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Abstract
The following two assertions are equivalent for an o-minimal expansion of an ordered
group M = (M,<,+, 0, . . .). There exists a definable bijection between a bounded
interval and an unbounded interval. Any definable continuous function f : A → M
defined on a definable closed subset of Mn has a definable continuous extension
F : Mn → M .
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1 Introduction

In this paper, we investigate the Tietze extension property for functions definable in
an o-minimal expansion of an ordered Abelian group. For the basics of o-minimality,
good references are [2, 6, 7]. In this context, the Tietze extension property is defined
as follows:

Definition 1.1 Consider an expansionM = (M,<, . . .) of a dense linear order with-
out endpoints. The structure M enjoys the definable Tietze extension property if, for
any positive integer n, any definable closed subset A of Mn and any continuous defin-
able function f : A → M , there exists a definable continuous extension F : Mn → M
of f .

The definable Tietze extension property is a convenient tool for the geometric study
of o-minimal structures. We prove the following theorem in this paper.
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Theorem 1.2 Consider an o-minimal expansionM = (M,<,+, 0, . . .) of an ordered
group. The following are equivalent:

1. There exists a definable bijection between a bounded interval and an unbounded
interval.

2. The structureM enjoys the definable Tietze extension property.

Wemake a comment on the theorem. Miller and Starchenko studied the asymptotic
behavior of o-minimal expansions of an ordered group M = (M,<,+, . . .) in [4].
They introduced the notion of linear boundedness. An o-minimal structure is called
linearly bounded if, for any definable function f : M → M , there exists a definable
automorphism λ : M → M with | f (x)| ≤ λ(x) for all sufficiently large x ∈ M . Their
main theorem is that there exists a definable binary operation · such that (M,<,+, ·)
is an ordered real closed field when the structure is not linearly bounded.

Peterzil and Edmundo studied the subclass of linearly bounded o-minimal expan-
sions of ordered groups [1, 5]. An o-minimal structureM is semi-bounded if any set
definable in M is already definable in the o-minimal structure generated by the col-
lection of all bounded sets definable in M. Edmundo gave equivalent conditions for
an o-minimal expansion of an ordered group to be semi-bounded in [1, Fact 1.6]. The
condition (1) in our theorem is the negation of one of them. Theorem 1.2 gives a new
equivalent condition. An o-minimal expansion of an ordered group is semi-bounded
if and only if it does not have the definable Tietze extension property. In our proof, we
use the following facts:

• In an o-minimal expansion M = (M,<,+, 0, . . .) of an ordered group which is
not semi-bounded,we can define a real closedfieldwhose universe is an unbounded
subinterval of M and whose ordering agrees with < [1, Fact 1.6].

• An o-minimal expansion of an ordered field enjoys the definable Tietze extension
property [7, Chapter 8, Corollary 3.10].

We introduce the terms and notations used in this paper. The term ‘definable’
means ‘definable in the given structure with parameters’ in this paper. For a linearly
ordered structure M = (M,<, . . .), an interval is a nonempty definable set of the
form {x ∈ M | a ∗ x ∗′ b}, where a, b ∈ M ∪ {±∞} and ∗, ∗′ ∈ {<,≤}. The
interval is denoted by ]a, b[ when both ∗ and ∗′ are the symbol <. It is denoted by
[a, b] when both ∗ and ∗′ are ≤. We define [a, b[ and ]a, b], similarly. An interval is
called bounded if both a and b belong to M . It is called unbounded otherwise. We
consider the order topology on M and its product topology on the Cartesian product
Mn in the paper. The notation M>r denotes the set {x ∈ M | x > r} for any r ∈ M .

2 Proof

We now begin to prove Theorem 1.2. An o-minimal structure is always definably
complete. We use this fact without notice. We first prove two lemmas.

Lemma 2.1 Consider an o-minimal structure. The structure has a definable bijection
between a bounded interval and an unbounded interval if and only if it has a definable
homeomorphism between a bounded interval and an unbounded interval.
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Proof It is immediate from the monotonicity theorem [7, Chapter 3, Theorem 1.2]. 	

Lemma 2.2 Consider a definably complete expansion of a densely linearly ordered
abelian group M = (M,<,+, 0, . . .). If the structure M has a strictly monotone
definable homeomorphism between a bounded open interval and an unbounded open
interval, any two open intervals are definably homeomorphic and there exists a defin-
able strictly increasing homeomorphism between them.

Proof By the assumption, there exists a strictly monotone definable homeomorphism
ϕ : I → J , where I is a bounded open interval and J is an unbounded open interval.
We may assume that I =]0, u[ for some u > 0. In fact, an open interval ]u1, u2[ is
obviously definably homeomorphic to ]0, u2 − u1[. We may further assume that ϕ

is strictly increasing because the map τ :]0, u[→]0, u[ defined by τ(t) = u − t is a
definable homeomorphism.

We next reduce to the case in which J =]0,∞[. We have only three possibilities;
that is J =]v,+∞[, J =] − ∞, v[ and J = M for some v ∈ M . In the first and
second cases, wemay assume that J =]0,∞[ because J =]v,+∞[ and J =]−∞, v[
are obviously definably homeomorphic to ]0,∞[. In the last case, set u′ = ϕ−1(0).
Then the restriction of ϕ to the open interval ]0, u′[ is a definable homeomorphism
between ]0, u′[ and ] − ∞, 0[. Hence, we can reduce to the second case. We have
constructed a strictly increasing definable homeomorphism ϕ :]0, u[→]0,∞[. We fix
such a homeomorphism.

We next construct a definable strictly increasing homeomorphism between an arbi-
trary bounded open interval and ]0,∞[. We may assume that the bounded interval
is of the form ]0, v[. We have nothing to do when v = u. When v < u, the map
defined by ϕ(t + u − v) − ϕ(u − v) for all t ∈]0, v[ is a definable homeomorphism
between ]0, v[ and ]0,∞[. When v > u, consider the map ψ :]0, v[→]0,∞[ given
by ψ(t) = t for all t ≤ v − u and ψ(t) = ϕ(t + u − v) + v − u for the other case.
The mapψ is the desired definable homeomorphism. We have constructed a definable
homeomorphism between ]0, u[ and all open intervals other than M .

The remaining task is to construct a definable homeomorphism between ]0, u[
and M . There exists a strictly increasing definable homeomorphisms ψ1 :]0, u/2[→
] − ∞, 0[ and ψ2 :]u/2, u[→]0,∞[. The definable map ψ :]0, u[→ M given by
ψ(t) = ψ1(t) for t < u/2, ψ(t) = 0 for t = u/2 and ψ(t) = ψ2(t) for t > u/2
is a definable homeomorphism. The function ψ is well defined because (M,+) is a
divisible group by [3, Proposition 2.2]. 	


The following proposition is a part of [1, Fact 1.6].

Proposition 2.3 Consider an o-minimal expansion of an ordered group M = (M,<

,+, 0, . . .). The followings are equivalent:

1. There exists a definable bijection between a bounded interval and an unbounded
interval.

2. InM, we can define a real closed fieldwhose universe is an unbounded subinterval
of M and whose ordering agrees with <.

We now begin to prove Theorem 1.2.
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Proof of Theorem 1.2 We first show that the condition (1) implies the condition (2).
There exist an unbounded subinterval I of M , two elements 0∗ and 1∗ in I , and

definable functions ⊕,⊗ : I × I → I such that (I , 0∗, 1∗,⊕,⊗) is a real closed
field with the ordering < by Proposition 2.3. The subinterval I is obviously an open
interval.

If I = M , the assertion (2) directly follows from the original definable Tietze
extension theorem [7, Chapter 8, Corollary 3.10].

We next consider the other case. Consider a definable continuous function f : A →
M defined on a definable closed subset A of Mn . We construct a definable continuous
extension F : Mn → M of the function f . There exists a definable homeomorphism
σ : M → I by Lemmas 2.1 and 2.2. The notation σn denotes the homeomorphism
from Mn onto I n induced by σ . The definable set σn(A) is contained I n . Consider the
definable continuous function fσ : σn(A) → I defined by fσ (x) = (σ ◦ f ◦σ−1

n )(x).
Its graph is obviously contained in I n+1.

We consider a new structure I whose universe is I . Let Sn be the set of all subset
of I n definable inM. SetS = ⋃

n≥0 Sn . For any S ∈ S, we introduce new predicate
symbol RS and we define I |� RS(x) by x ∈ S. The structure I = (I ,<, {RS}S∈S)

is obviously an o-minimal structure. Since the operators ⊕ and ⊗ are definable in I,
the structure I is an o-minimal expansion of an ordered field. The M-definable set
σn(A) and the M-definable function fσ are also definable in the structure I. Note
that the function fσ is also continuous under the topology induced by the ordering of
the real closed field (I , 0∗, 1∗,⊕,⊗) because the two structures I and M share the
same order <. There exists a continuous extension Fσ : I n → I of fσ definable in I
by the original definable Tietze extension theorem [7, Chapter 8, Corollary 3.10]. The
function Fσ is also definable in M by the definition of the structure I. The function
F = σ−1 ◦ Fσ ◦σn is the desired definable continuous extension of f definable inM.

We next show that the condition (2) implies the condition (1). We construct a
definable bijection between a bounded interval and an unbounded interval. Take a
positive element c in M . Consider the definable closed set A = {(x, y) ∈ M2 | x ≤
0 or x ≥ c} and the definable continuous function f : A → M given by f (x, y) = y
if x ≥ c and f (x, y) = 0 otherwise. By the condition (2), there exists a definable
continuous extension F : M2 → M of f . The notation g denotes the restriction of F
to [0, c] × M .

Consider the sets St,y = {x ∈ [0, c] | g(x, y) = t} for all t ≥ 0 and y ≥ 0.
The definable sets St,y is not empty for y > t by the intermediate value theorem [3,
Corollary 1.5]. The definable function ϕt : M>t → [0, c] is given by ϕt (y) = sup St,y .
For any t > 0, there exists a nonnegative ut such that the restriction ϕt |M>ut

of the
function ϕt (y) to M>ut = {y ∈ M | y > ut } is continuous and strictly monotone or
constant for y > ut by the monotonicity theorem.

We consider the following two cases separately.

(a) The restriction ϕt |M>ut
is continuous and strictly monotone for some t > 0.

(b) The restriction ϕt |M>ut
is constant for any t > 0.

In the case (a), the restriction ϕt |M>ut
gives a bijection between a bounded interval

and an unbounded interval. We have finished the proof in this case. We next consider
the case (b). By the definition of the function ϕt , the following assertion holds true:
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For any t > 0, there exist a point xt ∈ [0, c] and a nonnegative ut such that
g(xt , y) = t for all y > ut .

In fact, we have only to take y′ > ut and set xt = ϕt (y′). Consider the definable
map ψ : [0,∞[→ [0, c] given by ψ(t) = xt , where xt is the point defined above.
Since ϕt |M>ut

is constant, the point xt is independent of the choice of y′. It means
that ψ is well defined. The map ψ is injective. In fact, if ψ(t) = ψ(t ′), we have
t = g(ψ(t), y′) = g(ψ(t ′), y′) = t ′ for a sufficiently large y′. By the monotonicity
theorem, there exists c > 0 such that the restrictionψ |]c,∞[ ofψ to ]c,∞[ is continuous
and monotone. The restriction ψ |]c,∞[ is strictly monotone because ψ is injective.
Therefore, it gives a definable bijection between a bounded interval and an unbounded
interval. 	

Corollary 2.4 An o-minimal expansion of an ordered group is semi-bounded if and
only if it does not have the definable Tietze extension property.

Proof The corollary follows from Theorem 1.2 and [1, Fact 1.6]. 	
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