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Abstract
Lindström’s Theorem characterizes first order logic as the maximal logic satisfying
the Compactness Theorem and the Downward Löwenheim-Skolem Theorem. If we
do not assume that logics are closed under negation, there is an obvious extension
of first order logic with the two model theoretic properties mentioned, namely exis-
tential second order logic. We show that existential second order logic has a whole
family of proper extensions satisfying the Compactness Theorem and the Downward
Löwenheim-Skolem Theorem. Furthermore, we show that in the context of negation-
less logics, positive logics, as we call them, there is no strongest extension of first
order logic with the Compactness Theorem and the Downward Löwenheim-Skolem
Theorem.
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208 S. Shelah, J. Väänänen

1 Introduction

Our motivating question in this paper is whether we can generalize Lindström’s The-
orem from first order logic to �1

1 , that is, existential second order logic. In the case of
first order logic Lindström’s Theorem says that first order logic is maximal with the
Compactness Theorem1 and the Downward Löwenheim-Skolem Theorem2 among
logics satisfying some minimal closure conditions [10]. One of the assumed closure
conditions is closure under negation. What happens if we drop this assumption? It
seems that this question was first explicitly raised in [7]. The Compactness Theorem
and the Downward Löwenheim-Skolem Theorem make perfect sense, whether we
have negation or not. These two conditions make no reference to negation.

In earlier related work ([14]) we showed that a strong form of Lindström’s Theorem
fails for extensions of Lκω and Lκκ : For weakly compact κ there is no strongest
extension of Lκω with the (κ, κ)-compactness property and the Löwenheim-Skolem
Theorem down to κ . With an additional set-theoretic assumption, there is no strongest
extension of Lκκ with the (κ, κ)-Compactness Theorem and the Löwenheim-Skolem
theorem down to < κ .

Obviously first order logic itself is not maximal if negation is dropped because
existential second order logic �1

1 , and even �1
1,δ (also denoted PC�), i.e. existential

second order quantifiers followed by a countable conjunction of first order sentences,
which clearly satisfy both the Compactness Theorem and the Downward Löwenheim-
Skolem Theorem, also properly extend first order logic.

We are led to the following (interrelated) questions, all in the context of logics
where closure under negation is not assumed:

Question 1 Is �1
1 (or rather �1

1,δ) maximal among logics satisfying the Compactness
Theorem and the Downward Löwenheim-Skolem Theorem?

Question 2 Is there an extension of �1
1 (or �1

1,δ) which is maximal among logics sat-
isfying the Compactness Theorem and the Downward Löwenheim-Skolem Theorem?

Question 3 Is there a characterization of �1
1 (or �1

1,δ) as maximal among logics sat-
isfying some model-theoretic conditions?

Question 4 Is there an extension of�1
1 (or�

1
1,δ) which is maximal (or even strongest)

among logics satisfying some model-theoretic conditions?

In this paper we formulate Questions 1 and 2 in exact terms. We answer Question 1
negatively. As to Question 2 we show that there is no strongest3 extension of �1

1 sat-
isfying the Compactness Theorem and the Downward Löwenheim-Skolem Theorem.
The existence of a maximal one (which has no proper such extension) remains open.

1 The (κ, λ)-Compactness Theorem says: Every theory of size ≤ κ , every subset of size < λ of which has
a model, has a model. Compactness Theorem means (ω, ω)-Compactness Theorem.
2 The Downward Löwenheim-Skolem Theorem down to κ says: Every sentence in a countable vocabulary,
which has a model, has a model of size ≤ κ . “Down to < κ” means “has a model of size < κ”. The
Downward Löwenheim-Skolem Theorem means the Löwenheim-Skolem Theorem down to ℵ0.
3 By strongest extension we mean one which contains every other as a sublogic.
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Positive logics 209

Questions 3 and 4 remain completely unanswered. Admittedly, Question 4 is a little
vague as both “extension” and “model-theoretical conditions” are left open.

To answer the above Questions 1 and 2 we introduce a family of new generalized
quantifiers associated with the very natural and intuitive concept of the density of a
set of reals. These quantifiers are defined for the purpose of solving the said questions
and may lack wider relevance, although the general study of logics without negation
is so undeveloped that it may be too early to say what is relevant and what is not.

Notation: We use M and N to denote structures, and M and N to denote their
universes, respectively. For finite sequences s and sets a, we use sˆ〈a〉 to denote the
extension of s by the set a. For sequences of length ≤ ω, s � s′ means that s is an
initial segment of s′. The empty sequence is denoted ∅. A subset A of 2ω is said to be
dense if for all s ∈ 2<ω there is s′ ∈ A such that s � s′. We use P(ω) to denote the
power-set of ω.

2 Positive logics

We define the concept of a positive logic,meaning a logic without negation, except in
front of atomic (and first order) formulas. We have to be careful about substitution in
this context. If we are too lax about the substitution4 of formulas into atomic formulas
we end up having a logic which is closed under negation, which is not what we want.
Substitution is very natural, but it is not needed in Lindström’s characterization of first
order logic.

One may ask whether a logic deserves to be called a logic if it is not closed under
negation? We do not try to answer this question, but merely point out that there are
several logics that do not have a negation in the sense that we have in mind, i.e. in
the sense of classical logic. Take, for example, constructive logic. Although it has a
negation, it does not have theLawofExcludedMiddle, so its negation does not function
in the waywemeanwhenwe ask whether a logic is closed under negation. In our sense
constructive logic is not closed under negation. Another example is continuous logic
[3] and the related positive logic of [4]. We have already mentioned existential second
order logic�1

1 and its stronger form,�1
1,δ . In the same category as�1

1 are Dependence
logic [15] and Independence Friendly Logic [11]. Transfinite game quantifiers yield
infinitary logics which are not closed under negation, due to non-determinacy [8]. In
the finite context there is the complexity class non-deterministic polynomial time NP,
which is equivalent to existential second order logic on finite models, of which it is not
known whether it is closed under negation. In this paper we introduce new examples
of logics without negation.

Definition 1 A positive logic is an abstract logic5 in the sense of [10] (see also [6])
which contains first order logic and is closed under disjunction, conjunction, and first

4 The Substitution Property for a abstract logic L∗ says that if φ is in L∗, P is an n-ary predicate symbol
in the vocabulary of φ and ψ(x1, . . . , xn) is a formula of L∗, then the result of substituting ψ(t1, . . . , tn)

to occurrences of P(t1, . . . , tn) in φ is again in L∗. For details, see [6, Def. 1.2.3].
5 An abstract logic (or “a generalized first order logic”), in the sense of [10] is a pair L = (�, T ), where� is
an arbitrary set and T is a binary relation betweenmembers of� on the one hand and structures on the other.
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210 S. Shelah, J. Väänänen

order quantifiers ∃ and ∀. We do not require closure under negation, nor closure under
substitution.

Example 2 1. First order logic is a positive logic.
2. �1

1 and �1
1,δ are positive logics.

3. If L is a positive logic, then so is �1
1(L), the closure of L under existential second

order quantification.

3 A class of new quantifiers

In the tradition of [9] we define our new generalized quantifiers by first specifying a
class of structures, closed under isomorphisms.

Let τd be the vocabulary {R0, R1, R2, R3, R4} consisting of binary predicates
R0, R1, R2 and unary predicates R3, R4.

Example 3 A canonical example of a τd -structure is the model

MA = (M, RMA
0 , RMA

1 , RMA
2 , RMA

3 , RMA
4 ),

where A ⊆ 2ω and

• M = 2<ω ∪ A.
• RMA

i = {(a, b) ∈ (2<ω)2 : b = aˆ〈i〉} (i = 0, 1).

• RMA
2 = {(a, b) ∈ M × M : a � b}.

• RMA
3 = {∅}.

• RMA
4 = M .

Definition 4 For n < ω and η ∈ 2n we define ψη(x) as:

R4(x) ∧ ∃y0 . . . ∃yn (R3(y0) ∧ ∧
i≤n R4(yi ) ∧ ∧

i<n yi Rη(i)yi+1 ∧ ∧
i≤n yi R2x).

For a τd -model M and a ∈ M we define

�(M, a) = {η ∈ 2<ω : M |� ψη(a)}
�(M) = {η ∈ 2ω : for some a ∈ M, η � n ∈ �(M, a) for all n < ω}.

If η ∈ �(M, a), we say that a represents η in M. We also say that M represents
the set �(M).

One element a can represent several η, but later in Sect. 7 we impose a further
restriction to the effect that representation is unique.

Members of � are called L-sentences. Classes of the form {M : T (φ,M)}, where φ is an L-sentence, are
called L-characterizable classes. Abstract logics are assumed to satisfy five axioms expressed in terms of L-
characterizable classes. The axioms correspond to being closed under isomorphism, conjunction, negation,
permutation of symbols, and “free” expansions.
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Positive logics 211

Note that ifM is a τd -model, then the property “�(M) is dense” is a�1
1-property of

M. Since we aim at a logic which goes beyond existential second order logic, we have
to sharpen the requirement of density. The property of τd -models we are interested in
is the property that “�(M) \ A is dense” for some preassigned set A ⊆ 2ω of reals.

Definition 5 Let A ⊆ 2ω. We define the Lindström quantifier QA as follows. Suppose
M is a model and c̄ ∈ Mk . Then we define

(QAx0x1)(ψ0(x0, x1, c̄), ψ1(x0, x1, c̄), ψ2(x0, x1, c̄), ψ3(x0, c̄), ψ4(x0, c̄)) (1)

to be true inM if and only if �(Mψ̄ ) \ A is dense, where

ψ̄ = (ψ0(x0, x1, c̄), ψ1(x0, x1, c̄), ψ2(x0, x1, c̄), ψ3(x0, c̄), ψ4(x0, c̄)),

Mψ̄ = (M, RN
0 , RN

1 , RN
2 , RN

3 , RN
4 ),

and

• RN
i = {(a, b) ∈ M2 : M |� ψi (a, b, c̄)} (i = 0, 1, 2).

• RN
3 = {a ∈ M : M |� ψ3(a, c̄)}.

• RN
4 = {a ∈ M : M |� ψ4(a, c̄)}.

Definition 6 Suppose A ⊆ 2ω. We define the positive logic Ld
A as the closure of

first order logic under conjunction, disjunction, first order quantifiers ∃ and ∀, the
existential second order quantifier ∃R, where R is a relation symbol, and the gener-
alized quantifier QA. We denote by Ld,ω

A the extension of Ld
A obtained by allowing

countable conjunctions as a logical operation. Finally, the proper class Ld,∞
A denotes

the extension of Ld
A obtained by allowing arbitrary set-size conjunctions as a logical

operation.

With the obvious definition of what it means for a positive logic to be a sublogic
of another, we can immediately observe that �1

1 is a sublogic of Ld
A, and �1

1,δ is a

sublogic of Ld,ω
A whatever A is.

Example 7 Suppose A ⊆ 2ω. The class KA of τd -models M satisfying “�(M) \ A
is dense” is (trivially) definable in Ld

A, as M ∈ KA if and only ifM |� ψA, where

ψA = (QAx0x1)(R0(x0, x1), R1(x0, x1), R2(x0, x1), R3(x0), R4(x0)).

The model MB of Example 3 is in KA, if and only if B \ A is dense.

For future reference we make the following observation: If η ∈ 2n , ȳ =
(y0, . . . , yn−1), ψ̄ as inDefinition 5 is a 5-tuple of formulas of Ld

A, z̄ = (z0, . . . , zk−1),

and 
n,k
ψ̄,η

(ȳ, x, z̄) ∈ Ld
A is the conjunction of

ψ4(yi , z̄) for i ≤ n
ψ4(x, z̄) ∧ ψ3(y0, z̄)
ψη(i)(yi , yi+1, z̄) for i < n
ψ2(yi , x, z̄) for i ≤ n,
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212 S. Shelah, J. Väänänen

then (1) is equivalent to

For every σ ∈ 2<ω there are η ∈ 2ω \ A extending σ

and a ∈ M such that for some function n �→ 〈bn0 , . . . , bnn−1〉
fromω toMn we have M |� 

n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω.

(2)

We proceed to proving that the logic Ld
A, for suitably chosen A ⊆ 2ω, satisfies the

Compactness Theorem and the Downward Löwenheim-Skolem Theorem, and also
properly extends �1

1 .

4 The Compactness Theorem

We use the well-established method of ultraproducts to prove the Compactness The-
orem of Ld

A.

Theorem 8 (Łoś Lemma for Ld
A) Suppose 2

ω \ A is dense. Suppose Mi , i ∈ I , are
models and D is an ultrafilter on a set I . Let M = ∏

i∈I Mi/D, f0, . . . , fn−1 ∈
∏

i∈I Mi and φ(x0, . . . , xn−1) in Ld
A (or even in Ld,∞

A ). Then

{i ∈ I : Mi |� φ( f0(i), . . . , fn−1(i))} ∈ D ⇒ M |� φ( f0/D, . . . , fn−1/D).

Proof We use induction on φ. The cases corresponding to the atomic formulas, the
negated atomic fromulas, conjunction (even infinite conjunction), disjunction, ∃, ∀,
and ∃R (see e.g. [5, 4.1.14]) are all standard and well known. In the case of disjunction
we use the property of ultrafilters that I1 ∪ I2 ∈ D implies I1 ∈ D or I2 ∈ D. We
are left with the induction step for QA. Let us denote f0(i), . . . , fn−1(i) by f̄ (i) and
f0/D, . . . , fn−1/D by f̄ /D. We assume

J = {u ∈ I : Mi |� (QAx0x1)(ψ0(x0, x1, f̄ (i)), . . . , ψ4(x0, f̄ (i)))} ∈ D (3)

and demonstrate M |� (QAx0x1)(ψ0(x0, x1, f̄ /D), . . . , ψ4(x0, f̄ /D)). For i ∈ J
the set Bi of elements η of 2ω \ A such that there are ai ∈ Mi and bn0,i . . . , b

n
n−1,i in

Mi such that Mi |� 
n,k
ψ̄,η�n(b

n
0,i , . . . , b

n
n−1,i , ai , f̄ (i)) for all n < ω, is dense.

Case 1: D is ℵ1-incomplete. Let J = I0 ⊇ I1 ⊇ . . . be a descending chain in D with
empty intersection.We show that the set B of η ∈ 2ω such that there is a ∈ M such that
for some bn0 , . . . , b

n
n−1 in

∏
i Mi/D we haveM |� 

n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, f̄ /D) for

all n < ω, is the full set 2ω. Since we assume that 2ω \ A is dense, it follows that B \ A
is dense, as we claim.

Suppose η ∈ 2ω is arbitrary. Let i ∈ In+1 \ In . Because Bi is dense, there are, for
all n < ω, extensions ηi ∈ 2ω of η � n and elements ai , bni,0, . . . , b

n
i,n−1 ∈ Mi such

that
Mi |� 

n,k
ψ̄,ηi�n(b

n
i,0, . . . , b

n
i,n−1, ai , f̄ (i)) (4)
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Positive logics 213

for all n < ω. Let h(i) = ai . For i ∈ In \ In+1 and m < n, let gnm(i) = bni,m . Now

{i ∈ I : Mi |� 
n,k
ψ̄,η�n(g

n
0 (i), . . . , g

n
n−1(i), h(i), f̄ (i))} ⊇ In+1 ∈ D.

Hence

M |� 
n,k
ψ̄,η�n(g

n
0/D, . . . , gnn−1/D, h/D, f̄ /D).

Case 2: D is ℵ1-complete. We show that the set B of η ∈ 2ω \ A such that for some
a, bn0 , . . . , b

n
n−1 ∈ M we have M |� 

n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, f̄ /D) for all n < ω, is

dense. Suppose η ∈ 2n . By the density of Bi , for each i ∈ J there is νi ∈ Bi extending
η. There is J0 ⊆ J in D such that νi (n) is constant for i ∈ J0. There is J1 ⊆ J0 in D
such that νi (n + 1) is constant for i ∈ J1, etc. By ℵ1-completeness we get J∞ ∈ D
such that νi (m) is constant, say η∗(m) for all m ≥ n and all i ∈ J∞. Now η∗ ∈ B
follows easily. ��
Corollary 9 If 2ω \ A is dense, then:

1. Ld
A (even Ld,∞

A ) satisfies the (full) Compactness Theorem.
2. Every sentence of Ld

A with an infinite model has arbitrarily large models.
3. The only sentences in Ld

A that have a negation (in the usual sense) are the first
order (equivalent) ones.

Proof The usual argument gives 1: Suppose T is a finitely consistent theory in Ld
A.

Let I be the set of finite subsets of T and for each i ∈ I , let Mi |� i . If φ ∈ T , let
Aφ = {i ∈ I : φ ∈ i}. Then the family J = {Aφ : φ ∈ T } has the finite intersection
property. Let D be a non-principal ultrafilter on I extending J . Now if φ ∈ T , then∏

D Mi |� φ, as {i ∈ I : Mi |� φ} ⊇ Aφ ∈ D.

Claim 2 follows immediately from Claim from 1. Claim 3 follows from the ultra-
product characterization of first order model classes (see e.g. [5, 4.1.12]) and the
characterization of elementary equivalence in terms of ultrapowers [13]. ��
Theorem 10 (Robinson’s Consistency Lemma for Ld

A) Suppose 2
ω \ A is dense. Sup-

pose T1 and T2 are consistent Ld
A-theories with vocabularies τ1 and τ2, respectively,

such that T1 ∩T2 is complete with respect to first order logic in the vocabulary τ1 ∩ τ2.
Then T1 ∪ T2 is consistent.

Proof This proof is not specific to Ld
A, but is rather a well-known consequence of Łoś

Lemma, Theorem 8. Let M1 |� T1 and M2 |� T2. Let M−
l be the reduct of Ml to

the vocabulary τd = τ1 ∩ τ2. Now M−
1 and M−

2 are elementarily equivalent in first
order logic, for ifM−

1 |� φ then necessarily T1∩T2 |� φ, whenceM−
2 |� φ, and vice

versa. By [13] there are a set I and an ultrafilter D on I such that if we denoteMI
1/D

by N1 and MI
2/D by N2, then N1 � τd ∼= N2 � τd . W.l.o.g. N1 � τd = N2 � τd .

Let N be a common expansion of N1 and N2. By Theorem 8, N � τ1 |� T1 and
N � τ2 |� T2. Hence, N |� T1 ∪ T2. ��
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214 S. Shelah, J. Väänänen

5 The Downward Löwenheim-Skolem property

The Downward Löwenheim-Skolem Property, which says that any sentence (of the
logic) which has a model has a countable model, is an important ingredient of the
Lindström characterization of first order logic. The main examples of logics with this
property, apart from first order logic, are Lω1ω and its sublogics L(Q0) (with the
quantifier “there exists infinitely many”, see e.g. [1, p. 8]) and the weak second order
logic L2

w (with quantifiers for variables that range over finite sets, see e.g. [1, p. 9]).
We now prove this property for Ld

A in a particularly strong form.
Because of lack of negation the elementary submodel relation M � N splits into

two different concepts M �+ N and M �− N :

Definition 11 Let us write N �−
Ld
A
M if N ⊆ M and for all a1, . . . , an in N and all

formulas φ(x1, . . . , xn) of Ld
A we have

M |� φ(a1, . . . , an) ⇒ N |� φ(a1, . . . , an).

Respectively, we write N �+
Ld
A
M if N ⊆ M and for all a1, . . . , an in N and all

formulas φ(x1, . . . , xn) of Ld
A we have

N |� φ(a1, . . . , an) ⇒ M |� φ(a1, . . . , an).

Similar definitions can be given for Ld,ω
A and Ld,∞

A , and for fragments (i.e. subsets
closed under subformulas)  thereof.

The Compactness Theorem implies that every infinite modelN has arbitrarily large
M such that N �+

Ld
A
M (Corollary 9).

Theorem 12 (Downward Löwenheim-Skolem-Tarski Theorem) Suppose κ ≥ ℵ0,
A ⊆ 2ω, M is a model for a vocabulary of cardinality ≤ κ , and X ⊆ M such
that |X | ≤ κ . Then there is N �−

Ld
A
M (even N �−

 M for any fixed fragment  of

Ld,∞
A of size ≤ κ) such that X ⊆ N and |N | = κ .

Proof We first expandM as follows: For every Ld
A-formula φ(R, z̄), where R is n-ary

and z̄ = z0, . . . , zk−1, we make sure there is a predicate symbol R∗ of arity k + n
such that if M |� ∃Rφ(R, c̄), then M |� φ(R∗(c̄, ·), c̄). Likewise, we may assume
the vocabulary of M has a Skolem function fφ for each formula φ(x, z̄) such that if
M |� ∃xφ(x, c̄), thenM |� φ( fφ(c̄), c̄). Let τ be the original vocabulary ofM and
τ ∗ the vocabulary of the expansion, which we denoteM∗. For any formulas ψ̄ in Ld

A
of the vocabulary τ ∗ and c̄ ∈ Mk such that (1) in Definition 5 holds, let g(n, k, ψ̄, η, c̄)
be the function which maps n, k, ψ̄, c̄ and η ∈ 2n to 〈bn0 , . . . , bnn−1〉 ∈ Mn such that

M∗ |� 
n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω. Denoting for any cardinal θ the set

of sets of hereditary cardinality < θ by Hθ , let θ ≥ (κ + 2ω)+such that M ⊆ Hθ ,
and K ≺ Hθ , such that |K | = κ and {A, κ, τ,M∗, X , g} ∪ κ ∪ τ ∗ ∪ X ⊆ K . Let N
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Positive logics 215

be the restriction of M∗ to K , i.e. the universe N of N is M ∩ K and the constants,
relations and functions of M∗ are relativized to N .

We need to check that N is closed under the interpretations of function symbols
of the vocabulary of M∗. Let f be such a function symbol. Suppose f is s-ary and
c̄ ∈ Ns . The sentence ∃x(x ∈ M ∧ x = fM∗

(c̄)) is true in Hθ , hence true in K .
Thus there is b ∈ N (= M ∩ K ) such that b = fM∗

(c̄) is true in K . Therefore
fM∗

(c̄) = b ∈ N . We can conclude that N is a substructure of M∗.
Claim: If φ(x) is a τ -formula in Ld

A and a ∈ N , then M∗ |� φ(a) ⇒ N |� φ(a).
We use induction on φ. The claim follows from N ⊆ M∗ for atomic and negated

atomic φ. The claim is clearly preserved under conjunction and disjunction. It is also
trivially preserved under universal quantifier, sinceN ⊆ M∗. The induction steps for
both first and second order existential quantifiers are trivial because of the expansion
we have performed on M∗. We are left with the quantifier QA.

SupposeM∗ satisfies (1) of Definition 5 with c̄ ∈ Nk . Thus (2) holds and we want
to prove (2) with M∗ replaced by N . Note that (2) also holds in K . Suppose σ ∈ 2n

is given. There is η ∈ K ∩ (2ω \ A) extending σ such that K satisfies

There is a ∈ M such that for some function n �→ 〈bn0 , . . . , bnn−1〉
fromω toMn we have M∗ |� 

n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω.

Thus there are a ∈ N and a function n �→ 〈bn0 , . . . , bnn−1〉 from ω to Nn such that

M∗ |� 
n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω. By the Induction Hypothesis,N |�


n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω follows. ��

We conclude that every sentence of Ld
A which has an infinite model has a countable

model and an uncountable model.
The following examples show that Theorem 12 is in a sense optimal:

Example 13 There is an uncountable model M, namely (P(ω), a,∈), where a is the
element ω of P(ω), such that there is no countable model N with N �+

�1
1
M. There

is a countable model N , namely (ω,<), such that there is no uncountable model M
with N �−

�1
1
M.

6 Proper extensions of 61
1 and 61

1,ı

Our goal in this section is to show that for many A ⊆ 2ω the logic Ld
A properly extends

�1
1 and Ld,ω

A properly extends �1
1,δ . We have a spectrum of results to this effect but

nothing as conclusive as being able to explicitly point out such a set A. There are
obvious reasons for this. The logic �1

1 is very powerful and any “simple” A ⊆ 2ω is
likely to yield Ld

A which is equivalent to �1
1 rather than properly extending it. This is

even more true with Ld,ω
A and �1

1,δ .
We first establish the basic existence of sets A ⊂ 2ω with the desired properties.

We shall then refine the result with further arguments.
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Theorem 14 There are sets A ⊆ 2ω such that 2ω \ A is dense and QA is not definable
in �1

1 , nor in �1
1,δ , nor in Lω1ω1 .

Proof Let Aα , α < 2ω, be disjoint dense subsets of 2ω. For any X ⊆ 2ω, let

AX =
⋃

α∈X
Aα.

Note that if X �= Y , then AX \ AY or AY \ AX is dense. Let KA and KB be as
in Example 7 and MA is as in Example 3. If A \ B is dense, then KA �= KB , as
MA ∈ KB but MA /∈ KA. Thus the classes KAX , X ⊆ 2ω, are all different. For
cardinality reasons there is X ⊆ 2ω so that KAX is not definable in �1

1,δ , nor in Lω1ω1 .

But KAX is always definable in Ld
AX

. ��
The following result merely improves the previous result:

Theorem 15 There is a countable A0 ⊆ 2ω such that if A0 ⊆ A ⊆ 2ω with 2ω \ A
dense, then QA is not �1

1-definable.

Proof Let us considerMB , where B = 2ω (defined in Example 3). LetM be resplen-
dent (see [2]) such that MB ≺ M. Let M+ be an expansion of M such that every
�1

1-sentence true inM+ has a witness in the vocabulary (countable). LetN+ ≺ M+
be countable. Let A0 be the countable set �(N+). Suppose now A0 ⊆ A ⊆ 2ω, but
ψA, as defined in Example 7, is definable by a �1

1-sentence φ. Since 2ω \ A dense,
MB |� ψA, whence MB |� φ. Hence all the first order consequences of φ are true
in MB . Since M is resplendent, M |� φ. Since φ has a witness in M+, N+ |� φ.
HenceN+ |� ψA whence �(N+) \ A is dense. This is a contradiction, as �(N+) \
A = ∅. ��
Theorem 16 Let P be the poset of finite partial functions (ω1 + ω1) × ω → 2 i.e. the
forcing for addingω1+ω1 Cohen reals. Let G beP-generic and ηα ∈ 2ω,α < ω1+ω1,
the Cohen reals added by G. Let A be the set of η such that η = ηα (mod finite) for
some α < ω1. Then in V [G], QA is not �1

1-definable.

Proof Let B be the set of η such that η = ηα(mod finite) for some α < ω1 +ω1. Then
MB |� ψA. Suppose φ is a �1

1-sentence logically equivalent to ψA. Thus MB |� φ.
Let f be a bijection (in V ) of ω1 + ω1 onto ω1. The function f induces an complete
embedding f̄ of P into P. The mapping f̄ induces a mapping τ �→ τ f̄ between P-
terms. Let N be the image of MB under this mapping. Now N �|� ψA. However,
N |� φ, whence N |� ψA, a contradiction. ��
Theorem 17 Assume A = 2ω \ D, where D ⊆ 2ω is dense, ω < |D| < 2ℵ0 and there
is an open set U such that D ∩ V is uncountable for every non-empty open V ⊆ U.
Then the quantifier QA is not �1

1-definable.

Proof Recall that ψA is a sentence of Ld
A in the vocabulary τd saying that �(M) \ A

is dense. Thus ψA says �(M) ∩ D is dense.
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Let φ be a �1
1 sentence ∃Rφ0 such that ψA and φ are logically equivalent, contra-

dicting our desired conclusion. Let 〈Dα : α < ω1〉 be a sequence of disjoint countable
dense subsets of D∩U . LetNα be a countable model representing the set Dα , whence
it satisfies ψA, hence φ, and there is an expansion N ∗

α of Nα to a model of φ0. Let
N = 〈N∗

α : α < ω1〉. Let B = (Hθ ,∈,<), for a large enough cardinal θ and for a
well-ordering < of Hθ . We choose a countable elementary submodel B∗ of B such
that {N , A, ω1} ⊂ B∗.

By Theorem IV.5.19 of [12] there is a sequence 〈Bα : α < 2ω〉 of countable
elementary extensions of B∗ such that for every α < β < 2ω:

(a) Bα has standard ω.
(b) Bα has a (possibly non-standard) member cα of (ω1)

B∗
.

(c) If an element of ω2 is definable in both Bα and Bβ , then it is in B∗.

Let N+
η be the cη’th member of the sequence 〈N ∗

α : α < ω1〉 as interpreted in Bη.
So necessarily N+

η is a model of φ0 and hence its reduct N+
η � τd is a model of φ,

and further of ψA. We have continuum many models N+
η � τd of ψA. However, we

will now show that the number of η for which the model N+
η � τd satisfies ψA is

at most |D| < 2ω, a contradiction. Suppose N+
η � τd |� ψA. Then the subset of 2ω

represented by N+
η = (N ∗

cη )
Bη , i.e. (Dcη )

Bη , meets D in a dense set. Every element

of (Dcη )
Bη is definable in Bη. By the disjointness clause (c) above we get the claimed

contradiction.
We now finish the proof of Theorem 17: Suppose η is such thatN+

η �|� ψA. This is
a contradiction because N+

η |� φ. ��

7 No strongest extension

We show that there is no strongest extension among positive logics of first order
logic, or�1

1 , or�
1
1,δ , with the Compactness Theorem and the Downward Löwenheim-

Skolem Theorem.
We consider sequences A = 〈Aα : α ≤ ω1〉 such that each Aα , α < ω1, is a

countable dense subset of 2ω, α < β implies Aα ⊂ Aβ , Aω1 = ⋃
α<ω1

Aα , and the
set S = {α < ω1 : Aα = ⋃

β<α Aβ} is stationary.
Let �TL be the first order sentence

∃x(R3(x) ∧ ∀y(¬R4(y) ∨ R2(x, y)))

∧∀x∀y(¬R0(x, y) ∨ R2(x, y))

∧∀x∀y(¬R1(x, y) ∨ R2(x, y))

∧∀x∀y(¬R2(x, y) ∨ (R4(x) ∧ R4(y)))

∧∀x(¬R4(x) ∨ R2(x, x))

∧∀x∀y∀z(¬R2(x, y) ∨ ¬R2(y, z) ∨ R2(x, z))

∧∀x∀y∀z(¬R2(y, x) ∨ ¬R2(z, x) ∨ R2(y, z) ∨ R2(z, y)).
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Intuitively, �TL says that R2 is a tree-like partial order extending R0 and R1. For
example, the model MA of Example 3 always satisfies �TL. If M |� �TL, then one
element a of M can represent only one η, i.e.

η, η′ ∈ �(M, a) implies η = η′. (5)

Definition 18 We define the Lindström quantifier QA as follows. Suppose M is a
model and c̄ ∈ Mk . Then we define that M satisfies

(QAx0x1)(ψ0(x0, x1, c̄), ψ1(x0, x1, c̄), ψ2(x0, x1, c̄), ψ3(x0, c̄), ψ4(x0, c̄)) (6)

if and only if Mψ̄ |� �TL and �(Mψ̄ ) ∩ Aω1 ∈ A, where Mψ̄ is as in Definition 5
and �(Mψ̄ ) is as in Definition 4.

Definition 19 We define Ld
A as the closure of first order logic under ∧,∨, ∃, ∀, ∃R

and QA. The fragment, where QA is applied to first order formulas ψ̄ only is denoted

Ld−
A . Similarly, Ld,ω

A , Ld,∞
A , Ld−,ω

A , and Ld−,∞
A .

Theorem 20 (Łoś Lemma for Ld
A) Suppose Mi , i ∈ I , are models and D is an ω1-

incomplete ultrafilter on a set I . Let M = ∏
i∈I Mi/D, f0, . . . , fn−1 ∈ ∏

i∈I Mi

and φ(x0, . . . , xn−1) in Ld
A (even in Ld,∞

A ). Then

{i ∈ I : Mi |� φ( f0(i), . . . , fn−1(i))} ∈ D ⇒ M |� φ( f0/D, . . . , fn−1/D).

Proof We follow the proof of Theorem 8. The only point that requires attention is the
induction step for QA. We assume

J = {u ∈ I : Mi |� QAx0x1ψ0(x0, x1, f̄ (i)) . . . ψ4(x0, f̄ (i))} ∈ D (7)

and demonstrate M |� QAx0x1ψ0(x0, x1, f̄ /D) . . . ψ4(x0, f̄ /D). As in the proof of
Theorem 8, it can be shown that the set B of η ∈ 2ω such that there is a ∈ M such that
for some bn0 , . . . , b

n
n−1 in

∏
i Mi/D we have M |� 

n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, f̄ /D)

for all n < ω, is the full set 2ω. It follows that 2ω ∩ Aω1 = Aω1 and hence that
2ω ∩ Aω1 ∈ A, as claimed. ��

Corollary 21 If 2ω \ A is dense, then Ld
A (even Ld,∞

A ) satisfies the (full) Compactness
Theorem.

Proof The ultrafilter we used in the proof of Corollary 9 was regular, hence ω1-
incomplete. ��

We can prove the Downward Löwenheim-Skolem-Tarski Theorem for Ld−
A only

(see Proposition 25 and Theorem 27).
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Theorem 22 (Downward Löwenheim-Skolem-Tarski Theorem) Suppose M is a
model for a countable vocabulary and X ⊆ M is countable. Then there isN �−

Ld−
A

M
(even N �−

 M for any fixed countable fragment of Ld,ω
A ) such that X ⊆ N and

|N | ≤ ℵ0.

Proof We first expand M as follows: For every Ld−
A -formula φ(R, z̄), where R is

n-ary and z̄ = z0, . . . , zk−1, there is a predicate symbol R∗ of arity k + n such
that if M |� ∃Rφ(R, c̄), then M |� φ(R∗(c̄, ·), c̄). Likewise, we may assume the
vocabulary of M has a Skolem function fφ for each formula φ(x, z̄) such that if
M |� ∃φ(x, c̄), thenM |� φ( fφ(c̄), c̄). Let τ be the original vocabulary ofM and τ ∗
the vocabulary of the expansion, which we also denoteM. For any formulas ψ̄ in Ld−

A
of the vocabulary τ ∗ let g(n, k, ψ̄, η) be the function which maps n, k, ψ̄ and η ∈ 2n

to 
n,k
ψ̄,η

(y0, . . . , yn, x, z̄). Recall that S = {α < ω1 : Aα = ⋃
β<α Aβ} is stationary.

Let K ≺ Hθ , where θ ≥ (2ω)+ such thatM ⊆ Hθ , |K | = ℵ0, {A, ω1, τ
∗,M, X , g}∪

ω1 ∪ τ ∪ X ⊆ K , and δ = K ∩ ω1 ∈ S. Let N be the restriction of M to K , i.e.
the universe N of N is M ∩ K and the constants, relations and functions of M are
relativized to N .

As in the proof of Theorem 12, N is closed under the interpretations of function
symbols of the vocabulary of M.

Claim: If φ(x) is a τ ∗-formula in Ld−
A , then M |� φ(c) ⇒ N |� φ(c).

We use induction onφ. In light of the proof of Theorem 12, we only need to consider
the quantifier QA. Suppose M satisfies (6) with c̄ ∈ Nk . Thus �(Mψ̄ ) ∩ Aω1 ∈ A.
Hence

K |� “�(Mψ̄ ) ∩ Aω1 ∈ A′′.

Note that since δ ∈ S, K ∩ Aω1 = Aδ.

Case 1: �(Mψ̄ ) ∩ Aω1 = Aα for some α < ω1. Then α < δ and

K |� “�(Mψ̄ ) ∩ Aω1 = A′′
α.

We prove �(Nψ̄ ) ∩ Aω1 = Aα, from which �(Nψ̄ ) ∩ Aω1 ∈ A follows.
Let first η ∈ �(Nψ̄ ) ∩ Aω1 . There are a ∈ N and bn0 , . . . , b

n
n−1 in N such that

N |� 
n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω. Since the formulas of ψ̄ are first order,

M |� 
n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω. Hence η ∈ �(Mψ̄ ) ∩ Aω1 = Aα.

For the converse, let η ∈ Aα . Note that now η ∈ K . By the choice of α,
η ∈ �(Mψ̄ ). Hence there is a ∈ M such that for some bn0 , . . . , b

n
n−1 in M

we have M |� 
n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω. Such an a and such

bn0 , . . . , b
n
n−1 exist also in K , by elementarity, as η ∈ K . By Induction Hypothesis,

N |� 
n,k
ψ̄,η�n(b

n
0 , . . . , b

n
n−1, a, c̄) for all n < ω. Thus η ∈ �(Nψ̄ ).

Case 2: �(Mψ̄ ) ∩ Aω1 = Aω1 . Then K |� “�(Mψ̄ ) ∩ Aω1 = A′′
δ . We prove

�(Nψ̄ ) ∩ Aω1 = Aδ, from which �(Nψ̄ ) ∩ Aω1 ∈ A follows.
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Let first η ∈ �(Nψ̄ ) ∩ Aω1 . As in Case 1, η ∈ �(Mψ̄ ). Because we have (5),
that is, η is determined by an element of N , we may conclude η ∈ K . By K ≺ Hθ ,
η ∈ (Aω1)

K . Hence η ∈ Aδ .
For the converse, let η ∈ Aδ . Since δ ∈ S, Aδ ⊂ K , and hence η ∈ K . On the other

hand, η ∈ �(Mψ̄ ), since Aδ ⊂ Aω1 = �(Mψ̄ )∩ Aω1 . Now we can argue as in Case
1 to conclude η ∈ �(Nψ̄ ). ��

A consequence of Corollary 20 and Theorem 22 is that the positive logic Ld−
A is an

extension of�1
1 with both the Compactness Theorem and the Downward Löwenheim-

Skolem Theorem. Similarly, Ld−,ω
A is such an extension of �1

1,δ .

Theorem 23 There are positive logics L1 and L2 such that

1. L1, L2 both (properly) extend �1
1 .

2. L1, L2 both satisfy the Compactness Theorem and the Downward Löwenheim-
Skolem Theorem.

3. There is no logic L3 such that L1 ≤ L3, L2 ≤ L3, and L3 satisfies the Downward
Löwenheim-Skolem Theorem.

We can replace �1
1 by �1

1,δ .

Proof LetA be as above but Aα = ⋃
β<α Aβ for all limit α. Let S, S′ ⊆ ω1 be disjoint

stationary sets. Note that the set of elements of S that are limits of elements of S is
stationary, because it contains the intersection of S with the closed unbounded set of
limits of elements of S. Similarly, the set of elements of S′ that are limits of elements
of S′ is stationary. LetA = 〈Aα : α ∈ S〉ˆ〈Aω1〉 andA′ = 〈Aα : α ∈ S′〉ˆ〈Aω1〉. Now
both {α ∈ S : Aα = ⋃

β∈α∩S Aβ} and {α ∈ S′ : Aα = ⋃
β∈α∩S′ Aβ} are stationary.

Let

ψA = (QAx0x1)(R0(x0, x1), R1(x0, x1), R2(x0, x1), R3(x0), R4(x0))

and similarlyψA′ . Let φ be the sentenceψA∧ψA′ ∧�T L . This sentence has a model,
namely MAω1

. Suppose it has a countable model N . Then �(N ) ∩ Aω1 ∈ A ∩ A′.
Hence�(N )∩Aω1 = Aω1 . SinceN |� �T L , N must be uncountable, a contradiction.

��
Corollary 24 No extension of�1

1 is strongest with respect to the Compactness Theorem
and the Downward Löwenheim-Skolem Theorem, among positive logics.

We shall now prove that Theorem 22 does not hold with Ld−
A replaced by Ld

A.

Proposition 25 SupposeA is as above. There is an uncountable modelM for a count-
able vocabulary such that there is no countable N �−

Ld
A
M.

Proof Let M be the union of 2ω, 2<ω and 2ω × ω1. The relations of the structure M
are

1. RM
i = {aˆ〈i〉 : a ∈ 2<ω} (i = 0, 1).
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2. RM
2 = {(a, b) ∈ (2<ω) × 2ω : a � b}.

3. RM
3 = {∅}.

4. RM
4 = 2ω ∪ 2<ω.

5. RM
5 = {(a, (a, α)) : a ∈ 2ω, α < ω1}.

6. RM
6 = 2ω.

7. RM
7 = 2<ω.

8. QM
1 = 2ω × ω1.

9. QM
2 = {(a, α) ∈ Q1 : (a ∈ A0 ∧ α < ω) ∨ (a ∈ A2 \ A1 ∧ α < ω1)}.

10. QM
3 = {(a, b) : ∃α(a ∈ Aα ∧ b ∈ Aω1 \ Aα)}.

Suppose N �−
Ld
A
M is countable. Let φ(x) be the existential second order formula

R6(x) ∧ ∃F(F is a one-one function from R7 onto {y : Q2(x, y)}).

• M |� φ(a) if and only if a ∈ AM
0 .

• N |� φ(a) if and only if a ∈ AN
0 ∪ (AN

2 \ AN
1 ).

Thus

M |� (QAx0x1)(ψ0(x0, x1, c̄), ψ1(x0, x1, c̄), ψ2(x0, x1, c̄), ψ3(x0, c̄), ψ4(x0, c̄))

but

N �|� (QAx0x1)(ψ0(x0, x1, c̄), ψ1(x0, x1, c̄), ψ2(x0, x1, c̄), ψ3(x0, c̄), ψ4(x0, c̄))

��
Despite the negative result of Theorem 25, Theorem 22 still holds for the fragment

of Ld
A obtained by dropping existential second order quantifiers.

Definition 26 Let Ld0
A be defined as Ld

A (Definition 19) except that existential second
order quantification is not allowed. Let Ld1

A be defined as the extension of Ld
A by

adding negation to the logical operations.

Clearly, Ld0
A is a positive logic and it satisfies the Compactness Theorem because

even Ld
A does. The logic Ld1

A is an abstract logic in the sense of [10]. Unlike our
positive logics, it is closed under negation and also closed under substitution. Note
that Ld0

A ≤ Ld1
A .

Theorem 27 (Downward Löwenheim-Skolem-Tarski Theorem) Suppose M is a
model for a countable vocabulary and X ⊆ M is countable. Then there isN �Ld1

A
M

such that X ⊆ N and |N | ≤ ℵ0. In particular, N �Ld0
A

M.

Proof This is as in the proof of Theorem 22. We first expand M as follows: For
every Ld1

A -formula φ(z̄), where z̄ = z0, . . . , zk−1, there is a predicate symbol Rφ

of arity k such that M |� ∀z̄(φ(z̄) ↔ Rφ(z̄)). Let τ be the original vocabulary
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of M and τ ∗ the vocabulary of the expansion. For any atomic formulas ψ̄ of the
vocabulary τ ∗ let g(n, k, ψ̄, η) be the function which maps n, k, ψ̄ and η ∈ 2n to

n,k
ψ̄,η

(y0, . . . , yn, x, z̄). Let K ≺ Hθ , where θ ≥ (2ω)+ such that M ⊆ Hθ , |K | = ℵ0,

{A, ω1, τ
∗,M, X , g} ∪ ω1 ∪ τ ∪ X ⊆ K , and δ = K ∩ ω1 ∈ S. Let N be the

restriction ofM to K , i.e. the universe N ofN is M ∩ K and the constants, relations
and functions of M are relativized to N .

As in the proof of Theorem 12, N is closed under the interpretations of function
symbols of the vocabulary of M.

Claim: If φ(x) is a τ ∗-formula in Ld1
A and c ∈ N , then N |� φ(c) ↔ Rφ(c).

The proof of this claim is as in the proof of Theorem 22. Since N ⊆ M in the
vocabulary τ ∗, the claim implies N �Ld1

A
M. ��

The logic Ld1
A is closed under negation and satisfies the Downward Löwenheim-

Skolem Theorem. Thus it cannot satisfy the Compactness Theorem, although its
sublogic Ld0

A does.
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