]βL, [y]βL), and

3. if α is a limit ordinal, then Fα
L(x, y) ⇔ (∃β < α)FL/Fβ

L
(x, y).

It is not hard to see that, for a finite α, L/Fα
L agrees with taking condensations

iteratively α times, and that Fα
L is �0

2α-definable. To simplify notation, we set L(α)
F =

L/Fα
L.

Definition 4 The Hausdorff rank of a linear order L is the least α such that L(α)
F =

L(α+1)
F .

As usual, we will identify ω with the order type of the natural numbers, ζ with the
order type of the integers, and η with the order type of the rationals. The unique finite
order typewith precisely n elements is denoted by n.We let 0 stand for the empty order.
Further, if L is a linear order, then L∗ is its reverse order, i.e., x ≤L∗ y ⇔ y ≤L x .

Definition 5 A linear order is scattered if it has no suborder of type η.

Definition 6 The class VD of linear orders is defined by

1. VD0 = {0, 1},
2. VDα =

{ ∑
i∈τ

Li | Li ∈ ⋃
β<α

VDβ, τ ∈ {ω,ω∗, ζ }
}
, and

3. VD = ⋃
α

VDα .

The VD-rank of a linear order L is the least α such that L ∈ VDα; and the VD∗-rank
of L is the least α such that L is a finite sum of linear orders in VDα .

The following theorem due to Hausdorff is well-known.

Theorem 3 A countable linear order is scattered if and only if it has countable VD-
rank. Furthermore, the VD-rank of a scattered linear order is equal to its Hausdorff
rank.

For every L(α)
F , the successor relation SL(α)

F
induces a relation on L the following

way Sα
L(x, y) ⇔ SL(α)

F
([x]αL, [y]αL). By this definition, S0L is the standard successor
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relation SL. It is easy to see that Sα
L ∈ �0

2α+2(L). In the same way, we can define
P+α
L , P−α

L .
Additionally, we use the following two partial functions:
S+
α (x) = y, where y ∈ L is the least as natural number such that Sα

L(x, y), and
S−
α (x) = y, where y ∈ L is the least as natural number such that Sα

L(y, x).

3 Upper bounds of the categoricity levels

In this section we give an upper bound on the categoricity levels for scattered lin-
ear orders of constructive ranks. To simplify the proofs we introduce the following
definition.

Definition 7 A class of structures S is called uniformly relatively �0
α-categorical,

if there exists a Turing operator � such that for every two isomorphic structures
B1, B2 ∈ S the mapping �(B1⊕B2)

(β) : B1 −→ B2 is an isomorphism between
them, where β = α − 1, for a finite ordinal α, and β = α, for an infinite ordinal α.

Note that if a class S consists exactly of all computable copies of a structure A,
then the class S is uniformly relatively �0

1-categorical if and only if the structureA is
uniformly computably categorical. The definition of relatively computably categorical
structures and other approaches to relatively categoricity can be founded in [14].

Theorem 4 Suppose that B1 and B2 are linear orders of VD-rank γ . Then there
exists Turing operators �0 = �, �0 = �, �1 = �≤, �1 = �≤, �2 = �≥ and
�2 = �≥ such that if L0

i = [ti ]α+m
Bi

, L1
i = [≤ ti ]α+m

Bi
= {y ≤Bi ti | y ∈ [ti ]α+m

Bi
},

L2
i = [≥ ti ]α+m

Bi
= {y ≥Bi ti | y ∈ [ti ]α+m

Bi
}, where α + m < γ , α is a limit ordinal,

and m is a finite ordinal, then for every j ≤ 3 the following conditions hold:

(1) if L j
1

∼= L j
2 then �X

j (γ, α + m, t1, t2) = 1 and �X
j (γ, α + m, t1, t2, ·) is an

isomorphism between L j
1 and L j

2 ,

(2) if L j
1 � L j

2 then �X
j (γ, α + m, t1, t2) = 0, where

X =
{

(B1 ⊕ B2)
(α+2m+2), if α + m < ω,

(B1 ⊕ B2)
(α+2m+3), if α + m ≥ ω.

Proof Initially, remark that L1
i and L2

i have rank at most (α + m), since L0
1, L0

2 are
maximal (α + m)-blocks. The proof is by the transfinite induction.

First we consider the case, where α + m = 1. We fix j ≤ 2 and, to simplify
notation, denote L j

1 and L j
2 as L1 and L2, correspondingly. For the induction basis,

we assume that they have rank 1. Then either L1 and L2 are finite, or they have one of
the following order types: ω, ω∗ or ζ . We can determine whether the two orders L1
and L2 are isomorphic and subsequently define an isomorphism between of them in a
straightforward way using oracle (B1 ⊕ B2)

(2·1+2).
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To do this, we check whether Li has a least or a greatest elements. If they are not
consistent, for example, one of linear orders has the greatest element and another does
not, then L1 and L2 are not isomorphic.

Now we assume that they are consistent. If L1 and L2 both have a greatest and a
least element, then both 1-blocks are finite. We can find all of them. If the number
of elements are different then L1 and L2 are not isomorphic. Otherwise, they are
isomorphic and the construction of the isomorphism is obvious.

If the considered 1-blocks have no least elements, or no greatest elements, or neither,
then L1 and L2 are isomorphic and have order type ω∗, ω or ζ , correspondingly. A
construction of an isomorphism is also obvious. For example, suppose that x1 is
the least element of L1, x2 is the least element of L2, and they have no greatest
elements. Then L1 and L2 have order type ω and an isomorphism can be defined as
ϕ((S+

0 )m(x1)) = (S+
0 )m(x2) for every m ∈ N, where (S+

0 )m is a m-th iteration of the
successor function, for example, (S+

0 )2(x) = S+
0 (S+

0 (x)).
Using notion (S+

0 )m = (S−
0 )−m for negative integer numbersm, the other cases are

similar.
Assume that the theorem holds for every ordinal < α + m. Now we wish to argue

that the theorem holds for α + m. Suppose that α + m is a successor ordinal, i.e.,
α +m = α + k +1. We proceed similarly as in the proof for the basis of the induction
with natural changes. Again, we fix j and denote L1 = L j

1 and L2 = L j
2. To be short,

we denote the functionals � j and � j as � and �, correspondingly.
Lα+k
F, 1 and Lα+k

F, 2 have VD-rank 1, and, consequently, as above, we can determine

whether they are isomorphic. If Lα+k
F, 1 and Lα+k

F, 2 are not isomorphic then L1 and L2
are not isomorphic too. Note, for example for j = 0, to determine the existence of
the greatest element of Lα+k

F, i we need to check the following formula (∃x ∈ L)(∀y ∈
L)[x ≥L y ∨ y ∈ [x]α+k

L ]. If α + k < ω then this formula is computable relative
to (B1 ⊕ B2)

(α+2(k+1)), and if α + k ≥ ω then it is computable relative to (B1 ⊕
B2)

(α+2(k+1)+1). In other words, this formula is X ′′-computable, where

X =
{

(B1 ⊕ B2)
(α+2k+2), if α + k < ω,

(B1 ⊕ B2)
(α+2k+3), if α + k ≥ ω.

We can construct the functionals� and� in the samemanner as before with natural
minor changes. We show these changes in the most complex case when Lα+m

F, 1 and

Lα+m
F, 2 have no least elements and no greatest elements, i.e., they both have order type

ζ . Under such assumptions, L1 and L2 are isomorphic if and only if (∃t)(∀s)[L1, s ∼=
L2, s+t ]. By the induction hypothesis, �X (γ, α + k, t1,s, t2,s+t ) = 1 if and only if
L1, s ∼= L2, s+t , where ti,s ∈ Li, s can be found uniformly in ti relative to the oracle
X . Consequently, �X ′′

(γ, α + k + 1, t1, t2) = 1 if and only if L1 ∼= L2.
Now we define the operator �. By the induction hypothesis, �X (γ, α +

k, t1,s, t2,s+t , ·) is an isomorphism between L1, s and L2, s+t . If x belongs in the same
(α + k)-block as t1, s then we define �X ′′

(γ, α + k + 1, t1, t2, x) = �X (γ, α +
k, t1,s, t2,s+t , x). The oracle X ′′ is enough to find t1,s and t2,s+t , and to check
x ∈ [t1,s]α+k

B1
.
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Suppose that α + m is a limit ordinal, i.e., m = 0. Then L j
i = ⋃

k∈ω

[ti ]βkBi
, where

βk is a computable strictly increasing sequence of ordinals converging to α.
Proofs for all cases j = 0, j = 1, j = 2 are the same. We consider the most

complex case j = 0. It is easy to see that in the class of scattered linear orders we have
[t1]αB1

∼= [t2]αB2
if and only if (∃x1 ∈ [t1]αB1

)(∃x2 ∈ [t2]αB2
)(∀s ∈ ω)

([≤ x1]βsB1
∼=

[≤ x2]βsB2
& [≥ x1]βsB1

∼= [≥ x2]βsB2

)
.

By the induction hypothesis, in both cases α = ω and α > ω we have L0
1

∼= L0
2 if

and only if

(∃x1 ∈ [t1]αB1
)(∃x2 ∈ [t2]αB2

)(∀s ∈ ω)(�
(B1⊕B2)

(α)

1 (γ, βs, x1, x2) = 1&

&�
(B1⊕B2)

(α)

2 (γ, βs, x1, x2) = 1).

If such x1 and x2 exist, then it remains to “piecewise” define�, by choosing suitable
isomorphisms in the following way:

�(B1⊕B2)
(α+2m+4)

(γ, α + m, x1, x2, x) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(B1⊕B2)

(α+2m+4)

1 (γ, β0, x1, x2, x),

if x ∈ [x1]β0B1
& x ≥ x1;

�
(B1⊕B2)

(α+2m+4)

2 (γ, β0, x1, x2, x),

if x ∈ [x1]β0B1
& x < x1;

�
(B1⊕B2)

(α+2m+4)

1 (γ, βs+1, x1, x2, x),

if x ∈ [x1]βs+1
B1

\ [x1]βsB1
& x ≥ x1;

�
(B1⊕B2)

(α+2m+4)

2 (γ, βs+1, x1, x2, x),

if x ∈ [x1]βs+1
B1

\ [x1]βsB1
& x < x1.

Theorem 5 Suppose that α is a limit and n is a finite ordinal. Then there exist Turing
operators � and � such that

1) if B1 and B2 are linear orders of VD-rank α + n, then �X (α + n) = 1, if
B1 ∼= B2 and �X (α + n) = 0, otherwise, where

X =
{

(B1 ⊕ B2)
(α+2n), if α + n < ω

(B1 ⊕ B2)
(α+2n+1), if α + n ≥ ω;

2) the class of scattered linear orders of VD-rank α + n is uniformly relatively
�0

α+2n+1-categorical via the operator �.

Proof Case α + n = 1.
During the proof, i is any element of {1, 2}. Suppose that Bi is a scattered linear

order of VD-rank 1. It has one of the following order types: ω, ω∗, ζ or finite. We
determine whether Bi has a least or a greatest elements; i.e., we determine whether
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the formulas (∃x)(∀y)[x ∈ Bi & x ∈ Bi & x ≤Bi y] and (∃x)(∀y)[x ∈ Bi & y ∈
Bi & x ≥Bi y] are true. All of this can be done within the oracle (B1 ⊕ B2)

(2).
There are the following subcases.
1) Both linear orders have a least and a greatest elements. Then both

are finite. We find the set of elements from Bi with the least number
〈xi, 0, xi, 1, xi, 2, . . . , xi,mi , xi,mi+1〉 such that xi, 0 <Bi xi, 1 <Bi xi, 2 <Bi· · · <Bi xi,mi <Bi xi,mi+1, and xi,0 is the least and xi,mi+1 is the greatest ele-
ments of Bi , and S0i (xi, j , xi, j+1) for 0 ≤ j ≤ mi . If m1 �= m2 then B1 and B2 are
not isomorphic. If m1 = m2 then we can define an isomorphism as ϕ(x1, j ) = x2, j .

2) Both linear orders have a least element and no greatest element. Then they
are isomorphic and have order type ω. Let xi be the least element of Bi . Define an
isomorphism as ϕ((S+

0 )m(x1)) = (S+
0 )m(x2) for every m ≥ 0.

3) Both linear orders have no least element and have a greatest element. The linear
orders have type ω∗. This case is symmetrical to the previous one.

4) Both linear orders have no least element and have no greatest element. Then
they are isomorphic and have order type ζ . Suppose that xi is the least as a natural
number element fromBi . We define an isomorphism as ϕ((S+

0 )m(x1)) = (S+
0 )m(x2)

for every m ∈ Z.
5) One of the linear orders has a least or a greatest element and the second one has

no corresponding element. Then they are not isomorphic.
Note, all conditions from pp.1. –5. are (B1 ⊕ B2)

(2)-computable.
Case α + n + 1.
Suppose that B1 and B2 are scattered linear orders of VD-rank α + n + 1. Both

factor ordersBα+n
F, i haveVD-rank 1, and consequently, they have one of the following

order types: ω, ω∗, ζ or finite. We find one element xi, j ∈ Li from each α + n-block
Li, j = [x1, j ]α+n

Bi
of the initial linear orders. It is easy to see that in contrast to the

previous theorem, to find these elements in the case of α + n < ω we need the oracle
(B1⊕B2)

(α+2n), and in the case of α+n ≥ ωwe need the oracle (B1⊕B2)
(α+2n+1).

Using Theorem 4, we finish the proof for this case.
Case α + n > 0, n = 0.
Suppose that B1 and B2 are scattered linear orders of VD-rank α. Both lin-

ear orders Bi can be represented as
⋃
j∈ω

[xi ]β j

Bi
, for every xi from Bi and β j is a

computable sequence of ordinals less than and converging to α. We proceed sim-
ilarly as in the proof of the previous theorem using Theorem 4 instead of the
induction hypothesis. Namely, there are operators �1, �2 and �1, �2 such that:

[≤ ti ]βkB1
∼= [≤ ti ]βkB2

iff �
(B1⊕B2)

(α)

1 (α, βk, t1, t2) = 1; [≥ ti ]βkB1
∼= [≥ ti ]βkB2

iff

�
(B1⊕B2)

(α)

2 (α, βk, t1, t2) = 1; and �1, �2 are corresponding isomorphisms, when
they are exit.

We have B1 ∼= B2 if and only if

(∃x1 ∈ B1)(∃x2 ∈ B2)(∀s ∈ ω)
(
�

(B1⊕B2)
(α)

1 (α, βs, x1, x2) = 1&

&�
(B1⊕B2)

(α)

2 (α, βs, x1, x2) = 1
)
.
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If such x1 and x2 exist, then it remains to “piecewise” define �, similarly as in the
proof of the p

Using this theorem, it is not hard to prove the same result for the class of scattered
linear orders of given VD∗-rank.

Corollary 6 Suppose that α is a limit ordinal and n is finite. Then there exist Turing
operators � and � such that

1) if B1 and B2 are linear orders of VD∗-rank α + n, then �X (α + n) = 1, if
B1 ∼= B2 and �X (α + n) = 0, otherwise, where

X =
{

(B1 ⊕ B2)
(α+2n+2), if α + m < ω;

(B1 ⊕ B2)
(α+2n+3), if α + m ≥ ω;

2) the class of scattered linear orders of VD∗-rank α + n is uniformly relatively
�0

α+2n+3-categorical via the operator �.

Proof It follows immediately from the theorem, since every linear order of VD∗-rank
α + n is a linear order of VD-rank less than or equal to α + n + 1.

Theorem 7 Suppose thatL = 〈L; <L〉 is a scattered linear order ofVD∗-rank α+n.
Then it is relatively �0

α+2n-categorical.

Proof Suppose that L1 and L2 are two copies of the linear order L. Then they are
finite sums Li = Li, 1 + Li, 2 + · · · + Li,mi (i = 1, 2), where every summand has
VD-rank α + n. Furthermore, if j �= j ′ and x ∈ Li, j , y ∈ Li, j ′ then ¬Fi, α+n(x, y).
Further we consider few cases. Our goal in each case is to prepare pairs (xit , yit ) from
each block such that there is an isomorphism of the blocks sending xit to yit .

Initially, we consider the case, when α + n is a successor ordinal.
For any j , the factor orders Lα+n

1, j and Lα+n
2, j have the same one of the following

order types: ω, ω∗, ζ or finite.
1. If Lα+n

1, j (1 ≤ j ≤ m1) has a finite order type k j , then we choose from every

(α + n)-block the least as natural number element xt (1 ≤ t ≤ k j ). We have x j
1 <L1

· · · <L1 x j
k j

and suppose that y j
1 <L2 · · · <L2 y j

k j
is a set of elements such that there

exists an isomorphism ϕ : L1 → L2 with ϕ(x j
t ) = y j

t .
2. If Lα+n

1, j has type ω then we choose the least as natural number element x j
0

from the (α + n)-block which is the least element in Lα+n
1, j . Suppose that y j

0 is an

element such that there exists an isomorphism ϕ : L1 → L2 with ϕ(x j
0 ) = y j

0 . Define

x j
t+1 = S+

α+n+1(x
j
t ) and y j

t+1 = S+
α+n+1(y

j
t ) for all t ≥ 0.

3. If Lα+n
1, j has order type ω∗ then this case is symmetrical to the previous one.

4. If Lα+n
1, j has order type ζ then we choose the least as natural number element

x j
0 ∈ L1, j . Suppose that y j

0 is an element such that there exists an isomorphism

ϕ : L1 → L2 with ϕ(x j
0 ) = y j

0 . Define x
j
t+1 = S+

α+n+1(x
j
t ) and y j

t+1 = S+
α+n+1(y

j
t )

for all t ≥ 0, x j
t−1 = S−

α+n+1(x
j
t ) and y j

t−1 = S−
α+n+1(y

j
t ) for all t ≤ 0.
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Define the following picewise operator

�̂(L1⊕L2)
(α+2n−1) � [x j

t ](α+n−1)(·) == �([x j
t ](α+n−1)⊕[y j

t ](α+n−1))⊕(L1⊕L2)
β

(α + n, α + n + 1, x j
t , y j

t , · ),

where the operator� is fromTheorem 4 andβ = α+2n−1, ifα = 0, andβ = α+2n,
if α > 0. It is easy to see that �̂(L1⊕L2)

(α+2n−1)
(·) is an isomorphism between L1 and

L2, since

�([x j
t ](α+n−1)⊕[y j

t ](α+n−1))⊕(L1⊕L2)
β

(α + n, α + n + 1, x j
t , y j

t , · )

is an isomorphism between [x j
t ](α+n−1) and [y j

t ](α+n−1).
Now we consider the case, when α + n is a limit ordinal, i.e., n = 0. We choose

elements x j in every L1, j and elements y j in L2, j such that there exists an isomorphism

ϕ : L1 → L2 with ϕ(x j ) = y j . ThenL1, j = ⋃
t∈ω

[x j ]βtL1
andL2, j = ⋃

t∈ω

[y j ]βtL2
, where

βt is a computable sequence of ordinals less than and converging to α. We proceed as
in the case of the limit ordinal from the proof of Theorem 4.

4 Constructions of examples

In this section, we construct examples of linear orders with given constructive rank
α that realize the intermediate levels of categoricity between 3 and the upper bound
given in the previous section. More precisely, we prove the following theorem.

Theorem 8 Suppose that α is a limit constructive ordinal, and n is finite such that
α +n > 1. Then for every β such that 3 ≤ β ≤ α +2n, which is not the successor of a
limit ordinal, there exists a computable scattered linear order with constructive rank
α + n which is relatively �0

β -categorical, but is not �
0
γ -categorical for every γ < β.

The rest of this section is a prf of the theorem. Constructions of orders are different
for the cases when β is a limit ordinal, an even successor ordinal, and an odd successor
ordinal.

4.1 Case of an odd successor ordinal

Our construction will take a few stages. Initially, we construct a �0
3-categorical com-

putable linear order, that is not �0
2-categorical, which has rank 2. Further, we use this

construction to build a �0
3-categorical linear order, that is not �0

2-categorical, which
has an arbitrary given constructive rank. Finally, we construct a �0

β -categorical linear
order for every odd β ≥ 3 and every α such that all of them satisfy the conditions of
the theorem.

Assume that ν : Z → Z \ {0} is a computable strictly increasing function such that
the module |ν| : Z → N \ {0} is an injective function with a computable range. Then
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for α + n = 2 and β = 3, the linear order Lod(ν) = ∑
i∈Z

(ζ + |ν(i)|) satisfies the the-
orem conditions. For example, suppose that . . . , ν(−2) = −7, ν(−1) = −5, ν(0) =
−2, ν(1) = −1, ν(2) = 3, . . ., then

Lod(ν) = · · · + ζ + 7 + ζ + 5 + ζ + 2 + ζ + 1 + ζ + 3 + · · · .

Since ν is computable,Lod(ν) is computably presentable. By Theorem 7,Lod(ν) is
relatively�0

4-categorical. But we prove below that it is even relatively�0
3-categorical.

Lemma 9 The linear order Lod(ν) is relatively �0
3-categorical.

Proof Since |ν| is an injective function, we can find any finite block in the both linear
orders using a �0

3-oracle. Then an isomorphism is uniquely defined at finite blocks.
Every block of type ζ belongs immediately between two finite blocks. Since the range
of |ν| is computable, and ν is strictly increasing, we can find sizes of such blocks in
the computable way. The �0

2-construction of an isomorphism at blocks of type ζ is
straightforward.

It is easy to see that the linear order Lod(ν) has a “good” copy. More precisely,
there exists a computable presentation Lg of Lod(ν) such that the successor relation
SLg , the block relation FLg , and the left and the right limit point relations P−

Lg
and

P+
Lg

are computable. Moreover, for every x ∈ L , we can effectively find the size of the
block containing x , i.e., the function fLg : L → N∪ {ζ }, defined by f (x) = |[x]Lg |,
is a computable function. Recall that SLg = S0Lg

, FLg = F1
Lg

. For convenience, we

introduce the notion I n f ζ

L = {x ∈ L | |[x]F | ∼= ζ }.
Now we wish to argue that the constructed linear order is not �0

2-categorical. To
show this, we prove the following lemma.

Lemma 10 There is a computable copy L of Lg such that there is no 0′-computable
isomorphism between L and Lg.

Proof Without loss of generality, we can assume that

Lg = (
∑
i∈N

(2i + 1 + ζ ))∗ +
∑

j∈N\{0}
(ζ + 2 j).

Since all finite blocks have different sizes, it is enough to consider only one of these
two “big” sums. In other words, suppose that L̂g = ζ + 2 + ζ + 4 + ζ + · · · is a
good copy of Lod . We construct a computable linear order L̂ ∼= L̂g such that there is
no 0′-computable isomorphism ϕ : L̂g → L̂.

Suppose that ϕ0′
e (x) is an enumeration of all partial 0′-computable functions. Let

{σi }i∈ω be a true-stage enumeration of ∅′. We will use requirements Re to diagonalize
against ϕσs

e being an isomorphism between L̂ and L̂b.
We satisfy the following requirements:
Re : ϕ

lims σs
e (x) is not an isomorphism between L̂b and L̂.
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Webuild the linear orderL as theω-sum of intervals Ie. Namely, L̂ = ω∗+ I0+ I1+
I2+· · · . At the end of the construction each Ie will have typeω+4e+2+ζ+4e+4+ω∗
and hence L̂ ∼= L̂g . We use Ie to satisfy requirement Re. Now we turn to construct
the interval Ie.

We build Ie as A+ B +C . To build each of the subintervals, we use two strategies:
the X - and the Y -strategies.

The X -strategy builds A as ω, B as 4e + 2 + ω∗, C as ω + 4e + 4 + ω∗.
The Y -strategy builds A as ω + 4e + 2 + ζ , B as 4e + 4 + ω∗, C as k for some
finite k.

Note that, for the both strategies, the type of A+B+C isω+4e+2+ζ +4e+4+ω∗.
The building for the X - and the Y -strategies is straightforward. To construct a ζ -

subinterval, we add a new element immediately to the left of old elements of this
subinterval and a new element immediately to the right of old elements of this subin-
terval. To construct ω- and ω∗-subintervals, we add new elements in the same natural
way. In the construction, the following switching of strategies plays the key role.

The switching from X -strategy to Y -strategy

for A We have the ω-subinterval, i.e., there are finitely many elements construct-
ing the ω-subinterval. We add to them immediately to the right 4e + 2 new
elements for the (4e + 2)-subinterval and some elements constructing a new
ζ -subinterval. So, we build A as ω + 4e + 2 + ζ .

for B We have the (4e + 2)-subinterval and the ω∗-subinterval. Now we extend the
(4e + 2)- to the (4e + 4)-subinterval by adding 2 new elements immediately
to the right of the 4e + 2 old elements.

for C We have 3 subintervals: the ω-, the (4e + 4)-, and the ω∗-subinterval. Now
we “freeze” these subintervals into one finite subinterval. This means that we
“save” the 4e+4 elements from the finite subinterval and we will not add new
elements into C until it becomes “unfrozen”.

The switching from the Y -strategy to the X -strategy

for A We have 3 subintervals: the ω-, the (4e + 2)-, and the ζ -subinterval. Now we
“kill” the (4e+2)-subinterval and the ζ -subinterval. This means that we build
just ω by adding new elements to the right. Note that we don’t save elements
from the (4e + 2)-subinterval.

for B We have 2 subintervals: the (4e + 4)-, and the ω∗-subinterval. Now we “kill”
the 2 right elements from the (4e + 4)-subinterval. This means that we add
these elements to the ω∗-subinterval and continue to build the ω∗ by adding
new elements to the left of all of its elements, i.e., we build B as 4e + 2+ ω∗.
Note that we don’t save the killed elements.

for C We have just the k-subinterval, but we remember the “saved” 4e+ 4 elements
inside it. Now we just “unfreeze” the X -strategy.

The construction of Ie
At stage 0.We run the X -strategy. For A, start the building theω-subinterval. For B,

put 4e+2 elements for the (4e+2)-subinterval and start the building ω∗ immediately
to the right of them. For C , put 4e + 4 elements for the (4e + 4)-subinterval, start the
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building the ω-subinterval immediately to the left of them and start the building the
ω∗-subinterval immediately to the right of them.

At stage s+1. Let ye be the first element of the block of size 4e+4 in L̂g . If ϕ
σs
e (ye)

is the first element of the block of size 4e + 4 in L̂, then we just switch the current
strategy. If not, we continue to use the current strategy. This finishes the construction
of Ie.

Now we wish to argue that the construction works. Suppose ϕ0′
e (ye) is defined.

Then there is s0 such that ϕ0′
e (ye) = ϕ

σs
e (ye) for any s ≥ s0. Hence, the construction

does not switch the current strategy at any stage s > s0. And, therefore, ϕe is not an
isomorphism. Note that if the construction uses only the X -strategy after stage s0 then
A has type ω, B has type 4e + 2+ ω∗, and C has type ω + 4e + 4+ ω∗ at the end of
the construction; and if the construction use only the Y -strategy after stage s0 then A
has type ω + 4e + 2 + ζ , B has type 4e + 4 + ω∗, and C has type k (for some finite
k) at the end of the construction.

Suppose ϕ0′
e (ye) is undefined. Therefore, ϕe could not be an isomorphism. But

possibly there are infinitely many stages s such that ϕσs
e (ye) seems correct. This means

that the construction switches strategies infinitely many times, i.e.,

for A We “killed” all (4e + 2)-subintervals and right ζ -subintervals. Hence A has
type ω at the end of the construction.

for B We “killed” all 2 right elements from the (4e + 4)-subinterval. Hence B has
type 4e + 2 + ω∗ at the end of the construction.

for C We “unfroze” the X -strategy infinitely many times. HenceC has typeω+4e+
4 + ω∗ at the end of the construction.

Hence, from Lemma 10 it follows that there is a �0
3-, but not �0

2-categorical
scattered linear order of rank 2.

Now we consider the case of a finite rank n = m + 2 ≥ 2 and β = 2m + 3 ≥ 3
(i.e., α = 0). Then the desired example would be ζmLg . By relativization of Lemma
10, we have that there exists a 02m-computable copy L̃ of the linear order Lg such
that there is no 02m+1-computable isomorphism between them. Thus, we need the
following well-known theorem due to Watnick:

Theorem 11 ([25]) A linear order L has a 0′′-computable copy if and only if ζL has
a computable copy.

Moreover, it follows from the proof of this theorem that there exists a 0′′-computable
homomorphism from ζL onto L. By the relativization, we have the following
statement:

A linear orderL has an X ′′-computable copy if and only if ζL has an X -computable
copy, moreover, there exists an X ′′-computable homomorphism from ζL onto L.

Applying this fact to L̃, we can construct a sequence of linear orders ζ L̃,
ζ 2L̃,. . ., ζmL̃ such that the ζ i L̃ are 02m−2i -computable, and there exists a 02m−2i -
computable homomorphism from ζ i L̃ onto ζ i−1L̃. Then the composition of the
homomorphisms is a 02m-computable homomorphism from ζmL̃ onto L̃. Conse-
quently, there is no 02m-computable isomorphism between the “good” copy of ζmLg

and the linear order ζmL̃.
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Now we turn to the consideration of the case β = 3 and arbitrary α + n ≥ 2. If
β = 2γ + 3 (recall that β ≥ 3 and β �= 2γ ′ + 1 for a limit γ ′, by the conditions
of the theorem) and α + n = γ + δ then γ = 0 and 2 + δ = α + n. To define
Lγ,δ(ν) = L0,δ(ν), we consider a computable function ν : Zδ × Z → Z\{0} such
that:

1) |ν| : Zδ × Z → N\{0} is an injective function with a computable range;
2) for every i ∈ Zδ , we define νi (·) = ν(i, ·). Every νi : Z → Z is a computable

strictly increasing function. Moreover, the module |νi | : Z → N \ {0} is an injective
function with a computable range uniformly by i .

DefineL0,δ(ν) = ∑
i∈Zδ

Lod(νi ). It is easy to see that statements similar to Lemma 10

hold forL0,δ(ν). Thus, the linear orderL0,δ(ν) has rank α+n and it is�0
3-categorical,

but it is not �0
2-categorical.

Now we wish to argue the general case. Suppose that we have γ and δ such that
2γ + 3 = β, γ + 2 + δ = α + n. Such γ and δ exist, since β ≤ α + 2n.

We take the function ν and the linear order L0,δ(ν) from the previous case. Then
the required linear order has the form Lγ,δ(ν) = ζ γL0,δ(ν). Since γ can be a finite
or an infinite ordinal, we need to use the following result of C. Ash, K. Jockusch and
J. Knight [26] instead of Watnick’s theorem.

Theorem 12 Suppose that α is an infinite computable ordinal, n ∈ ω and d is a Turing
degree. For every dα+2n+1-computable linear order L, there exists a d-computable
linear order ζ α+nL.

As for Watnick’s theorem, it follows from the proof of Ash-Jockusch-Knight that
there exists a dα+2n+1-computable homeomorphism from ζ α+nL onto L.

4.2 Case of an even successor ordinal

The example construction scheme will be similar to the construction in the previous
section.

Initially, we construct a linear order of rank 2 which is �0
4-categorical, but is not

�0
3-categorical.
As before, ν : Z → Z \ {0} is a computable strictly increasing function such that

|ν| : Z → N \ {0} is an injective function with a computable range.
The following linear order Lev(ν) = ∑

i∈Z
(ζ + ω · |ν(i)|) satisfies the theorem’s

conditions. And note that Lev(ν) is computably presentable, since ν is computable.

Lemma 13 The linear order Lev(ν) is relatively �0
4-categorical.

Proof Generally speaking, in this form the statement of the lemma follows from the
upper bound on the level of categoricity for orders of rank 2 (Theorem 7). However,
we give an alternative direct proof for the order Lev(ν), which is easily translated to
the case, where the level of categoricity is less than the upper bound.

Let L and L′ be computable linear orders isomorphic to Lev . For every i ∈ Z,
we find sets w1 < v1 < · · · < v|ν(i)| < u1 < · · · < u|ν(i+1)| < w2 from L, and
w′
1 < v′

1 < · · · < v′
|ν(i)| < u′

1 < · · · < u′
|ν(i+1)| < w′

2 from L′ such that
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1) all points are the left limit points, i.e., P−(wp), P−(vl), P−(uk);
2) ¬S2(w1, v1), S2(vl , vl+1), S2(uk, uk+1), ¬S2(u|ν(i+1)|, w2);
3) ¬(∃z)[w1 < z < v1 & P−(z)], ¬(∃z)[u|ν(i+1)| < z < w2 & P−(z)].
The corresponding conditions hold for elements v′

l , u
′
k and w′

1, w
′
2.

Define ϕ((S+
0 )m(vl)) = (S+

0 )m(v′
l) and ϕ((S+

0 )m(uk)) = (S+
0 )m(u′

k) for every
m ∈ N, every l and k with 1 ≤ l ≤ |ν(i)| and 1 ≤ k ≤ |ν(i + 1)|. We find elements
z and z′ the least as natural numbers such that v|ν(i)| < z < u1, v′

|ν(i)| < z′ <

u′
1 and ¬F(v|ν(i)|, z), ¬F(z, u1), ¬F(v′

|ν(i)|, z′), ¬F(z′, u′
1). Now, we can define

ϕ((S+
0 )m(z)) = (S+

0 )m(z′) for every m ∈ Z. It is easy to see that ϕ is a (L1 ⊕
L2)

′′′-computable isomorphism.

As in Sect. 4.1 above, the linear orderLev(ν) has a “good” copyLg . More precisely,
there exists a computable presentationLg ofLev(ν) such that relations SLg , S

1
Lg

, FLg ,

P−
Lg

and P+
Lg

are computable. Now we wish to argue that the constructed linear order

is not �0
3-categorical. To show this, we prove the following two lemmas.

Lemma 14 There is a 0′′-computable structure

L2 = 〈L2;<L2; SL2 , FL2 , P
−
L2

〉

such that I n f ζ

L2
is computable, 〈L2;<L2〉 ∼= Lg and there is no 0′′-computable

isomorphism between them.

Proof Without lost of generality as in the proof of Lemma 10, let L̂g = ζ + ω · 2 +
ζ +ω · 4+ ζ + · · · be a good copy of Lev . We construct a 0′′-computable linear order
L̂2 ∼= L̂g such that SL̂2

, FL̂2
and P−

L̂2
are 0′′-computable and there is no 0′′-computable

isomorphism ϕ : L̂g → L̂2.
Initially, we put all even natural numbers as all the left limit points of the intervals

ω · (2e). Also, we use all natural numbers of the form 4k + 1 to build all intervals of
type ζ . From each interval ω · (2e) we choose two witnesses xe and ye as the first and
the last left limit points of ω · (2e).

Then at each stage s, firstly, we will extend the constructed order copying L̂g using
natural numbers of the form 4k + 3 (so, the universe of the constructed order will be
N), and, secondly, try to diagonalize ϕ0′′

e as follows. Perhaps, after diagonalizations
for the witnesses xe′ and ye′ for e′ < e, the witnesses xe and ye will belong to ω · (2es)
such that es > e.

If ϕ0′′
e does not look like an isomorphism on the left limit points between xe and

ye, then we do nothing. Suppose that it does. Then, for each e′′ ≥ e, we add two new
the left limit points between xe′′ and ye′′ such that the interval with them becomes
ω · (2e′′

s + 2). This means that we extend all intervals ω · (2e′′
s ) to ω · (2e′′

s + 2) for
e′′ > e. Finally, we add a new interval ω · (2es) + ζ immediately to the left of xe.

It is easy to see that L̂2 ∼= L̂g and ϕ0′′
e is not an isomorphism between L̂2 and L̂g

for every e. Since the intervals of type ζ were never changed, the set I n f ζ

L2
= {x ∈

L2 | [x]F ∼= ζ } is computable.
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Lemma 15 Suppose that L′ = 〈L ′; <L′ , SL′ , FL′ , P+
L′ , P−

L′ 〉 is a 0′′-computable
structure such that 〈L ′; <L′ 〉 ∼= Lev and In f ζ

L′ ∈ �0
2 (moreover, it can be 0′′-

computable). Then there exists a computable linear order which is 0′′-isomorphic
to L′.

Proof To prove the lemma, we use two steps. Firstly, by [27], there are a 0′-computable
structureL′′ = 〈L ′′; <L′′ , SL′′ 〉 and a 0′′-computable embedding functionψ1 : L′ →
L′′ with some properties, in particular, such that if x and y are in the same block then
ψ1(x) and ψ1(y) are in the same block. Moreover, blocks containing x and ψ1(x)
have the same type. Since I n f ζ

L′ is 0′′-computable, we can find a 0′′-computable set
C containing exactly one element from each block of the linear order L′′ such that if
x ∈ C and belongs to a block of type ω, then x is the left limit point.

Then we define an isomorphism ϕ1 at points from C in the following way. If x
belongs to a block of type ζ then ϕ1(x) = ψ1(x). If x belongs to a block of type ω

then ϕ1(x) = y, where y is the left limit point from the block containingψ1(x). It easy
to see that there is the unique extension of the mapping ϕ1 to an isomorphism between
L′ and L′′. This extension can be done using a 0′′-oracle. Therefore, L′′ ∼=0′′ L′ and,
moreover, I n f ζ

L′′ is 0′′-computable.
Finally, by [28], there exist a computable linear order L′′′ and a 0′-computable

embedding function ψ2 : L′′ → L′′′ such that if x and y are in the same block
then ψ2(x) and ψ2(y) are in the same block. By the same reason as above, ψ2 can
be modified to a 0′′-computable isomorphism. So, L′′′ is computable and L′′′ ∼=0′′
L′′ ∼=0′′ L′.

For other casesweproceed as before.Namely, suppose 2γ +4 = β,γ +2+δ = α+n
(remember that such γ and δ exist, since β ≤ α + 2n) and ν : Zδ × Z → Z\{0} is a
computable function such that:

1) ν( j, ·) : Z → Z \ {0} is a computable strictly increasing function;
2) |ν( j, ·)| : Z → N \ {0} is an injective function with a uniformly by j computable

range.

Define L0,δ(ν) = ∑
i∈Zδ

Lev(ν(i, ·)). It easy to see that we have the statement

analogous to (relativized) Lemmas 14 and 15 for the linear order L0,δ(ν).
The required linear order has the form Lγ,δ(ν) = ζ γL0,δ(ν).

4.3 Case of a limit ordinal

Suppose β is a constructive limit ordinal and β j is a computable sequence of (odd)
ordinals such that lim

j∈ω
β j = β.

If the rank is a successor ordinalα+n+1 then let 2γ j +3 = β j , γ j +2+δ j = α+n.
Otherwise, if the rank is a limit ordinal α, then we suppose that α j +n j is a computable
sequence of ordinals such that lim

j∈ω
(α j + n j ) = α, β j ≤ α j + 2n j for all j , and

2γ j + 3 = β j , γ j + 2 + δ j = α j + n j .
For both cases, we choose a uniformly computable sequence of functions ν j :

Zδ j × Z → Z\{0} such that
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1) |ν j | : Zδ j ×Z → N\{0} is an injective functionwith a computable rangeuniformly
in j ;

2) for every i ∈ Zδ j , the function ν j (i, ·) : Z → Z \ {0} is a computable strictly
increasing function. Moreover, the module |ν j (i, ·)| : Z → N \ {0} is an injective
function with a computable range uniformly by j and i ;

3) rng(|ν j1 |) ∩ rng(|ν j2 |) = ∅ for j1 �= j2;
4) ν j has only odd values for any j .

It easy to see that the linear order
∑
j∈ω

(Lγ j ,δ j (ν j )+ 2 j) has the required properties.
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