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Abstract
In this paper, we introduce the notion of K-rank, where K is a strong amalgamation
Fraïssé class. Roughly speaking, the K-rank of a partial type is the number “copies”
of K that can be “independently coded” inside of the type. We study K-rank for
specific examples ofK, including linear orders, equivalence relations, and graphs. We
discuss the relationship of K-rank to other ranks in model theory, including dp-rank
and op-dimension (a notion coined by the first author and C. D. Hill in previous work).
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1 Introduction

In model theory, there are many different notions of dimension and rank that are used
tomeasure the complexity of partial types in first-order theories. Some of these notions
of rank involve measuring the largest “size” of a certain combinatorial configuration
that exists in the type. For example, the dp-rank of a partial type is the largest depth
of an ICT-pattern in the type (see Definition 2.1). Ideally, one would like a general
framework that simultaneously captures various combinatorial notions of rank together
in a single unified notion.

In a modest step towards that goal, we introduce a novel class of ranks we call K-
rank for a strong amalgamation Fraïssé class, K. The idea is to concretely codify the
notion of a “combinatorial configuration” by using K-configurations (see Definition
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4.1). Roughly speaking the K-rank of a partial type counts the maximum number of
“copies” ofK that can be “independently coded” in the type. More formally, “coding”
is captured by the notion ofK-configuration and the number of “copies” is captured by
iterative free superpositions (see Definition 3.8), which leads to the notion of K-rank
(see Definition 6.1).

In some instances,K-rank does generalize known notions of model theoretic rank.
For example, if K is the class of finite linear orders, then K-rank (linear order rank)
generalizes dp-rank in distal theories (see Example 6.10). This is a consequence of the
fact that linear order rank generalizes op-dimension (see Definition 2.2) on theories
without the independence property (i.e., NIP theories); see Proposition 6.9. The notion
of op-dimension was first introduced by the first author and C. D. Hill in [6] and has
since been utilized in other model theoretic studies; e.g., [16]. As another example,
if K is the class of all finite sets with a single equivalence relation, then K-rank is
bounded by the dp-rank; see Proposition 6.12. Both dp-rank and op-dimension are
additive [6, 11] (see Definition 6.3); we examine under what conditions, on both K
and the target theory, K-rank is additive. From this analysis on the specific classK of
all finite linear orders, we derive a result which may be of independent interest: We
give a new characterization of NIP for certain theories based on the growth rate of
K-rank; see Theorem 6.29.

The original idea for the “coding” part of this work comes from a paper by the first
author and Hill [7], where they study a related notion called positive local combina-
torial dividing lines. The requirements on the Fraïssé classes considered in that paper
are more stringent; specifically, they are required to be indecomposable (see Section
1 of [7]). In the current paper, we do not make this assumption. The notion of “cod-
ing” in this manner is also related to the phenomenon of non-collapsing generalized
indiscernibles, studied by the first author, Hill, and L. Scow in [8]; a detailed explana-
tion of this relationship may be found in Section 3 of [7]. When building generalized
indiscernibles indexed by a classK, one needs to assumeK has the Ramsey property.
However, certain useful uniformity aspects of indiscernibility may still exist in the
absence of the Ramsey property. First, we develop a “pseudo-indiscerniblity” when
the index class is “nice” (see Proposition 4.14 and Proposition 4.15). We then utilize
this in type-counting arguments (e.g., Proposition 6.20).

This paper is organized as follows: In Sect. 2, we introduce the notation used in the
paper and cover some basic definitions. In Sect. 3, we discuss the relevant concepts
surrounding strong amalgamation Fraïssé classes. Primarily, we discuss the notion of
free superposition, which formalizes the idea of “independent copies” of a Fraïssé
class. In Sect. 4, we study the notion of configurations, which formalizes the idea of
“coding” a Fraïssé class into a partial type. In Sect. 5, we connect the work in this paper
back to the dividing lines considered in [7]. In particular, we discuss an interesting
generalization of a few results from that paper. In Sect. 6, we define and examine
K-ranks for various strong amalgamation Fraïssé classes, K. In Sect. 6.1, we study
K-rank where K is the class of all finite linear orders, in Sect. 6.2, we study K-rank
where K is the class of all finite sets with a single equivalence relation, and in Sect.
6.3, we study K-rank where K is the class of all finite graphs. We study each of these
K-ranks for types in the theory of the random graph in Sect. 6.4 and, in Sect. 6.5, we
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Ranks based on strong amalgamation Fraïssé classes 891

explore the additivity of some ranks in theories without the independence property.
Finally, in Sect. 7, we discuss some interesting open problems.

2 Preliminaries

Let L be a first-order language. By the signature of L , denoted sig(L), we mean the set
of constant symbols, function symbols, and relation symbols used in L . We say L is
finite relational if sig(L) is finite and consists only of relation symbols. For a relation
symbol R ∈ sig(L), we denote the arity of R by arity(R). If M is an L-structure
and A ⊆ M , we let L(A) denote the language that expands L by adding constant
symbols to the signature for each a ∈ A. Abusing notation, also let L(A) also denote
the set of L(A)-formulas. For languages L and L0, we say L0 is a reduct of L if
sig(L0) ⊆ sig(L). If M is an L-structure and L0 is a reduct of L , let M |L0 denote the
reduct of M to L0. If M and N are L-structures, write M ∼=L N to mean that M and
N are isomorphic as L-structures (where we drop the L if it is clear).

In this paper, we will often be working with two first-order theories in different
languages simultaneously, the “index” theory and the “target” theory. Typically, the
index theory will be the Fraïssé limit of a strong amalgamation Fraïssé class (see
Definition 3.1) in a finite relational language and the target theory will be an arbitrary
complete first-order theory in an arbitrary language.

On the target side, suppose that T is a complete first-order theory in a language L .
We use C to denote themonster model of T ; in this paper, it suffices to take C to be any
model of T that is at leastℵ1-saturated.Wewill also consider partial typesπ(y), which
are consistent collections of L(A)-formulas with free variables y for some A ⊆ C. In
this paper, we only consider such partial types over a small A (i.e., A is smaller than
the saturation of C). For a partial type π and M a substructure of C, let π(M) denote
the set of all realizations of π from M . If ϕ is a formula and P is some property, then
we write ϕiff P to denote the formula ϕ if P is true and ¬ϕ if P is false. If t < 2, we
will write ϕt to denote ϕiff t=1.

For the following two definitions, let T be a complete, first-order theory in a lan-
guage L , let C be a monster model of T , and let π(y) be a partial type. We define two
notions of rank that we will consider in this paper, dp-rank and op-dimension. For sim-
plicity of presentation, we will only consider ω-valued dp-ranks and op-dimensions
(generally, these can be defined to be ordinal-valued).

Definition 2.1 Let m < ω and β be an ordinal. We say that π has an ICT-pattern of
depth m and length β if there exist L(C)-formulas ϕi (y, zi ) for i < m and ci, j ∈ C|zi |
for i < m and j < β such that, for all g : m → β, the partial type

π(y) ∪
{
ϕi (y, ci, j )

iff g(i)= j : i < m, j < β
}

is consistent. The dp-rank of π is the maximumm < ω such that π has an ICT-pattern
of depth m and length ω. We denote the dp-rank of π by dpRk(π).
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Definition 2.2 Let m < ω and β be an ordinal. We say that π has an IRD-pattern of
depth m and length β if there exist L(C)-formulas ϕi (y, zi ) for i < m and ci, j ∈ C|zi |
for i < m and j < β such that, for all g : m → β, the partial type

π(y) ∪ {ϕi (y, ci, j )iff g(i)< j : i < m, j < β}

is consistent. The op-dimension of π is the maximum m < ω such that π has an IRD-
pattern of depth m and length ω. We denote the op-dimension of π by opDim(π).

In this paper, we attempt to generalize “combinatorial patterns,” like ICT-patterns
or IRD-patterns, in order to define a generalized notion of rank. To do this, we view
the patterns as coming from an “index” theory.

On the index side, let L0 be a finite relational language and letK be a class of finite
L0-structures closed under isomorphism.

• We say that K has the hereditary property if, for all B ∈ K and A ⊆ B, A ∈ K.
• We say that K has the joint embedding property if, for all A0, A1 ∈ K, there exist

B ∈ K and embeddings ft : At → B for each t < 2.
• We say that K has the amalgamation property if, for all A, B0, B1 ∈ K and
embeddings ft : A → Bt for each t < 2, there exist C ∈ K and embeddings
gt : Bt → C such that g0 ◦ f0 = g1 ◦ f1.

• Wesay thatK is aFraïssé class if it has the hereditary property, the joint embedding
property, and the amalgamation property.

The Fraïssé limit of a Fraïssé classK is the unique (up to isomorphism) countable L0-
structure � such that � is ultrahomogeneous and K is the class of all finite structures
embeddable into � (see Theorem 6.1.2 of [9]). Since L0 is a finite relational language,
the theory of the Fraïssé limit of K is ℵ0-categorical and eliminates quantifiers (see
Theorem 6.4.1 of [9]). Abusing terminology, we will typically say thatK has a certain
property if its Fraïssé limit does. This allows us to avoid writing the phrase “whose
Fraïssé limit satisfies” throughout the paper.

In this paper, we will be interested in “coloring properties” of the limits of Fraïssé
classes. The following two definitions can be found in, for example, [5]; here, we have
rephrased them to be about colorings of the Fraïssé limit.

Definition 2.3 LetK be a Fraïssé classwith Fraïssé limit�.We say thatK is indivisible
if, for all k < ω and c : � → k, there exist �′ ⊆ � with �′ ∼= � and i < k such that

c(�′) = {i}.

Definition 2.4 Let K be a Fraïssé class with Fraïssé limit �. We say that K is age
indivisible if, for all k < ω, all c : � → k, and all A ∈ K, there exist an embedding
f : A → � and i < k such that c( f (A)) = {i}.
It is clear that indivisibility implies age indivisibility.
In the next section, we will study these coloring properties in the context of strong

amalgamation Fraïssé classes.
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3 Strong Amalgamation Fraïssé classes

In this section, we define the notion of strong amalgamation Fraïssé class. We then
explore the free superposition and its relationship to some properties of strong amal-
gamation Fraïssé classes.

Fix L0 a finite relational language and let K be a Fraïssé class in L0. We can
strengthen the amalgamation property as follows: We sayK satisfies the strong amal-
gamation property if, for all A, B0, B1 ∈ K and embeddings ft : A → Bt for each
t < 2, there exist C ∈ K and embeddings gt : Bt → C such that g0 ◦ f0 = g1 ◦ f1
and g0(B0) ∩ g1(B1) = g0( f0(A)). Since the language is relational, we may assume
that the empty structure is in K, so we obtain a “strong” joint embedding property
from the strong amalgamation property. Moreover, if � is the Fraïssé limit of K, then
K has the strong amalgamation property if and only if, for all A ⊆ �, acl(A) = A;
see (2.15) of [3].

Definition 3.1 LetK be a Fraïssé class in a finite relational language. We say thatK is
a strong amalgamation Fraïssé class if it satisfies the strong amalgamation property.

For each t < 2, letKt be a class of finite Lt -structures, where Lt is a finite relational
language. Let L2 be the languagewhose signature is the disjoint union of the signatures
of L0 and L1 and define the free superposition ofK0 andK1, denotedK0 ∗K1, as the
class of all finite L2-structures A such that A|Lt ∈ Kt for each t < 2.

Remark 3.2 Suppose that A ∈ K0, B ∈ K1, and f : A → B is a bijection. Then, we
can “glue” A and B together via f to make an element ofK0 ∗K1. Formally, let C be
the L2-structure with universe A such that, for all R ∈ sig(L2) and a ∈ Aarity(R),

• if R ∈ sig(L0), then C |� R(a) ⇐⇒ A |� R(a), and
• if R ∈ sig(L1), then C |� R(a) ⇐⇒ B |� R( f (a)).

Then, clearly C ∈ K0 ∗ K1. Indeed, C |L0 = A and C |L1
∼=L1 B.

Proposition 3.3 (Lemma 3.22 of [2]) If K0 and K1 are strong amalgamation Fraïssé
classes, then K0 ∗ K1 is a strong amalgamation Fraïssé class.

Although the result is known, we give a proof here, as it will help in the proof of
Proposition 3.16 below.

Proof We begin by exhibiting the strong amalgamation property. Fix structures
A, B0, B1 ∈ K0 ∗ K1 and fix L2-embeddings f0 : A → B0 and f1 : A → B1.
In particular, f0 and f1 are both Ls-embeddings for each s < 2. By the strong amal-
gamation property of Ks , there exist Cs ∈ Ks and Ls-embeddings gst : Bt → Cs for
t < 2 such that gs0 ◦ f0 = gs1 ◦ f1 and gs0(B0) ∩ gs1(B1) = gs0( f0(A)). By embed-
ding into a larger structure and using the hereditary property, we may assume that
|C0| = |C1|. There exists a bijection h : C0 → C1 such that the following diagram
commutes:
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A

f0
B0

f1
B1

g00

g10

g11

g01

C0

C1

h

As in Remark 3.2, endow C0 with an L2-structure via h and call it C2.
To exhibit the hereditary property, fix B ∈ K0∗K1 and let A ⊆ B. In particular, A|L0

is a L0-substructure of B|L0 , so A|L0 ∈ K0. Similarly, A|L1 ∈ K1. Thus, A ∈ K0∗K1.
��

Example 3.4 Note that the strong amalgamation property is necessary to conclude that
the free superposition is even a Fraïssé class. For example, for each t < 2, let Lt be
the language with one unary predicate, Pt , and let Kt be the class of all Lt -structures
where at most one element satisfies Pt . This is clearly a Fraïssé class, but does not
have strong amalgamation. On the other hand, K0 ∗ K1 is not a Fraïssé class, as it
fails joint embedding. Let A0 = {a0, a1} where P0(a0) and P1(a1) and let A1 = {a2}
where P0(a2) and P1(a2). Then, there exists no B ∈ K0 ∗ K1 which embeds A0 and
A1 simultaneously.

Definition 3.5 Let K be a strong amalgamation Fraïssé class in L0, A ∈ K, and R a
relation of L0 with arity n.

(1) We say R is symmetric on A if, for all a ∈ n A and all σ ∈ Sn , if A |� R(a), then
A |� R(a ◦ σ).

(2) We say R is trichotomous on A if, for all a ∈ n A such that a(i) �= a( j) for all
i < j < n, there exists exactly one σ ∈ Sn such that A |� R(a ◦ σ).

(3) We say R is reflexive on A if, for all a ∈ n A such that a(i) = a( j) for all i < j < n,
A |� R(a).

(4) We say R is irreflexive on A if, for all a ∈ n A such that a(i) = a( j) for some
i < j < n, A |� ¬R(a).

(5) If n = 2, we say R is transitive if, for all a, b, c ∈ A, if A |� R(a, b) ∧ R(b, c),
then A |� R(a, c).

We say A has one of the above properties if, for all R ∈ sig(L0), R has that property
on A. We sayK has one of the above properties if, for all A ∈ K, A has that property.

Proposition 3.6 Each of the properties in Definition 3.5 is closed under free superpo-
sition.

Proof Any witness to the failure of one of these properties in K0 ∗ K1 reducts to a
failure of the same property in either K0 or K1.

��
Definition 3.7 We have a few strong amalgamation Fraïssé classes that we examine
in particular in this paper.
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(1) (Sets) Let S denote the class of all finite L0-structures where L0 has empty signa-
ture.

(2) (Linear Orders) LetLO denote the class of all finite L0-structures that are trichoto-
mous, irreflexive, and transitive, where L0 is a language with one binary relation
symbol.

(3) (Equivalence Relations) Let E denote the class of all finite L0-structures that
are symmetric, reflexive, and transitive, where L0 is a language with one binary
relation symbol.

(4) (Graphs) Let G denote the class of all finite L0-structures that are symmetric and
irreflexive, where L0 is a language with one binary relation symbol.

(5) (Hypergraphs) For k ≥ 2, letHk denote the class of all finite L0-structures that are
symmetric and irreflexive, where L0 is a language with one k-ary relation symbol.
Clearly G = H2.

(6) (Tournaments) Let T denote the class of all finite L0-structures that are trichoto-
mous and irreflexive, where L0 is a language with one binary relation symbol.

Definition 3.8 SupposeK is a strong amalgamation Fraïssé class and fix n ≥ 1. Then,
define K∗n recursively as follows:

(1) K∗0 = S,
(2) K∗(n+1) = K∗n ∗ K.

Example 3.9 For any strong amalgamation Fraïssé class K, notice that

S ∗ K = K ∗ S = K.

So, in particular, K∗1 = K and S∗n = S for all n ≥ 1.

Example 3.10 For all n ≥ 1, LO∗n is the class of all finite sets with n linear orders.

Example 3.11 In any finite relational language L0 where all relations are at least binary,
the class of L0-hypergraphs,HL0 , is the set of all finite L0-structures that are symmetric
and irreflexive. By Proposition 3.6,

HL0 = Hk0 ∗ . . . ∗ Hkn−1 ,

where k0 ≤ · · · ≤ kn−1 list all the arities (with repetition) of the relation symbols in
L0. By Proposition 3.3, HL0 is a strong amalgamation Fraïssé class.

In the remainder of this section, we will introduce tools that will be used to compute
K-rank for specific strong amalgamation Fraïssé classes K in Sect. 6. We use the
following proposition to build substructures of Fraïssé limits that are isomorphic to
the original limit.

Proposition 3.12 Suppose that � is the Fraïssé limit of K and �′ ⊆ �. If, for all
A, B ∈ K with A ⊆ B and |B \ A| = 1 and for all embeddings f : A → �′, there
exists an embedding g : B → �′ extending f , then �′ ∼= �.

Proof This follows from Lemma 6.1.4 of [9]. ��
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The following definition is made in a general context, but we will mostly be inter-
ested in the case where � is the Fraïssé limit of a strong amalgamation Fraïssé
class K.

Definition 3.13 Let � be a structure in any language, L . We say � is (quantifier-
free) definably self-similar if, for any finite A ⊆ � and any complete, non-algebraic
(quantifier-free) 1-L-type p over A, p(�) is isomorphic to �.

Note that, when� is the Fraïssé limit of a Fraïssé class in a finite relational language,
by quantifier elimination, being quantifier-free definably self-similar is equivalent to
being definably self-similar.

Lemma 3.14 Let K be a strong amalgamation Fraïssé class in a finite relational lan-
guage L0 with Fraïssé limit �. Then, � is definably self-similar if and only if, for all
B, B ′,C ∈ K such that B ⊆ B ′ and |B ′ \ B| = 1, for all A ⊆ C and p a com-
plete, non-algebraic 1-L0-type over A, for all embeddings f : B → p(C), there exist
C ′ ∈ K with C ′ ⊇ C and an embedding f ′ : B ′ → p(C ′) extending f .

Proof (⇒): Assume that � is definably self-similar. Fix B, B ′, C , A, p, and f as in
the lemma. Since � is the Fraïssé limit of K, we may assume that C ⊆ �. Since � is
definably self-similar, p(�) ∼= �. By assumption, f (B) ⊆ p(�). Since p(�) is also
the Fraïssé limit of K, there exists an embedding f ′ : B ′ → p(�) extending f . Let
C ′ = f ′(B ′) ∪ C . This gives the desired extension.

(⇐): Fix A ⊆ � finite and p a complete, non-algebraic 1-L0-type over A. We show
that the hypothesis of Proposition 3.12 is satisfied for p(�). Consider B, B ′ ∈ K with
B ⊆ B ′ and |B ′ \ B| = 1 and suppose that f : B → p(�) is an embedding. Let
C = f (B) ∪ A, so f is an embedding of B into p(C). By assumption, there exists
C ′ ∈ K with C ′ ⊇ C and an embedding f ′ : B ′ → p(C ′) extending f . Since � is the
Fraïssé limit of K, we may assume C ′ ⊆ � and thus f ′ embeds B ′ into p(�). ��

The preceding lemma gives us a characterization of when the Fraïssé limit of a
Fraïssé class is definably self-similar in terms of the class. Thus, we will say thatK is
definably self-similar if its Fraïssé limit is definably self-similar.

The next lemma is essentially the same as Theorem 2.6 of [14], but we include a
proof here for completeness.

Lemma 3.15 Suppose that K is a definably self-similar strong amalgamation Fraïssé
class. Then, K is indivisible.

Proof Let � be the Fraïssé limit of K, let k < ω, and let c : � → k. We find �′ ⊆ �

with �′ ∼= � and i < k such that c(�′) = {i}. We may assume k = 2. Suppose that
c−1({0}) � �. Then, by the contrapositive of Proposition 3.12, there exist A, B ∈ K
with A ⊆ B and B = {b} ∪ A, and f : A → c−1({0}) an embedding that does not
extend to an embedding of B into c−1({0}). Then, consider

�′ = {
d ∈ � : tpL0

(d, f (A)) = tpL0
(b, A)

}
.

Since � is definably self-similar, �′ ∼= �. On the other hand, for any d ∈ �′, the
function extending f to a function from B to � by sending b to d is an embedding.
Thus, c(d) = 1. In other words, c(�′) = {1}. ��
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In the next proposition, we show that being definably self-similar is closed under
free superposition.

Proposition 3.16 Suppose that K0 and K1 are definably self-similar. Then, K0 ∗ K1
is definably self-similar.

Proof Let L0 be the language of K0, let L1 be the language of K1, and let L2 be the
language whose signature is the disjoint union of the signatures of L0 and L1, which
serves as the language for K2 = K0 ∗ K1.

We use the characterization in Lemma 3.14. Fix B, B ′,C ∈ K2 such that B ⊆ B ′,
fix A ⊆ C , fix p(x) a complete, non-algebraic 1-L2-type over A, and fix an L2-
embedding f : B → p(C). In particular, for each t < 2, f is an Lt -embedding of B
into p|Lt (C). For each t < 2, since Kt is definably self-similar, there exist C ′

t ∈ Kt

with C |Lt ⊆ C ′
t and an Lt -embedding f ′

t : B ′ → p|Lt (C
′
t ). Using the hereditary

property, we may assume that |C ′
0| = |C ′

1|. Then, as in the proof of Proposition 3.3,
there exists a bijection g from C ′

0 to C
′
1 such that the following diagram commutes:

B

ι
B ′

f
C

f ′
0

f ′
1

ι

ι

C ′
0

C ′
1

g

As in Remark 3.2, create the structure C ′ ∈ K2 with universe C ′
0 endowed with L2-

structure given by g. Then, it is not hard to show that f ′
0 is an L2-embedding of B ′

into p(C ′). ��
Example 3.17 The classes LO, G, and T are definably self-similar. Moreover, for all
k ≥ 2, Hk is definably self-similar. By Proposition 3.16, for all n ≥ 1, LO∗n , G∗n ,
and T∗n are definably self-similar and, for all k ≥ 2,H∗n

k is definably self-similar. On
the other hand, E is not definably self-similar.

Proof In the theory of dense linear orders, for any complete, non-algebraic 1-type p
over a finite subset of Q, p(Q) is an open interval, which is clearly isomorphic to Q.
Hence, LO is definably self-similar.

Next, consider Hk for some k ≥ 2 in the language L0 with one k-ary relation
symbol, E . Fix B, B ′,C ∈ Hk with B ⊆ B ′, fix A ⊆ C , and fix p a complete,
non-algebraic 1-L0-type over A. Suppose that f : B → p(C) is an embedding and
that B ′ = B ∪ {b′}. Create an L0-structure C ′ where C ′ = C ∪ {c′} by setting, for all
b ∈ Bk−1,

C ′ |� E(c′, f (b)) ⇐⇒ B ′ |� E(b′, b),

and, for all a ∈ Ak−1,

C ′ |� E(c′, a) ⇐⇒ E(x, a) ∈ p(x),
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and add no additional edges (except those necessary to create symmetry). Finally,
extend f to f ′ by setting f ′(b′) = c′. It is easy to check that f ′ is an embedding from
B ′ into p(C ′). A similar argument works for T, where the “direction” of each edge is
determined by either B ′ or p.

Finally, consider the classE in the language L0 with one binary relation symbol, E ,
and let � be the Fraïssé limit of E. Fix a ∈ � and let p(x) be the complete 1-L0-type
over {a} extending x �= a ∧ E(x, a). Clearly p(�) � �. ��

The above proof for Hk can be modified to show that, if K has 3-amalgamation
(see [10]), then K is definably self-similar. On the other hand, LO witnesses that the
converse is false.

Although E is not definably self-similar, we can analyze E∗m for m ≥ 1. The
following lemma aids in this analysis.

Lemma 3.18 For m < ω, let Lm be the language with m binary relation symbols Ei

for i < m. For any set I , we can put an Lm-structure on Im+1 by setting, for all i < m
and all a, b ∈ Im+1, Ei (a, b) if ai = bi . With this Lm-structure:

(1) if I is finite, then Im+1 ∈ E∗m; and
(2) if I is countably infinite, then Im+1 is isomorphic to the Fraïssé limit of E∗m.

Proof Trivial. ��
Example 3.19 Although E is indivisible, for m ≥ 2, E∗m is not indivisible.

Proof It follows from the Pigeonhole Principle that E is indivisible.
Fix m ≥ 2 and let � be the Fraïssé limit of E∗m . By Lemma 3.18, we can suppose

� has universe ωm+1. Consider the coloring c : � → 2 given by

c(a) =
{
0 if a0 < a1,

1 if a0 ≥ a1
.

Towards a contradiction, suppose there is �′ ∼= � with c(�′) = {t}. For any a ∈ �′,
there are only finitely many Et -classes in �′ that have non-empty intersection with
the E1−t -class of a in �′, a contradiction.

��
To deal withE∗m in Sect. 6, we need a condition that is weaker than being definably

self-similar, but which is still strong enough to run counting arguments. It turns out
that age indivisibility is a sufficient condition for our purposes. By Lemma 3.15, if K
is definably self-similar, then K is age indivisible.

Example 3.20 For all m < ω, E∗m is age indivisible. In particular, age indivisibility is
strictly weaker than being definably self-similar.

Proof Let � be the Fraïssé limit of E∗m . By Lemma 3.18, we may assume that � has
universe ωm+1. Let c : � → k be a coloring and let A ∈ E∗m . Let n = |A|. By
Corollary A.2, there exist Y0, . . . ,Ym ∈ (

ω
n

)
such that c is constant on B = ∏

i≤m Yi .
On the other hand, there is clearly an embedding g : A → B.

Thus, c is constant on g(A). This shows that E∗m is age indivisible. ��
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The property described in the following definition is mild, only requiring that any
combination of relation symbols of the same arity that can happen, does happen.
However, it provides a lower bound for the number of types in our type-counting
arguments in Sect. 6.

Definition 3.21 Let K be a strong amalgamation Fraïssé class. We say that K is fully
relational if, for all n < ω, for all functions f from relation symbols in L0 of arity n
to 2, there exist A ∈ K and a ∈ An such that ai �= a j for all i < j < n and, for all
relation symbols R in L0 of arity n, A |� R(a) if and only if f (R) = 1.

Note that, for a language with a single n-ary relation symbol, being fully relational
means that there is one (non-repeating) n-tuple where the relation holds and one where
it fails.

Example 3.22 Notice that S, LO, E,G, T, andHk for all k ≥ 2 are all fully relational.

Proposition 3.23 Suppose that K0 and K1 are fully relational. Then, K0 ∗ K1 is fully
relational.

Proof For each t < 2, let Kt be a strong amalgamation Fraïssé class in the finite
relational language Lt that is fully relational. Let K2 = K0 ∗ K1, where K2 is in the
language L2 whose signature is the disjoint union of the signatures of L0 and L1. Fix
n < ω and, for t < 3, let sign(Lt ) denote the set of all relation symbols of Lt of
arity n. Let f : sign(L2) → 2. For each t < 2, since Kt is fully relational, there exist
At ∈ Kt and at ∈ An

t such that ati �= atj for all i < j < n and, for all R ∈ sign(Lt ),
At |� R(at ) if and only if f (R) = 1. By the hereditary property, we may assume
that At = {ati : i < n}. Then, let A be the L2-structure with universe A0 induced by
the bijection a0i �→ a1i as in Remark 3.2. Thus, A ∈ K2 and, for all R ∈ sign(L2),
A |� R(a0) if and only if f (R) = 1. ��

4 Configurations

Throughout this section, let L be any language, let T be a complete L-theory, and let
C be a monster model of T .

The following definition will be used to capture what we mean by “coding” the
class K in the partial type π .

Definition 4.1 Let K be a strong amalgamation Fraïssé class in a finite relational
language L0 and let π(y) be a partial type in T . A K-configuration into π is a family
of functions (I , f A)A∈K such that

(1) I : sig(L0) → L(C);
(2) for all A ∈ K, f A : A → π(C); and
(3) for all R ∈ sig(L0), for all A ∈ K, for all a ∈ Aarity(R),

A |� R(a) ⇐⇒ C |� I (R)( f A(a)).
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Note that, for each n-ary relation symbol R in L0, the L(C)-formula I (R) has free
variables consisting of an n-tuple of tuples of variables, each of the same sort as y.

For a smallC ⊆ C, we say that aK-configuration (I , f A)A∈K is over C if the image
of I is contained in the set of all L(C)-formulas. We say (I , f A)A∈K is parameter-free
if it is over ∅. We say (I , f A)A∈K is injective if f A is injective for each A ∈ K.

A K-configuration can be defined in terms of the Fraïssé limit of K.

Lemma 4.2 Let K be a strong amalgamation Fraïssé class in a finite relational lan-
guage L0 withFraïssé limit�, letπ beapartial type in T , and letC ⊆ Cbe small. There
exists a K-configuration into π over C if and only if there exist I : sig(R0) → L(C)

and f : � → π(C) such that, for all R ∈ sig(L0) and for all a ∈ �arity(R),

� |� R(a) ⇐⇒ C |� I (R)( f (a)).

Proof (⇐): Suppose I and f are given. For each A ∈ K, let f A be obtained by
composing f with an embedding of A into �. Then, (I , f A)A∈K is a K-configuration
into π .

(⇒): Let (I , f A)A∈K be a K-configuration into π(y). For each a ∈ �, let ya be a
tuple of variables in T of the same sort as y such that ya and yb are disjoint for a �= b.
Consider the type 	 in the free variables (ya)a∈� consisting of:

(1) π(ya) for all a ∈ �; and
(2) I (R)(ya0 , . . . , yan−1

)iff �|�R(a) for all n-ary R ∈ sig(L0) and a ∈ �n .

By assumption, 	 is finitely satisfiable. By compactness, 	 is consistent and, by
saturation of C, it has a realization in C, say (ca)a∈� . Define f : � → π(C) by setting
f (a) = ca . Then I and f are the desired functions.

��
In light of the previous lemma, configurations are closely related to a notion called

“trace definability,” studied in [17].

Example 4.3 If T is the theory of the random3-hypergraph andπ(x) = (x = x), where
x is a singleton, then there exists a G-configuration into π . Specifically, if R is the
ternary relation in L and E is the binary relation in L0, then let I (E)(x, y) = R(x, y, a)

for some a ∈ C; this gives the desiredG-configuration. However, there does not exist a
parameter-freeG-configuration into π ; by quantifier elimination, any L-formula must
be a Boolean combination of formulas of the form R(x, y, z) and equality.

We will see that any configuration can be made to be parameter-free at the cost of
changing the type; see Lemma 4.6. On the other hand, if T has NIP, we will see that
there exists no G-configuration into any partial type in T (see Theorem 5.2 (2)).

In the preceding example, we saw a case where the target theory was the theory of
a Fraïssé limit of a Fraïssé class other than the index class K. In this case, we were
unable to find a parameter-free configuration into x = x . However, if T is the theory
of the Fraïssé limit of K, we can.
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Lemma 4.4 Let K be a strong amalgamation Fraïssé class in a finite relational lan-
guage L0, let T be the theory of the Fraïssé limit ofK, and let π(x) = (x = x), where
x is a singleton. Then, there exists a parameter-free K-configuration into π .

Proof Let I be the inclusion function on sig(L0) and, for each A ∈ K, let f A : A → C
be any embedding. Then, (I , f A)A∈K is a K-configuration into π . ��
Lemma 4.5 Let K be a strong amalgamation Fraïssé class in a finite relational lan-
guage L0. If π0(y) and π1(y) are partial types in T , π0(y) � π1(y), and there exists
a K-configuration in π0, then there exists a K-configuration into π1.

Proof Since π0(C) ⊆ π1(C), any K-configuration into π0 is also a K-configuration
into π1. ��

As an immediate consequence of the previous lemma, if π(y) is a partial type in T
and there exists a K-configuration into π , then there exists a K-configuration into the
type y = y.

As previously mentioned, we can convert any configuration into a parameter-free
one at the cost of changing the target partial type.

Lemma 4.6 Let K be a strong amalgamation Fraïssé class in a finite relational lan-
guage L0 and let π be a partial type in T . If there exists aK-configuration into π , then
there exists a parameter-free K-configuration into some partial type of T (possibly
different from π ).

Proof Let π(y) be a partial type in T and let (I , f A)A∈K be aK-configuration into π .
Choose c ∈ C<ω such that, for all R ∈ sig(L0), we can take c to be the parameters
of I (R) (this can be done as sig(L0) is finite). Define π∗ a partial type of T to be π

expanded by adding dummy variables z for c. Then, for each R ∈ sig(L0) of arity n,
I (R)(y0, . . . , yn−1) is T -equivalent to ϕR(y0, . . . , yn−1, c) for some L-formula ϕR .
Let

I ′(R)(y0, z0, y1, z1, . . . , yn−1, zn−1) = ϕR(y0, . . . , yn−1, z0).

For each A ∈ K, define f ′
A : A → π∗(C) as follows: For a ∈ A,

f ′
A(a) = ( f A(a), c).

Then, it is easy to check that (I ′, f ′
A)A∈K is a parameter-freeK-configuration into π∗.

��
We can also convert any configuration into an injective one at the cost of changing

the target partial type (assuming the target theory has infinite models).

Lemma 4.7 Assume T has infinite models. Let K be a strong amalgamation Fraïssé
class in a finite relational language L0 and let π be a partial type in T . If there
exists a K-configuration into some partial type π of T , then there exists an injective
K-configuration into some partial type of T (possibly different from π ).
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Proof Let π(y) be a partial type in T and let (I , f A)A∈K be aK-configuration into π .
Let z be a single variable in T not used in π and let π ′(y, z) = π(y). For each n-ary
R ∈ sig(L0), let

I ′(R)(y0, z0, . . . , yn−1, zn−1) = I (R)(y0, . . . , yn−1).

For each A ∈ K, since A is finite and C is infinite, there exists an injective function
g : A → C. Let f ′

A : A → π ′(C) be given by f ′
A(a) = ( f A(a), g(a)) for all a ∈ A.

By construction, f ′
A is injective. Thus, (I ′, f ′

A)A∈K is an injective K-configuration
into π ′. ��
Definition 4.8 For each t < 2, let Kt be a strong amalgamation Fraïssé class over a
finite relational language Lt . We say thatK0 is a reductive subclass ofK1 if sig(L0) ⊆
sig(L1) and, for each A ∈ K0, there exists B ∈ K1 such that A ∼=L0 B|L0 .

Example 4.9 Note that LO is a reductive subclass of T (it is actually just a subclass).
For any K0 and K1, K0 is a reductive subclass of K0 ∗ K1 (see Remark 3.2).

Lemma 4.10 For each t < 2, let Kt be a strong amalgamation Fraïssé class over
a finite relational language Lt , and let π be a partial type in T . If there exists a
K1-configuration into π and K0 is a reductive subclass of K1, then there exists a
K0-configuration into π .

Proof Fix (I , fB)B∈K1 a K1-configuration into π . Fix A ∈ K0. Choose B ∈ K1 and
g : A → B such that g is an L0-isomorphism, and let f ′

A = fB ◦ g. Then, for all
R ∈ sig(L0) and a ∈ Aarity(R),

A |� R(a) ⇐⇒ B |� R(g(a)) ⇐⇒ C |� I (R)( fB(g(a))).

Thus, (I , f ′
A)A∈K0 is a K0-configuration into π . ��

If π0(y0) and π1(y1) are two partial types in T where y0 and y1 are disjoint, define
π0 × π1 to be the following type:

(π0 × π1)(y0, y1) = π0(y0) ∪ π1(y1).

If y0 and y1 are not disjoint, we can choose different variables to force disjointness.
Fix n ≥ 1 and define π×n recursively as follows:

(1) π×1 = π ,
(2) π×(n+1) = π×n × π .

It turns out that free superposition interacts with configurations into these type
products in the obvious manner.

Proposition 4.11 For each t < 2, letKt be a strong amalgamation Fraïssé class over
a finite relational language Lt . Suppose π0 and π1 are two partial types in T . Suppose
there exist a K0-configuration into π0 and a K1-configuration into π1. Then, there
exists a (K0 ∗ K1)-configuration into π0 × π1.
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Proof For each t < 2, let (It , ft,A)A∈Kt be a Kt -configuration into πt . We build
(I , f A)A∈K0∗K1 a (K0 ∗ K1)-configuration into π0 × π1.

For each t < 2 and each n-ary relation symbol R in Lt , let

I (R)(y0,0, y0,1, y1,0, y1,1, . . . , yn−1,0, yn−1,1) = It (R)(y0,t , y1,t , . . . , yn−1,t ).

(Note that yi,t is of the same sort as free the variables of πt for all i < n and t < 2.)
Fix A ∈ K0 ∗ K1. Let f A : A → (π0 × π1)(C) be given by, for all a ∈ A,

f A(a) = ( f0,A|L0 (a), f1,A|L1 (a)).

Then, we get that, for all R ∈ sig(L2), for all a ∈ Aarity(R),

A |� R(a) ⇐⇒ C |� I (R)( f A(a)).

Thus, (I , f A)A∈K0∗K1 is a (K0 ∗ K1)-configuration into π0 × π1. ��
Corollary 4.12 Let K be a strong amalgamation Fraïssé class in a finite relational
language and let T0 be the theory of the Fraïssé limit of K. If x is a tuple of variables
with n = |x | in T0, then there exists a K∗n-configuration into x = x.

Proof Use Lemma 4.4, Proposition 4.11, and induction. ��
We can “compose” configurations, as long as the first configuration is parameter-

free and the second is injective.

Proposition 4.13 For each t < 2, letKt be a strong amalgamation Fraïssé class over
a finite relational language Lt . Suppose that π(z) is a partial type in T and suppose
y is an n-tuple of variables in the Fraïssé limit of K1 for some n < ω. Suppose there
exist an injectiveK1-configuration into π and a parameter-freeK0-configuration into
y = y. Then, there exists a K0-configuration into π×n.

Proof Let (I , f A)A∈K0 be a K0-configuration into y = y. Since the theory of the
Fraïssé limit of K1 has quantifier elimination, we may assume that, for each R ∈
sig(L0), I (R) is a quantifier-free L1-formula. Let (J , gB)B∈K1 be aK1-configuration
into π(z). Extend J to sig(L1) ∪ {=} by setting

J (=)(z0, z1) = [z0 = z1].

Define H : sig(L0) → L(C) by the following method: For each k-ary R ∈ sig(L0),
consider I (R)(y0, . . . , yk−1) (so yi = (yi,0, . . . , yi,n−1) for each i < k). For each
S(yi0, j0 , . . . , yi
−1, j
−1) ∈ sig(L1) ∪ {=} used in I (R), replace it with

J (S)(zi0, j0 , . . . , zi
−1, j
−1).

This creates an L(C)-formula in the variables ((zi, j ) j<n)i<k ; call it H(R). For each
A ∈ K0, choose B ∈ K1 so that the image of f A is contained in Bn (we can do this
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since f A maps into n-tuples of the Fraïssé limit ofK1). Then, define hA : A → π×n(C)

by setting hA(a) = gB( f A(a)) for all a ∈ A. It is easy to check that (H , hA)A∈K0 is
a K0-configuration into π×n .

��
We analyze how the properties of being definably self-similar and being age indi-

visible translate to configurations. Being age indivisible manifests in a uniformity
condition on L-types.

Proposition 4.14 Suppose that K is an age indivisible strong amalgamation Fraïssé
class in a finite relational language L0 with Fraïssé limit � and suppose that π(y) is
a partial type in T . For all small C ⊆ C, if there exists a K-configuration into π over
C, then there exist I : sig(R0) → L(C) and f : � → π(C) such that

(1) for all R ∈ sig(L0), for all a ∈ �arity(R),� |� R(a) if and only ifC |� I (R)( f (a));
and

(2) for all a, b ∈ �,

tpL( f (a)/C) = tpL( f (b)/C).

Proof Take I : sig(L0) → L(C) and f : � → π(C) as in Lemma 4.2. Take 	 as in
the proof of Lemma 4.2, with the additional formulas:

(3) ψ(ya) ↔ ψ(yb) for all ψ ∈ L(C) and a, b ∈ �.

Fix 	0 ⊆ 	 finite. Then, there exists a finite set of L(C)-formulas �(y) and a
finite A ⊆ � so that 	0 mentions only variables ya for a ∈ A and only formulas
ψ(ya) ↔ ψ(yb) for ψ ∈ � and a, b ∈ A. Consider the coloring c : � → �2 so that,
for all a ∈ � and ψ ∈ �,

c(a)(ψ) = 1 ⇐⇒ C |� ψ( f (a)).

SinceK is age indivisible, there exists an embedding g : A → � such that c is constant
on g(A). Thus, we get. ( f (g(a)))a∈A |� 	0.

By compactness and saturation, there exists (ca)a∈� |� 	. Define f ′ : � → π(C)

by setting f ′(a) = ca . Then, f ′ is the desired function. ��
Note that, if we take C so that π is over C , then Proposition 4.14 is saying that

we can choose f so that f maps into the realizations of some complete type over C
extending π .

When K is definably self-similar, we get a stronger condition on L-types. For all
A ⊆ �, let S(A) be the set of all complete, non-algebraic 1-L0-types over A.

Proposition 4.15 Suppose that K is a definably self-similar strong amalgamation
Fraïssé class in a finite relational language L0 with Fraïssé limit � and suppose
that π(y) is a partial type in T . For all small C ⊆ C, if there exists aK-configuration
into π over C, then there exist I : sig(R0) → L(C), f : � → π(C), and J ⊆ |y|
such that
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(1) for all R ∈ sig(L0), for all a ∈ �arity(R),� |� R(a) if and only ifC |� I (R)( f (a));
and

(2) for all a, b ∈ �, tpL( f (a)/C) = tpL( f (b)/C);
(3) for all j ∈ J and all a, b ∈ �, f (a) j = f (b) j ; and
(4) for all finite A ⊆ � and all p ∈ S(A), there exists b |� p such that, for all

i, j ∈ |y| \ J and all a ∈ A, f (a)i �= f (b) j .

Proof By Proposition 4.14, there exist I and f such that (1) and (2) hold.
For conditions (3) and (4), start with J = ∅ and construct J recursively as follows:

For any J satisfying condition (3), assume that condition (4) fails. So there exist a finite
A ⊆ � and p ∈ S(A) such that, for all b |� p, there exist i, j ∈ |y|\ J and a ∈ A such
that f (a)i = f (b) j . Let �′ = {b ∈ � : b |� p}. Since K is definably self-similar,
�′ ∼= �. Consider a coloring c : �′ → (|y| \ J )2 × A given by c(b) = (i, j, a) for
some choice of i, j ∈ |y| \ J and a ∈ A such that f (a)i = f (b) j . By Lemma 3.15,
we may assume that c is constant. Thus, for all b, d ∈ �′, f (b) j = f (a)i = f (d) j
(in other words, condition (3) holds on �′ for J ∪ { j}). Add j to J and replace � with
�′. Repeat this process. Since |y| is finite, this will eventually terminate. This gives
us the desired conclusion. ��

We use Proposition 4.14 and Proposition 4.15 in Sect. 6.4 to compute K-ranks for
particular choices of K.

5 Dividing lines

Before defining and studying K-ranks, we first connect the notions discussed above
with the ideas considered in [7].

Definition 5.1 LetK be a strong amalgamation Fraïssé class. Define CK to be the class
of all complete theories T with infinite models such that there exists aK-configuration
into some partial type π (in this case, we will say that T admits a K-configuration).

Note that our definition of CK coincideswith the definition ofCK from [7] in the case
where K is an indecomposable strong amalgamation Fraïssé class (see Observation
2.12 of [7]). In that paper, the authors establish a quasi-order on theories, use this
quasi-order to define classes of theories, and show that these classes are exactly those
of the form CK for some indecomposable strong amalgamation Fraïssé class, K (see
Theorem 2.17 of [7] for more details).

How do the classes CK relate to known dividing lines in model theory? First of all,
CS = CE is the class of all complete theories with infinite models. What about more
interesting K? The following theorem describes the relationship of CK to the classes
of theories that are stable, NIP, and k-dependent.

Theorem 5.2 (Proposition 4.31 of [7], Proposition 5.2 of [4]) Let T be a complete
first-order theory with infinite models.

(1) T is stable if and only if T /∈ CLO.
(2) T has NIP if and only if T /∈ CG.
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(3) For all k ≥ 2, T has (k − 1)-dependence if and only if T /∈ CHk .

Proof If ϕ(y; z) is a witness to the order property, then the map I sending < to

ϕ∗(y0, z0; y1, z1) = ϕ(y0; z1)

witnesses that there exists an LO-configuration into C|y|+|z|. Similar arguments can
be made for the (k − 1)-independence property and Hk-configurations for k ≥ 2; see
the proof of Lemma 2.2 of [13].

��
Definition 5.3 Given two strong amalgamation Fraïssé classesK0 andK1, we say that

K0 � K1

if the theory of the Fraïssé limit of K1 is in CK0 . We say

K0 ∼ K1

if K0 � K1 and K1 � K0.

Proposition 5.4 Fix strong amalgamation Fraïssé classes K0, K1, and K2.

(1) � is a quasi-order on strong amalgamation Fraïssé classes.
(2) K0 � K0 ∗ K1.
(3) if K0 � K2 and K1 � K2, then K0 ∗ K1 � K2.
(4) K0 � K1 if and only if CK1 ⊆ CK0 .
(5) K0 ∼ K1 if and only if CK0 = CK1 .

Proof For each i < 3, let Li be the language of Ki and let Ti be the theory of the
Fraïssé limit of Ki .

(1): By Lemma 4.4, T0 admits a K0-configuration. Hence, K0 � K0. So � is
reflexive.

Assume that K0 � K1 and K1 � K2. Then, T1 admits a K0-configuration
and T2 admits a K1-configuration. By Lemma 4.6, T1 admits a parameter-free K0-
configuration and, by Lemma 4.7, T2 admits an injective K1-configuration. So, by
Proposition 4.13, T2 admits a K0-configuration. Thus, K0 � K2. So � is transitive.

(2): Let T0 ∗T1 be the theory of the Fraïssé limit ofK0 ∗K1. By (1), T0 ∗T1 admits a
(K0 ∗K1)-configuration. However,K0 is a reductive subclass ofK0 ∗K1. By Lemma
4.10, T0 ∗ T1 admits a K0-configuration.

(3): AssumeK0 � K2 andK1 � K2. Thus, T2 admits aK0-configuration and aK1-
configuration. By Proposition 4.11, T2 admits a (K0 ∗ K1)-configuration. Therefore,
K0 ∗ K1 � K2.

(4), (⇒): Assume K0 � K1 and T ∈ CK1 . By Lemma 4.6, T1 admits a parameter-
free K0-configuration. By Lemma 4.7, T admits an injective K1-configuration. By
Proposition 4.13, T admits a K0-configuration. Thus, T ∈ CK0 .

(4), (⇐): Assume CK1 ⊆ CK0 . By Lemma 4.4, T1 is in CK1 . Therefore, it is in CK0 .
Therefore, K0 � K1.

(5): Follows immediately from (4). ��
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From this proposition, we get a characterization of when a free superposition of
two classes is equivalent to one of the classes. This corollary is a generalization of two
results from [7], namely Corollary 3.10 and Theorem 4.24.

Corollary 5.5 Suppose K0 and K1 are strong amalgamation Fraïssé classes. Then,
K0 � K1 if and only if K0 ∗ K1 ∼ K1.

Proof (⇒): AssumeK0 � K1. By Proposition 5.4 (2),K1 � K0 ∗K1. By Proposition
5.4 (1), K1 � K1. By Proposition 5.4 (3), K0 ∗ K1 � K1. Thus, K0 ∗ K1 ∼ K1.

(⇐): AssumeK0∗K1 ∼ K1. By Proposition 5.4 (2),K0 � K0∗K1. By Proposition
5.4 (1), K0 � K1. ��
Corollary 5.6 If K is a strong amalgamation Fraïssé class and n ≥ 1, then K∗n ∼ K.

Proof Follows from Corollary 5.5 by induction. ��
Corollary 5.7 (Corollary 3.10 of [7]) Let K be a strong amalgamation Fraïssé class
and T the theory of theFraïssé limit ofK. Then, T is unstable if and only ifK∗LO ∼ K.

Proof By Theorem 5.2 (1), T is unstable if and only if T ∈ CLO, which holds if and
only if LO � K. By Corollary 5.5, LO � K if and only if K ∗ LO ∼ K. ��
Corollary 5.8 (Theorem 4.24 of [7]) Let L0 be a finite relational language where each
relation symbol is at least binary. Let HL0 be the class of all L0-hypergraphs (see
Example 3.11). Let k be the largest arity among relation symbols in L0. Then,

HL0 ∼ Hk .

Proof Let k0 ≤ · · · ≤ kn−1 = k list off all arities (with repetition) of the relation
symbols in L0. Then,

HL0 = Hk0 ∗ . . . ∗ Hkn−1 .

Notice thatHm � H
 for eachm ≤ 
. To see this, suppose that E is them-ary relation
symbol for Hm , R is the 
-ary relation symbol for H
, and C is a monster model of
the theory of the Fraïssé limit of H
. Fix c ∈ C
−m and set

I (E)(x0, . . . , xm−1) = R(x0, . . . , xm−1, c).

It is easy to check that this creates an Hm-configuration into C (similar to Example
4.3).

So, by Corollary 5.5,

Hk0 ∗ . . . ∗ Hkn−1 ∼ Hkn−1 .

Therefore, HL0 ∼ Hk . ��
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908 V. Guingona, M. Parnes

6 K-Ranks

In this section, instead of looking at which theories admit aK-configuration (into any
type) for some strong amalgamation Fraïssé classK, we want to pay close attention to
a fixed partial type in the target. We aim to count the number of “independent copies”
of a single class K that we can code into a partial type. Let T be a complete L-theory
with monster model C and let K be a strong amalgamation Fraïssé class in a finite
relational language L0.

Definition 6.1 Fix n ≥ 1 and π a partial type in T . We say that π has K-rank n if

(1) there exists a K∗n-configuration into π , and
(2) there does not exist a K∗(n+1)-configuration into π .

We say π has K-rank ∞ if there exists a K∗n-configuration into π for all n < ω. We
say π has K-rank 0 if there does not exist a K-configuration into π . We denote the
K-rank of π by RkK(π).

We can apply Lemma 4.5 and Proposition 4.11 to get a few immediate results about
K-rank.

Proposition 6.2 (Superadditivity of K-rank) For all partial types π0 and π1,

RkK(π0 × π1) ≥ RkK(π0) + RkK(π1).

Proof Follows immediately from Proposition 4.11. ��
Definition 6.3 We say RkK is additive if, for all partial types π0 and π1, if RkK(π0) <

∞ and RkK(π1) < ∞, then

RkK(π0 × π1) = RkK(π0) + RkK(π1).

For example, dp-rank is additive in the above sense [11]. Similarly, op-dimension
is additive [6]. This leads to the following question.

Question 6.4 Under what conditions on K and T is K-rank additive?

We present some partial results to Question 6.4 later in this section (see Example
6.10 and Example 6.17).

Lemma 6.5 If π0(y) and π1(y) are partial types in T and π0(y) � π1(y), then

RkK(π0) ≤ RkK(π1).

Proof Follows immediately from Lemma 4.5. ��
Overloading notation, for each n ≥ 1, we can define RkK(n) as follows: Fix an

arbitrary n-tuple of variables y from T and set

RkK(n) = RkK(y = y).

This is clearly independent of the choice of y.
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Ranks based on strong amalgamation Fraïssé classes 909

Lemma 6.6 For all 1 ≤ n < m < ω,

RkK(n) ≤ RkK(m).

Proof Suppose RkK(n) = 
. Then, there exists a K∗
-configuration into Cn . Clearly
there exists an S-configuration intoCm−n . By Proposition 4.11, there exists a (K∗
∗S)-
configuration into Cm . Since K∗
 ∗ S = K∗
, we get that RkK(m) ≥ 
. ��

Using the terminology of Sect. 5, note that T ∈ CK if and only if T is a complete
theory with infinite models such that RkK(n) > 0 for some n ≥ 1. Moreover, by
Corollary 5.6, if T ∈ CK, then T has types with arbitrarily large K-rank and, if
T /∈ CK (but T is a complete theory with infinite models), then all types in T have
K-rank 0.

In the following subsections, we will analyze K-rank for particular choices of K.

6.1 Linear order rank

For this subsection, we consider the strong amalgamation Fraïssé class LO. For any
m ≥ 1, let Lm be the language of LO∗m , which consists of m binary relation symbols
<i for i < m.

It turns out that LO-rank is closely related to op-dimension. For any partial type in
any theory, we get that the op-dimension is an upper bound for theLO-rank.Moreover,
if the target theory has NIP, then op-dimension coincides with LO-rank.

Proposition 6.7 For any partial type π in any theory T ,

RkLO(π) ≤ opDim(π).

Proof Assume RkLO(π) ≥ m. Let C be a monster model for T and let (I , f A)A∈LO∗m
be an LO∗m-configuration. So, for all A ∈ LO∗m , for all a, b ∈ A, for all i < m,

A |� a <i b ⇐⇒ C |� I (<i )( f A(a), f A(b)).

Fix n < ω. We will use this configuration to build an IRD-pattern of depth m and
length n in π . Begin by creating an A ∈ LO∗m with universe m(2n) by setting, for
all g, h ∈ A and i < m, g <i h if g(i) < h(i) or g(i) = h(i) and g( j) < h( j) for
minimal j < m such that g( j) �= h( j). Clearly, for all i < m, for all g, h ∈ A,

g(i) < h(i) �⇒ A |� g <i h

(but not conversely).
For g ∈ mn, let dg = f A(g′), where g′ ∈ m(2n) is such that g′(i) = 2g(i) + 1 for

all i < m. For j < n, let c j = f A(h′), where h′ ∈ m(2n) is such that h′(i) = 2 j for
all i < m. Then, for all g ∈ mn, i < m, and j < n,

C |� I (<i )(dg, c j ) ⇐⇒ 2g(i) + 1 < 2 j ⇐⇒ g(i) < j .
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910 V. Guingona, M. Parnes

Thus, for each g ∈ mn,

π(y) ∪ {I (<i )(y, c j )
iff g(i)< j : i < m, j < n}

is consistent. This is an IRD-pattern of depthm and length n inπ . Since nwas arbitrary,
by compactness, π has op-dimension ≥ m. ��

Before showing that LO-rank and op-dimension coincide for NIP theories, we
mention a trick (essentially Proposition 1.18 of [6]) that follows from the fact that
LO∗m has the Ramsey property.

Remark 6.8 Suppose that T is a complete L-theory for any language L , π is a partial
type in T ,K is a Ramsey class with Fraïssé limit �, and there exists aK-configuration
into π . Then, by Theorem 3.12 of [15], the function f in Lemma 4.2 can be chosen
so that, for all n < ω, a, b ∈ �n ,

qftpL0
(a) = qftpL0

(b) �⇒ tpL( f (a)) = tpL( f (b)).

SinceLO is a Ramsey class,LO∗m is a Ramsey class by Theorem1.5 of [1]. Therefore,
in particular, this holds when K = LO∗m .

Proposition 6.9 If T has NIP, then, for all partial types π ,

RkLO(π) = opDim(π).

This proof loosely follows the proof of Theorem 3.4 of [8], modified to fit into our
current framework.

Proof The previous proposition gives us RkLO(π) ≤ opDim(π). To prove the con-
verse, suppose that π has op-dimension ≥ m. Therefore, there exists an IRD-pattern
of depth m and length ω in π . That is, there exist L(C)-formulas ϕi (y, zi ) for i < m
and ci, j ∈ C|zi | for i < m and j < ω such that, for all g : m → ω, the partial type

π(y) ∪ {ϕi (y, ci, j )iff g(i)< j : i < m, j < ω}

is consistent. Say it is realized by bg ∈ C|y|. By coding tricks, we may assume that
there exists an L-formula ϕ(y, z) such that ϕi = ϕ for all i < m.

First, we create a function f : � → π(C), where � is the Fraïssé limit of LO∗m .
Fix A ∈ LO∗m and suppose that n = |A|. Choose an injective function η : A → mn
such that, for all a, a′ ∈ A and for all i < m, η(a)(i) < η(a′)(i) if and only if a <i a′.
For all i < m, j < n, and a ∈ A, notice that

C |� ϕ(bη(a), ci, j ) ⇐⇒ η(a)(i) < j .

Therefore, for all i < m, for all <i -cuts Y of A, there exists c ∈ C|z| such that

Y = {a ∈ A : C |� ϕ(bη(a), c)}.
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Ranks based on strong amalgamation Fraïssé classes 911

Consider the function a �→ bη(a) from A to π(C). By compactness, there exists a
function f : � → π(C) such that, for all i < m, for all <i -cuts Y of �, there exists
c ∈ C|z| such that

Y = {a ∈ � : C |� ϕ( f (a), c)}.
By Remark 6.8, we can assume that f : � → π(C) is a generalized indiscernible.
Therefore, for each k < ω and each quantifier-free Lm-type p(x0, . . . , xk−1), we
have an associated L-type p∗(y0, . . . , yk−1) (over the same parameters as π and ϕ)
extending π(y0)∪ · · · ∪π(yk−1) such that, for all a ∈ �k , if a |� p, then f (a) |� p∗.

Since T has NIP, ϕ(y, z) has VC-dimension < k for some k < ω. In other words,

C |� ¬∃y0 . . . ∃yk−1

∧

s∈k2

(
∃z

∧

<k

ϕ(y
, z)
s(
)

)
.

For each t ∈ m2, define the quantifier-free 2-Lm-type pt (x0, x1) as follows: pt �
x0 �= x1 and, for all i < m, pt � x0 <i x1 if and only if t(i) = 1.We can extend this to
a quantifier-free k-Lm-type qt (x0, . . . , xk−1) as follows: for all 
 �= 
′, qt � x
 �= x
′
and, for all i < m, for all 
 < k − 1, qt � x
 <i x
+1 if and only if t(i) = 1.

Now fix t, t ′ ∈ m2 distinct. We may assume, by perhaps swapping t and t ′, that
there exists i0 < m such that t(i0) = 1 and t ′(i0) = 0. Since ϕ has VC-dimension
< k, there exists s ∈ k2 such that

q∗
t (y0, . . . , yk−1) � ¬∃z

∧

<k

ϕ(y
, z)
s(
).

Wedefine qr and σr recursively as follows: Let q0 = qt and σ0 the identity permutation
on k. Fix r ≥ 0 and assume that we have constructed qr and σr such that

qr (x0, . . . , xk−1) � xσr (0) <i0 xσr (1) <i0 · · · <i0 xσr (k−1). (1)

Then, choose 
r < k − 1 minimal such that s(σr (
r )) = 0 and s(σr (
r + 1)) = 1.
Note that, if no such 
r exists, then

q∗
r (y0, . . . , yk−1) � ∃z

∧

<k

ϕ(yσr (
)
, z)s(σr (
)),

since it is a <i0 -cut. In particular, 
0 exists.
Let σr+1 = σr ◦ (
r 
r + 1) and let qr+1 be qr except, for each i < m, we replace

(x
r <i x
r+1)
t(i) with (x
r <i x
r+1)

t ′(i).

In particular, we maintain that qr+1 and σr+1 satisfy (1). Terminate the construction
when we first have

q∗
r+1(y0, . . . , yk−1) � ∃z

∧

<k

ϕ(y
, z)
s(
)
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912 V. Guingona, M. Parnes

Choose a ∈ �k such that a |� qr . Let

ψt,t ′(y0, y1) := ¬∃z(ϕ( f (a0), z)
s(0) ∧ · · · ∧ ϕ( f (a
r−1), z)

s(
r−1)∧
ϕ(y0, z)

s(
r ) ∧ ϕ(y1, z)
s(
r+1)∧

ϕ( f (a
r+2), z)
s(
r+2) ∧ · · · ∧ ϕ( f (ak−1), z)

s(k−1)).

Consider the set

�′ = {a ∈ � : (a0, . . . , a
r−1, a, a
r+2, . . . , ak−1) |� qr |x0,...,x
r ,x
r+2,...,xk−1}.

Since LO∗m is definably self-similar, �′ ∼= �. Notice that, for all a, b ∈ �′,

• If (a, b) |� pt , then (a0, . . . , a
r−1, a, b, a
r+2, . . . , ak−1) |� qr , hence C |�
ψt,t ′( f (a), f (b)).

• If (a, b) |� pt ′ , then (a0, . . . , a
r−1, a, b, a
r+2, . . . , ak−1) |� qr+1, hence C |�
¬ψt,t ′( f (a), f (b)).

Replace � with �′ and repeat this process for all distinct t, t ′ ∈ m2.
For t ∈ m2, let

ψt (y0, y1) :=
∧

t ′∈m2,t ′ �=t

ψt,t ′(y0, y1).

Finally, for i < m, let

ψi (y0, y1) :=
∨

t∈m2,t(i)=1

ψt (y0, y1).

Then, it is clear that, for all a, b ∈ � and i < m,

a <i b if and only if C |� ψi ( f (a), f (b)).

By Lemma 4.2, there exists an LO∗m-configuration into π . Thus, RkLO(π) ≥ m. ��
Note that this proof uses generalized indiscernibles; this is the only such use in

this paper. In future work, we would like to remove the need for indiscernibility so
that arguments such as these can be generalized to Fraïssé classes without the Ramsey
Property.

Example 6.10 (NIP) Suppose T has NIP. Then LO-rank is precisely op-dimension. In
particular, LO-rank is additive (see Theorem 2.2 of [6]).

If T is distal, then op-dimension coincides with dp-rank (see Remark 3.2 of [6]).
Therefore, for distal T , LO-rank is dp-rank.

In the next example, we show that LO-rank can jump from 0 to ∞ in a theory with
the independence property.
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Ranks based on strong amalgamation Fraïssé classes 913

Example 6.11 Let L consist of infinitely many binary relation symbols Ri for i < ω

and let T be the model companion of the theory of L-hypergraphs. Then,

RkLO(1) = 0 and RkLO(2) = ∞.

Proof Let C be a monster model for T and let � be the Fraïssé limit of LO. Towards a
contradiction, suppose there exists anLO-configuration intoCover some smallC ⊆ C.
Since LO is definably self-similar, there exists a function f : � → C satisfying the
conclusion of Proposition 4.14. Thus, since L is a binary language, for all a, b ∈ �,
the type tpL( f (a), f (b)/C) is determined by the type tpL( f (a), f (b)). On the other
hand, since T is symmetric,

tpL( f (a), f (b)) = tpL( f (b), f (a)).

Therefore, � |� a < b if and only if � |� b < a, a contradiction.
On the other hand, fix m < ω. For each i < m, let

I (<i )(y0,0, y0,1, y1,0, y1,1) = Ri (y0,0, y1,1).

For each A ∈ LO∗m , there exists a function f A : A → C2 such that, for all a, b ∈ A
and i < m,

A |� a <i b ⇐⇒ C |� I (<i )( f A(a), f A(b)).

Hence, (I , f A)A∈LO∗m is an LO∗m-configuration into C2. ��

6.2 Equivalence class rank

For this subsection, we consider the strong amalgamation Fraïssé class E. For any
m ≥ 1, let Lm be the language of E∗m , which consists of m binary relation symbols,
Ei for i < m.

It turns out that E-rank is bounded above by dp-rank.

Proposition 6.12 For any partial type π in any theory T ,

RkE(π) ≤ dpRk(π).

Proof This follows similarly to the proof of Proposition 6.7. Suppose RkE(π) ≥ m.
Let� be the Fraïssé limit ofE∗m and let C be a monster model for T . Let (I , f A)A∈E∗m
be an E∗m-configuration into C. So, for all i < m, for all A ∈ E∗m , for all a, b ∈ A,

A |� Ei (a, b) ⇐⇒ C |� I (Ei )( f A(a), f A(b)).

Fix n < ω. Create A ∈ E∗m with universe mn by setting, for all i < m and g, h ∈ A,

A |� Ei (g, h) ⇐⇒ g(i) = h(i).

123



914 V. Guingona, M. Parnes

For g ∈ A, let cg = f A(g). Thus, for all i < m, for all g, h ∈ A,

C |� I (Ei )(cg, ch) ⇐⇒ g(i) = h(i).

For each j < n, overloading notation, let j denote the function from m to n that is
constantly j . Then, for each g ∈ mn, we have that

π(y) ∪ {I (Ei )(y, c j )
iff g(i)= j : i < m, j < n}

is consistent (realized by cg). This is an ICT-pattern of depth m and length n in π .
Since n was arbitrary, by compactness, π has dp-rank ≥ m. ��

Moreover, E-rank is bounded below by the dimension of the target type (assuming
the target theory has infinite models).

Proposition 6.13 For all theories T with infinite models,

RkE(m) ≥ m.

Proof Since T has infinite models, there exists an injective function g : ω → C. Fix
a tuple of variables y and let m = |y|. Fix A ∈ E∗m and choose n < ω such that A
embeds into nm+1 viewed as an element of E∗m as in Lemma 3.18.

Thus, we may assume A is this Lm-structure on nm+1. Let f A : A → Cm be given
by f A(a) = (g(a0), . . . , g(am)) for each a ∈ nm+1.

For each i < m, let

I (Ei )(y0,0, . . . , y0,m, y1,0, . . . , y1,m) = [
y0,i = y1,i

]
.

It is easy to check that (I , f A)A∈E∗m is an E∗m-configuration into y = y. Thus,
RkE(m) ≥ m. ��

We say that a theory T is dp-minimal if dpRk(y = y) = 1 for some (any) single
variable y in T . Combining the previous two results, we conclude that E-rank is
precisely equal to the dimension of the target type in dp-minimal theories.

Corollary 6.14 Let T be a dp-minimal theory with infinite models. Then,RkE(m) = m.

Proof Let y be an m-tuple of variables from T . By Proposition 6.13,

RkE(y = y) ≥ |y|.

Since dp-rank is subadditive [11], dpRk(y = y) ≤ |y|. So, by Proposition 6.12,

RkE(y = y) ≤ dpRk(y = y) ≤ |y|.

Thus, RkE(y = y) = dpRk(y = y) = |y|. ��
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Ranks based on strong amalgamation Fraïssé classes 915

Question 6.15 If T is dp-minimal and π is a partial type in T , then does RkE(π) =
dpRk(π)? More generally, under what conditions does RkE(π) = dpRk(π)?

Although this question is still open, we have examples where E-rank and dp-rank
differ, even in an NIP theory.

Example 6.16 Fix k ≥ 2 and let T be the theory of the Fraïssé limit ofLO∗k . We claim
that, in the theory T ,

⌊
k

2

⌋
≤ RkE(1) < k.

(On the other hand, dpRk(y = y) = k, so these ranks disagree.)

Proof Let m = �k/2� and fix A ∈ E∗m . As in the proof of Proposition 6.13, there
exists n < ω such that A embeds into X = nm+1 with Lm-structure given in Lemma
3.18. For each i < m, we define two linear orders <2i and <2i+1 on X as follows: for
all a, b ∈ X , let

• a <2i b if ai < bi or ai = bi and a j0 < b j0 where j0 = min{ j < n : a j �= b j },
and

• a <2i+1 b if ai > bi or ai = bi and a j0 < b j0 where j0 = min{ j < n : a j �= b j }.
It is clear from definition that, for all i < m, for all a, b ∈ X ,

Ei (a, b) ⇐⇒ (a <2i b ↔ a <2i+1 b).

If k = 2m + 1, then define <2m arbitrarily. Since (X ,<i )i<k is an element of LO∗k ,
we get an embedding of X into C, the monster model of T . Composing this function
with the one sending A to X , we get a function f A : A → C such that, for all a, b ∈ A
and i < m,

A |� Ei (a, b) ⇐⇒ ( f A(a) <2i f A(b) ↔ f A(a) <2i+1 f A(b)).

For each i < m, let

I (Ei )(y0, y1) := [
y0 <2i y1 ↔ y0 <2i+1 y1

]

Then, (I , f A)A∈E∗m is an E∗m-configuration into C. Thus, RkE(1) ≥ m.
On the other hand, suppose that � is the Fraïssé limit of E∗k , C is a monster model

of T , and there exists anE∗k-configuration over a finiteC . SinceE∗k is age indivisible,
there exists a function f : � → C satisfying the conclusion of Proposition 4.14. Fix
a ∈ � and, for each s ∈ k2, choose bs ∈ � such that, for all i < k, Ei (a, bs) if and
only if s(i) = 1. Consider the 2-types in T :

ps,0 = tpL( f (a), f (bs)) and ps,1 = tpL( f (bs), f (a)).

Since L has only binary relations and each f (a) and f (bs) have the same L-type over
C , these types determine the L-types over C . For any s not the identically 1 function,
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916 V. Guingona, M. Parnes

f (a) �= f (bs). Otherwise, suppose that f (a) = f (bs) where s ∈ k2 with s(i) = 0.
Then, we get that

tpL( f (a), f (b1)/C) = tpL( f (bs), f (b1)/C)

(where 1 is the identically 1 function). Since � |� Ei (a, b1), this implies that � |�
Ei (bs, b1), hence � |� Ei (a, bs), which is a contradiction. Similarly, for s and t not
identically 1, if (s, i) �= (t, j), then ps,i �= pt, j . Therefore, we have at least 2 ·(2k −1)
many non-equality 2-types in T . On the other hand, there are 2k many non-equality
2-types in T (one type for each possible assignment of x <i y or x >i y for all i < k).
Thus, 2k+1 − 2 ≤ 2k , a contradiction. Therefore, there is no E∗k-configuration into
y = y. Thus, RkE(y = y) < k. ��

6.3 Graph rank

For this subsection, we consider the strong amalgamation Fraïssé class G.

Example 6.17 [NIP] If T is a theory with NIP, then, for all types π in T , RkG(π) = 0.
Thus, G-rank is trivially additive.

Proof This follows from Theorem 5.2 (2) and Corollary 5.6. ��
Similar to LO-rank, the G-rank can jump from 0 to ∞ in a theory with the inde-

pendence property.

Example 6.18 Let L be the language consisting of binary relation symbols Ri for
i < ω and let T be the model companion of the theory of L-structures for which Ri

is a triangle-free graph for all i < ω. Then,

RkG(1) = 0 and RkG(2) = ∞.

Proof Let C be a monster model for T . Towards a contradiction, suppose there exists
(I , f A)A∈G aG-configuration into C. Fix n < ω such that I (E) mentions only Ri for
i < n. By quanitifier elimination, there exists S ⊆ n2 such that

I (E)(y0, y1) =
∨
s∈S

∧
i<n

Ri (y0, y1)
s(i).

By swapping E with ¬E if necessary, we may assume the constant zero function is
not in S. If we consider a finite complete graph A, then f A(A) can be viewed as a
complete graph with edge colors in S. By Ramsey’s Theorem, for sufficiently large
A, there exists a triangle of a fixed color s0 ∈ S. By assumption, there exists i0 < n
such that s0(i0) = 1, so this is an Ri0 -triangle. This is a contradiction.

Fix an arbitrary m < ω and define, for each i < m, L-formulas as follows:

I (Ei )(y0,0, y0,1, y1,0, y1,1) = Ri (y0,0, y1,1) ∧ Ri (y0,1, y1,0).
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Ranks based on strong amalgamation Fraïssé classes 917

For any A ∈ G∗m , there exists a function f A : A → C2 such that, for all a, b ∈ A and
i < m,

A |� Ei (a, b) ⇐⇒ C |� I (Ei )( f A(a), f A(b)).

That is, (I , f A)A∈G∗m is a G∗m-configuration into C2. ��

6.4 Into the random graph

In this subsection, we study the specific case where the target theory is the theory
of the random graph. It turns out that K-rank, for various examples of K, acts in an
interesting manner in this theory.

For this subsection, let T be the theory of the random graph in the language L
with a single binary relation R and let C be a monster model for T . Let K be a strong
amalgamation Fraïssé class in a language L0 with a single binary relation symbol, E .
For any m ≥ 1, let Lm be the language of K∗m , which consists of m binary relation
symbols; call them Ei for i < m. Let � be the Fraïssé limit of K∗m .

Fix n ≥ 1 and, for each t < 2, consider the set Xt = n × {t}. Let Gn be the set of
bipartite graphs with parts X0 and X1. Then, |Gn| = 2n

2
. Say thatG = (X0∪X1, F) ∈

Gn is symmetric if, whenever {(i, 0), ( j, 1)} ∈ F , {( j, 0), (i, 1)} ∈ F . Let Gn
s be the

set of symmetric bipartite graphs with parts X0 and X1 and let Gn
ns be the set of

non-symmetric bipartite graphs with parts X0 and X1. Notice that |Gn
s | = 2(

n+1
2 ). To

see this, observe that, for each i ≤ j < n, we can choose whether or not to put
{(i, 0), ( j, 1)}, {( j, 0), (i, 1)} ∈ F . This gives us

(n
2

) + n = (n+1
2

)
choices. Thus,

|Gn
ns| = 2n

2 − 2(
n+1
2 ) = 2(

n+1
2 )

(
2(

n
2) − 1

)
.

For each G ∈ Gn , let G∗ be the graph where we “swap parts” (i.e., {(i, 0), ( j, 1)} is
an edge of G if and only if {( j, 0), (i, 1)} is an edge of G∗). Clearly (G∗)∗ = G and,
for all G ∈ Gn , G ∈ Gn

s if and only if G∗ = G.
Let S2 denote the set of all quantifier-free 2-Lm-types over ∅, p(x0, x1), such that

(a0, a1) |� p for some distinct a0, a1 ∈ �. For p ∈ S2, let p∗ be the type in S2 such
that, for all i < m,

p∗(x0, x1) � Ei (x0, x1) ⇐⇒ p(x0, x1) � Ei (x1, x0).

The next three propositions give conditions on K that guarantee that RkK(n) =
n2 − 1 for n ≥ 2. These conditions are met by LO, G, and T.

Proposition 6.19 Fix n ≥ 1. Assume that K is either reflexive or irreflexive. Assume
also that K is either symmetric or trichotomous. Then,

RkK(n) ≥ n2 − 1.

Moreover, this is witnessed by a parameter-free configuration.
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918 V. Guingona, M. Parnes

Proof We may assume n ≥ 2, since the statement is trivial when n = 1.
Let m = n2 − 1 and let y be an n-tuple of variables from T . Consider the function

g : S2 → m2 where, for all p ∈ S2 and i < m,

g(p)(i) = 1 ⇐⇒ p(x0, x1) � Ei (x0, x1).

Since K is symmetric or trichotomous and K is reflexive or irreflexive, g is injective.
Thus, |S2| ≤ 2m .

Choose any injective function h : S2 → P(Gn) with the following conditions:

(1) If K is symmetric, then, for all p ∈ S2, h(p) = {G,G∗} for some G ∈ Gn .
(2) If K is trichotomous, then, for all p ∈ S2, h(p) = {G} for some G ∈ Gn

ns and
h(p∗) = (h(p))∗.

To see that such an h exists, we have to consider two cases:

Case 1. K is symmetric.

In this case, the number of allowed outputs for h is

|Gn
s | + 1

2
|Gn

ns| = 2(
n+1
2 ) + 1

2

(
2n

2 − 2(
n+1
2 )

)

= 2n
2−1 + 2(

n+1
2 )−1 ≥ 2n

2−1.

Case 2. K is trichotomous.

In this case, the number of allowed outputs for h is

|Gn
ns| = 2(

n+1
2 )

(
2(

n
2) − 1

)
≥ 2n

2−1.

In either case, the number of allowed outputs for h is at least

2n
2−1 = 2m ≥ |S2|.

Therefore, such a function h exists.
For each G = (X0 ∪ X1, F) ∈ Gn , let

ϕG(y0,0, . . . , y0,n−1, y1,0, . . . , y1,n−1) =
∧
i, j<n

R(y0,i , y1, j )
iff {(i,0),( j,1)}∈F .

Finally, for each i < m, let

I (Ei )(y0, y1) =
∨

p∈S2,p(x0,x1)�Ei (x0,x1)

⎛
⎝ ∨

G∈h(p)

ϕG(y0, y1)

⎞
⎠ .
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Ranks based on strong amalgamation Fraïssé classes 919

For any A ∈ K∗m , consider the set n × A and endow it with an R-graph structure as
follows: For all distinct a, b ∈ A, choose some G = (X0 ∪ X1, F) ∈ h(qftpL0

(a, b)).
For all i, j < n, define

R((i, a), ( j, b)) ⇐⇒ {(i, 0), ( j, 1)} ∈ F

and add no other R-edges among n × {a, b}. Since C is a model of the random graph,
this R-structure on n×A embeds intoC, say via g : (n×A) → C. Define fA : A → Cn

by setting f A(a) = (g(i, a))i<n . Then, it is clear that, for all a, b ∈ A and i < m,

A |� Ei (a, b) ⇐⇒|� I (Ei )( f A(a), f A(b)).

Thus, (I , f A)A∈K∗m is a K∗m-configuration into y = y. Moreover, notice that this
gives us a parameter-free configuration. ��
Proposition 6.20 Fix n ≥ 1. Assume that K is definably self-similar and fully rela-
tional. Then,

RkK(n) ≤ n2.

Proof Fix m ≥ 1 and let y be an n-tuple of variables from T . Suppose that there
exists aK∗m-configuration into y = y. By Proposition 3.16, sinceK is definably self-
similar, K∗m is definably self-similar. Since K∗m is definably self-similar, we may
assume that there exist I , f , and J satisfying the conclusion of Proposition 4.15. That
is, I : sig(L0) → L(C), f : � → Cn , and J ⊆ |y| are such that

(1) for all i < m, for all a, b ∈ �,� |� Ei (a, b) if and only ifC |� I (Ei )( f (a), f (b));
(2) for all a, b ∈ �, tpL( f (a)/C) = tpL( f (b)/C);
(3) for all j ∈ J and all a, b ∈ �, f (a) j = f (b) j ; and
(4) for all p ∈ S2, there exist ap, bp ∈ � such that (ap, bp) |� p and, for all

i, j ∈ |y| \ J , f (ap)i �= f (bp) j .

Since L is a binary language, condition (2) tells us that the type tpL( f (ap), f (bp))
determines the type tpL( f (ap), f (bp)/C).

We get a function h : S2 → Gn as follows: Fix p ∈ S2. For all i, j < n, we
put {(i, 0), ( j, 1)} in the edge set of h(p) if and only if R( f (ap)i , f (bp) j ). If we
have p, p′ ∈ S2 distinct, then tpL( f (ap), f (bp)) and tpL( f (ap′), f (bp′)) disagree
on some formula of the form R(y0,i , y1, j ). Therefore, h(p) �= h(p′). Hence, h is
injective.

Since K is fully relational, by Proposition 3.23, K∗m is fully relational. Thus,
|S2| ≥ 2m . On the other hand, |Gn| = 2n

2
. Therefore, 2m ≤ 2n

2
. Thus, m ≤ n2. ��

Proposition 6.21 Assume that K is either reflexive or irreflexive. Assume that K is
definably self-similar and fully relational.

(1) If K is trichotomous, then RkK(n) < n2 if n ≥ 1.
(2) If K is symmetric, then RkK(n) < n2 if n ≥ 2.
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920 V. Guingona, M. Parnes

Proof Fix m ≥ 1 and n ≥ 1. Let h : S2 → Gn be the injective function from the
proof of Proposition 6.20 and consider the map p �→ (ap, bp) from that proof. We
will show that h is not surjective.

Case 1. K is trichotomous.

If p ∈ S2, then

tpL( f (ap), f (bp)) �= tpL( f (bp), f (ap)).

Otherwise, tpL( f (ap), f (bp)/C) = tpL( f (bp), f (ap)/C), hence Ei (ap, bp) if and
only if Ei (bp, ap) for all i < m, which is a contradiction. Thus, h(p) ∈ Gn

ns � Gn .

Case 2. K is symmetric and n ≥ 2.

If p, p′ ∈ S2 are distinct, then

tpL( f (ap), f (bp)) �= tpL( f (bp′), f (ap′)).

Otherwise, tpL( f (ap), f (bp)/C) = tpL( f (bp′), f (ap′)/C), hence Ei (ap, bp) if and
only if Ei (bp′ , ap′) if and only if Ei (ap′ , bp′) for all i < m, which is a contradiction.
Since n ≥ 2,Gn

ns �= ∅. If p, p′ ∈ S2 are distinct and h(p) ∈ Gn
ns, then h(p) �= (h(p′))∗.

In either case, we see that h is not surjective. Therefore,

2m ≤ |S2| < |Gn| = 2n
2
.

So m < n2. ��
We apply Propositions 6.19, 6.20, and 6.21 to LO, G, and T.

Example 6.22 (K = LO) For all n ≥ 1,

RkLO(n) = n2 − 1.

Proof Since LO is irreflexive and trichotomous, Proposition 6.19 gives us that
RkLO(n) ≥ n2 − 1. Moreover, LO is definably self-similar and fully relational, so
Proposition 6.21 gives us that RkLO(n) < n2. ��
Example 6.23 (K = T) For all n ≥ 1,

RkT(n) = n2 − 1.

Proof Similar to Example 6.22. ��
In this paper, although the focus is not on T-rank, we do get this result “for free.”

In future work, we may examine T-rank in other contexts.
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Ranks based on strong amalgamation Fraïssé classes 921

Example 6.24 (K = G) For all n ≥ 1,

RkG(n) =
{
1 if n = 1,

n2 − 1 if n ≥ 2
.

Proof Since G is irreflexive and symmetric, Proposition 6.19 gives us that RkG(n) ≥
n2 − 1. Moreover,G is definably self-similar and fully relational, so Proposition 6.21
gives us that RkG(n) < n2 for n ≥ 2. To see that RkG(1) = 1, use Proposition 6.20
and Lemma 4.4. ��

We now turn our attention to when K = E. This will take more work because E is
not definably self-similar.

For t ∈ m2 and a, b ∈ ωm , we say that a ≤t b if, for all i < m,

• ai < bi if t(i) = 1 and
• ai = bi if t(i) = 0.

Observe that, for any a, b ∈ ωm , there exists at most one t ∈ m2 such that a ≤t b.
For positive integers m and n, consider the following property, which turns out to

be implied by the existence of an E∗m-configuration into Cn :

(†)m,n : There exists a function f : ωm → Cn such that, for all t, t ′ ∈ m2, for all
a, b, a′, b′ ∈ ωm with a ≤t b and a′ ≤t ′ b

′
,

tpL( f (a), f (b)) = tpL( f (a′), f (b
′
)) ⇐⇒ t = t ′.

In particular, when t = t ′, f (a)
 = f (b)
 if and only if f (a′)
 = f (b
′
)
 for each


 < n. Moreover, by choosing the constantly zero function for t , we see that the
function a �→ tpL( f (a)) is constant. Restricting to 2m ⊆ ωm , we see that, for all
a, b ∈ 2m ,

tpL( f (0), f (a)) = tpL( f (0), f (b)) ⇐⇒ a = b. (2)

As advertised, we get the following lemma.

Lemma 6.25 If there exists an E∗m-configuration into Cn, then (†)m,n holds.

Proof Let (I , f A)A∈E∗m be a E∗m-configuration into Cn over C ⊆ C finite. Fix k < ω.
By Lemma A.1, there exists n < ω such that, for all c : (nm

≤2

) → SL2n(C), there exist

Y0, . . . ,Ym−1 ∈ (n
k

)
such that, for all t ∈ m2, c is constant on

Xt =
{

{a, b} : a, b ∈
∏
i<m

Yi , a ≤t b

}
.

Let A = nm+1 be the Lm-structure given in Lemma 3.18. In particular, this holds for
the coloring c given by, for all a, b ∈ nm with a ≤lex b,

c({a, b}) = tpL( f A(a, 0), f A(b, 0)/C).
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922 V. Guingona, M. Parnes

As k was arbitrary, by compactness, there exists f : ωm → Cn such that, for all
a, b ∈ ωm and i < m, C |� I (Ei )( f (a), f (b)) if and only if ai = bi and, for all
t ∈ m2, the function (a, b) �→ tpL( f (a), f (b)/C) is constant for all a, b ∈ ωm with
a ≤t b. In particular, the function a �→ tpL( f (a)/C) is constant. Since L is a binary
language, the type tpL( f (a), f (b)/C) is determined by the type tpL( f (a), f (b)).
Therefore, f witnesses that (†)m,n holds.

��
Suppose (†)m,n holds for some n,m < ω, witnessed by f . Let ei be the i th standard

basis vector. For each 
 < n, let

V
 = {
a ∈ ωm : f (0)
 = f (a)


}
.

Lemma 6.26 There exists I
 ⊆ m such that

V
 = {a ∈ ωm : (∀i ∈ m \ I
)[ai = 0]}

In other words, V
 is the ω-span of {ei : i ∈ I
}.
Proof Let I
 = {i < m : (∃a ∈ V
)[ai > 0]}. We show this works.

Clearly 0 ∈ V
. Fix a ∈ V
 non-zero and i < m such that ai > 0. Notice that, for
all t ∈ m2,

0 ≤t a ⇐⇒ 0 ≤t a + ei .

By (†)m,n , since f (0)
 = f (a)
, f (0)
 = f (a + ei )
. Thus, f (a)
 = f (a+ ei )
. By
(†)m,n , f (0)
 = f (ei )
. Thus, ei ∈ V
.

Suppose that a, b ∈ V
. Then,

f (0)
 = f (a)
 and f (0)
 = f (b)
.

By (†)m,n , f (a)
 = f (a + b)
. Therefore, a + b ∈ V
.
Putting these facts together, we get the desired conclusion. ��

Lemma 6.27 Suppose (†)m,n holds, witnessed by f . For all 
, 
′ < n and a ∈ ωm, if
f (0)
 = f (a)
′ , then a ∈ V
 ∩ V
′ .

Proof By (†)m,n , f (0)
 = f (2a)
′ , hence f (a)
′ = f (2a)
′ . By (†)m,n , f (0)
′ =
f (a)
′ , hence a ∈ V
′ . On the other hand, by (†)m,n , f (a)
 = f (2a)
′ , hence f (0)
 =
f (a)
. Thus, a ∈ V
. ��
We are now ready to compute RkE(n).

Example 6.28 (K = E) For all n ≥ 1,

RkE(n) =
{
1 if n = 1,

n2 − 1 if n ≥ 2
.
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Proof SinceE is reflexive and symmetric, Proposition 6.19 says that RkE(n) ≥ n2−1.
Moreover, Proposition 6.13 says that RkE(1) ≥ 1.

Towards a contradiction, suppose RkE(1) ≥ 2; hence, (†)2,1 holds, say witnessed
by f : ω2 → C. By (2), this gives us at least four distinct 2-L-types over ∅. On the
other hand, there are only three such types, a contradiction.

So it suffices to show that RkE(n) < n2 when n ≥ 2. To accomplish this, we prove,
by induction on n, that (†)n2,n fails.

We will deal with the base case of n = 2 at the end. Fix n ≥ 3 and assume that
(†)(n−1)2,n−1 fails. Towards a contradiction, suppose that (†)n2,n holds, say witnessed

by f : ωn2 → Cn .

Claim For all 
 < n, |I
| < (n − 1)2 (where I
 is as defined in Lemma 6.26, for this
choice of f ).

Proof of Claim Fix 
 < n. Towards a contradiction, suppose |I
| ≥ (n − 1)2. Let
m = (n − 1)2, let σ : m → I
 be any injective function, and, for each a ∈ ωm , let
aσ ∈ ωn2 be given by

aσ,i =
{
a j if i = σ( j),

0 if i /∈ im(σ )
.

In particular, aσ ∈ V
. Hence, for all a, b ∈ ωm , f (aσ )
 = f (bσ )
. Define f ′ :
ωm → Cn−1 as follows: For each a ∈ ωm , let f ′(a) = f (aσ ) restricted to exclude the

th coordinate. It is easy to check that f ′ satisfies (†)m,n−1, contrary to the inductive
hypothesis.

��
Let m = n2 and let

V = {
a ∈ 2m : (∃
 < n)(∀i ∈ m \ I
)[ai = 0]} .

In other words, V is the union of 2m ∩V
 over all 
 < n. By the claim, for each 
 < n,
|I
| ≤ (n − 1)2 − 1 = n2 − 2n. Thus,

∣∣2m ∩ V


∣∣ ≤ 2n
2−2n .

Therefore,

∣∣2m \ V
∣∣ ≥ 2n

2 − n2n
2−2n .

Claim 2n
2 − n2n

2−2n > 2n
2−1 + 2(

n+1
2 )−1.

Proof of Claim Since n ≥ 3, (n + 1)(n − 1) > 1
2n(n + 1). Thus, n2 − 2 >

(n+1
2

) − 1.
So

2n
2−2 > 2(

n+1
2 )−1.
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924 V. Guingona, M. Parnes

Similarly, (n + 1)(n − 1) > n(n − 1). Thus, n2 − 2 > n2 − n − 1, so

2n
2−2 > 2n−12n

2−2n .

Since n ≥ 3, n < 2n−1. Therefore,

2n
2−2 > n2n

2−2n .

Putting these together, we get

2n
2−1 > 2(

n+1
2 )−1 + n2n

2−2n .

This gives us the desired conclusion. ��
Therefore, by (2),

∣∣{tpL( f (0), f (a)) : a ∈ 2m \ V
}∣∣ = |2m \ V | > |Gn

s | + 1

2
|Gn

ns|.

However, by Lemma 6.27, for each a ∈ 2m \ V and all 
, 
′ < n, f (0)
 �= f (a)
′ .
Hence, each type tpL( f (0), f (a)) corresponds to a unique element of Gn as in the
proof of Proposition 6.20. SinceE∗m is symmetric, as in the proof of Proposition 6.21,
we conclude that there are at most |Gn

s | + 1
2 |Gn

ns| such types. This is a contradiction.
For the base case, towards a contradiction, suppose that (†)4,2 holds. This argument

proceeds similarly to the general inductive argument.Notice that, for all 
 < 2, |I
| ≤ 1
(this follows from a similar argument to the first claim). Thus, |24 \V | ≥ 24−3 = 13.
On the other hand,

|G2| + 1

2
|G2

ns| = 12.

��

6.5 Ranks and the independence property

How do the ranks studied above interact with model-theoretic dividing lines (in par-
ticular, the independence property)?

As long as LO-rank is finite, LO-rank grows linearly if T has NIP and grows
quadratically if T has the independence property.

Theorem 6.29 Let T be any complete first-order theory such that RkLO(1) < ∞.

(1) If T has NIP, then there exists C ∈ R such that, for all n ≥ 1,

RkLO(n) ≤ Cn.
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Ranks based on strong amalgamation Fraïssé classes 925

(2) If T has the independence property, then there exists C ∈ R such that, for suffi-
ciently large n,

RkLO(n) ≥ Cn2.

Proof (1): As noted in Example 6.10, if T has NIP, then RkLO is additive. Thus, if we
let C = RkLO(1), RkLO(n) = Cn for all n ≥ 1.

(2): Assume that T has the independence property and C is a monster model for
T . By Theorem 5.2 (2) and Lemma 4.7, there exists an injective G-configuration into
Ck for some k < ω. Moreover, by Proposition 6.19, for all m < ω, there exists a
parameter-free LO∗(m2−1)-configuration into Cm

1 , where C1 is a monster model for

the theory of the Fraïssé limit of G. By Proposition 4.13, there exists an LO∗(m2−1)-
configuration into Ckm . Therefore,

RkLO(km) ≥ m2 − 1.

For n ≥ k, let m = �n/k�. Then, by Lemma 6.6,

RkLO(n) ≥ RkLO(km) ≥ m2 − 1 ≥ 1

k2
n2 − 2

k
n.

��
In the next few examples, we examine the applicability of the preceding theorem.

Example 6.30 Let T be a complete theory in some language L . Suppose that all indis-
cernible sequences of singletons are set indiscernible. By Remark 6.8, we can make
any LO-configuration into an indiscernible one, so there exists no LO-configuration
into singletons of T . Thus, RkLO(1) = 0. Therefore, for any such theory T , T has
NIP if and only if there exists C ∈ R such that, for all n ≥ 1, RkLO(n) ≤ Cn. This
applies, for example, to the theory of the Fraïssé limit of any irreflexive, symmetric
Fraïssé class in a finite relational language.

Example 6.31 Let L consist of infinitely many binary relation symbols <i for i < ω

and let T be the model companion of the theory which says each <i is a linear order.
Clearly T has quantifier elimination, so T has NIP. Thus, LO-rank and op-dimension
coincide. Therefore, RkLO(1) = ∞. So, there are examples of NIP theories for which
the theorem does not apply. If we replace “linear order” with “partial order” in the
definition of T , we obtain an example of a theory with the independence property such
that RkLO(1) = ∞.

Similar to LO-rank, if the target theory has the independence property and E-rank
is finite, then E-rank necessarily grows quadratically.

Proposition 6.32 Let T be any complete first-order theorywith the independence prop-
erty such that RkE(1) < ∞. Then, there exists C ∈ R such that, for sufficiently large
n,

RkE(n) ≥ Cn2.
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926 V. Guingona, M. Parnes

Proof This is similar to the proof of Theorem 6.29 (2).
��

Similarly, in any theory with the independence property, so long asG-rank is finite,
G-rank grows quadratically.

Proposition 6.33 If T is any theory and π any partial type with RkG(π) ≥ 1, then

RkG(π×n) ≥ n2 − 1.

Proof This is similar to the proof of Theorem 6.29 (2).
��

From Theorem 6.29, Proposition 6.32, and Proposition 6.33, we obtain the follow-
ing result about additivity of ranks: If T has the independence property, K = E, LO,
or G, and K-rank is finite, then K-rank is not additive.

7 Future work

From the study of K-configurations and K-rank in the previous sections, we are left
with a few open questions.

Question 7.1 Under what conditions is K-rank a generalization of a known rank in
model theory?

In Example 6.10, we establish that LO-rank coincides with op-dimension when
T has NIP, which implies that LO-rank coincides with dp-rank when T is distal. On
the other hand, LO-rank diverges from op-dimension when T has the independence
property. Similarly, E-rank appears to be related to dp-rank, but the exact relationship
remains unclear. Proposition 6.12 establishes that dp-rank is an upper bound forE-rank
while Corollary 6.14 shows that these ranks coincide on Cn when T is dp-minimal.
On the other hand, even in NIP theories, dp-rank and E-rank diverge, as shown in
Example 6.16. This example is distal, however, which leads to an interesting question

Question 7.2 Do dp-rank and E-rank coincide for stable theories?

Along a similar line, when isK-rank additive (Question 6.4)?We see thatLO-rank,
and even G-rank (trivially), are additive when T has NIP. On the other hand, these
ranks fail additivity when moving to theories with the independence property. Is it
possible that, more generally, K-ranks are additive on NIP theories? In particular, is
E-rank additive on NIP theories?

Although we examined a few examples of strong amalgamation Fraïssé classes in
this paper, there are other classes that are currently unexplored. We have one result on
T-rank, Example 6.23, and no results onHk-rank for k > 2. It is possible, for example,
thatT-rank coincides withLO-rank for some types. Most of the technology developed
in this paper relies on the index language being binary, which makes analyzing Hk-
rank more challenging when k > 2. In future work, we would like to examineK-rank
for these and other classes, K.

123



Ranks based on strong amalgamation Fraïssé classes 927

Finally, Sect. 5 and the relationships to [7] reveal other interesting open questions.
For example, we have the strict �-chain

E < LO < G < H3 < H4 < . . . .

This leads to the following question

Question 7.3 Is � a linear quasi-order on strong amalgamation Fraïssé classes? In
particular, are there any classes strictly between E and LO?

In otherwords, is there a non-trivial dividing line, in the sense ofCK, below stability?

Appendix A. Combinatorial lemmas

Fix k < ω and let

Dk = {t ∈ k{−1, 0, 1} : t(i) = 1 for i minimal such that t(i) �= 0}.

For a, b ∈ ωk and t ∈ Dk , define

a ≤t b if, for all i < k,

⎧⎪⎨
⎪⎩

ai < bi if t(i) = 1,

ai = bi if t(i) = 0,

ai > bi if t(i) = −1.

Finally, for all a, b ∈ ωk , define

a ≤lex b if ai < bi for i minimal such that ai �= bi .

Note that a ≤lex b if and only if there exists t ∈ Dk such that a ≤t b.

Lemma A.1 For all k, 
,m < ω, there exists n < ω such that, for all colorings

c : (nk
≤2

) → 
, there exist Y0, . . . ,Yk−1 ∈ (n
m

)
such that, for all t ∈ Dk , c is constant

on the set

Xt =
{

{a, b} : a, b ∈
∏
i<k

Yi , a ≤t b

}
.

Proof By induction on k. Let k = 1 and fix 
,m < ω. By Ramsey’s Theorem, there
exists n such that, for all colorings c : ( n

≤2

) → 
, there exists Y ∈ (n
m

)
such that c is

constant on
(Y
1

)
and c is constant on

(Y
2

)
. Since X0 = (Y

1

)
and X1 = (Y

2

)
, this is the

desired conclusion.
Fix k,m, 
 < ω. Let


′ = Dk×{−1,1}
.
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By Ramsey’s Theorem, there exists n′ < ω such that, for all colorings c′ : ( n′
≤2

) → 
′,
there exists Yk ∈ (n′

m

)
such that c′ is constant on

(Yk
1

)
and c′ is constant on

(Yk
2

)
. Let


′′ = (n′)2
.

By the inductive hypothesis, there exists n′′ < ω such that, for all colorings c′′ :(
(n′′)k
≤2

) → 
′′, there exist Y0, . . . ,Yk−1 ∈ (n′′
m

)
such that, for all t ∈ Dk , c′′ is constant

on Xt . Let n = max{n′, n′′}.
Fix a coloring c : (nk+1

≤2

) → 
. This induces a coloring c′′ : (
(n′′)k
≤2

) → 
′′ given by:

for each a, b ∈ (n′′)k with a ≤lex b, for each i, j ∈ n′, let

c′′({a, b})(i, j) = c({a�i, b� j}).

Thus, there exist Y0, . . . ,Yk−1 ∈ (n′′
m

)
such that, for all t ∈ Dk , c′′ is constant on Xt .

Now define c′ : ( n′
≤2

) → 
′ as follows: for each i ≤ j < n′, t ∈ Dk , and s ∈ {−1, 1},
choose a, b ∈ ∏

i<k Yi with a ≤t b and set

c′({i, j})(t, s) =
{
c({a�i, b� j}) if s = 1,

c({a� j, b�i}) if s = −1.

Since c′′ is constant on Xt for each t , this function is independent of the choice of a
and b. Thus, there exists Yk ∈ (n′

m

)
such that c′ is constant on

(Yk
1

)
and c′ is constant

on
(Yk
2

)
. We claim that Y0, . . . ,Yk work for c.

Fix t ∈ Dk+1. If t(k) = 0, let

r = c′({i})(t |k, 1)

for any choice of i ∈ Yk . Since c′ is constant on
(Yk
1

)
, this is independent of the choice

of i . If t(k) �= 0, let

r = c′({i, j})(t |k, t(k))

for any choice of i, j ∈ Yk with i < j . Since c′ is constant on
(Yk
2

)
, this is independent

of the choice of i and j . Then, for any a, b ∈ ∏
i≤k Yi such that a ≤t b, we have that

c({a, b}) = r .

This is what we wanted to prove. ��
Corollary A.2 For all k, 
,m < ω, there exists n < ω such that, for all colorings
c : nk → 
, there exist Y0, . . . ,Yk−1 ∈ (n

m

)
such that c is constant on

∏
i<k Yi .
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Proof Since any coloring c : nk → 
 can be extended arbitrarily to a coloring c :(nk
≤2

) → 
, this follows immediately from Lemma A.1.
��
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