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Abstract
We provide a general criterion for Fraenkel–Mostowski models of ZFA (i.e. Zermelo–
Fraenkel set theory weakened to permit the existence of atoms) which implies “every
linearly ordered set can be well ordered” (LW), and look at six models for ZFA which
satisfy this criterion (and thus LW is true in these models) and “every Dedekind finite
set is finite” (DF = F) is true, and also consider various forms of choice for well-
ordered families of well orderable sets in these models. In Model 1, the axiom of
multiple choice for countably infinite families of countably infinite sets (MCℵ0ℵ0

) is
false. It was the open question of whether or not such amodel exists (fromHoward and
Tachtsis “On metrizability and compactness of certain products without the Axiom of
Choice”) that provided the motivation for this paper. In Model 2, which is constructed
by first choosing an uncountable regular cardinal in the groundmodel, a strong form of
Dependent choice is true, while the axiom of choice for well-ordered families of finite
sets (ACWO

fin ) is false. Also in this model the axiom of multiple choice for well-ordered
families of well orderable sets fails. Model 3 is similar to Model 2 except for the status
of ACWO

fin which is unknown. Models 4 and 5 are variations of Model 3. In Model 4
ACWO

fin is true. The construction of Model 5 begins by choosing a regular successor
cardinal in the ground model. Model 6 is the only one in which 2m = m for every
infinite cardinal number m. We show that the union of a well-ordered family of well
orderable sets is well orderable in Model 6 and that the axiom of multiple countable
choice is false.
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1 Introduction: consequences of the axiom of choice

Definition 1 We use the following abbreviations for consequences of the axiom of
choice.

1. AC (Form 1 in [5]) is the axiom of choice.
2. MCℵ0ℵ0

(Form 350 in [5]) is the axiom of multiple choice for countably infinite
families of countably infinite sets, i.e. the statement “for every familyA = {An :
n ∈ ω} with |A| = |An| = ℵ0, there is a function on A such that f (An) is a
non-empty finite subset of An for all n ∈ ω". (The function f is called amultiple
choice function for A.)

3. MCWO
WO (Form 330 in [5]) is the axiom of multiple choice for well orderable

families of non-empty well orderable sets.
4. MCℵ0 (Form 126 in [5]) is the axiom of multiple choice for countably infinite

families of infinite sets.
5. LW (Form 90 in [5]) is the statement “every linearly ordered set can be well

ordered”.
6. DF = F (Form 9 in [5]) is the statement “every Dedekind finite set is finite”.

(Where a set X is called Dedekind finite if there is no one-to-one mapping f :
ω → X ; otherwise, X is called Dedekind infinite.)

7. DC (Form 43 in [5]) is the principle of dependent choices.
8. Let κ be an infinite well-ordered cardinal number. DCκ (Form 87(κ) in [5]) is

the statement “if X is a non-empty set and R is a binary relation such that for
every α < κ and every α-sequence x = (xξ )ξ<α of elements of X there exists
y ∈ X such that x R y, then there is a function f : κ → X such that for every
α < κ , ( f � α) R f (α)". Note that DCℵ0 is a reformulation of the principle of
dependent choices.

9. ACWO
fin (Form122 in [5]) is the statement “everywell-ordered family of non-empty

finite sets has a choice function".
10. ACWO

WO (Form165 in [5]) is the statement “everywell-ordered family of non-empty
well orderable sets has a choice function".

11. ∀m, 2m = m (Form 3 in [5]) is the statement “for every infinite cardinal m,
2 ·m = m". (Form 3 is equivalent to “for every infinite set X , |2× X | = |X |", i.e.
for every infinite set X , there is a bijection f : 2 × X → X , where 2 = {0, 1}.)

We recall that LW is equivalent to AC in ZF (i.e. Zermelo–Fraenkel set theory minus
the AC), but is not equivalent to AC in ZFA (see Jech [7, Theorems 9.1 and 9.2]). We
also recall that ∀κ(DCκ) (where the parameter κ runs through the infinite well-ordered
cardinal numbers) is equivalent to AC in ZFA; see [7, Theorem 8.1(c)]. Furthermore,
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Models of ZFA in which every linearly ordered set… 1133

Table 1 Known relationships

∀m, 2m = m DF = F DC LW ACWO
fin ACWO

WO MCWO
WO MCℵ0ℵ0 MCℵ0

∀m, 2m = m → → �→ �→ ? �→ �→ �→ �→
DF = F �→ → �→ �→ �→ �→ �→ �→ �→
DC �→ → → �→ �→ �→ �→ → →
LW �→ �→ �→ → �→ �→ ? ? �→
ACWO

fin �→ �→ �→ �→ → �→ �→ �→ �→
ACWO

WO �→ �→ �→ �→ → → → → �→
MCWO

WO �→ �→ �→ �→ �→ �→ → → �→
MCℵ0ℵ0 �→ �→ �→ �→ �→ �→ �→ → �→
MCℵ0 �→ �→ �→ �→ �→ �→ �→ → →

DF = F is strictly weaker than ∀m, 2m = m in ZF, and ∀m, 2m = m does not imply
AC in ZF (see [5, Forms 3 and 9, the ZF-model M6 and the ZFA-model N9]).

Our original motivation for the research presented in this paper was to provide
an answer to the open question “Does LW together with DF = F imply MCℵ0ℵ0

in the
theory ZFA?”, which was stated in Howard and Tachtsis [6]. The status of the above
implication is also mentioned as unknown in Howard and Rubin [5].

Wewill consider sixmodels ofZFA (Models 1 through6as described in the abstract).
Of these models 4 and 5 are new. Model 1 was constructed in [10], Model 2 in [7] and
Model 3 in [5]. We will show that in all six models both LW and DF = F are true. We
will also show thatMCℵ0ℵ0

is false in Models 1 and 4, but true in the other four models.
We also consider the truth or falsity of the statements listed above in these models.

Besides resolving certain open problems on the relationship between the above
weak choice principles (and conjunctions of those principles), it is also a central
goal of this paper to explore and develop the required machinery, both set-theoretic
and group-theoretic, in order to establish the relative independence results in ZFA set
theory. In this direction, our aim is to provide as much information as possible on
certain independence proofs and their techniques in the permutation models studied
in this paper.

Table 1 summarizes the known relationships in ZFA between (most of) the state-
ments listed in Definition 1. The symbol → in the body of the table indicates that the
row heading form implies the column heading form in ZFA. The symbol �→ means
that the implication does not hold. The fact that ∀m, 2m = m does not implyMCℵ0ℵ0

is
a consequence of a result from Sageev [9] where a ZF-model is constructed in which
∀m, 2m = m is true and there is a countable set of countable sets of reals without a
choice function (and thus without a multiple choice function—the usual order on R

is a linear order). References for all of the other entries in the table can be found in
Howard and Rubin [5].
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1134 P. Howard, E. Tachtsis

2 Amodel-theoretic criterion which implies LW, and certain types of
FMmodels satisfying this criterion

Definition 2 We will use the following notation assuming that Z is a set and S is a
subset of Z .

1. Sym(Z) is the set of all permutations of Z .
2. If H is a subgroup of Sym(Z), then SymH (S) = {φ ∈ H : φ(S) = S} and

fixH (S) = {φ ∈ H : ∀x ∈ S(φ(x) = x)}.
3. FSym(Z) is the set of all finitary permutations of Z .

Our first result, Theorem 1 below, provides a general condition under which a per-
mutation model of ZFA satisfies LW. All of the ZFA-models in this paper satisfy this
condition, and thus LW holds in all those models.

Theorem 1 Let N be a permutation model which is determined by a group G of
permutations of the set A of atoms, and a normal filter F of subgroups of G which
is generated by some filter base B (of subgroups of G). If N satisfies the following
condition:

(*) for every x ∈ N and for every B ∈ Bwhichdoes not support x (i.e. B\SymG(x) �=
∅), there exists γ ∈ B \ SymG(x) of finite order,

then LW is true in N .

Proof Let (X ,≤) be a linearly ordered set in N . Let K ∈ F be such that K ⊆
SymG((X ,≤)). Since B is a filter base for F , there exists B ∈ B with B ⊆ K , and
thus B ⊆ SymG((X ,≤)).

By way of contradiction, we assume that X is not well orderable in N . Then
there exists x ∈ X such that B \ SymG(x) �= ∅. (Otherwise, if B ⊆ fixG(X), then
fixG(X) ∈ F , and hence X is well orderable in N—see Jech [7, Equation (4.2), p.
47]—which is a contradiction.)

By (∗), there exist γ ∈ B \SymG(x) and an integer n ≥ 2 such that γ n = ε, where
ε is the identity permutation on A. (Note that for an element φ of G we tacitly use the
same notation for the unique ∈-automorphism of (N ,∈) which extends φ.)

Since B ⊆ SymG((X ,≤)), γ (x) ∈ X and γ (≤) = ≤. Furthermore, since ≤ is a
linear order on X (in N ), either γ (x) < x or x < γ (x). If the first possibility occurs,
then

x = γ n(x) < γ n−1(x) < · · · < γ 2(x) < γ (x) < x,

and we thus arrived at a contradiction. In a similar manner, the second possibility also
leads to a contradiction.

Thus X is well orderable in N as required. �

Corollary 1 Let N , A, G, F , and B, be as in the hypotheses of Theorem 1. If every
element of G has finite order, or if G is a subgroup of FSym(A), then N |� LW.

Lemma 1 below will be a key result for the verification of condition (*) (of Theo-
rem 1) in the majority of our models, except for Models 2 and 4 (see Sects. 4 and 6).
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Lemma 1 Let Z be any infinite set and also let η ∈ Sym(Z). Then there exists τ ∈
Sym(Z) such that

1. {z ∈ Z : τ(z) �= z} ⊆ {z ∈ Z : η(z) �= z} (that is, the support of τ is contained
in the support of η);

2. τ 2 = ε (where ε is the identity element of Sym(Z));
3. (ητ)2 = ε.

Proof We first consider the case where

η = (a1, a2, . . . , an, an+1, an+2 . . . a2n, a2n+1)

is a cycle of odd length. In this case, we let τ be the product of transpositions

τ = (a1, a2n+1)(a2, a2n)(a3, a2n−1) · · · (an, an+2) =
n∏

i=1

(ai , a2n+2−i ).

Then, since τ is a product of disjoint transpositions, τ 2 = ε. Also,

ητ = (a2, a2n+1)(a3, a2n) · · · (an+1, an+2) =
n+1∏

i=2

(ai , a2n+3−i )

is a product of disjoint transpositions. Therefore, (ητ)2 = ε.
Secondly, we assume that

η = (a1, a2, . . . , an, an+1, . . . , a2n)

is a cycle of even length. Let

τ = (a1, a2n)(a2, a2n−1) · · · (an, an+1) =
n∏

i=1

(ai , a2n+1−i ).

As in the previous case, τ 2 = ε and

ητ = (a2, a2n)(a3, a2n−1) · · · (an, an+2) =
n∏

i=2

(ai , a2n+2−i )

which is a product of disjoint transpositions. Hence, (ητ)2 = ε.
Our third case is the case where

η = (. . . , a−2, a−1, a0, a1, a2, . . .)
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1136 P. Howard, E. Tachtsis

is an infinite cycle. Let

τ = (a1, a−1)(a2, a−2)(a3, a−3) · · · =
∞∏

i=1

(ai , a−i ).

Then τ 2 = ε and

ητ = (a1, a0)(a2, a−1)(a3, a−2) · · · =
∞∏

i=1

(ai , a1−i ),

so (ητ)2 = ε.
Now we consider the general case where η is any permutation of Z . Since any

permutation can bewritten as a product of disjoint cycles,we assume thatη = ∏
j∈J η j

where theη j ’s are pairwise disjoint cycles and J is an (infinite or finite) index set.Using
cases 1, 2 and 3, we know that for each j ∈ J there exists τ j ∈ Sym(Z) satisfying the
three conditions of the lemma with η and τ replaced by η j and τ j , respectively. By
condition 1 (since the η j ’s are pairwise disjoint), the τ j ’s are pairwise disjoint and for
j1 �= j2, τ j1 is disjoint from η j2 . Let τ = ∏

j∈J τ j . Then τ 2 = ∏
j∈J τ 2j = ε (since

disjoint cycles commute). Further,

(ητ)2 =
⎛

⎝
∏

j∈J

η j

∏

j∈J

τ j

⎞

⎠
2

=
⎛

⎝
∏

j∈J

η jτ j

⎞

⎠
2

=
∏

j∈J

(η jτ j )
2 = ε

(using the fact that disjoint cycles commute). This finishes the proof of the lemma. �


2.1 Types of permutationmodels satisfying condition (*) of Theorem 1

The majority of the FM models of our paper—in particular, all models except for
Model 6 of Sect. 8—are constructed as follows: Let μ be an infinite, well-ordered,
regular, cardinal number, and also let 2 ≤ λ ≤ μ be a cardinal number. We start with
a model M of ZFA + AC with a set A of atoms which is partitioned into a μ-sized
collection of sets each having cardinality λ. Say A = ⋃{Aα : α ∈ μ}, where for every
α ∈ μ, |Aα| = λ and for α1 �= α2, Aα1 ∩ Aα2 = ∅.

For every α ∈ μ, let Gα be a group of permutations of Aα . (Usually, for every two
distinct ordinals α, β in μ, Gα is isomorphic to Gβ .) Let

G = {φ ∈ Sym(A) : ∀α ∈ μ(φ � Aα ∈ Gα)}

G is isomorphic to the unrestricted direct product of the Gα’s and therefore in sub-
sequent sections we shall refer to G as the unrestricted direct product of the Gα’s.
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Models of ZFA in which every linearly ordered set… 1137

Remark 1 For use in the forthcoming Sect. 11, let us note that, in a similar way, the
weak direct product of the Gα’s will mean the group

{φ ∈ Sym(A) : (∀α ∈ μ(φ � Aα ∈ Gα)) ∧ {α ∈ μ : φ � Aα �= εAα } is finite},

where εAα denotes the identity function on Aα .

It is clear that for all α ∈ μ and for all φ ∈ G, φ(Aα) = Aα . Furthermore, for every
α ∈ μ, Gα is isomorphic to the subgroup of G,

Gα = {φ ∈ G : ∀a /∈ Aα(φ(a) = a)}. (1)

– If λ = μ, then the ideal I of supports is defined by

I = {S : ∃E ∈ [μ]<ω(S ⊆
⋃

{Aα : α ∈ E})}.

– If λ < μ, then the ideal I of supports is defined by

I = {S : ∃E ∈ [μ]<μ(S ⊆
⋃

{Aα : α ∈ E})}.

In each of the above two cases, I is a normal ideal. The normal filterF of subgroups
of G is the filter generated by the filter base {fixG(S) : S ∈ I } (see [7, Chapter
4] for the definition of the terms “normal ideal” and “normal filter”). Note that, for
W ∈ {[μ]<ω, [μ]<μ},F is equal to the filter of subgroups of G generated by the filter
base {fixG(

⋃{Aα : α ∈ E}) : E ∈ W } (the easy argument uses the fact that S ⊆ S′
implies fixG(S′) ⊆ fixG(S)). It is the latter filter base that we use in order to check
condition (*) of Theorem 1 for Models 1, 3, 4 and 5 (see the proof of the forthcoming
Theorem 2).

Let N be the permutation model determined by M , G, and I , or equivalently, by
M , G, and F . (A set x in M is in N if and only if x and all elements in its transitive
closure, TC(x), are supported by some element of I , that is, if and only if for every
y ∈ {x} ∪ TC(x) there exists S ∈ I such that for all φ ∈ fixG(S), φ(y) = y—
equivalently, if and only if for every y ∈ {x} ∪ TC(x), SymG(y) ∈ F .)

Note that if x ∈ N and S is a support of x of the form
⋃{Aα : α ∈ E}, then by the

fact that for all φ ∈ G and for all α ∈ μ, φ(Aα) = Aα , it follows that

∀φ ∈ G(φ(S) = S), so S is a support of φ(x). (2)

Another lemmawhichwill be useful for the proofs of LW andDF = F in ourmodels,
is the following one.

Lemma 2 LetN be a permutationmodel determined by M, G, and I as in the previous
paragraph. Assume

1. S = ⋃{Aα : α ∈ E} ∈ I ,
2. η ∈ fixG(S) and
3. x is an element of N for which η(x) �= x (and hence x is not supported by S).
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1138 P. Howard, E. Tachtsis

Then there exists E ′ ⊂ μ which is disjoint from E, and for each α ∈ E ′ there
exists ηα ∈ Gα (where Gα is given by (1)) such that for η′ = ∏

α∈E ′ ηα (and hence
η′ ∈ fixG(S)), we have η′(x) �= x.

In particular, if λ = μ (so that E ∈ [μ]<ω), then for some α ∈ E ′ there is ηα ∈ Gα

(and hence ηα ∈ fixG(S)) such that ηα(x) �= x.

Proof Let S ∪ S′ be a support of x where S′ = ⋃{Aα : α ∈ E ′} for some E ′ ⊂ μ

with E ′ ∩ E = ∅. We let η′ be the permutation of A which agrees with η on S′ and
is the identity outside of S′. Hence, η′ ∈ fixG(A \ S′), and so η′ ∈ fixG(S). By the
definition of the group G, it follows that for each α ∈ E ′, there exists ηα ∈ Gα

such that η′ = ∏
α∈E ′ ηα . Since η and η′ agree on the support S ∪ S′ of x , we have

η′(x) = η(x), and since η does not fix x , neither does η′.
The second assertion of the lemma follows from the proof of the first one and the

facts that E ′ is finite and η′(x) �= x (and note that since E ′ is finite, η′ � Aα = εAα

for all but finitely many α ∈ μ). �


The following theorem essentially establishes the validity of LW in the forthcoming
Models 1, 3, 4, and 5 (of Sects. 3, 5, 6, and 7, respectively).

Theorem 2 Let N be a permutation model determined by M, G, and I as in the
opening paragraph of Sect. 2.1. We assume that ω ≤ λ ≤ μ.

(i) If for every α ∈ μ, Gα is the group of even permutations of Aα (i.e. Gα consists
of all elements γ of FSym(Aα) which are an even permutation of their (finite)
support {a ∈ Aα : γ (a) �= a}), then N |� LW.

(ii) If for every α ∈ μ, Gα = Sym(Aα), then N |� LW.

Proof We first consider the case where λ < μ, so that

I = {S : ∃E ∈ [μ]<μ(S ⊆
⋃

{Aα : α ∈ E})}.

(i) By Theorem 1, it suffices to show that N satisfies condition (*). To this end,
let x ∈ N and also let S = ⋃{Aα : α ∈ E} (for some E ∈ [μ]<μ) which does not
support x , i.e. there exists η ∈ fixG(S) such that η(x) �= x . By Lemma 2, there exists
E ′ ⊂ μ which is disjoint from E , and for each α ∈ E ′ there exists ηα ∈ Gα such that
η′(x) �= x , where η′ = ∏

α∈E ′ ηα . Hence, η′
α = ηα � Aα ∈ Gα .

For each α ∈ E ′, we apply Lemma 1 to η′
α to obtain a permutation τ ′

α on Aα with
the following properties:

1. (τ ′
α)2 = ε and (η′

ατ ′
α)2 = ε.

2. τα , ηα and ηατα (i.e. the elements of Gα which extend τ ′
α , η

′
α and η′

ατ ′
α , respec-

tively) are all in fixG(S) (since α /∈ E).
3. τ ′

α ∈ FSym(Aα) (by condition 1 of Lemma 1).

We may also assume that τ ′
α ∈ Gα , i.e. that τ ′

α is an even permutation of Aα . If not,
then we choose two elements a and a′ of Aα which are fixed by η′

α (and therefore
fixed by τ ′

α) and replace τ ′
α by the product τ ′

α(a, a′) of τ ′
α and the transposition (a, a′).
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Models of ZFA in which every linearly ordered set… 1139

Let τ = ∏
α∈E ′ τα . Then,

τ 2 =
(

∏

α∈E ′
τα

)2

=
∏

α∈E ′
τ 2α = ε; (3)

(η′τ)2 =
(

∏

α∈E ′
ηα

∏

α∈E ′
τα

)2

=
∏

α∈E ′
(ηατα)2 = ε. (4)

Formulas (3) and (4) use the fact that for α1 �= α2, ηα1 and τα1 both commute with
ηα2 and τα2 .

Since η′(x) �= x , it follows that either τ(x) �= x or η′τ(x) �= x . Since τ and η′τ
are both elements of fixG(S), and τ 2 = (η′τ)2 = ε, we conclude that condition (*) is
satisfied.

Part (ii) (for the case where λ < μ) can be proved in much the same way as (i), and
so we leave it to the reader.

Now we assume that λ = μ, so that

I = {S : ∃E ∈ [μ]<ω(S ⊆
⋃

{Aα : α ∈ E})}.

(i) Again, it suffices to show thatN satisfies condition (*) of Theorem 1. Let x ∈ N
and also let S = ⋃{Aα : α ∈ E} (for some E ∈ [μ]<ω) which does not support x . By
(the second assertion of) Lemma 2, there exist E ′ ∈ [μ]<ω which is disjoint from E ,
and α ∈ E ′ such that for some ηα ∈ Gα (and hence ηα ∈ fixG(S)), ηα(x) �= x . Since
ηα moves only finitely many atoms, ηα has finite order. Thus (*) is satisfied, finishing
the proof.

Part (ii) can be proved in a similar manner, using the second assertion of Lemma 2,
and Lemma 1. We thus take the liberty to leave the details to the interested reader. �


3 Model 1:M
3.1 Motivation

We use Model 1 to establish that LW + DF = F does not imply MCℵ0ℵ0
in ZFA. This

answers in the negative the relative open question in Howard and Tachtsis [6], and
also fills the gap in information in Howard and Rubin [5].

We note that this model has been considered in Tachtsis [10, proof of Theorem
4(iv)], where it was shown that DF = F is true in the model. In the interest of making
our paper self-contained, we will provide our own proof of DF = F in the model.

3.2 The description ofM

We construct a model M of ZFA starting with a model M′ of ZFA + AC with a
countably infinite set of atoms Awhich is partitioned into a countably infinite collection
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1140 P. Howard, E. Tachtsis

of countably infinite sets. Say A = ⋃{Ak : k ∈ ω} where for every k ∈ ω, |Ak | = ℵ0
and for k1 �= k2, Ak1 ∩ Ak2 = ∅. Let G be the unrestricted direct product of Gn =
Sym(An) (n ∈ ω). The ideal of supports is defined (according to Subsect. 2.1) by

I = {C : ∃E ∈ [ω]<ω(C ⊆
⋃

{Ak : k ∈ E})}.

M is the permutation model determined by M′, G, and I .

3.3 Versions of AC inM

We first give a (known) group-theoretic result which will be useful for the verification
of DF = F and ACWO

fin inM.

Definition 3 Let Z be any set. If H is a subgroup of Sym(Z), then |Sym(Z) : H |
denotes the index of H in Sym(Z).

Theorem 3 below, is due to Dixon, Neumann, and Thomas (see [2, Theorem 1]).

Theorem 3 Let Z be countably infinite and let K be a subgroup of Sym(Z) for which
|Sym(Z) : K | < 2ℵ0 . Then there is a finite subset 
 of Z such that fixSym(Z)(
) ≤
K ≤ fixSym(Z)({
}).

The subsequent Lemma 3 was originally proved by Onofri [8], and is also a conse-
quence of Theorem 3. For the reader’s convenience, we include the short proof of the
lemma (using Theorem 3).

Lemma 3 Let Z be a countably infinite set and let K be a proper subgroup of Sym(Z).
Then |Sym(Z) : K | is infinite.
Proof Let φ0 ∈ Sym(Z) \ K . Toward a proof by contradiction, we assume that
|Sym(Z) : K | is finite, so let Sym(Z)/K = {K , φ0K , . . . , φnK } for some n ∈ ω

and φi ∈ Sym(Z) \ K (i ≤ n). Then, by Theorem 3, there exists a finite sub-
set 
 ⊂ Z such that fixSym(Z)(
) ≤ K ≤ fixSym(Z)({
}). Since φ0 /∈ K ,
there is δ ∈ 
 such that φ0(δ) �= δ. As 
 is finite, we have |Z ′| = ℵ0, where
Z ′ = Z \ (
 ∪ (

⋃{φi [
] : i ≤ n})), and thus we may let ψ ∈ Sym(Z) such that
ψ(δ) ∈ Z ′ (for example, let ψ be the transposition (δ, z′) for any z′ ∈ Z ′). Then
ψ /∈ fixSym(Z)({
}) and φ−1

i ψ /∈ fixSym(Z)({
}) for all i ≤ n, and hence ψ /∈ K and
φ−1
i ψ /∈ K for all i ≤ n. Therefore, ψK /∈ {K , φ0K , . . . , φnK } = Sym(Z)/K , a

contradiction. �

Theorem 4 In M, LW, DF = F, and ACWO

fin are true, but MCℵ0ℵ0
and ∀m, 2m = m are

false.

Proof By Theorem 2(ii), we immediately have that LW is true inM.
Now, it is reasonably clear that the set A = {Ak : k ∈ ω} is a countably infinite

set of countably infinite sets in M, which has no multiple choice function in M. (If
f : A → P(A) is a multiple choice function forA with support S = ⋃{Ak : k ∈ E}
(for some finite E ⊂ ω), then choose an integer k0 /∈ E ; then f (Ak0) is a finite
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subset of Ak0 . Then it is possible to choose φ ∈ G such that φ ∈ fixG(S) and
φ( f (Ak0)) �= f (Ak0). But, since φ fixes both f and Ak0 , φ( f (Ak0)) = f (Ak0). This
gives a contradiction, so MCℵ0ℵ0

is false inM.)

Claim ∀m, 2m = m is false inM.

Proof Indeed, there is no one-to-one mapping f : 2 × A → A in M. Assuming the
contrary, let f be such a function in M with support S = ⋃{Ai : i ∈ E} for some
finite E ⊂ ω.

Now let k ∈ ω \ E , and also let x ∈ Ak . Since f ((0, x)) �= f ((1, x)), there exists
i ∈ 2 such that f ((i, x)) = y with y �= x (and note that similarly to the following
argument, y is necessarily an element of Ak). Let z ∈ Ak \ {x, y} (recall that Ak is
(countably) infinite) and also let ψ = (x, z) (i.e. ψ transposes x and z but fixes all the
other atoms of A). Then ψ ∈ fixG(S), so ψ( f ) = f . However,

((i, x), y) ∈ f ⇒ (ψ((i, x)), ψ(y)) ∈ ψ( f ) ⇒ ((i, z), y) ∈ f ,

so that (i, x) �= (i, z) and f ((i, x)) = f ((i, z)), contrary to the fact that f is one-to-
one. Hence, |2 × A| �= |A| inM. �


Now we prove that DF = F is true in M. The following lemma will be useful for
the proof.

Lemma 4 Assume x ∈ M and m ∈ ω. Let H be the subgroup H = {φ ∈ Gm :
φ(x) = x} of Gm (where Gm is given by (1) in Sect. 2.1). Then for all φ1 and φ2 in
Gm, φ1(x) = φ2(x) if and only if φ1H = φ2H.

Proof The proof uses the standard properties of right cosets. Indeed, we have φ1(x) =
φ2(x), if and only if, φ−1

2 φ1(x) = x , if and only if, φ−1
2 φ1 ∈ H , if and only if,

φ−1
2 φ1H = H , if and only if, φ1H = φ2H . �


Claim DF = F is true in M.

Proof Assume that Y is an infinite, non-well-orderable set in M with support S =⋃{Ai : i ∈ E}, where E ⊂ ω is finite. Then for some x ∈ Y , S is not a support of
x . Let S ∪ S′ be a suppport of x , where S′ = ⋃{Ai : i ∈ E ′} with E ∩ E ′ = ∅. By
(the second assertion of) Lemma 2, we obtain an m ∈ E ′ and a β ∈ Gm such that
β(x) �= x .

It follows that the set

H = {φ ∈ Gm : φ(x) = x}

is a proper subgroup of Gm . Since Gm is isomorphic to Sym(ω) (for Gm �
Sym(Am) � Sym(ω)), we may apply Lemma 3 to conclude that the set of left cosets
{φH : φ ∈ Gm} is infinite. Let

W = {φ(x) : φ ∈ Gm}.

Then we know the following about W :
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1142 P. Howard, E. Tachtsis

1. By Lemma 4 and the fact that the set of left cosets of H in G is infinite, W is
infinite.

2. W ⊆ Y since for all φ ∈ Gm , φ ∈ fixG(S).
3. Every element of W has support S ∪ S′, by (2) of Sect. 2.1.

So W is an infinite subset of Y which can be well ordered in M. Therefore, Y has a
countably infinite subset inM. �

Claim ACWO

fin is true inM.

Proof Let X = {Xα : α ∈ κ} be an infinite well-ordered set in M (κ is an infinite
well-ordered cardinal and the mapping α �→ Xα is a bijection) such that Xα is non-
empty and finite for all α ∈ κ . Let S = ⋃{Ai : i ∈ E} (for some finite E ⊂ ω) be
a support of Xα for all α ∈ κ . We will show that S supports every element of

⋃
X ;

hence,
⋃

X will be well orderable in the model.
Assume on the contrary that there exist α ∈ κ and x ∈ Xα such that S is not a

support of x . By (the second assertion of) Lemma 2, there existm ∈ ω\E and η ∈ Gm

such that η(x) �= x . Let

Z = {φ(x) : φ ∈ Gm}.

Then Z ⊆ Xα (since x ∈ Xα , S is a support of Xα , and Gm ⊆ fixG(S)). Hence, Z is
finite (and has at least two elements). Furthermore, since η ∈ Gm and η(x) �= x , the
group

H = {φ ∈ Gm : φ(x) = x}

is a proper subgroup of Gm . Since Z is finite, the index |Gm : H | of H in Gm is finite.
But this contradicts Lemma 3, since Gm is isomorphic to Sym(ω) and H is a proper
subgroup of Gm . �


The above arguments complete the proof of the theorem. �

By Theorem 4, we obtain that LW + DF = F � MCWO

WO in ZFA.

4 Model 2: V

4.1 Motivation

We recall thatDC implies the axiom of countable choice (i.e. “Every countably infinite
family of non-empty sets has a choice function"), which in turn implies both DF = F
and MCℵ0ℵ0

. Furthermore, DC does not imply MCWO
WO in ZF; in the Brunner/Howard

permutation modelN15 in [5], DC is true butMCWOℵ0
(the axiom of multiple choice for

well-ordered families of countably infinite sets) is false (see Sect. 5). The result can
be transferred to ZF using Pincus’ transfer theorems (see [5, Note 103, third theorem,
p. 286]), and notice that ¬MCWOℵ0

is a boundable, and hence injectively boundable,
statement (see [5, Note 103] for the definitions of those terms).

123



Models of ZFA in which every linearly ordered set… 1143

So in view of Theorem 4 and the above discussion, the natural question that emerges
here is whether LW +DC impliesMCWO

WO in ZFA (recall that LW is equivalent to AC in
ZF, so the above implication is vacuously true in ZF). The status of this implication
is mentioned as unknown in [5]. Therein, it is also mentioned as unknown whether
LW+DC impliesACWO

fin . In themodelV of this section,we address these open questions
and prove that their respective answers are in the negative. In fact, we prove a much
stronger result than “LW+DC implies neitherMCWO

WO nor ACWO
fin in ZFA", as Theorem 5

below clarifies.

4.2 The description of V

We use a permutation model constructed in the proof of Jech’s Theorem 8.3 in [7] (see
also [5, Model N2(ℵα), p. 180]). The construction starts with a ground model M of
ZFA + AC which has a set A of atoms of cardinality ℵα , where ℵα is an uncountable
regular cardinal in M . We partition A into a disjoint union of ℵα pairs, so that A =⋃{Pξ : ξ < ℵα} (|Pξ | = 2 for all ξ < ℵα , and for ξ �= ξ ′, Pξ ∩ Pξ ′ = ∅). LetG be the
group of all permutations of A which fix Pξ for all ξ < ℵα . (Note that G is essentially
the unrestricted direct product of Sym(Pξ ) (ξ < ℵα), and that every element of G has
order 2.) Let F be the filter on G generated by the groups fixG(E), where E ⊂ A,
|E | < ℵα . Let V be the permutation model determined by M , G and F .

4.3 Versions of AC in V

Theorem 5 In V , LW and DCξ for all infinite cardinals ξ < ℵα are true but MCWO
WO,

ACWO
fin and ∀m, 2m = m are false.

Proof By Corollary 1, we have V |� LW. Furthermore, in [7, Lemma 8.4, p. 123], it is
shown that for every ξ < ℵα ,DCξ is true inV , and that the familyA = {Pξ : ξ < ℵα}
(which is inV and has cardinalityℵα inV ) has no choice function in themodel; hence,
ACWO

fin is false in V .

Claim MCWO
WO is false in V 1.

Proof Fix an infinite cardinal number κ < ℵα . Let

U = {Uξ : ξ < ℵα}

be a partition of ℵα (ξ �→ Uξ is a bijection) into sets each of which has cardinality
κ . (And note that U gives rise to an ℵα-sized partition of A = {Pξ : ξ < ℵα} into
κ-sized sets, namely {{Pγ : γ ∈ Uξ } : ξ < ℵα}, which clearly has a choice function
in the model.) For each ξ < ℵα , we let

Wξ =
∏

γ∈Uξ

Pγ .

1 Notice that V |� MCℵ0ℵ0 , since V |� DC and DC ⇒ MCℵ0ℵ0 .
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Then for every ξ < ℵα , Wξ ∈ V (any permutation of A in G fixes Wξ ), and further-
more, the subset E = ⋃{Pγ : γ ∈ Uξ } of A (which has cardinality κ < ℵα) is a
support of every element ofWξ . Thus the infinite setsWξ (ξ < ℵα) are well orderable
in V .

Now we let

W = {Wξ : ξ < ℵα}.

Then W ∈ V and has cardinality ℵα in V , so W is well orderable in V . However,
W has no multiple choice function in V . Assume the contrary and let F be a multiple
choice function forW , which is in V . Let E ⊂ A, |E | < ℵα , be a support of F . Since
U is an ℵα-sized partition of ℵα and |E | < ℵα , it follows that for some ξ0 < ℵα ,

E ∩
(⋃

{Pγ : γ ∈ Uξ0}
)

= ∅. (5)

Let f ∈ F(Wξ0) (F(Wξ0) �= ∅, since F is a multiple choice function for W ), and
also let g ∈ W (ξ0) \ F(Wξ0) (Wξ0 is infinite, whereas F(Wξ0) is a finite subset of
Wξ0 ). Then g �= f , so the set J = {γ ∈ Uξ0 : g(γ ) �= f (γ )} is nonempty. For each
γ ∈ J , let ψγ be the permutation of A which interchanges the two elements of Pγ but
fixes every atom in A \ Pγ . Let

π =
∏

γ∈J

ψγ .

By the definition of π and (5), we have π ∈ fixG(E), so π(F) = F , and since
π(Wξ0) = Wξ0 and F is a function, we also have π(F(Wξ0)) = F(Wξ0). Furthermore,
it is clear that π( f ) = g. Thus we have

f ∈ F(Wξ0) ⇒ π( f ) ∈ π(F(Wξ0)) ⇒ g ∈ F(Wξ0),

contradicting the fact that g /∈ F(Wξ0). Therefore, MCWO
WO is false in V as required. �


In [5], it is mentioned that ∀m, 2m = m is false in V . The argument is similar to the
one given for the proof of Claim 3.3. (Assuming that there is a one-to-one mapping
f : 2 × A → A which is in V , let E be a support of f and γ < ℵα such that
E ∩ Pγ = ∅. It is easy to see that f [2 × Pγ ] ⊆ Pγ , which is a contradiction since f
is one-to-one and |Pγ | < |2 × Pγ |.)

The above arguments complete the proof of the theorem. �

By Theorem 5, we immediately obtain the following corollary.

Corollary 2 LW + DC implies neither MCWO
WO nor ACWO

fin in ZFA.

Clearly the above result readily yields that LW+DF = F does not implyMCWO
WO in ZFA

(and neither does it imply ACWO
fin ). Therefore, Theorem 4 is an essential strengthening

of the latter non-implication in ZFA (and note again that the model of the proof of
Theorem 5 (or the model N15 in [5]) satisfies MCℵ0ℵ0

∧ ¬MCWO
WO).
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5 Model 3:N15

5.1 Motivation

As alreadymentioned in Sect. 4, thismodel satisfiesDC∧¬MCWOℵ0
(see the forthcoming

Theorem 6). Therefore, the next natural question that comes up is whether LW is true
in N15. We note that the status of LW in N15 is not specified in [5].

The answer to this open question is in the affirmative; thus filling the gap in infor-
mation in [5] and providing further insight to the reader.

5.2 The description ofN15

The set A of atoms has cardinality ℵ1, and is written as a union of an ℵ1-sized family
of pairwise disjoint countably infinite sets,

A =
⋃

{Bα : α < ℵ1}, where Bα = {ai,α : i ∈ ω}.

For each α < ℵ1, let Gα be the group of even permutations on Bα . Let G be the
unrestricted direct product of Gα (α < ℵ1).

Let I be the ideal of all countable subsets of A. Note that I is equal to the ideal
generated by all sets of the form

⋃{Bα : α ∈ E}, where E is a countable subset of
ℵ1. N15 is the permutation model determined by A, G and I .2

5.3 Versions of AC inN15

Theorem 6 In N15, LW and DC are true, but MCWOℵ0
is false.

Proof By Theorem 2(i), we have N15 |� LW.
Furthermore, DC is true in N15 (for the normal ideal I comprises all countable

subsets of A, and ℵ1 is a regular cardinal—the argument in the proof of [7, Lemma
8.4, p. 123], and in the paragraph following this lemma, can be adapted in our case by
making the obvious minor changes).

It is also easy to see that MCWOℵ0
is false in N15. Indeed, let B = {Bα : α < ℵ1}.

Clearly |B| = ℵ1 inN15 (every permutation of A inG fixesB pointwise and |B| = ℵ1
in the ground model) and for every α < ℵ1, |Bα| = ℵ0 in N15 (Bα is a support of
each of its elements, and is countable in the ground model). Now, B has no multiple
choice function inN15. Assuming the contrary, let f be such a function inN15. Let
S = ⋃{Bα : α ∈ E}, where E ⊂ ℵ1 is countable, be a support of f . Let α0 ∈ ℵ1 \ E
and u be any element of f (Bα0). Let Z = {z1, z2, z3} be a 3-element subset of Bα0

which is disjoint from f (Bα0), and also let π = (u, z1)(z2, z3). Then π ∈ fixG(S),

2 The model N15 in [5] is actually a variant of a model constructed by Brunner and Howard [1]. In
particular, this FM model of [1] is determined by the same set A of atoms, the same normal ideal I (of the
countable subsets of A), but by the weak direct product of the Gα’s instead of the their unrestricted product.
In this model, LW, DC, and ACWO

fin are all true (but MCWOℵ0 is false), whereas it is unknown whether ACWO
fin

is valid in N15.
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1146 P. Howard, E. Tachtsis

and thus π( f ) = f . However, z1 ∈ π( f (Bα0)) \ f (Bα0) (so π( f (Bα0)) �= f (Bα0)),
contradicting f ’s being supported by S. Hence, B has no multiple choice function in
N15. �

Remark 2 Wenote that, similarly to the proof of Claim 3.3 (of the proof of Theorem 4),
∀m, 2m = m is false in N15.

6 Model 4:U , a variant ofN15

6.1 Motivation

In view of the preceding study of the model N15, it is natural to consider a variation
of this model which witnesses “LW +DF = F+ ACWO

fin � MCℵ0ℵ0
” in ZFA. Indeed, our

ZFA-model U of this section appeals to this consideration. We note that U does not
appear in either of [1] and [5].

6.2 The description ofU

The set A of atoms is countably infinite, and is written as a union of a countably infinite
family of pairwise disjoint countably infinite sets,

A =
⋃

{Bn : n ∈ ω}, where Bn = {ai,n : i ∈ ω}.

For every n ∈ ω, let Gn be the group of even permutations of Bn . Let G be the
unrestricted direct product of the Gn’s. Let I be the ideal of subsets of A which is
generated by all finite unions of Bn (n ∈ ω). Let U be the Fraenkel–Mostowski
model determined by A, G, and I .

Let us point out here that U can be generalized. Indeed, for any infinite regular
cardinal number κ , we may similarly construct a permutation model Uκ : The set
of atoms, A = ⋃{Bα : α < κ} (where each of the Bα’s has cardinality λ, where
ω ≤ λ ≤ κ , and {Bα : α < κ} is disjoint), Gα is the group of even permutations of
Bα , G = ∏

α<κ Gα (the unrestricted direct product of the Gα’s), and I is the (normal)
ideal generated by {⋃{Bα : α ∈ E} : E ∈ [κ]<ω}.

6.3 Versions of AC inU

Theorem 7 In U , LW, DF = F, and ACWO
fin are true, but MCℵ0ℵ0

is false.

Proof By Theorem 2(i), we have U |� LW.
Furthermore, the proof thatMCℵ0ℵ0

is false inU is almost identical to the proof that

MCWOℵ0
is false in N15 (see the proof of Theorem 6), and we thus skip it.

Claim DF = F is true in U .
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Proof Assume that Y is an infinite, non-well-orderable set in U with support S =⋃{Bi : i ∈ E} for some finite E ⊂ ω. Then for some x ∈ Y , S is not a support of
x . Let S ∪ S′ be a suppport of x , where S′ = ⋃{Bi : i ∈ E ′} with E ′ ∩ E = ∅. By
(the second assertion of) Lemma 2, we obtain an m ∈ E ′ and a β ∈ Gm (where Gm

is given by (1) of Sect. 2.1) such that β(x) �= x .
Consider the Gm-orbit of x , i.e. the set

OrbGm (x) = {π(x) : π ∈ Gm}.

Since S is a support of Y , x ∈ Y , and for all π ∈ Gm , π ∈ fixG(S), we conclude that
OrbGm (x) ⊆ Y . Furthermore, OrbGm (x) is well orderable in the model since S ∪ S′
is a support of every element of OrbGm (x).

We assert that OrbGm (x) is infinite. If not, then Sym(OrbGm (x)) is also finite. Let
φ : Gm → Sym(OrbGm (x)) be defined by

φ(η)(y) = η(y) (y ∈ OrbGm (x)).

Then φ is a homomorphism, and hence ker(φ) is a normal subgroup of Gm and
the quotient group Gm/ ker(φ) embeds into Sym(OrbGm (x)). However, ker(φ) is a
proper subgroup of Gm (for β ∈ Gm \ ker(φ)), and since Gm is a simple group (for
Gm � Gm), we obtain that ker(φ) = {ε}.

Thus, Gm/ ker(φ) is isomorphic to Gm , and so Sym(OrbGm (x)) contains a copy
of Gm . This is a contradiction, since Sym(OrbGm (x)) is finite and Gm is infinite.
Therefore, OrbGm (x) is infinite, and thus Y is Dedekind infinite. �

Claim ACWO

fin is true in U .

Proof Letting V = {Vα : α < κ} be an infinite well-ordered family (κ is an infinite
well-ordered cardinal number) of non-empty finite sets inU and S = ⋃{Bi : i ∈ E}
(where E ∈ [ω]<ω) be a support of every Vα , we may work similarly to the proof of
Claim 6.3 in order to show that every element of

⋃V is supported by S, so that
⋃V

is well orderable in U . Thus V has a choice function in U . �

The above arguments complete the proof of the theorem. �

Remark 3 As with the model N15, ∀m, 2m = m is false in U .

7 Model 5:U
7.1 The description ofU

Suitable adjustments to the construction of the model N15 yield the result of The-
orem 5, modulo the assertion about ACWO

fin . Indeed, fix any regular cardinal number
ℵα+1.We start with amodelM of ZFA+ACwith a set A of atomswhich has cardinality
ℵα+1 and is written as a disjoint union,

A =
⋃

{Bβ : β < ℵα+1}, where Bβ = {aμ,β : μ < ℵα}.
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For each β < ℵα+1, let Gβ be the group of even permutations of Bβ . Let G be the
unrestricted direct product of the Gβ ’s. Let I be the ideal of all subsets of A having
cardinality less than ℵα+1. Let U be the permutation model determined by A, G and
I .

7.2 Versions of AC inU

Theorem 8 In U , LW and DCξ for all infinite cardinals ξ < ℵα+1 are true, butMCWO
WO

is false.

Proof By Theorem 2, U |� LW. Furthermore, the well orderable family B = {Bβ :
β < ℵα+1}, which is in U (any permutation of A inH fixes B pointwise), and which
comprises sets that are well orderable in U (for every β < ℵα+1, Bβ is a support of
each of its elements), has no multiple choice function in U , and thusMCWO

WO is false in
U . The fact that DCξ is true in U for all infinite cardinals ξ < ℵα+1 can be established
as in the proof of Jech’s Lemma 8.4 (p. 123) in [7]. �

Remark 4 As with the model N15, ∀m, 2m = m is false in U .

8 Model 6:N9

8.1 Motivation

As mentioned in Sect. 1, ∀m, 2m = m does not imply MCℵ0ℵ0
in ZF; in Sageev’s ZF-

model M6 of [5], ∀m, 2m = m is true, but there is a countably infinite family of
countably infinite sets of reals without a choice function in the model (see [9]). Thus
MCℵ0ℵ0

is false inM6. Furthermore, LW is also false inM6, since LW is equivalent to
AC in ZF.

It is an intriguing open problem whether LW + ∀m, 2m = m (which is stronger
than LW + DF = F in ZFA) implies MCℵ0ℵ0

in ZFA. In this direction, note that the
Halpern/Howard permutationmodelN9 in [5] satisfies∀m, 2m = m (and thus satisfies
DF = F, see [3, Theorem 2.3]); however, the status of LW, MCℵ0ℵ0

, and MCℵ0 in N9,
were open problems until now. We settle these problems by showing next that LW and
ACWO

WO are both true in N9, whereas MCℵ0 is false in N9.

8.2 The description and basic properties ofN9

We start with a model M of ZFA + AC with a set A of atoms which has the structure
of the set

ω(ω) = {s : s : ω → ω ∧ (∃n ∈ ω)(∀ j > n)(s j = 0)}.

We identify A with the latter set to simplify the description of the group G.
For s ∈ A, the pseudo length of s is the least natural number k such that for all

� ≥ k, s� = 0. A subset of A is called bounded there is an upper bound for the pseudo
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lengths of the elements of A. G is the group of all permutations φ of A such that the
support of φ, {a ∈ A : φ(a) �= a}, is bounded.

For every s ∈ A and every n ∈ ω, let

An
s = {t ∈ A : ∀ j ≥ n(t j = s j )}.

Definition 4 (Mostly from [4]) Assume s ∈ A and n ∈ ω; then

1. An
s is called the n-block containing s.

2. For any t ∈ An
s , the n-block code of t is the sequence

(tn, tn+1, tn+2, . . .) = (sn, sn+1, sn+2, . . .).

The n-block code of An
s is the n-block code of any of its elements. We will

denote the n-block code of an element t ∈ A or an n-block B by bcn(t) or
bcn(B), respectively.

3. For any t ∈ An
s , the finite sequence (t0, t1, t2, . . . , tn−1) = t � n is called the

n-location of t (in An
s ).

Note the following

1. An
0 is the set of all elements of A with pseudo length less than or equal to n. (In

the expression An
0, 0 denotes the constant sequence all of whose terms are 0.)

2. For s ∈ A and n,m ∈ ω with n ≤ m, An
s ⊆ Am

s .
3. If n ≤ m, B is an n-block, B ′ is an m-block and B ∩ B ′ �= ∅ then B ⊆ B ′. (This

follows from the previous item.)
4. Any t ∈ A is the concatenation (t � n)�bcn(t) of the n-location of t and the

n-block code t .

For each n ∈ ω, Gn is the subgroup of G consisting of all permutations φ ∈ G
such that

1. φ fixes An
0 pointwise,

2. φ fixes the set of n-blocks, that is, An
s = An

t if and only if An
φ(s) = An

φ(t),
3. for each s ∈ A, the n-location of φ(s) is the same as the n-location of s.

(Note that if n ≤ m, then Gm ⊆ Gn .) J is the filter of subgroups of G generated
by the groups Gn , n ∈ ω. That is, H ∈ J if and only if H is a subgroup of G and
there exists n ∈ ω such that Gn ⊆ H . It is shown in [4] that J is a normal filter, that
is, closed under conjugation. N9 is the Fraenkel–Mostowski model of ZFA which is
determined by M , G, and J .

Lemma 5 Assume that f is a one-to-one function from a subset of A into A and n is
a natural number such that

1. An
0 is a subset of the domain of f and f fixes An

0 pointwise.
2. The domain of f is the union of n-blocks and f (An

s ) is an n-block for any n-block
An
s contained in the domain of f .

3. f fixes n-locations.
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4. The domain and range of f are bounded. That is, there is an upper bound for
the pseudo-lengths of the elements of dom( f ) ∪ ran( f ).

Then there is a φ ∈ Gn that extends f .

Proof By assumption (4) there is an m ∈ ω such that dom( f ) ∪ ran( f ) ⊆ Am
0 . If we

let

B0 = {B : B is an n-block and B ⊆ Am
0 }

B1 = {B : B is an n-block and B ⊆ Am+1
0 }

B2 = {B : B is an n-block and B ⊆ dom( f )}
B3 = {B : B is an n-block and B ⊆ ran( f )}

then, since B2 ⊆ B0 and B1 \ B0 is countably infinite, we have B1 \ B2 is countably
infinite. Similarly, B1 \ B3 is countably infinite. Let G be a one-to-one function from
B1 \ B2 onto B1 \ B3 and define F : Am+1

0 → Am+1
0 by

F(s) =

⎧
⎪⎨

⎪⎩

f (s) if s ∈ dom( f );
the element of G(An

s ) with

the same n-location as s otherwise.

Then F is a permutation of Am+1
0 which extends f and satisfies conditions (1), (2)

and (3) of the lemma. Therefore the function φ defined by

φ(s) =
{
F(s) if s ∈ Am+1

0 ;
s if s ∈ A \ Am+1

0 .

extends f and is in Gn . (φ is bounded because the support of φ is a subset of Am+1
0 .)

�

Theorem 9 If (X ,≤) is a well ordered set of non-empty well orderable sets inN9 and
Gn is a support of (X ,≤) where n > 0, then for every y ∈ X, Gn+1 fixes y pointwise.

Proof Assume that (X ,≤) is a well ordered set with support Gn and that y ∈ X and
x ∈ y. We prove the theorem by arguing by contradiction that for all β ∈ Gn+1,
β(x) = x . Assume β ∈ Gn+1 and β(x) �= x . Gn fixes y since Gn fixes X pointwise
and since y is well orderable in N9 there is k > n such that Gk fixes y pointwise.
Therefore for any ρ ∈ Gn , ρ(x) ∈ y, and hence for all α ∈ Gk , α(ρ(x)) = ρ(x). This
contradicts the following lemma.

Lemma 6 Assume x ∈ N9, n is a positive integer, and there exists β ∈ Gn+1 such that
β(x) �= x. Then for all k ≥ n, there areρ ∈ Gn andα ∈ Gk such thatα(ρ(x)) �= ρ(x).

Proof Assuming the hypotheses, then for k = n or for k = n + 1 we can take ρ = ε,
the identity permutation on A and α = β. We will prove the lemma for k = n + 2.
The lemma will then follow by mathematical induction.
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Since β ∈ G there is an integer j such that the support of β is a subset of A j
0. We

have assumed that β ∈ Gn+1 so β fixes An+1
0 pointwise. Therefore there is an atom

s /∈ An+1
0 moved by β. From this we conclude that j > n + 1.

The plan of the proof is to get an element ρ of Gn which takes each n + 1-block
contained in A j

0 to an n + 2-block. We will also make sure that if s and s′ have the
same n + 1-location then ρ(s) and ρ(s′) have the same n + 2-location. Then α will
be defined so that it acts on n + 2 blocks contained in A j+1

0 by mirroring the action

of β on n + 1-blocks contained in A j
0. That is, α will be ρβρ−1.

Fix a bijection i �→ (u1(i), u2(i)) from ω onto ω × ω so that

u1(0) = u2(0) = 0. (6)

Define f : A j
0 → A j+1

0 by

f (s0, s1, . . . , sn−1, sn, sn+1, . . . , s j−1, 0, 0, . . .)

= (s0, s1, . . . , sn−1, u1(sn), u2(sn), sn+1, . . . , s j−1, 0, 0, . . .)

That is,

( f (s))i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

si if 0 ≤ i ≤ n − 1;
u1(sn) if i = n;
u2(sn) if i = n + 1;
si−1 if i > n + 1.

(But the first form is easier to work with.)
Using the definition, we see that f has the following properties.

1. f is a bijection from A j
0 onto A j+1

0 (because the function i �→ (u1(i), u2(i)) is
a bijection from ω onto ω × ω).

2. f fixes An
0 pointwise (using Eq. 6).

3. If s and t are in A and bcn(s) = bcn(t) then bcn( f (s)) = bcn( f (t)).
4. For s ∈ dom( f ) = A j

0, the n-location of s is

(s0, s1, . . . , sn−1)

which is the same as the n-location of f (s).
5. For s ∈ dom( f ), bcn+2( f (s)) = (sn+1, sn+2, . . . , s j−1, 0, 0, . . .) = bcn+1(s).
6. For s ∈ dom( f ), the n + 2-location of f (s) is

(s0, s1, . . . , sn−1, u1(sn), u2(sn)).

7. bcn+2( f (An+1
0 )) = bcn+1(An+1

0 ) = (0, 0, 0, . . .) (by Eq. (6).

Using items (2), (3) and (4) abovewe see that f satisfies conditions (1), (2) and (3) of
the hypotheses of Lemma5. Further, condition (4) is satisfied since dom( f )∪ran( f ) ⊆
A j+1
0 . Applying the lemma we obtain a ρ ∈ Gn that extends f .
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Let α = ρβρ−1. To complete the proof, we need to argue that α(ρ(x)) �= ρ(x)
and that α ∈ Gn+2. For the first of these we note that α(ρ(x)) = ρ(β(ρ−1(ρ(x)))) =
ρ(β(x)). If this is equal to ρ(x) we conclude that β(x) = x which contradicts our
assumptions that β(x) �= x .

For the proof that α ∈ Gn+2 we will need the following sublemma.

Sublemma 1 Assume s ∈ A. Then,

1. If An+1
s ⊆ A j

0 then f (An+1
s ) = An+2

s .

2. If s /∈ A j+1
0 then α(s) = s.

Proof For part (1) assuming that An+1
s ⊆ A j

0. It follows from (5) in the list of properties

of f that f (An+1
s ) ⊆ An+2

f (s) From this we conclude that An+2
f (s) ∩ A j+1

0 �= ∅ (since

ran( f ) = A j+1
0 ). Since n + 2 < j + 1 we apply item (3) in the list following

Definition 4 to conclude that An+2
f (s) ⊆ A j+1

0 = ran( f ). To show that every element

of An+2
f (s) is in f (An+1

s ) assume t ∈ An+2
f (s). By the previous remark, t ∈ ran( f )

so t = f (s′) for some s′ ∈ A j
0. Since t and f (s) are in the same n + 2-block,

bcn+2( f (s′)) = bcn+2(t) = bcn+2( f (s)). By item (5) in the list of properties of f ,
we have

bcn+1(s′) = bcn+2( f (s′)) = bcn+2( f (s)) = bcn+1(s)

so s′ and s are in the same n + 1-block, namely An+1
s . Hence, t = f (s′) ∈ f (An+1

s ).

For part (2) we assume s /∈ A j+1
0 . Since, ran( f ) = A j+1

0 and ρ extends f (and is

a permutation of A), ρ−1(s) /∈ A j
0, and hence β(ρ−1(s)) = ρ−1(s). Therefore

α(s) = ρ(β(ρ−1(s))) = ρ(ρ−1(s)) = s.

This completes the proof of the sublemma. �

To prove α ∈ Gn+2, we argue that conditions (1), (2) and (3) in the definition of

Gn are true (with n replaced by n + 2).

– Condition (1) is the requirement that α fixes An+2
0 pointwise. If s ∈ An+2

0 then s ∈
A j+1
0 so s ∈ ran( f ). Therefore ρ−1(s) = f −1(s) ∈ An+1

0 (using the sublemma,
item (1) ). Therefore, since β ∈ Gn+1, β(ρ−1(s)) = ρ−1(s). We conclude that
α(s) = ρ(β(ρ−1(s))) = s.

– For condition (2) we must show that for any n + 2-block B = An+2
s , α(B) is an

n + 2-block. Since j + 1 > n + 2 (see the remark in the second paragraph of
the proof of the lemma.), every n + 2-block is either contained in A \ A j+1

0 or

contained in A j+1
0 . In the first case part (2) of the sublemma gives us α(B) = B.

In the second case B ⊆ ran( f ) so ρ−1(B) = f −1(B) which by the sublemma
part (1) is an n+ 1-block contained in A j

0. Since the support of β is a subset of A j
0

and β ∈ Gn+1, β(ρ−1(B)) is an n+1 block contained in A j
0. Applying part (1) of

the sublemma again we conclude that f (β(ρ−1(B))) is an n+2-block. Therefore,
since ρ extends f , ρ(β(ρ−1(B))) is an n + 2-block. So α(B) is an n + 2 block.
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– To prove condition (3) we assume t ∈ A and argue that the n + 2-location of α(t)
is the same as the n+2-location of t . If t /∈ A j+1

0 then the conclusion follows from

part (2) of the sublemma. If t ∈ A j+1
0 then t ∈ ran( f ) so ρ−1(t) = f −1(t) = s for

some s ∈ A j
0 = dom( f ). By item (6) in the list of properties of f , the n+2-location

of t is (s0, s1, . . . , sn−1, u1(sn), u2(sn)) and the n+1-location of ρ−1(t) = f −1(t)
is (s0, s1, . . . , sn). Since β fixes n + 1-locations, the n + 1 location of β(ρ−1(t))
is (s0, s1, . . . , sn). By item (6) in the list of properties of f , the n + 2-location of
f (β(ρ−1(t))) = ρ(β(ρ−1(t))) = α(t) is (s0, s1, . . . , u1(sn), u2(sn)).

This completes the proof of the lemma. �

The lemma gives a contradiction and therefore the proof of the theorem is complete.

�


8.3 Versions of AC inN9

Theorem 10 InN9, the union of a well-ordered collection of well orderable sets can
be well ordered and ACWO

WO, LW and ∀m, 2m = m are true, but the axiom of choice for
families of two-element sets and MCℵ0 are false.

Proof In [4], ∀m, 2m = m was shown to be true in N9 and the axiom of choice for
families of two-elements sets was shown to be false.

The fact that the union of a well-ordered collection of well orderable sets can be
well ordered follows from Theorem 9 and ACWO

WO follows from this. (In [4], ACWO
fin was

shown to be true in N9.)

Claim LW is true in N9.

Proof We will show that N9 satisfies condition (*) of Theorem 1. To this end, let
x ∈ N9 and also let n ∈ ω such that Gn does not support x . (Recall that {Gn : n ∈ ω}
is a filter base for the filter J used to constructN9, see Definition 4.) Then there exists
η ∈ Gn such that η(x) �= x .

Since η ∈ Gn , the set η′ = {(An
s , A

n
η(s)) : s ∈ A} is a permutation of the set of

n-blocks. (See item 2 in the definition of Gn .) Since η also fixes n-locations, for any
s ∈ A,

η(s) = (s � n)�bc(η′(An
s )).

By Lemma 1, there is a permutation τ ′ of the set of n-blocks such that

1. {B : τ ′(B) �= B} ⊆ {B : η′(B) �= B},
2. (τ ′)2 = ε, and
3. (η′τ ′)2 = ε.

τ ′ determines a permutation τ of A defined by

τ(s) = (s � n)�bc(τ ′(An
s )).

Then τ has the following properties:
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1. τ ∈ Gn

2. τ 2 = ε and
3. (ητ)2 = ε

Since η(x) �= x , we have that either τ(x) �= x or ητ(x) �= x , and since both τ and ητ

are inGn and have finite order, we conclude that (*) is satisfied. Hence, by Theorem 1,
LW is true in N9.

Claim MCℵ0 is false in N9.

Proof For each n ∈ ω, let Cn be the set of n-blocks and let Wn = {φ(Cn) : φ ∈ G}.
Then each Wn is supported by G and therefore W = {Wn : n ∈ ω} is a countably
infinite set in N9. We will show by contradiction that W has no multiple choice
function in N9.

Therefore assume that f is such a function which is inN9 with support Gn . By our
assumptions f (Wn+1) is a finite non-empty subset of Wn+1 with support Gn . Choose
x ∈ f (Wn+1) then x = γ (Cn+1) for some γ ∈ G. Since the support of γ is bounded,
there is a k ∈ ω such that the support of γ , {a ∈ A : γ (a) �= a}, is a subset of Ak

0 and
we assume without loss of generality that k ≥ n+1. It follows that for any n+1-block
B, either B is disjoint from Ak

0 or B ⊆ Ak
0. Therefore Cn+1 is the disjoint union

Cn+1 = {B ∈ Cn+1 : B ∩ Ak
0 = ∅} ∪ {B ∈ Cn+1 : B ⊆ Ak

0}.

For B in the first of these two sets γ (B) = B. So x = γ (Cn+1) is the disjoint union

x = {B ∈ Cn+1 : B ∩ Ak
0 = ∅} (7)

∪ {γ (B) : B ∈ Cn+1 and B ⊆ Ak
0}. (8)

The first of the two sets above ({B ∈ Cn+1 : B ∩ Ak
0 = ∅}) is infinite so we choose a

countably infinite subset Bi , i ∈ ω where Bi �= Bj if i �= j . (It is possible to choose
{Bi : i ∈ ω} so that this set is countable in the N9 but for our purposes this is not
required.) We now choose for each i ∈ ω an n-block Di which is a subset of the
n + 1-block Bi . For each i ∈ ω with i ≥ 1, we let ψi be the element of Gn which
interchanges the two n-blocks D0 and Di and fixes all other atoms. (That is, ψi is the
product of transpositions

∏
s∈D0

(s, si ) where for each s ∈ D0, si is the element of Di

with the same n-location as s.)
We note two things about ψi :

– Since f (Wn+1) is supported by Gn , all of the sets ψi (x) (i ≥ 1) are in f (Wn+1).
– ψi fixes Ak

0 pointwise and also fixes every element of {B ∈ Cn+1 : B ∩ Ak
0 =

∅} \ {B0, Bi } pointwise. Therefore, using Eq. (7), ψi (x) is the disjoint union

ψi (x) = {B : B ∈ Cn+1 and B ∩ Ak
0} \ {B0, Bi }

∪ {ψi (B0), ψi (Bi )}
∪ {γ (B) : B ∈ Cn+1 and B ⊆ Ak

0}.

123



Models of ZFA in which every linearly ordered set… 1155

Table 2 Forms of AC in our
models

M V N15 U U N9

∀m, 2m = m F F F F F T

LW T T T T T T

DF = F T T T T T T

DC F T T F T F

ACWO
fin T F ? T ? T

ACWO
WO F F F F F T

MCWO
WO F F F F F T

MCℵ0ℵ0 F T T F T T

MCℵ0 F T T F T F

ψi (B0) is the n+1-block B0 with the sub-n-block D0 replaced by the n-block Di and
ψi (Bi ) is the n + 1-block Bi with the sub-n-block Di replaced by the n-block D0.
Therefore neither B0 nor Bi are in ψi (x).

Assume that k, j ∈ ω are both greater than zero and that k �= j . Then (among
other differences) Bk ∈ ψ j (x) \ ψk(x) so that ψk(x) �= ψ j (x). Since all of the sets
ψi (x) (i > 0) are in f (Wn+1) and f (Wn+1) is finite, we have a contradiction. This
completes the proof of the claim. �


The above arguments complete the proof of the theorem. �


9 Summary

Table 2 summarizes what is known (and unknown) about our six models.

10 Open questions

1. Does LW + ∀m, 2m = m imply MCℵ0ℵ0
in ZFA?

2. Does ∀m, 2m = m imply ACWO
fin ? (Recall that ∀m, 2m = m ⇒ DF = F ⇒ ACℵ0

fin,

where ACℵ0
fin is the axiom of choice for countably infinite families of non-empty

finite sets.)
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11 Appendix

The following theorem provides general information about certain types of permuta-
tion models, and thus it is interesting in its own right. Furthermore, the theorem shows
that Models 1 and 4 (of Sects. 3 and 6) are respectively equal to the models determined
(by the same set of atoms and the same normal ideal, and) by weak direct products of
groups (see Remark 1 of Subsect. 2.1) rather than unrestricted direct products. Obvi-
ous adjustments to this theorem can be made so that to obtain analogous results for
Model 5 (of Sect. 7) and for generalizations of Models 1 and 4.

Theorem 11 Assume that the set A of atoms of the ground model M (of ZFA+AC) is a
union of a disjoint, denumerable family {An : n ∈ ω}, where each An is denumerable.
For each n ∈ ω, let Gn be a group of permutations of An, and also let G be the
weak direct product of the Gn’s. Let I be the ideal which is generated by all unions⋃{An : n ∈ E}, E ∈ [ω]<ω. Let M be the permutation model determined by M, G,
and I .

Let G be the unrestricted direct product of Gn (n ∈ ω), and also let N be the
permutation model determined by M, G , and I . Then N = M.

Proof We prove by ∈-induction that for every x ∈ M , �(x) is true, where

�(x) : x ∈ M ⇐⇒ x ∈ N .

Clearly �(x) is true, if x = ∅, or if x ∈ A. Assume that y ∈ M and that for all x ∈ y,
�(x) is true. We will show that �(y) is true. Assume that y ∈ M. Then the following
hold:

(1) y has a (countable) support E ⊂ A relative to the group G (i.e., for every
ψ ∈ fixG(E), ψ(y) = y);

(2) for every x ∈ y, x ∈ M (M is a transitive class);
(3) for every x ∈ y, x ∈ N (by (2) and the induction hypothesis).

We assert that E is a support of y relative to the group G . It suffices to show that
for all φ ∈ fixG (E) and for all x ∈ y, φ(x) ∈ y (since then φ(y) = y follows from
“φ(y) ⊆ y and φ−1(y) ⊆ y").

To this end, let φ ∈ fixG (E) and let x ∈ y. By (3), x has a (countable) support
E ′ ⊂ A relative to G . The permutation φ may not be in G, but we construct a
permutation φ′ ∈ fixG(E) which agrees with φ on E ′ as follows: For each a ∈ E ′,
the set {φn(a) : n ∈ Z} is countable. Therefore, since E ′ is countable, so is D =⋃{{φn(a) : n ∈ Z} : a ∈ E ′}. Furthermore, D contains E ′ and is closed under φ.

We define a mapping φ′ : A → A by

φ′(a) =
{

φ(a), if a ∈ D;
a, otherwise.

Then the following hold:

(4) φ′ ∈ G;

123



Models of ZFA in which every linearly ordered set… 1157

(5) φ′ fixes E pointwise (since φ fixes E pointwise); and
(6) φ′ agrees with φ on E ′.

By (4) and (5), φ′ ∈ fixG(E) so φ′(y) = y. It follows that φ′(x) ∈ y. Now, (6) gives
φ′(x) = φ(x), and hence φ(x) ∈ y.

Conversely, assume that y ∈ N and that y has a support E ′ relative to G . Then
E ′ is a support of y relative to G since G ⊂ G . By the induction hypothesis, every
element of y is inM, and so y ∈ M. �
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