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Abstract
We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-
Todorčević theory in the more general context of automorphism groups of not
necessarily countable structures. One of the main points is a description of the uni-
versal ambit as a certain space of types in an expanded language. Using this, we
recover results of Kechris et al. (Funct Anal 15:106–189, 2005), Moore (Fund Math
220:263–280, 2013), Ngyuen Van Thé (Fund Math 222: 19–47, 2013), in the context
of automorphism groups of not necessarily countable structures, as well as Zucker
(Trans Am Math Soc 368, 6715–6740, 2016).
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Extreme amenability · Amenability
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0 Introduction

The idea of studying interactions between dynamical properties of the automorphism
group of a Fraïssé structure and combinatorial properties of the underlying Fraïssé
class developed in [8] started a whole new research area which joins techniques from
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topological dynamics, structural Ramsey theory, and descriptive set theory. The main
results of [8] are the following.

• The automorphism group of a locally finite Fraïssé structure F is extremely
amenable if and only if the underlying Fraïssé class has the embedding Ramsey
property (using the terminology from [15]; see [15, Theorem 5.1]).

• Let L0 and L = L0 ∪{<} be two languages, F0 be a locally finite Fraïssé structure
in L0, and let F be its Fraïssé order expansion to L (meaning that the interpretation
of < in F is a linear ordering). Then if Age(F) has the Ramsey property and the
so-called ordering property with respect to Age(F0), then the universal minimal
Aut(F0)-flow is the closure cl(Aut(F0)· <) in the space of linear orderings on F
with the natural left action of Aut(F0). (See [8, Theorem 7.5].)

Later, the second result was generalized in [12] to so-called precompact expansions
of F0 by a possibly infinite number of relation symbols (see Fact 1.2).

In this paper, we give a natural account for these (and some other important) results
using model-theoretic objects. The key point is our description of the right [left]
universal ambit for the group Aut(M) of automorphisms of any structure M as a space
of types in a very rich (full) language. To get this description, we use the well-known
model-theoretic description of the universal ambit of a topological group from [6]
(see also [10]). With our approach, it is natural to work more generally with arbitrary
structures instead of Fraïssé structures. This naturally yields a generalization of the
previous approach. However, since every structure can be canonically expanded to an
ultrahomogeneous one (see Sect. 1.1), our approach yields in fact a generalization from
the context of Fraïssé structures to possibly uncountable ultrahomogeneous structures.
Some generalizations to an uncountable context have already been obtained, e.g. in
[2, 13].

Our point of view is not based on just trying to translate the existing papers into
model theory and translate existing proofs, but to find definitions and proofs natural
from themodel-theoretic perspective. It would not be surprising that there are parallels
between our proofs and those in the descriptive set theory literature. Although our
results are not far from the known results, our paper was a starting point and provided
some foundationalmaterial for paper [9] on “definable” versions of various notions and
connections between Ramsey theory and topological dynamics for first order theories.
We also hope that our paper will make the whole subject more natural and easier to
understand to a wider model theory society.

All of this belongs to our general project of studying interactions between model
theory and the dynamical properties of groups of automorphisms.Asmentioned above,
[9] (which was written after this paper) studies Ramsey properties and degrees in a
first order setting (working with “definable” colorings); but here we focus on classical
Ramsey theory (with all possible colorings allowed), and we mostly recover some
known results. Independently, also Ehud Hrushovski studied some first order version
of Ramsey theory in [7] (which was also written after our paper).

In Sect. 1, we recall the relevant definitions and facts frommodel theory, topological
dynamics, and Ramsey theory. In Sect. 2, we give our description of the universal
ambit of the group of automorphism of any structure as a space of types, and, using
it, we recover Zucker’s presentation from [15] of the universal ambit as a certain
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inverse limit: model-theoretically this becomes absolutely natural, as it follows from
the presentation of the type space in infinitely many variables as the inverse limit
of the restrictions to the finite tuples of variables. In Sect. 3, we reprove the first
main theorem from [8] recalled above, and in Sect. 4 — an analogous result from
[11] characterizing amenability of the automorphism group via the so-called convex
Ramsey property (everything done in a more general context of arbitrary structures).
In Sect. 5, we reprove the aforementioned result from [12] (also in a more general
context) yielding a description of the universal minimal flow. In Sect. 6, we reprove
[15, Theorem 8.7] saying that metrizability of the universal minimal Aut(M)-flow is
equivalent to Age(M) having finite embedding Ramsey degree, where M is a Fraïssé
structure.

1 Preliminaries

Wepresent here the necessary notions and facts frommodel theory, topological dynam-
ics, and Ramsey theory.

1.1 Model theory

A first order structure will usually be denoted by M . We say that M is κ-saturated if
every type over a subset A of M of cardinality smaller than κ is realized in M ; it is
strongly κ-homogeneous if every elementary map between subsets of M of cardinality
smaller than κ extends to an automorphism of M . Equivalently, strong κ-homogeneity
means that any tuples ā ≡ b̄ in M of length less than κ lie in the same orbit under
Aut(M). A monster model of a given complete theory T is a κ-saturated and strongly
κ-homogeneous model for a sufficiently large cardinal κ (usually one assumes that κ
is a strong limit cardinal greater than |T |); it is well-know that a monster model always
exists.

An ultrahomogeneous structure is a structure M in which every isomorphism
between any finitely generated substructures extends to an isomorphism of M ; if
the language is relational, then finitely generated substructures are just finite substruc-
tures. Equivalently, ultrahomogeneity means that any finite tuples in M with the same
quantifier-free type lie in the same orbit under Aut(M). Note that each ultrahomo-
geneous structure is strongly ℵ0-homogeneous. A Fraïssé structure is a countable
ultrahomogeneous structure. It is well-know that that the age of a Fraïssé structure M
(i.e. the class Age(M) of all finitely generated structures in the given language which
can be embedded into M) is a Fraïssé class, i.e. is non-empty and satisfies: Heredi-
tary Property (HP), Joint embedding Property (JEP), Amalgamation Property (AP),
and Denumerability (see [8, Section 2]). Fraïssé’s theorem says that the converse is
true: every Fraïssé class has a unique (up to isomorphism) Fraïssé limit, i.e. a Fraïssé
structure whose age is exactly the Fraïssé class in question.

If M is an arbitrary structure, one can always consider its canonical ultrahomoge-
neous expansion by adding predicates for all the Aut(M)-orbits on all finite Cartesian
powers of M . The automorphism group of this expansion is the same as the original
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one. In this paper, often one can pass to this expansionwithout loss of generality, which
in the case of countable M means that we can assume that M is a Fraïssé structure.

1.2 Topological dynamics

In this paper, compact spaces areHausdorff by definition. LetG be a topological group.
Recall that a left [right] G-flow is a pair (G, X) where X is a non-empty, compact
space on which G acts on the left [resp. on the right] continuously. A G-ambit is a
flow (G, X , x0) with a distinguished point x0 ∈ X whose G-orbit is dense in X . It is
well-known that for any topological group G there exists a universal G-ambit, i.e. a
G-ambit which maps homomorphically to any other G-ambit; a universal G-ambit is
clearly unique up to isomorphism, so we can say the universal G-ambit. The existence
of the universal G-ambit is also easy: up to isomorphism there are at most �3(|G|) G-
ambits, so we can find a setA of G-ambits which consists of representatives of all the
isomorphism classes; then the product of all G-ambits fromA, with the distinguished
point being the net consisting of the distinguished points in the ambits from A, is
the universal G-ambit. This universal G-ambit can also be described as the Samuel
compactification of G, and there is a well-known construction of this object in general
topology (e.g. see [14, Section 2]). In the next subsection,we recall themodel-theoretic
presentation of the universal G-ambit which we will use in this paper.

A subflow of a given flow (G, X) is a flow of the form (G, Y ) for a closed, G-
invariant subset Y of X , where the action of G on Y is the restriction of the action of
G on X . A minimal flow is a flow which does not have proper subflows. A universal
minimal G-flow is a minimal G-flow which maps homomorphically to any minimal
G-flow. By Zorn’s lemma, each flow has a minimal subflow. It is clear that that any
minimal subflow of the universal G-ambit is a universal minimal G-flow. It turns
out that a universal minimal G-flow is also unique up to isomorphism, which is less
obvious (see [1, Chapter 8, Theorem 1]). An important goal of topological dynamics
is to understand the universal minimal G-flow for a given group G.

Recall that a topological group G is said to be extremely amenable if in every
left [equivalently right] G-flow there is a fixed point. Equivalently, this holds for
the universal left [right] G-ambit. A topological group G is said to be amenable if on
every left [equivalently right]G-flow there is aG-invariant, Borel probabilitymeasure.
Equivalently, this holds for the universal left [right] G-ambit.

1.3 Model-theoretic description of the universal G-ambit

The description of the universal left G-ambit given below comes from [6]. It can also
be found in [10, Fact 2.11]. In fact, this description is a model-theoretic interpreta-
tion of the Samuel compactification, where “model-theoretic” refers to passing to a
“nonstandard model” or “elementary extension of the ground model”.

Let G be a topological group. Treat it as a first order structure M in any language
L in which we have a function symbol interpreted as the group law and for every
open subset U of G we have a unary relation symbol (also denoted by U ) interpreted
as U . More generally, it is enough to work in any structure M in which G is a ∅-

123



On the topological dynamics of automorphism groups… 509

definable group and all open subsets of G are ∅-definable. Let M∗ � M be a monster
model, G∗ := G(M∗), and U∗ := U (M∗). The group μ of infinitesimals is defined
as

⋂{U∗ : U an open neighborhood of the neutral element of G}. Define a relation
∼ on G∗ by

a ∼ b ⇐⇒ ab−1 ∈ μ.

Finally, define Eμ on G∗ by

Eμ := ∼ ◦ ≡M = ≡M ◦ ∼,

where ≡M is the relation of having the same type over M . Then Eμ is the finest
bounded, M-type-definable equivalence relation on G∗ coarsening ∼. Moreover, μ is
normalized by G, so

g · (a/Eμ) := (ga)/Eμ

is a well-defined action of G on G∗/Eμ, and it turns out (see [10, Fact 2.11]) that
(G, G∗/Eμ, e/Eμ) is exactly the universal left G-ambit, where G∗/Eμ is equipped
with the logic topology (i.e. the closed subsets of G∗/Eμ are those subsets whose
preimages under the quotient map are type-definable subsets of G∗).

From this, it is easy to get an analogous description of the universal right G-ambit.
It is clear that it will be (G, G∗/Eμ, e/Eμ)with the right action of G on G∗/Eμ given
by (a/Eμ) ∗ g := g−1 · (a/Eμ) = (g−1a)/Eμ. Now, applying the group-theoretic
inverse to everything, we get the relation

Er
μ := E−1

μ = ∼r ◦ ≡M = ≡M ◦ ∼r ,

where a ∼r b ⇐⇒ a−1b ∈ μ, the right action of G on G∗/Er
μ given by

(a/Er
μ)g := ((a−1/Eμ) ∗ g)−1 = ((g−1a−1)/Eμ)−1 = (ag)/Er

μ,

and the universal right G-ambit is exactly (G, G∗/Er
μ, e/Er

μ) with this action.

1.4 Structural Ramsey theory

In this paper, we will be talking about colorings of embeddings rather than of sub-
structures (as in [15]; in particular, see [15, Proposition 4.4]). Let C be a class of finite
structures in a language L . For two finite L-structures A and B, by Emb(A, B) we
denote the set of all embeddings from A to B; A ≤ B means that Emb(A, B) �= ∅.
We say that C has the embedding Ramsey property (ERP), if for every A, B ∈ C
with A ≤ B and for any r ∈ ω there is C ∈ C with B ≤ C such that for any
coloring c : Emb(A, C) → r there is f ∈ Emb(B, C) such that f ◦ Emb(A, B) is
monochromatic with respect to c.

Now, we recall one of the fundamental results of Kechris, Pestov, Todorčević theory
(see Theorem 5.1 in [15]), which we will reprove and generalize in Sect. 3.
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Fact 1.1 If K is a Fraïssé class of finite structures with Fraïssé limit K , then K has
the ERP if and only if Aut(K ) is extremely amenable.

To recall the second main result describing universal minimal flows of automor-
phism groups of some Fraïssé structures, we need to recall several notions. We will
work in the more general context from [12], with precompact relational expansions in
place of expansions by one symbol <.

Consider two countable languages L and L0, where L is obtained from L0 by
adding countably many relation symbols. Let K0 be a Fraïssé class in L0 consisting
of finite structures. We say that a classK of L-structures is an expansion ofK0 if each
structure in K is an expansion of a structure from K0, and conversely, each structure
from K0 has an expansion to a structure in K. Whenever K is an expansion of K0, K
is said to have the expansion property relative to K0 if for every A0 ∈ K0 there exists
B0 ∈ K0 such that for every A, B ∈ K with A � L0 = A0 and B � L0 = B0 one has
A ≤ B.

Let K0 be the Fraïssé limit of a Fraïssé class K0 of finite structures. We say that an
L-expansion K of K0 is precompact if each structure from K0 = Age(K0) has only
finitely many expansions to structures in Age(K ).

Denote L \L0 = {Ri : i ∈ I }. The set of L\L0-structures on a universe K can be
naturally treated as the compact space X := ∏

i∈I {0, 1}K ni with the product topology,
where ni is the arity of Ri . Now, if K0 is a Fraïssé structure with an expansion K , then
R := K � (L\L0) is naturally an element of X . Moreover, we have a natural left [and
right] action of Aut(K0) on X : the left action is just given by the left translations of
each relation from L\L0 on K (i.e. gRi := {(gx1, . . . , gxni ) : (x1, . . . , xni ) ∈ Ri }),
and the right action is the left action by the inverse.

For the next fact see [12, Theorem 5]. We focus here only on one direction of this
theorem, yielding a description of the universal minimal flow. The closure in this paper
is takenwith respect to the product topology on X . In [12, Theorem 5], a finer topology
is considered (see [12, Section 2]), which coincides with the product topology when
L \ L0 is finite. In general, by the fact that cl(Aut(K0) · R) is compact in the finer
topology (see [12, Proposition 1]), the version of the theorem with the finer topology
is equivalent to the version with the product topology (more precisely, the closure in
the conclusion is the same for both topologies).

Fact 1.2 Let K0 be a locally finite Fraïssé structure, and K be a Fraïssé precompact,
relational expansion of K0. Assume that the class Age(K ) has the ERP as well as the
expansion property relative to Age(K0). Then the Aut(K0)-subflow cl(Aut(K0) · R)

of X is the universal minimal left Aut(K0)-flow. Equivalently, the Aut(K0)-subflow
cl(R · Aut(K0)) of X is the universal minimal right Aut(K0)-flow.

The name “precompact” is used, because precompactness of an L-expansion K
of a Fraïssé structure K0 is equivalent to topological precompactness of the metric
subspace Aut(K0) · R of X equipped with a certain natural metric (see Section 2 of
[12]) which induces a finer topology (the one mentioned before Fact 1.2) on X than
the product one. But in this paper, we will not use this metric at all.

let K be the Fraïssé limit of a Fraïssé class K of finite structures. Zucker [15]
found a very interesting connection between metrizability of the universal minimal
Aut(K )-flow and a Ramsey-theoretic property of K.
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Definition 1.3 A class C of finite structures in some language has separately finite
embedding Ramsey degree if for every A ∈ C there is a natural number k such that for
every B ∈ C with A ≤ B and for every r ∈ ω there is C ∈ C with B ≤ C such that for
any coloring c : Emb(A, C) → r there is f ∈ Emb(B, C) such that c[ f ◦Emb(A, B)]
is of size at most k.

We used the word “separately” to reflect the fact that k depends on A. By [15,
Proposition 4.4], in this definition we could equivalently color substructures instead
of embeddings. The next result is [15, Theorem 8.7].

Fact 1.4 Let K be a locally finite Fraïssé structure, and K = Age(K ). Then the
following conditions are equivalent.

(1) The universal minimal Aut(K )-flow is metrizable.
(2) K has separately finite embedding Ramsey degree.

1.5 Structural Ramsey theory in this paper

Here, we extend the definitions from the previous subsection in the form that we will
be using in this paper.

Note that if A and B are structures in the same language, and we enumerate A as ā,
then each embedding f ∈ Emb(A, B) is naturally identified with the tuple ā′ = f (ā)

contained in B, and in this way the set of embeddings of A to B is the same thing

as
(B

ā

)q f := {ā′ : ā′ ⊆ B and ā′ ≡q f ā}. Hence, if K is a Fraïssé class of finite
structures in a relational language with Fraïssé limit K , then K has the ERP if and
only if for any finite tuple ā from K and a finite set B ⊆ K containing ā, for any

r ∈ ω, there is a finite C ⊆ K containing B such that for every coloring c : (C
ā

)q f → r

there is an isomorphic copy B ′ ⊆ C of B such that
(B′

ā

)q f
is monochromatic with

respect to c. But by ultrahomogeneity of K , for any finite ā in K and any B ⊆ K , we

have
(B

ā

)q f := {ā′ : ā′ ⊆ B and ā′ = f (ā) for some f ∈ Aut(K )}. This classical
situation leads us to the following generalization, which will be used in our results.

Let M be an arbitrary (possible uncountable) structure in an arbitrary language. For
any tuple ā in M and B ⊆ M , by

(B
ā

)
we will mean the set {ā′ : ā′ ⊆ B and ā′ =

f (ā) for some f ∈ Aut(M)}; an analogous notation applies when ā is replaced by a
subset A of M . A family A of finite subsets of M is said to be cofinal (in M) if every
finite subset of M is contained in a member of A.

Definition 1.5 (1) We will say that M has the embedding Ramsey property (ERP) if
for any finite tuple ā in M (possibly with repetitions) and a finite set B ⊆ M
containing ā, for any r ∈ ω, there is a finite C ⊆ M containing B such that for
every coloring c : (C

ā

) → r there is B ′ ∈ (C
B

)
such that

(B′
ā

)
is monochromatic

with respect to c.
(2) A cofinal family A of finite subsets of M has the embedding Ramsey property

(ERP) if for any tuple ā enumerating a member of A and a finite set B ∈ A
containing ā, for any r ∈ ω, there is a finite C ∈ A containing B such that for
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every coloring c : (C
ā

) → r there is B ′ ∈ (C
B

)
such that

(B′
ā

)
is monochromatic

with respect to c.

Remark 1.6 The following conditions are equivalent for an arbitrary structure M .

(1) M has the ERP.
(2) Every structure M ′ with the same universe as M and the same group of automor-

phisms has the ERP.
(3) Some cofinal family of finite subsets of M has the ERP.
(4) Every cofinal family of finite subsets of M has the ERP.

Proof The implications (1) → (2) → (4) → (3) are trivial. (3) → (1). Suppose A
is a cofinal family of finite subsets of M with the ERP. Consider any finite tuple ᾱ in
M . To show the ERP for ᾱ, we can clearly assume that ᾱ does not have repetitions.
AsA is cofinal, ᾱ can be extended to a tuple ā enumerating a member ofA. Consider
any finite B ⊆ M containing ᾱ. As A is cofinal, we can find B̃ ∈ A containing B

and ā, and such that every ᾱ′ ∈ (B
ᾱ

)
extends to an ā′ ∈ (B̃

ā

)
. Consider any r ∈ ω.

Since A has the ERP, we can find C ∈ A containing B̃ such that for every coloring

c̃ : (C
ā

) → r there is B̃ ′ ∈ (C
B̃

)
such that

(B̃′
ā

)
is monochromatic. Now, consider any

coloring c : (C
ᾱ

) → r . It extends to a coloring c̃ : (C
ā

) → r by giving the color c of the

subtuple corresponding to ᾱ. Since B̃ ′ = σ [B̃] for some σ ∈ Aut(M), it is clear that
B ′ := σ [B] has the desired property that

(B′
ᾱ

)
is monochromatic with respect to c. ��

We will return to this general context in Sect. 3. A similar discussion applies to
finite embedding Ramsey degrees.

Definition 1.7 (1) We will say that M has separately finite embedding Ramsey degree
if for any finite tuple ā (possibly with repetitions) there exists kā ∈ ω such that
for every finite B ⊆ M containing ā and for any r ∈ ω there is a finite C ⊆ M
containing B such that for every coloring c : (C

ā

) → r there is B ′ ∈ (C
B

)
such that

the set c[(B′
ā

)] is of size at most kā .
(2) A cofinal familyA of finite subsets of M has separately finite embedding Ramsey

degree if for any finite tuple ā enumerating a member of A there exists kā ∈ ω

such that for every B ∈ A containing ā and for any r ∈ ω there is a finite C ∈ A
containing B such that for every coloring c : (C

ā

) → r there is B ′ ∈ (C
B

)
such that

the set c[(B′
ā

)] is of size at most kā .

Remark 1.8 The following conditions are equivalent for an arbitrary structure M .

(1) M has separately finite embedding Ramsey degree.
(2) Every structure M ′ with the same universe as M and the same group of automor-

phisms has separately finite embedding Ramsey degree.
(3) Some cofinal family of finite subsets of M has separately finite embeddingRamsey

degree.
(4) Every cofinal family of finite subsets of M has separatelyfinite embeddingRamsey

degree.
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A similar discussion applies to the so-called convex embedding Ramsey property,
but this will be handled in Sect. 4.

Note that in all these situations, without loss of generality one can pass to the canon-
ical expansion of M to an ultrahomogeneous structure. So, in fact, our generalizations
will be only to uncountable structures (as ultrahomogeneity can be always assumed
without loss of generality).

As a corollary of the above discussions we get that if M is a locally finite Fraïssé
structure, then M has theERP [resp. convex embeddingRamsey property, or separately
finite embedding Ramsey degree] if and only if Age(M) has it.

2 Model-theoretic description of the universal ambit

In this section, M is an arbitrary first order structure in a language L , andG := Aut(M)

is equipped with the pointwise convergence topology. We will give a model-theoretic
realization of the universal G-ambit.

LetM be the structure consisting of two disjoint sorts G and M with predicates for
all the subsets of all the finite Cartesian products of sorts; we call this language full.
Note that the natural action of G on M is ∅-definable inM, all elements ofM are in
dcl(∅), and all the L-definable subsets of the Cartesian powers of M are ∅-definable in
M. Hence, L-formulas can naturally be identified with equivalent formulas from the
full language. (If one prefers, to our full language one can add all the symbols from
L .) Types in this full language will be denoted by tpfull and in the original language
L by tpL . Let M∗ = (G∗, M∗, . . . ) � M be a monster model (of the theory of M).
Then G∗ acts definably and faithfully as a group of automorphisms of M∗ treated as
an L-structure. Enumerate M as m̄. Define

�M := {tpfull(σ (m̄)) : σ ∈ G∗} = {tpfull(σ (m̄)/M) : σ ∈ G∗}.

Remark 2.1 Let SM := {p ∈ Sfull(∅) : tpL(m̄) ⊆ p}. Then:
(1) �M is a closed subset of SM.
(2) If M is a strongly ℵ0-homogeneous model of an ω-categorical theory (e.g. the

unique countable model), then �M = SM.

Proof (1) follows from |M |+-saturation ofM∗, as we get that�M is the closed subset
of SM given by the partial type (∃σ ∈ G)(x̄ = σ(m̄)). For (2) consider any p ∈ �M.
By ω-categoricity, for any finite tuples of variables x̄ and ȳ of the same length, the
condition tpL(x̄) = tpL(ȳ) is definable by a formula ϕ(x̄, ȳ) in the language L . By
the strong ℵ0-homogeneity of M ,

M |� ϕ(x̄, ȳ) → (∃σ ∈ G)(σ (x̄) = ȳ),

so the same sentence holds in M∗. Now, take any m̄′ ≡L m̄ in M∗. We conclude
that for every corresponding finite subtuples ā′ and ā of m̄′ and m̄, respectively, there
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is σ ∈ G∗ with σ(ā) = ā′. By |M |+-saturation of M∗, we get some σ ∈ G∗ with
σ(m̄) = m̄′. ��

Themain result of this section is the following description of the universal G-ambit.

Theorem 2.2 The formula tpfull(σ (m̄)) · g := tpfull(σ (g(m̄))) yields a well-defined
right action of G on �M, and with this action (G, �M, tpfull(m̄)) is the universal
right G-ambit. In particular, this universal ambit is zero-dimensional.

Proof First, we check that · is well-defined. Suppose tpfull(σ (m̄)) = tpfull(τ (m̄)) and
g ∈ G (where σ, τ ∈ G∗).We need to show that tpfull(σ (g(m̄))) = tpfull(τ (g(m̄))). By
strong |M |+-homogeneity ofM∗, there is f ∈ Aut(M∗) such that f (σ (m̄)) = τ(m̄).
Since f fixes M pointwise and the action of G on M is ∅-definable in the full lan-
guage, we get f (σ )(m̄) = f (σ )( f (m̄)) = f (σ (m̄)) = τ(m̄). Hence, f (σ (g(m̄))) =
f (σ )( f (g)( f (m̄))) = f (σ )(g(m̄)) = τ(g(m̄)), where the last equality follows from
the previous sentence, as g(m̄) is a permutation of m̄.

The fact that · is a right action is trivial. Next, let us check that · is continuous.
Consider a basic clopen subset of�M, i.e. a subset of the form [ϕ(x̄)] := {p ∈ �M :
ϕ(x̄) ∈ p} for some formula ϕ(x̄) without parameters in the full language. The goal
is to show that the set

X := {(q, g) ∈ �M × G : ϕ(x̄) ∈ q · g}

is open in the product topology. Although the tuple of variables x̄ is infinite (corre-
sponding to m̄), the formula ϕ(x̄) uses only a finite subtuple x̄ ′ of x̄ corresponding to
some finite subtuple ā of m̄. Note that ϕ(x̄) ∈ q · g if and only if there is σ ∈ G∗
such that ϕ(σ(g(ā))) and q = tpfull(σ (m̄)). Hence, for any q ∈ �M and g ∈ G, we
see that (q, g) ∈ X if and only if there is b̄ in M such that g(ā) = b̄ and the formula
ψb̄(x̄, b̄) := (∃σ of sort G)(ϕ(σ (b̄))∧σ(b̄) = x̄b̄) belongs to q, where x̄b̄ is the finite
subtuple of x̄ corresponding to the subtuple b̄ of m̄ (recall that b̄ is in dcl(∅) in the full
language, so we can use it as parameters). Therefore,

X =
⋃

b̄∈Gā

[ψb̄(x̄, b̄)] × {g ∈ G : g(ā) = b̄},

which is clearly open.
Note that tpfull(m̄) · G is dense in �M, as for any σ ∈ G∗ and ϕ(x̄) ∈ tpfull(σ (m̄)),

since M ≺ M∗, we get that there is g ∈ G with ϕ(g(m̄)), but this means that
ϕ(x̄) ∈ tpfull(g(m̄)) = tpfull(m̄) · g.

So we have already proved that (G, �M, tpfull(m̄)) is a right G-ambit. To see that
it is universal, it is enough to show that it is isomorphic to the universal right G-ambit
described as G∗/Er

μ in Sect. 1.3.

Let F : G∗ → �M be given by F(σ ) := tpfull(σ (m̄)). ��
Claim 1 F(σ ) = F(τ ) ⇐⇒ σ Er

μτ .
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Proof (⇒) Assume F(σ ) = F(τ ). Then there is f ∈ Aut(M∗) with f (σ (m̄)) =
τ(m̄). Since f (σ (m̄)) = f (σ )( f (m̄)) = f (σ )(m̄),we conclude that (τ−1 f (σ ))(m̄)) =
m̄. Since μ = {σ ∈ G∗ : σ(m̄) = m̄}, we obtain τ ∼r f (σ ) ≡full

M σ which means
that τ Er

μσ .
(⇐) Assume σ Er

μτ . Then there is f ∈ Aut(M∗) with f (σ ) ∼r τ . This exactly
means that f (σ )(m̄) = τ(m̄), so f (σ (m̄)) = τ(m̄), and hence tpfull(σ (m̄)) =
tpfull(τ (m̄)). ��

By the claim, F induces a bijection F̃ : G∗/Er
μ → �M. F̃ is continuous, as

F̃−1[[ϕ(x̄)]] = {σ/Er
μ :|� ϕ(σ(m̄))} is closed in the logic topology (for any for-

mula ϕ(x̄) without parameters in the full language). Moreover, for any σ ∈ G∗ and
g ∈ G, F̃((σ/Er

μ)g) = F̃((σ g)/Er
μ) = tpfull(σ (g(m̄))) = tpfull(σ (m̄)) · g. Also,

F̃(id /Er
μ) = tpfull(m̄).

We have justified that F̃ is an isomorphism of right G-ambits.

Remark 2.3 One could significantly shorten the above proof. Namely, everything fol-
lows from Claim 1 and the computations following it: · is well-defined, because the
action of G on G∗/Er

μ is well-defined and F̃ maps the action of G on G∗/Er
μ to

·, and the fact that (G, �M, tpfull(m̄)) is a right G-ambit follows from the fact that
(G, G∗/Er

μ, id /Er
μ) is and the observation that F̃ is a homeomorphism preserving

the actions of G and mapping id /Er
μ to tpfull(m̄).

Nevertheless,wedecided to include adirect proof of the fact that (G, �M, tpfull(m̄))

is a right G-ambit in order to show what is really going on here, and also because of
the following remark (whose context generalizes the one from Theorem 2.2) which
follows by almost the same (direct) proof.

Remark 2.4 LetM′ be a structure (G, M, . . . ) in a language L ′ such that the action of
G on M is ∅-definable inM′. LetM′∗ = (G∗, M∗, ·) � M′ be a monster model. Put
�M′ := {tpL ′

(σ (m̄)/M)) : σ ∈ G∗}. Then (G, �M′
, tpL ′

(m̄/M)) is a right G-ambit
with the right action defined by tpL ′

(σ (m̄)/M) · g := tpL ′
(σ (g(m̄))/M).

Since in this remark we work only over parameters from M (and not from all of
M′), the computation in the proof of the fact that · is well-defined must be modified
as follows: f (σ (g(m̄))) = f (σ )( f (g)( f (m̄))) = f (σ )( f (g(m̄))) = f (σ )(g(m̄)) =
τ(g(m̄)), as g(m̄) is contained in M and f fixes M pointwise.

As an immediate corollary of Theorem 2.2, we get that the universal left G-ambit
is also (G, �M, tpfull(m̄)) with the left action given by

g · tpfull(σ (m̄)) := tpfull(σ (g−1(m̄))).

An important aspect of [15] was a presentation of the universal right G-ambit
(working with a Fraïssé structure) as a certain inverse limit. Here, we will see that this
is exactly the obvious presentation of the type space in infinitely many variables as
the inverse limit of type spaces in finitely many variables.
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For any finite tuple ā in M , put

�M̄
a := {tpfull(σ (ā)) : σ ∈ G∗}.

In contrast with Theorem 2.2 and the last remark, there is no obvious structure of a
right G-ambit on �M̄

a . However, the following remark is clear.

Remark 2.5 The restriction maps yield a homeomorphism h : �M → lim←−̄
a

�M̄
a . More

generally, ā can range over any given enumerations of the sets from a given cofinal
family of finite subsets of M .

Via this homeomorphism we induce the structure of a right G-ambit on lim←−̄
a

�M̄
a :

〈tpfull(σ (ā))〉ā · g := 〈tpfull(σ (g(ā)))〉ā .

In order to see that this is exactly the presentation from [15, Section 6], we have to
identify �M̄

a with some Stone-Čech compactifications considered in [15].
For a finite ā in M , let Aā be the orbit of ā under Aut(M). The proof of the next

result is left as an exercise.

Proposition 2.6 (1) β Aā is homeomorphic to �M̄
a via fā given by

fā(U) := {ϕ(x̄) in the full language : Aā ∩ ϕ(M) ∈ U};

the inverse map is given by

f −1
ā (tpfull(σ (ā))) = {U ⊆ Aā : U (x) ∈ tpfull(σ (ā))}.

(2) lim←−̄
a

fā is a homeomorphism from lim←−̄
a

β Aā to lim←−̄
a

�M̄
a , where for ā being a subtuple

of b̄ the bonding map from β Ab̄ to β Aā is induced by the restriction map from Ab̄
to Aā.

We can now induce a structure of a right G-ambit on lim←−̄
a

β Aā via lim←−̄
a

fā .

Recall that the Stone-Čech compactification βG of G treated as a discrete group
is also the right universal G-ambit for G treated as a discrete group, with the right
action of G on βG given by right translation and with the distinguished point being
the principal ultrafilter [e] := {U ⊆ G : e ∈ U } (see pages 118-119 in [1]). Let
f̃ : βG → �M be the unique continuous extension of the map f : G → �M given
by f (g) := tpfull(g(m̄)); this is exactly the unique epimorphism of right G-ambits
(for G treated as a discrete group) from (G, βG, [e]) to (G, �M, tpfull(m̄)). (One can
check that for any basic clopen subset of βG of the form [U ] := {U ∈ βG : U ∈ U}
(where U ⊆ G), f̃ [[U ]] = {tpfull(σ (m̄)) : σ ∈ U∗}, but we will not use it.)
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By the above comments and remarks, we have the following sequence of empimor-
phisms of right G-ambits (the first ambit is for G treated as a discrete group), where
j := (lim←−̄

a

fā)−1.

βG
f̃−� �M h−� lim←−̄

a

�M̄
a

j−� lim←−̄
a

β Aā . (1)

So we see that the right G-action on lim←−̄
a

β Aā induced via j is also induced from the

right G-action on βG via j ◦ h ◦ f̃ .
For g ∈ G and [g] := {U ⊆ G : g ∈ U } we have:

[g] f̃−→ tpfull(g(m̄))
h−→ 〈tpfull(g(ā))〉ā

j−→ 〈[g(ā)]〉ā, (2)

so j ◦ h ◦ f̃ : βG → lim←−̄
a

β Aā is the unique continuous map extending the map

G → lim←−̄
a

β Aā given by [g] �→ 〈[g(ā)]〉ā .

Now, if M is ultrahomogeneous, then for any finite ā from M the elements of the
orbit Aā are exactly all the tuples in M with the same qf-type as ā, so they can be
identifiedwith the embeddings of ā into M . And so, in the case of Fraïssé structures, the
presentation of the universal right G-ambit as lim←−̄

a

β Aā coincides with the presentation

from [15, Section 6]. But here we do not assume that M is countable and instead of all
initial finite subtuples of M we can range over any cofinal family of finite subtuples.
Also, ultrahomogeneity is not needed, but we can always assume it anyway it by
considering the canonical expansion of M mentioned at the end of Sect. 1.1.

The point of the above discussion is that model-theoretically the presentation of
�M as lim←−̄

a

�M̄
a is straightforward, and we will use it in Sect. 6 to give a rather quick

proof of metrizability theorem from [15, Sect. 8].

3 Extreme amenability

In this section, we give a quick proof of Fact 1.1, based on our description of the
universal right G-ambit from Theorem 2.2. In fact, our proof works more generally
for automorphism groups of arbitrary (possibly uncountable) structures. We take the
notation and terminology from Sects. 1.5 and 2.

Remark 3.1 A structure M has the ERP if and only if for any finite tuple ā from M
and a finite set B ⊆ M containing ā, for any r ∈ ω, for every coloring c : (M

ā

) → r ,

there is B ′ ∈ (M
B

)
such that

(B′
ā

)
is monochromatic with respect to c.

Proof (→) is trivial. For the other direction, suppose for a contradiction that for some
ā, B and r as above, for every finite C ⊆ M containing B, the set KC of colorings
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(C
ā

) → r such that for no B ′ ∈ (C
B

)
the set

(B′
ā

)
is monochromatic is non-empty. Clearly

each KC is finite, and for C ⊆ C ′ there is a map KC ′ → KC induced by the restriction
of the domains of the colorings. So we get a non-empty, profinite space lim←−

C

KC . Take

η ∈ lim←−
C

KC , and define c : (M
ā

) → r by

c(ā′) := η(C)(ā′)

for any finite C ⊆ M containing B and ā′. It is clear that c is well-defined. We claim
that c contradicts the right hand side of the remark, more precisely for no B ′ ∈ (M

B

)

the set
(B′

ā

)
is monochromatic with respect to c. Indeed, for such a B ′ we can take

a finite superset C ⊆ M of B ∪ B ′, and the conclusion follows from the fact that
c �

(C
ā

) = η(C) ∈ KC . ��
Theorem 3.2 Let M be an arbitrary first order structure. The following conditions are
equivalent.

(1) G := Aut(M) is extremely amenable as a topological group.
(2) M has the ERP.

Proof The following conditions are equivalent.

(i) G is extremely amenable.
(ii) There is p ∈ �M such that p · G = {p}.
(iii) There is σ ∈ G∗ such that for every g ∈ G one has tpfull(σ (g(m̄))) =

tpfull(σ (m̄)).
(iv) For every finite tuple ā from M , for all natural numbers n, r , for every

g0, . . . , gn−1 ∈ G, for all formulas ϕ0(x̄), . . . , ϕr−1(x̄) of the full language
(with x̄ corresponding to ā), there exists σ ∈ G such that

∧

i<r

∧

j<n

(ϕi (σ (g j (ā))) ↔ ϕi (σ (ā))).

The equivalence of (i) and (ii) follows from Theorem 2.2; (ii) ↔ (iii) is trivial; the
equivalence of (iii) and (iv) follows from |M |+-saturation of M.

(2) → (1). We will show that (iv) holds. So take data as in (iv). Consider the
coloring c : (M

ā

) → 2r given by

c(ā′)(i) :=
{
1 if |� ϕi (ā′)
0 if |� ¬ϕi (ā′)

for i ∈ {0, . . . , r − 1}. Choose a finite B ⊆ M so that ā, g0(ā), . . . , gn−1(ā) are all
contained in B. By the ERP, there is B ′ ∈ (M

B

)
such that

(B′
ā

)
is monochromatic. But

this implies that for σ ∈ G such that σ [B] = B ′ the conclusion of (iv) holds (because
the tuples σ(ā), σ (g0(ā)), . . . , σ (gn−1(ā)) all belong to

(B′
ā

)
).

(1) → (2). Consider any finite tuple ā from M and any finite B ⊆ M containing ā.
Let c : (M

ā

) → r be a coloring. The fibers of this coloring are subsets of M |ā|, so they
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are defined by formulas (in fact predicates) ϕ0(x̄), . . . , ϕr−1(x̄) of the full language.
Let g0(ā), . . . , gn−1(ā) be all elements of

(B
ā

)
(where the gi ’s are from G). Using (iv),

we get σ ∈ G for which
(
σ [B]

ā

)
is monochromatic. So we are done by Remark 3.1. ��

4 Amenability

In this section, we will reprove Moore’s theorem [11] characterizing amenability of
the groups of automorphisms of Fraïssé structures via the convex Ramsey property of
the underlying Fraïssé classes. We extend the context to arbitrary structures, and also
notice that the condition ε > 0 from the definition of the convex Ramsey property can
be replaced by ε = 0.

There are several equivalent definitions of a Fraïssé class to have the convexRamsey
property (which we prefer to call the embedding convex Ramsey property), e.g. items
(1)-(5) in [11, Theorem 7.1]. We choose one of them (more precisely, our choice is in
between the equivalent conditions from items (2) and (5) of [11, Theorem 7.1], so it is
equivalent to them) and generalize it to cofinal families of finite subsets of an arbitrary
structure.

If B ⊆ C are subsets of a structure M and b̄ is an enumeration of B, by
〈

C
b̄

〉
we

denote the affine combinations of copies of b̄ in C , i.e. the set of all λ1b̄1 +· · ·+λk b̄k ,
where k ∈ ω\{0}, b̄i ∈ (C

b̄

)
, and λ1, . . . , λk ∈ [0, 1]with λ1+· · ·+λk = 1.When ā is

a tuple in B, ā′ ∈ (B
ā

)
, and v = λ1b̄1 + · · · + λk b̄k ∈

〈
C
b̄

〉
, then v ◦ ā′ := λ1ā′

1 + · · · +
λk ā′

k ∈ 〈
C
ā

〉
, where for σi ∈ Aut(M) with σi (b̄) = b̄i we put ā′

i = σi (ā′). Finally, if
c : (C

ā

) → 2r = {0, 1}r , then we define c(v ◦ ā′) := λ1c(ā′
1)+· · ·+λkc(ā′

k) ∈ [0, 1]r .
Definition 4.1 (a) A structure M has the embedding convex Ramsey property (ECRP)

if for every ε > 0, for any finite tuple ā from M and any enumeration b̄ of a finite
set B ⊆ M containing ā, for any r ∈ ω, there is a finite C ⊆ M containing B

such that for every coloring c : (C
ā

) → 2r there is v ∈
〈

C
b̄

〉
such that for every

ā′, ā′′ ∈ (B
ā

)
one has |c(v ◦ ā′) − c(v ◦ ā′′)|sup ≤ ε, where |x |sup is the supremum

norm on [0, 1]r . Let us say that M has the strong ECRP if the definition holds
with ε = 0.

(b) A cofinal family A of finite subsets of a structure M has the embedding convex
Ramsey property (ECRP) if for every ε > 0, for any ā enumerating a member of
A and any b̄ enumerating a member B ⊇ A of A, for any r ∈ ω, there is C ∈ A
containing B such that for every coloring c : (C

ā

) → 2r there is v ∈
〈

C
b̄

〉
such that

for every ā′, ā′′ ∈ (B
ā

)
one has |c(v ◦ ā′)− c(v ◦ ā′′)|sup ≤ ε Let us say thatA has

the strong ECRP if the definition holds with ε = 0.

In Definition 4.1, it is equivalent to consider ā with repetitions allowed or without.
Arguing as in the proof of Remark 1.6, one gets that Remark 1.6 holds with ERP
replaced by the [strong] ECRP.

By the same argument as in Remark 3.1, we get
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Remark 4.2 In Definition 4.1, the part “there is a finite C ⊆ M containing B” [“there
is C ∈ A containing B”] can be removed and then, in the rest of the statement, C
should be replaced by M .

Theorem 4.3 Let M be an arbitrary first order structure. The following conditions are
equivalent.

(1) G := Aut(M) is amenable as a topological group.
(2) M has the ECRP.
(3) M has the strong ECRP.

Claim 2 The following conditions are equivalent.

(i) G is amenable.
(ii) For every ε > 0, for every finite tuple ā from M without repetitions, for all

n, r ∈ ω, for all g0, . . . , gn−1 ∈ G, for all formulas ϕ0(x̄), . . . , ϕr−1(x̄) of the
full language (with x̄ corresponding to ā), there exist λ1, . . . , λk ∈ [0, 1] with
λ1 + · · · + λk = 1 and h1, . . . , hk ∈ G such that for

μ := λ1 tp
full(h1(m̄)) + · · · + λk tp

full(hk(m̄))

for all j1, j2 < n and i < r one has |μ([ϕi (x̄)] · g−1
j1

) − μ([ϕi (x̄)] · g−1
j2

)| ≤ ε,

where [ϕi (x̄)] is the basic clopen set in �M consisting of the types containing
ϕi (x̄).

(iii) The same as in (ii) but with ε = 0.

Proof (iii) → (ii) is trivial. To see (ii) → (i), it is enough to recall that regular Borel
probability measures on a zero-dimensional compact space (such as �M) are the
same thing as finitely additive, probability measures on the Boolean algebra of clopen
subsets (e.g. see [4, 416Q(a)]), and the set of all such measures with the topology
inherited from the product [0, 1]clopens is a compact space. Then the intersection of
the closed sets of measures satisfying the inequalities in (ii) will be non-empty, and
any measure in the intersection of these sets will be invariant.

(i)→ (iii). Take any invariant,Borel probabilitymeasureν on�M, and consider any
data as in the assumptions of (iii). In particular, we have formulas ϕ0(x̄), . . . , ϕr−1(x̄)

and elements g0, . . . , gn−1 ∈ G. Let F0, . . . , Fnr−1 be all the clopens [ϕi (x̄)] ·g−1
j for

i < r and j < n. We claim that we can find λ1, . . . , λk ∈ [0, 1]with λ1+· · ·+λk = 1
and h1, . . . , hk ∈ G such that forμ := λ1 tpfull(h1(m̄))+· · ·+λk tpfull(hk(m̄)) for all
j < nr we have μ(Fj ) = ν(Fj ). This will clearly imply (iii), as ν is G-invariant. In
order to show the existence of λs and hs , consider the atoms B1, . . . , Bk of the Boolean
algebra generated by F0, . . . , Fnr−1. By the density in �M of the types realized in
M, we can find hs ∈ G for s ≤ k such that tpfull(hs(m̄)) ∈ Bs . Then put λs := ν(Bs).

��
Claim 3 Consider any finite tuple ā from M without repetitions, natural numbers
n, r , k, elements g0, . . . , gn−1 ∈ G, formulas ϕ0(x̄), . . . , ϕr−1(x̄) of the full language
(with x̄ corresponding to ā), λ1, . . . , λk ∈ [0, 1], elements h1, . . . , hk ∈ G, and

μ := λ1 tp
full(h1(m̄)) + · · · + λk tp

full(hk(m̄)).
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Let c : (M
ā

) → 2r be given by c(ā′)(i) :=
{
1 if |� ϕi (ā′)
0 if |� ¬ϕi (ā′) . Let v := λ1h1(b̄) +

· · · + λkhk(b̄) for some b̄ enumerating a finite B ⊆ M containing ā, g0ā, . . . , gn−1ā.
Then for any j1, j2 < n:

|c(v ◦ (g j1(ā))) − c(v ◦ (g j2(ā)))|sup = sup
i

|μ([ϕi (x̄)] · g−1
j1

) − μ([ϕi (x̄)] · g−1
j2

)|.

Proof |c(v ◦ (g j1(ā))) − c(v ◦ (g j2(ā)))|sup = |c(∑ λshs(g j1(ā))) − c(
∑

λshs(g j2
(ā)))|sup = | ∑ λsc(hs(g j1(ā))) − ∑

λsc(hs(g j2(ā)))|sup = supi | ∑{λs : ϕi (x̄) ∈
tpfull(hs(g j1(ā)))} − ∑{λs : ϕi (x̄) ∈ tpfull(hs(g j2(ā)))}| = supi |μ([ϕi (x̄)] · g−1

j1
) −

μ([ϕi (x̄)] · g−1
j2

)|.
Now, we turn to the implications between (1)-(3). The implication (3) → (2) is

trivial.
(2) → (1). By Claim 1, it is enough to show that (ii) holds. But this follows from

Claim 2 and the ECRP of M .
(1) → (3). Consider any finite ā from M without repetitions, and a finite B ⊆

M (enumerated as b̄) containing ā. Let c : (M
ā

) → 2r be a coloring. Then there
are formulas (in fact predicates) ϕ0(x̄), . . . , ϕr−1(x̄) of the full language such that

c(ā′)(i) :=
{
1 if |� ϕi (ā′)
0 if |� ¬ϕi (ā′) . Let g0(ā), . . . , gn−1(ā) be all elements of

(B
ā

)
(where

the gi ’s are from G). Now, take λ1, . . . , λk ∈ [0, 1] and h1, . . . , hk ∈ G provided by
Claim 1(iii). Then, by Claim 2, v := λ1h1(b̄) + · · · + λkhk(b̄) witnesses the strong
ECRP (by Remark 4.2). ��

5 Universal minimal flow

In this section, we reprove Fact 1.2 in the more general setting. Throughout, L0 ⊆ L
are two first order languages. Whenever M is an L-structure, its reduct to L0 will be
denoted by M0. Then clearly Aut(M) ≤ Aut(M0).

Definition 5.1 Let M be a structure in L , and letA be a cofinal family of finite subsets
of M . We say that A has:

(1) the right expansion property for (L0, L) if for every A ∈ A there is B ∈ A such
that for every σ ∈ Aut(M0) there is τ ∈ Aut(M) with τ [A] ⊆ σ [B],

(2) the left expansion property for (L0, L) if for every A ∈ A there is B ∈ A such
that for every σ ∈ Aut(M0) there is τ ∈ Aut(M) with τ [σ [A]] ⊆ B,

(3) the expansion property for (L0, L) if for every A ∈ A there is B ∈ A such that
for every σ1, σ2 ∈ Aut(M0) there is τ ∈ Aut(M) with τ [σ1[A]] ⊆ σ2[B].

Definition 5.2 We will say that a structure M in L has the [right or left] expansion
property for L0 if the family of all finite subsets of M has the [resp. right or left]
expansion property for (L0, L).

It is clear that M has the [right or left] expansion property for L0 if and only if
some (equivalently every) cofinal family of finite subsets of M has the [resp. right or
left] expansion property for (L0, L).
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The next remark is left as an exercise. (Recall from Sect. 1.4 that for finite structures
A and B in the same language, A ≤ B means that Emb(A, B) �= ∅.)
Remark 5.3 Assume M and M0 := M � L0 are locally finite Fraïssé structures in
languages L ⊇ L0, respectively, where L \ L0 consists of relation symbols. Let
K := Age(M) and K0 := Age(M0). Then:

(1) M has the expansion property for L0 if and only if K has the expansion property
relative to K0 in the sense of [12] (see Sect. 1.4);

(2) M has the right expansion property for L0 if and only if for every A ∈ K there
exists B0 ∈ K0 such that for every B ∈ K with B � L0 = B0 one has A ≤ B;

(3) M has the left expansion property for L0 if and only if for every A0 ∈ K0 there
exists B ∈ K such that for every A ∈ K with A � L0 = A0 one has A ≤ B.

Definition 5.4 We will say that a structure M in L is precompact for L0 if each
Aut(M0)-orbit on a finite Cartesian power of M is a union of finitely many Aut(M)-
orbits.

Clearly, if M and M0 are ultrahomogeneous, then the above orbits are the same
thing as tuples with the same quantifier-free types.

Again, the following easy remark is left as an exercise.

Remark 5.5 Assume M and M0 := M � L0 are locally finite Fraïssé structures in
languages L ⊇ L0, respectively, where L \ L0 consists of relation symbols. Then M
is precompact for L0 if and only if M is a precompact expansion of M0 in the sense
of [12] (see Sect. 1.4).

Remark 5.6 Let M be an L-structure which is precompact for L0. Then M has the
right expansion property for L0 if and only if it has the expansion property for L0.

Proof (←) is trivial. To show (→), consider any finite A ⊆ M . By precompactness,
there are σ1, . . . , σn ∈ Aut(M0) such that for every σ ∈ Aut(M0) there is τ ∈ Aut(M)

with τ [σ [A]] = σi [A] for some i ∈ {1, . . . , n}. By the right expansionproperty,we can
find finite B1, . . . , Bn ⊆ M such that for every i ∈ {1, . . . , n}, for every σ ∈ Aut(M0),
there is τ ∈ Aut(M)with τ [σi [A]] ⊆ σ [Bi ]. Put B := B1∪· · ·∪Bn .Wewill show that
it witnesses the expansion property for A. For this, consider any g1, g2 ∈ Aut(M0).
By the choice of the σi ’s, there exists τ1 ∈ Aut(M) such that τ1[g1[A]] = σi [A] for
some i ∈ {1, . . . , n}. Next, by the choice of Bi , there exists τ2 ∈ Aut(M) such that
τ2[σi [A]] ⊆ g2[Bi ] ⊆ g2[B]. Hence, τ2 ◦τ1 ∈ Aut(M) and (τ2 ◦τ1)[g1[A]] ⊆ g2[B].

��
When M is an L-structure and M0 := M � L0, we have structures M and M0

defined as at the beginning of Sect. 2. And �M is the universal right Aut(M)-ambit,
while �M0 is the universal right Aut(M0)-ambit. Note that �M can and will be
naturally treated as an Aut(M)-subflow of �M0 .

Now, we turn to the main results.

Theorem 5.7 Let M be a structure in L with the right expansion property for L0.
Assume Aut(M) fixes a point p = tpfull(σ (m̄)) ∈ �M (where σ ∈ Aut(M)∗), i.e.
p ·Aut(M) = {p} (by Theorem 3.2, this is equivalent to saying that M has the ERP).
Then cl(p · Aut(M0)) is the universal minimal right Aut(M0)-flow.
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Proof By universality of the right Aut(M0)-ambit �M0 , it is enough to show that
the subflow cl(p · Aut(M0)) is minimal. Suppose for a contradiction that there is
q ∈ cl(p ·Aut(M0)) such that p /∈ cl(q ·Aut(M0)). Then we can find ϕ(x̄) ∈ p such
that

q = lim
i

p · gi = lim
i
tpfull(σ (gi (m̄))) for some net (gi )i in Aut(M0), (3)

and

ϕ(x̄) /∈ q · h for all h ∈ Aut(M0). (4)

The formula ϕ(x̄) uses only a finite subtuple x̄ ′ of x̄ corresponding to a finite
subtuple ā of m̄. Let A be the set of all coordinates of ā. Take a finite B ⊆ M
witnessing the right expansion property for A. Choose h1, . . . , hn ∈ Aut(M0) so that
h1(ā), . . . , hn(ā) are all the Aut(M0) -conjugates of ā contained in B.

By (3), (4), and the continuity of the action of Aut(M0) on �M0 , there is i for
which

ϕ(x̄) /∈ (p · gi ) · h j for all j ∈ {1, . . . , n}. (5)

By the choice of B, there exists τ ∈ Aut(M) such that τ [A] ⊆ gi [B]. Then
τ(ā) = gi (ā′) for some tuple ā′ ⊆ B, and so g−1

i τ(ā) = ā′. By the choice of
h1, . . . , hn , since g−1

i τ ∈ Aut(M0), we get that ā′ = h j (ā) for some j ∈ {1, . . . , n}.
Thus, τ(ā) = gi h j (ā).

On the other hand, since p ·Aut(M) = {p}, we have p = p · τ = tpfull(σ (τ (m̄))),
so |� ϕ(σ(τ(m̄))), so |� ϕ(σ(τ(ā))).

Therefore, |� ϕ(σ gi h j (ā)) which means that ϕ(x̄) ∈ (p · gi ) · h j , a contradiction
with (5). ��

Now, we reprove Fact 1.2, extending the context to uncountable structures.

Theorem 5.8 Let M be an ultrahomogeneous L-structure, and let L\L0 = {Ri :
i ∈ I } consist of relation symbols. Assume M is precompact for L0, has the ERP
and the [right] expansion property for L0. Let R := M � (L \ L0) be an element
of the right Aut(M0)-flow X of all L\L0-structures on the universe of M. Then the
Aut(M0)-subflow cl(R · Aut(M0)) is the universal minimal right Aut(M0)-flow.

Proof By Theorem 3.2, there is p = tpfull(σ (m̄)) ∈ �M (where σ ∈ Aut(M)∗) with
p · Aut(M) = {p}.

Let� : �M0 → X be given by declaring that�(tpfull(ρ(m̄))) (for ρ ∈ Aut(M0)
∗)

is a structure Mρ with the same universe as M , where

Mρ |� Ri (ā) ⇐⇒ M∗ |� Ri (ρ(ā)).
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It is clear that � is continuous and preserves the right Aut(M0)-actions. Therefore,
by Theorem 5.7, it remains to show that ��cl(p · Aut(M0)) is injective and with the
image equal to cl(R · Aut(M0)).

Claim 4 (1) For every tuple ā in M , if ā′ ∈ Aut(M)ā, then tpfull(σ (ā)) =
tpfull(σ (ā′)).

(2) For every tuple ā in M (or even in M∗), tpqfL (σ (ā)) = tpqfL (ā), where tpqfL (ᾱ)

denotes the qf-type of ᾱ in L .
(3) For any finite tuples ā, ā′ in M , tpqfL (σ (ā)) = tpqfL (σ (ā′)) if and only if ā′ ∈

Aut(M)ā.

Proof (1) is clear from the choice of p.
(2) follows from the fact that σ ∈ Aut(M)∗, and so σ acts on M∗ as an L-

automorphism.
(3) follows from (2), finiteness of ā and ā′, and ultrahomogeneity of M .

��
Note that the assignment �(tpfull(ρ(m̄))) �→ tpqfL (ρ(m̄)) yields a homeomorphic

identification of Im(�) with a closed subset of the space of the qf-types in L .
We will show now that � � cl(p · Aut(M0)) is injective; in other words, each

type in cl(p · Aut(M0)) is determined by the quantifier free L-type. Take any q, r ∈
cl(p · Aut(M0)) such that �(q) = �(r). We have q = limi tpfull(σ (gi (m̄))) and
r = lim j tpfull(σ (h j (m̄))) for some nets (gi )i and (h j ) j fromAut(M0). By continuity

of � and the last paragraph, we get limi tp
qf
L (σ (gi (m̄))) = lim j tp

qf
L (σ (h j (m̄))).

Take any finite tuple ā in M . By precompactness and Claim 1(2), there are only
finitely many qf-types in L of the elements of σ Aut(M0)ā. So, by the equality of the
above limits, we get that there are some i0 and j0 such that for all i > i0 and j > j0,
we have tpqfL (σ (gi (ā))) = tpqfL (σ (h j (ā))). By Claim 1(3), this implies that h j (ā) ∈
Aut(M)gi (ā), and so, by Claim 1(1), tpfull(σ (gi (ā))) = tpfull(σ (h j (ā))). Therefore,
limi tpfull(σ (gi (ā))) = lim j tpfull(σ (h j (ā))). Since this holds for any finite ā, we
conclude that q = limi tpfull(σ (gi (m̄))) = lim j tpfull(σ (h j (m̄))) = r , so injectivity
is proved.

It remains to check that �[cl(p · Aut(M0))] = cl(R · Aut(M0)). Since �[cl(p ·
Aut(M0))] is a minimal Aut(M0)-flow (as an image of a minimal Aut(M0)-flow), it
is enough to show that R ∈ �[cl(p · Aut(M0))]. And for that it suffices to check that
R = �(p). But this is clear by the following equivalences

�(p) |� Ri (ā) ⇐⇒ M∗ |� Ri (σ (ā)) ⇐⇒ M∗ |� Ri (ā) ⇐⇒ M |� Ri (ā),

where the middle one is by Claim 1(2). ��

6 Metrizability of the universal minimal flow

We will reprove here Fact 1.4. This time we do not extend the context to uncountable
structures. We will be working in the context of Definition 1.7, using results and
notations from Sect. 2.
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The same argument as in the proof of Remark 3.1 yields

Remark 6.1 A structure M has separately finite Ramsey degree with witnessing num-
bers kā if and only if for any finite tuple ā in M and a finite set B ⊆ M containing ā, for
any r ∈ ω, for every coloring c : (M

ā

) → r , there is B ′ ∈ (M
B

)
such that |c[(B′

ā

)]| ≤ kā .

Lemma 6.2 Assume that a structure M has separately finite embedding Ramsey degree
witnessed by numbers kā . Then for every finite A ⊆ M, for every finite B ⊆ M
containing A, and for any r ∈ ω, there is a finite C ⊆ M containing B such that
for all colorings cᾱ : (C

ᾱ

) → r , with ᾱ ranging over the finite tuples from A, there is

B ′ ∈ (C
B

)
such that each set cᾱ[(B′

ᾱ

)] is of size at most kᾱ .

Proof By induction on n, we will show that for every finite tuples ā1, . . . , ān from M ,
for every finite B ⊆ M containing all these tuples, and for any r ∈ ω, there is a finite
C ⊆ M containing B such that for all colorings cāi :

(C
āi

) → r , i ∈ {1, . . . , n}, there
is B ′ ∈ (C

B

)
such that each set cāi [

(B′
āi

)] is of size at most kāi .
The base induction step is obvious by the definition of separately finite Ramsey

degree. For the induction step, consider any finite tuples ā1, . . . , ān+1 from M and a
finite subset B of M containing these tuples. Let r ∈ ω.

By the base induction step, we can find a finite Cn+1 ⊆ M containing B such that
for every coloring c : (Cn+1

ān+1

) → r there is B ′ ∈ (Cn+1
B

)
such that c[( B′

ān+1

)] is of size at
most kān+1 . By the induction hypothesis applied to ā1, . . . , ān and to Cn+1 in place of
B, we get a finite C ⊆ M containing Cn+1 such that for all colorings cāi :

(C
āi

) → r ,

i ∈ {1, . . . , n}, there is C ′
n+1 ∈ ( C

Cn+1

)
such that each set cāi [

(C ′
n+1
āi

)] is of size at most
kāi .

Now, consider any colorings cāi :
(C

āi

) → r , i ∈ {1, . . . , n + 1}. Choose C ′
n+1 ∈

( C
Cn+1

)
provided by the last paragraph. Then we easily get that there is B ′ ∈ (C ′

n+1
B

)

with cān+1 [
( B′

ān+1

)] of size at most kān+1 . Thus, by the choice of C ′
n+1, we conclude that

for every i ∈ {1, . . . , n + 1}, the size of cāi [
(B′

āi

)] is bounded by kāi . ��
Theorem 6.3 Let M be a countable structure, and G := Aut(M). Then the following
conditions are equivalent.

(1) The universal minimal G-flow is metrizable.
(2) M has separately finite embedding Ramsey degree.

Proof (2) → (1). Let the separately finite Ramsey degree be witnessed by the num-
bers kā . Consider any formulas ϕ1(x̄1), . . . , ϕn(x̄n) (without parameters) in the full
language and any finite A ⊆ M . Let � = {ϕ1(x̄1), . . . , ϕn(x̄n)}. For each finite tuple
ᾱ ⊆ A, let cᾱ : (M

ᾱ

) → 3n be given by

c(ᾱ)(i) :=
⎧
⎨

⎩

1 if |� ϕi (ᾱ
′)

0 if |� ¬ϕi (ᾱ
′)

2 if ᾱ′ is not in the domain of ϕi (x̄i ), i .e. |ᾱ′| �= |x̄i |.
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By Lemma 6.2 applied to B := A, there exists A′ ⊆ M and σϕ̄,A ∈ G mapping
A to A′ such that for every finite tuple ᾱ from A and for every g1, . . . , gm ∈ G
such that g1(ᾱ), . . . , gm(ᾱ) ∈ A, there are at most kᾱ �-types of the tuples
σϕ̄,A(g1(ᾱ)), . . . , σϕ̄,A(gm(ᾱ)). By saturation ofM∗, this implies that there is σ ∈ G∗
such that for every finite tuple ᾱ in M and for every finite set�′ of formulas in the full
language in variables x̄ corresponding to ᾱ, one has |{tp�′(σ (g(ᾱ))) : g ∈ G}| ≤ kᾱ .
Hence,

|{tpfull(σ (g(ᾱ))) : g ∈ G}| ≤ kᾱ . (6)

Remark 2.5 and the comments afterwards yield an isomorphism h : �M →
lim←−̄

a

�M̄
a of right G-ambits, which satisfies

h[tpfull(σ (m̄)) · G] ⊆ lim←−̄
a

Xā ⊆ lim←−̄
a

�M̄
a ,

where Xā := {tpfull(σ (g(ā))) : g ∈ G}. By (6), each Xā is finite, so the set in the
middle is a profinite space, so it is closed in lim←−̄

a

�M̄
a . Also, the set on the left is clearly

dense in the middle set. Hence,

h[cl(tpfull(σ (m̄)) · G)] = lim←−̄
a

Xā .

Since M is countable, there are only countably many finite ā’s. Since also each Xā

is finite, we conclude that lim←−̄
a

Xā is second countable and compact and so metrizable

(by Urysohn’s metrization theorem, see [3, Theorem 4.2.8 or 4.2.9]), which means
that h[cl(tpfull(σ (m̄)) · G)] is metrizable. This implies that cl(tpfull(σ (m̄)) · G) is
metrizable. But the last flow is a subflow of the universal right G-ambit, hence the
universal minimal right G-flow is a homomorphic image of cl(tpfull(σ (m̄)) ·G), and as
such it is also metrizable (again by Urysohn’s metrization theorem, because the image
of a second countable, compact space under a continuous map to a Hausdorff space
is second countable, which easily follows using networks and [3, Therorem 3.1.19]).

(1) → (2). The universalminimal rightG-flow is of the form cl(tpfull(σ (m̄))·G) for
someσ ∈ G∗. Consider anyfinite ā in M . Letπā : �M → �M̄

a be the restrictionmap.
By assumption, cl(tpfull(σ (m̄)) · G) is metrizable, so πā[cl(tpfull(σ (m̄)) · G)] is also
metrizable. On the other hand, by Proposition 2.6, �M̄

a
∼= β Aā . Recall that whenever

X is a discrete space, then every infinite closed subset of β X embeds βω (see [5, Cor.
9.12 and Exc. 9.H.2]), and so it is non-metrizable. Hence, πā[cl(tpfull(σ (m̄)) · G)] is
finite, and so {tpfull(σ (g(ā))) : g ∈ G} is finite; denote its cardinality by kā . We check
that the kā’s witness that M has separately finite embedding Ramsey degree.

Consider any finite B ⊆ M containing ā and a coloring c : (M
ā

) → r for some
r ∈ ω. The fibers of c are defined by formulas (in fact predicates) ϕ0(x̄), . . . , ϕr−1(x̄)

of the full language; put � := {ϕ0(x̄0), . . . , ϕr−1(x̄r−1)}. Let g0(ā), . . . , gn−1(ā)
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be all elements of
(B

ā

)
(where the gi ’s are from G). By the choice of kā , we have

|{tp�(σ(g(ā))) : g ∈ G}| ≤ kā . Hence, there is h ∈ G with |{tp�(h(gi (ā))) : i ∈
n}| ≤ kā , which means that |c[(h[B]

ā

)]| ≤ kā . So we are done by Remark 6.1. ��
Let M be a countable structure andG := Aut(M).We finishwith another character-

ization ofmetrizability of the universalminimalG-flow.Remark2.4 tells us that for any
language L ′ in which the action of G on M is ∅-definable, we have a natural structure
of a right G-ambit on�M′

. For such a language L ′, by L ′′ wewill denote the relational
language of the Morleyization restricted to M of the theory of M′ = (G, M, . . . ) in
the language L ′ expanded by constants from M , i.e. for every L ′-formula ϕ(x̄) with
parameters from M and with x̄ corresponding to some sorts of M , we have a relation
symbol Rϕ(x̄) in L ′′. Note that if L ′ is countable, so is L ′′. Let X be the right G-flow
consisting of all the L ′′-structures with the universe M , where everything is defined
in a standard way (as in the second paragraph above Fact 1.2). In particular, the right
action of G on X is given by: Rϕg := {(g−1a1, . . . , g−1an) : (a1, . . . , an) ∈ Rϕ}.
Remark 6.4 The function � : �M′ → X decribed by

�(tpL ′
(σ (m̄)/M)) |� Rϕ(ᾱ) ⇐⇒ M′ |� ϕ(σ(ᾱ))

is a monomorphism of right G-flows.

Let M(G) be a universal minimal right G-flow contained in �M.

Proposition 6.5 The following conditions are equivalent.

(1) M(G) is metrizable.
(2) There is a countable language L ′ as above for which the restriction map from

�M to �M′
restricted to M(G) is injective (then clearly the image of M(G)

under this map is the universal minimal right G-flow).
(3) There is a countable language L ′ and an L ′′-structure N in X such that cl(N · G)

is the universal minimal right G-flow.

Proof (3) → (1) is obvious, and (2) → (3) follows from Remark 6.4.
(1) → (2). Since M(G) is assumed to be metrizable, and we know by Theorem

2.2 that it is zero-dimensional, it has a countable basis consisting of clopen sets. These
sets are given by formulas in a countable sublanguage L ′ of the full language. It is
clear that such an L ′ works in (2). ��

In the proof of Theorem 6.3, the presentation of �M as lim←−̄
a

�M̄
a from Remark 2.5

was essential. But there is also another natural presentation, namely

�M ∼= lim←−
L ′

�M′
,

where L ′ ranges over the countable sublanguages of the full language in which the
action of G on M is ∅-definable, and where the isomorphism is given by the restriction
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maps to the sublanguages. This clearly induces an isomorphism

M(G) ∼= lim←−
L ′

M L ′
(G),

where each M L ′
(G) is the minimal G-subflow of �M′

obtained from M(G) by the
restriction to L ′.

An obvious corollary of Proposition 6.5 is that M(G) is metrizable if and only if
for some countable language L ′ (which can be assumed to be a sublanguage of the
full language) already the map M(G) → M L ′

(G) is an isomorphism of G-flows.

Remark 6.6 The following conditions are equivalent.

(1) M(G) is metrizable.
(2) Some G-subflow � of �M is metrizable.
(3) For some G-subflow � of �M and some coutnable language L ′ as above, the

restriction map � → �M′
is injective.

Proof The equivalence of (1) and (2) follows from universality of the ambit �M. The
implication (3) → (2) is obvious, and (1) → (3) follows by Proposition 6.5. ��
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sions. Fund. Math. 222, 19–47 (2013)
13. Salles, T.S.: Extreme Amenability of Topological Groups, Master’s thesis, Bonn (2011)
14. Uspenskij, V.: Compactifications of topological groups. In: Proceedings of the Ninth Prague Topolog-

ical Symposium , Topol. Atlas, North Bay, ON, 2002, pp. 331–346 (2001)
15. Zucker, A.: Topological dynamics of automorphism groups, ultrafilter combinatorics, and the Generic

Point Problem. Trans. Am. Math. Soc. 368, 6715–6740 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	On the topological dynamics of automorphism groups: a model-theoretic perspective
	Abstract
	0 Introduction
	1 Preliminaries
	1.1 Model theory
	1.2 Topological dynamics
	1.3 Model-theoretic description of the universal G-ambit
	1.4 Structural Ramsey theory
	1.5 Structural Ramsey theory in this paper

	2 Model-theoretic description of the universal ambit
	3 Extreme amenability
	4 Amenability
	5 Universal minimal flow
	6 Metrizability of the universal minimal flow
	Acknowledgements
	References




