
Archive for Mathematical Logic (2022) 61:567–581
https://doi.org/10.1007/s00153-021-00801-7 Mathematical Logic

Coanalytic ultrafilter bases

Jonathan Schilhan1

Received: 18 December 2019 / Accepted: 14 May 2021 / Published online: 3 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
We study the definability of ultrafilter bases on ω in the sense of descriptive set theory.
As a main result we show that there is no coanalytic base for a Ramsey ultrafilter,
while in L we can construct �1

1 P-point and Q-point bases. We also show that the
existence of a �1

n+1 ultrafilter is equivalent to that of a �1
n ultrafilter base, for n ∈ ω.

Moreover we introduce a Borel version of the classical ultrafilter number and make
some observations.

Keywords Ultrafilter · Filter base · Definability · Coanalytic · Projective · Cardinal
invariant

1 Introduction

This paper follows the line of many papers studying the definability, in the sense of
descriptive set theory, of certain combinatorial subsets of the real line such as mad
families [6,15,16], independent families [3,15], maximal eventually different families
[18], maximal cofinitary groups [9], maximal orthogonal families of measures [7] or
maximal towers and inextendible linearly ordered towers [8]. In this paper we will
study the definability of ultrafilters and more specifically ultrafilter bases. Recall that
a set X ⊆ F is a base for a filter F , if for every x ∈ F , there is y ∈ X with y ⊆ x .
Filters will always live on ω and contain all cofinite sets. Thus a filter is a subset of the
Polish space P(ω) and we can study its definability. It is well known that an ultrafilter
can neither have the Baire property nor be Lebesgue measurable (see e.g. [1, Theorem
4.1.1]). This already rules out the existence of analytic ultrafilter generating sets as
the generated filter will also be analytic and thus have the Baire property. But this still
leaves open the possibility of a coanalytic ultrafilter base since a priori the generated
set will only be �1

2. The main purpose of this paper is to study which ultrafilters can
have a coanalytic basis.
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568 J. Schilhan

Recall that for x, y ∈ [ω]ω we write x ⊆∗ y whenever x\y is finite. An ultrafilter U
is called aP-point if for any countableF ⊆ U , there is x ∈ U so that ∀y ∈ F(x ⊆∗ y).
U is a Q-point if for any partition 〈an : n ∈ ω〉 of ω into finite sets an , there is x ∈ U
so that ∀n ∈ ω(|x ∩an| ≤ 1). A Ramsey ultrafilter is an ultrafilter that is both a P- and
a Q-point. A more commonly known and equivalent definition for Ramsey ultrafilters
U is that for any coloring c : [ω]2 → 2, there is x ∈ U so that c is homogeneous on x ,
i.e. c � [x]2 is constant. In fact we will show in Sect. 3 that:

Theorem 1.1 There is a �1
1 base for a P-point in the constructible universe L.

Theorem 1.2 There is a �1
1 base for a Q-point in the constructible universe L.

Section2 will provide an introduction to the techniques employed in proving these
results. In strong contrast we will show in Sect. 4 that:

Theorem 1.3 There is no �1
1 base for a Ramsey ultrafilter.

Before stating the next theorem, notice that any ultrafilter that is�1
n or�

1
n is already

�1
n . Namely suppose that ϕ defines an ultrafilter, then we have that ϕ(x) ↔ ¬ϕ(ω\x).

Moreover any base for an ultrafilter that is �1
n or �1

n generates a �1
n or respectively a

�1
n+1 ultrafilter.
In Sect. 5 we will compare the existence of �1

n+1 ultrafilters to that of �1
n bases,

for n ∈ ω. As a main result we find that:

Theorem 1.4 The following are equivalent for any r ∈ 2ω, n ∈ ω.

(1) There is a �1
n+1(r) ultrafilter.

(2) There is a �1
n(r) ultrafilter base.

Let us remark that we can use Theorem 1.4 to show that there is a�1
1 ultrafilter base

in L by simply finding a�1
2 ultrafilter. This is amuch easier task than constructing a�1

1
base directly (see more in Sect. 2). On the other hand, Theorem 1.1 and Theorem 1.2
can not be followed in this way. Aswe shall see (Remark 5.2), the proof of Theorem1.4
never yields a base for aP-point nor aQ-point. In fact, using a result of Shelah combined
with Theorem 1.3, we will provide a model in which �1

2 P-points exist but are never
generated by �1

1 bases (see Theorem 5.1).
In Sect. 6we study the effects of adding reals to the definability of ultrafilters. Recall

that a real x ∈ [ω]ω is called splitting over A, if for any y ∈ A ∩ [ω]ω, x ∩ y and
y\x are infinite. We will see that classical forcing notions adding splitting reals, and
as a consequence destroying ground model ultrafilters, namely Cohen, Random and
Silver forcing, cannot preserve definitions for ultrafilters. This is related to a result of
Brendle and Khomskii (see [4]), which shows that it is possible to destroy all ground
model mad families by adding dominating reals while having a �1

1 mad family in the
extension.

In Sect. 7we introduce a new cardinal invariant that is aBorel version of the classical
ultrafilter number u andmake some observations. Similar cardinal invariants have been
defined for mad families (see [16] or [4]) and maximal independent families (see [3]).
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Coanalytic ultrafilter bases 569

2 An introduction toMiller’s coding technique

All our constructions of coanalytic objects in L will rely on a technique that was
brought to wider attention by A. Miller in his fundamental paper [15]. It is originally
due to Erdős, Kunen and Mauldin [5] who used it to construct a so called scale with a
�1

1 definition. For more information we also refer to [23]. The purpose of this section
is to give an informal outline of the technique and to define the basic notions that we
will use in our proofs. More details will appear in the proofs of Theorem 1.1 and 1.2 in
the next section. We hope that this helps readers which are unfamilar with the method.
Another good explanation can be found in [10, §3]

When we say that z codes the ordinal α, we mean the following. To any real z ∈ 2ω

we associate a relation Ez on ω defined by

Ez(n,m) ↔ z(2n3m) = 1.

This relation may be a linear order and if it is a well-order and isomorphic to α we say
that it codes α. Such α is unique and we define ‖z‖ := α. More generally we say that
z codes M if (ω, Ez) is isomorphic to (M,∈). The set of z ∈ 2ω coding an ordinal is
denoted WO. The set WO is tightly connected to coanalytic sets. On one hand side,
WO is itself�1

1 and on the other, for any�1
1 set X ⊆ 2ω, there is a continuous function

f : 2ω → 2ω so that X = f −1(WO).
There is a canonical way of defining in L various combinatorial subsets X of reals

in a�1
2 fashion. This goes back to Gödel who remarked in [11, p. 67] that the canonical

well-order of the reals in L is in fact �1
2. Typically the elements are found recursively

by making adequate choices which are absolute between models of the form Lα (e.g.
taking the <L least candidate which has some simple property holding with respect
to the previously chosen reals).

Then x ∈ X can be written as

∃M
︸︷︷︸

∃
[ M is well-founded
︸ ︷︷ ︸

∀
, x ∈ M
︸ ︷︷ ︸

�1
1

and M |� V = L ∧ ϕ(x)
︸ ︷︷ ︸

�1
1

] (1)

or as

∀M |� V = L, x ∈ M
︸ ︷︷ ︸

∀+�1
1

[ M is not well-founded
︸ ︷︷ ︸

∃
or M |� ϕ(x)

︸ ︷︷ ︸

�1
1

], (2)

where ϕ(x) is an appropriate formula in the language of set theory that expresses
that there is a sequence according to the recursive construction of which x is the last
member.

Quantifying over models is shorthand for quantifying over codes in 2ω of countable
models satisfying some basic set theoretic axioms. Thus e.g. (1) can be recast as
“∃z ∈ 2ω((ω, Ez) is well-founded, x ∈ (ω, Ez) and (ω, Ez) |� V = L ∧ ϕ(x))”,
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570 J. Schilhan

where x ∈ (ω, Ez) means that x ∈ M for M the Mostowski collapse of (ω, Ez). It is
not difficult to see that this can be expressed in a �1

1 way.
As such, finding a �1

2 ultrafilter base in L is very simple. The major improvement
in Miller’s technique is to get rid of the first existential quantifier in (1). This is done
by letting x already encode a relevant well-founded model M in a Borel or even in a
recursive way. Then if C is the Borel coding relation used, the definition usually looks
as follows:

x ∈ Y
︸ ︷︷ ︸

∀
and ∀z ∈ 2ω

︸ ︷︷ ︸

∀
[¬C(x, z)
︸ ︷︷ ︸

�1
1

or (ω, Ez) |� V = L ∧ ϕ(x)
︸ ︷︷ ︸

�1
1

], (3)

for some known coanalytic Y .

Lemma 2.1 There is a lightface Borel set C ⊆ (2ω)3 so that whenever z codes α < ω1
and r , y ∈ 2ω then (z, r , y) ∈ C iff y codes Lα[r ].

Proof The claim is easy to verify by noting that an adequate Ey can be constructed by
recursion on α following a rule that can be expressed in a �1

1 way. Thus (z, r , y) ∈ C
can be defined by formulas ∃(yn)n∈ω ∈ (2ω)ω

(

φ((yn)n, r , z) ∧ y = ⋃

n∈ω yn
)

and
∀(yn)n∈ω ∈ (2ω)ω

(

φ((yn)n, r , z) → y = ⋃

n∈ω yn
)

, where φ((yn)n, r , z) is a �1
1

formula expressing that (yn)n∈ω is constructed in some canonical way by recursion
on the well-order (ω, Ez) according to the rules of the L[r ] hierarchy. ��

Lemma 2.2 There is a recursive function (·)+ω : 2ω → 2ω so that whenever z codes
α, then (z)+ω codes α + ω.

Proof Let (z)+ω = y such that y(2n3m) = 1 iff

⎧

⎪
⎨

⎪
⎩

n even ∧ m even ∧ z(2
n
2 3

m
2 ) = 1

n even ∧ m odd

n odd ∧ m odd ∧ n < m.
��

3 51
1 bases for P- and Q-points

In [8] the authors constructed, using Miller’s technique, a coanalytic tower (i.e. a set
X ⊆ [ω]ω well-ordered wrt ∗ ⊇ and with no pseudointersection). A crucial property
of the tower was that all its elements were split by the set of even natural numbers. In
particular this meant that the tower could not generate an ultrafilter. We will construct
in L a tower generating an ultrafilter and thus generating a P-point.

Before we start to construct the �1
1 P-point base, we need some ingredients.

Definition 3.1 We call W+ the set of x ∈ [ω]ω containing arbitrary long arithmetic
progressions, i.e. ∀k ∈ ω∃a, b ∈ ω({a · l + b : l < k} ⊆ x).
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Coanalytic ultrafilter bases 571

The following fact follows from Van der Waerden’s Theorem [21] and is well
known.

Fact. The setW = P(ω)\W+ is a proper ideal on ω. It is called the Van der Waerden
ideal.

Proof of Theorem 1.1 First, let us introduce some notation and repeat some basic facts
thatwe are going to use in the construction.Wewillwork in L throughout. Let (yα)α<ω1

enumerate [ω]ω via the global L well-order <L . The statement “y is the α’th element
according to <L” is absolute between Lβ ’s with y ∈ Lβ and α ∈ Lβ (see e.g. [14,
13.19]). Let O : 2ω → 2ω be the following lightface Borel function: If x ⊆ ω wewant
to define a unique sequence (in)n∈ω of subsets ofω so that max in < min in+1 and in+1
is the next maximal arithmetic progression in x of length ≥ 3 above max in (note that
any pair of natural numbers forms an arithmetic progression). Now if this sequence
can be defined up to ω (in particular every in is finite), then we define O(x)(n) = 1
iff in has even length. Else we let O(x)(n) = 0. We say that an ordinal δ projects to
ω, if Lδ+ω |� “δ is countable”. It is not hard to see that the set of ordinals projecting
to ω is unbounded in ω1 (see e.g. the proof of [22, Theorem 2.6]).

We now construct a sequence (xξ , δξ )ξ<ω1 where xξ ∈ [ω]ω, δξ < ω1 for every
ξ < ω1, as follows. Given (xξ , δξ )ξ<α we let δα be the least limit ordinal such that
supξ<α δξ < δα , yα ∈ Lδα and δα projects to ω. We then choose xα = x least in the
<L well-order so that

(a) x ⊆∗ xξ for every ξ < α,
(b) x ∈ W+
(c) x ⊆ yα or x ⊆ ω\yα .
(d) O(x) codes δα .

Note that any sequence (xξ )ξ<ω1 defined as above is a tower generating an ultrafilter.
Namely, by (a), the sequence is decreasing with respect to ⊆∗, and if y ∈ [ω]ω is
arbitrary, say y = yα for α < ω1, then by (c), xα is contained in either y or its
complement.

Claim xα can be found in Lδα+ω.

Proof Note that the definition of (xξ )ξ<α is absolute between Lβ ’s. In particular
(xξ )ξ<α can be defined over Lδα . As δα projects to ω, there is an enumeration (xn)n∈ω

of {xξ : ξ < α} in Lδα+ω. Given yα we have that, as W is an ideal, that for every
ξ < α, yα ∩ xξ ∈ W+ or ω\yα ∩ xξ ∈ W+. Assume wlog that for cofinally many
xξ , yα ∩ xξ ∈ W+ is the case. This implies that for all xξ this is the case as (xξ )ξ<α

forms a tower. Again as δα projects to ω, there is a real z ∈ Lδα+ω ∩ 2ω coding δα .
Now we define a sequence (in)n∈ω of finite subsets of ω so that max in < min in+1,
in ⊆ yα ∩ ⋂

k≤n x
k , in consists of an arithmetic progression so that its length is ≥ n

and it is even iff z(n) = 1. Moreover min in is chosen large enough so that in−1 ∪ in
cannot form an arithmetic progression. x := ⋃

n∈ω in can be defined in Lδα+ω and
satisfies (a)–(d). Thus in particular the <L -least such x exists in Lδα+ω. ��
Claim There is a formula ϕ(x) in the language of set theory so that ϕ(x) iff ∃ξ(x = xξ )

and Lβ |� ϕ(x) for some β implies that ϕ(x) is true. Moreover Lδξ +ω |� ϕ(xξ ) for
every ξ .
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572 J. Schilhan

Proof ϕ(x) expresses that there is an ordinal α and a sequence (xξ , δξ )ξ≤α according
to the recursive definitions given above so that x = xα . ��

Now we can check that the set X = {xξ : ξ ∈ ω1} is �1
1. Let C and (·)+ω be as in

Lemmas 2.1 and 2.2. Then x ∈ X iff

O(x) ∈ WO and ∀z[¬C(O(x)+ω, 0, z) or (ω, Ez) |� ϕ(x)].

��
We will now turn to the proof of Theorem 1.2.

Definition 3.2 The ideal Fin2 on ω × ω consists of x ∈ P(ω × ω) so that ∀∞n ∈
ω∀∞m ∈ ω(〈n,m〉 /∈ x). Here, ∀∞ is an abreviation of “for all but finitely many”.

Proof of Theorem 1.2 The ultrafilter that we construct will live on ω × ω. Let
O : (Fin2)+ → 2ω be the following Borel function. Given x ∈ (Fin2)+ let x0, x1
be the first two infinite vertical sections of x . We denote with x0(n) or x1(n) the n’th
element of x0 or x1. Then

O(x)(n) =
{

0 if x0(n) ≥ x1(n)

1 if x1(n) > x0(n).

As in the proof of Theorem 1.1 we let (yα)α<ω1 enumerate [ω×ω]ω and (Pα)α<ω1

enumerate all partitions of ω × ω into finite sets via the well-ordering <L .
Similarly to the proof of Theorem 1.1 we construct a sequence (xξ , δξ )ξ<ω1 where

xξ ∈ (Fin2)+, intersections of finitely many elements in {xξ : ξ < ω1} are in (Fin2)+
and δξ < ω1 as follows.

Given (xξ , δξ )ξ<α we let δα be the least limit ordinal such that supξ<α δξ < δα ,
yα, Pα ∈ Lδα and δα projects to ω. xα = x is then chosen least in the <L well-order
so that

(a) {x} ∪ {xξ : ξ < α} has all finite intersections in (Fin2)+,
(b) x ∈ (Fin2)+,
(c) x ⊆ yα or x ⊆ ω\yα ,
(d) for every a ∈ Pα , |a ∩ x | ≤ 1,
(e) O(x) codes δα .

Again we show that such an xα exists and can be found in Lδα+ω.

Claim xα can be found in Lδα+ω.

Proof We have that if (xξ )ξ<α exists then it must be definable over Lδα . As δα projects
to ω there is in Lδα+ω an enumeration (xn)n∈ω of all finite intersections of elements in
{xξ : ξ < α}. We are given yα ∈ Lδα . It is not hard to see that either yα or (ω ×ω)\yα
is in (Fin2)+ and has (Fin2)+ intersection with all xn . Without loss of generality we
assume yα has this property. Let Pα = {ai : i ∈ ω} and z ∈ 2ω ∩ Lδα+ω code δα .
Further let k0 < k1 be first so that the k0’th and k1’th vertical section of yα is infinite.
Let (p j ) j∈ω enumerate ω × ω in a way that every pair (n,m) appears infinitely often.
Given (p j ) j∈ω we define recursively a sequence 〈m0

i ,m
1
i 〉i∈ω and auxiliarily (ni )i∈ω

as follows:
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Coanalytic ultrafilter bases 573

• for every i , 〈m0
i ,m

1
i 〉 ∈ yα , 〈m0

i ,m
1
i 〉 /∈ ⋃

j<i an j and 〈m0
i ,m

1
i 〉 ∈ ani ,

• if i = 3 j for j ∈ ω, then 〈m0
i ,m

1
i 〉 is in the p j (0)’th infinite vertical section of

yα ∩ x p j (1) greater than k1,
• if i = 1 mod 3 then m0

i = k0 and m0
i+1 = k1 and m1

i ≥ m1
i+1 or m1

i+1 > m1
i

depending on whether z(i) = 0 or z(i) = 1.

Now the set {〈m0
i ,m

1
i 〉 : i ∈ ω} ∈ Lδα+ω satisfies (a)-(e) as can be seen from the

construction. In particular Lδα+ω contains the <L -least such set. ��
The set {xξ : ξ < ω1} is now a base for a Q-Point and as in the proof of Theorem 1.1

it is �1
1. ��

4 There are no51
1 Ramsey ultrafilter bases

Definition 4.1 Let F be a filter. Then the forcing M(F) consists of pairs (a, F) ∈
[ω]<ω × F such that max a < min F . A condition (b, E) extends (a, F) if b is an
end-extension of a, E ⊆ F and b\a ⊆ F .

M(F) is the natural forcing to add a pseudointersection of F . Namely, whenever
G is M(F)-generic over V , then x = ⋃{a ∈ [ω]<ω : ∃F ∈ F((a, F) ∈ G)} is a
pseudointersection of F and we call x the generic real added byM(F).

Definition 4.2 Let F be a filter. Then we define the game G(F) as follows:

Player I F0 ∈ F F1 ∈ F . . .

Player II a0 ∈ [F0]<ω\{∅} a0 ∈ [F1]<ω\{∅} . . .

Player II wins iff
⋃

n∈ω an ∈ F .

Lemma 4.1 Let F be a filter on ω and let θ ≥ (22
ℵ0

)+. Then TFAE:

(i) For any countable elementary submodel M � H(θ) with F ∈ M, there is x ∈ F ,
M(F) generic over M.

(ii) I has no winning strategy in G(F).

Proof (i) implies (ii): Suppose σ is a winning strategy for I inG(F) and let σ,F ∈ M .
Wlog we assume that σ(〈〉) = ω. Thus Player II is allowed to play any a0 as his first
move and then σ carries on as if a0 had not been played. In particular this means that
any initial play a0 of II is a legal move, i.e. 〈a0〉 ∈ dom(σ ). Consider the dense sets
Dn := {(s, F) : F ⊆ ⋂{σ(〈s0, . . . , sn−1〉) : 〈s0, . . . , sn−1〉 ∈ dom(σ ),

⋃

i<k si =
s}} for n ∈ ω. Dn ∈ M for every n ∈ ω. By (i) there is x ∈ F ,M(F) generic over M .
This means that for every n ∈ ω there is s an initial segement of x and F ∈ F so that
(s, F) ∈ Dn and x\s ⊆ F . Now using this construct a sequence 〈si 〉i∈ω and 〈Fi 〉i∈ω

recursively so that:

(1)
⋃

i<n si is an initial segment of x for every n ∈ ω,
(2) max si < min si+1 for every i ∈ ω,
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574 J. Schilhan

(3) x\ ⋃

i<n si ⊆ Fn for every n ∈ ω,
(4) (

⋃

i<n si , Fn) ∈ Dn .

We find recursively that 〈si 〉i<n ∈ dom(σ ), i.e. 〈si 〉i<n is a legal move. But
⋃

i∈ω si = x ∈ F contradicting σ being a winning strategy for I.
(ii) implies (i): Let M � F be countable elementary and 〈Dn〉n∈ω enumerate all

dense subsets of M(F) in M . We describe a strategy for Player I: I starts by playing
some F0 so that there is (t0, F0) ∈ D0. Then Player II will play a0 ⊆ F0, i.e. (t0 ∪
a0, F0) ≤ (t0, F0). Now I plays F1 so that there is (t0 ∪ a0 ∪ t1, F1) ∈ D1, (t0 ∪ a0 ∪
t1, F1) ≤ (t0 ∪ a0, F0)...

By assumption there is a winning run 〈ai 〉i∈ω for II according to this strategy. This
means that

⋃

ai ∈ F and moreover x = ⋃

ai ∪ ⋃

ti ∈ F where ti are as described.
But x is now M(F) generic over M . ��

For ultrafilters U , I not having a winning strategy in G(U) is equivalent to U being
a P-point (see e.g. [19, VI.5.7]). For sake of completeness we prove a more general
(in light of Lemma 4.1) version of this below. Recall that p is the pseudointersection
number, i.e. the least size of a set B ⊆ [ω]ω with the finite intersection property and
no pseudointersection, a set x ∈ [ω]ω such that x ⊆∗ y for all y ∈ B. The bounding
number b is the least size of a family B ⊆ ωω such that there is no f ∈ ωω eventually
dominating every member of B. It is well known that ℵ1 ≤ p ≤ b. An ultrafilter U is
called a Pκ point if for any B ∈ [U]<κ there is a pseudointersection x ∈ U of B. In
particular a P-point is the same as a Pℵ1 -point.

Lemma 4.2 Assume κ ≤ p, U is an ultrafilter and let θ ≥ (22
ℵ0

)+. Then TFAE:

(i) U is a Pκ -point.
(i) For every M � H(θ) with |M | < κ and U ∈ M, there is x ∈ U which is M(U)

generic over M.

Proof (ii) implies (i) is trivial.
(i) implies (ii): Let |M | < κ ≤ p. Then as U is a Pκ -point, there is U ∈ U so that

U ⊆∗ V for every V ∈ M ∩U . Define for every D ∈ M , which is a dense open subset
of M(U) and every V ∈ M ∩ U a function fD,V : ω → ω so that for n ∈ ω:

∀a ⊆ n∃b ⊆ [n, fD,V (n))∃V ′ ∈ M ∩ U((a ∪ b, V ′)
≤ (a, V ) ∧ (a ∪ b, V ′) ∈ D ∧U\ fD,V (n) ⊆ V ′).

The set of functions fD,V is smaller than κ ≤ p ≤ b. Thus there is one f ∈ ωω

dominating all of them. Let i0 = 0, in+1 = f (in). We write In = [in, in+1). As U is
an ultrafilter, either U0 = ⋃

n∈ω I2n ∩ U or U1 = ⋃

n∈ω I2n+1 ∩ U is in U . Assume
wlog that U0 ∈ U .

We define a σ -centered partial order P as follows. P consists of pairs (s, F) where

(1) s : n → [ω]<ω for some n ∈ ω,
(2) s(i) ⊆ Ii for every i < n,
(3) s(i) = U ∩ Ii when i is even,
(4) F ∈ U ∩ M .
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Coanalytic ultrafilter bases 575

A condition (t, F) extends (s, E) iff t ⊇ s, F ⊆ E and (t(i) ⊆ E) whenever
i ∈ dom t\ dom s is odd. For any D ∈ M which is dense in M(U) we define a subset
of P, D̃ as follows:

D̃ = {(t, F) : (
⋃

i∈dom t

t(i), F) ∈ D}.

We claim that D̃ is dense in P. Let (s, E) ∈ P be arbitrary. Then as fD,E <∗ f
there is n ∈ ω so that [i2n+1, fD,E (i2n+1)) ⊆ [i2n+1, i2n+2) and 2n + 1 ≥ dom s.
Now extend s to s0 so that dom s0 = 2n + 1 and s0(i) = ∅ for i ∈ 2n + 1\ dom s
odd and s0(i) = U ∩ Ii for i even. By definition of fD,E there is b ⊆ I2n+1 so that
∃F ⊆ E with (a ∪ b, F) ∈ D where a = ⋃

i<2n+1 s0(i), (a ∪ b, F) ≤ (a, E) and
U\i2n+2 ⊆ F . Let t = s0 ∪ {(2n + 1, b)}. Then (t, F) ≤ (s, E) in P and (t, F) ∈ D̃.

Nowasκ ≤ p andbyBell’s theorem (see [2]) there is aPgeneric real g : ω → [ω]<ω

over M . But then x := ⋃

i∈ω g(i) ∈ U as U0 ⊆ x and x isM(U) generic over M . ��
Corollary 4.3 Suppose U is a P-point, M � H(θ) countable and U ∈ M. Then there
is x ∈ U ,M(U) generic over M.

Lemma 4.4 (see [12, Chapter 24]) Assume U ∈ M is a Ramsey ultrafilter and x is
M(U) generic over M. Then every y ⊆∗ x is M(U) generic over M.

Proof of Theorem 1.3 Suppose U is a Ramsey ultrafilter with a coanalytic base X ⊆
[ω]ω. As X is coanalytic, there is a continuous function f : 2ω → 2ω so that

x ∈ X ↔ f (x) ∈ WO .

Let M � H(θ) be countable where θ ≥ (22
ℵ0

)+ is and U , f ∈ M . As U is a P-point
and by Corollary 4.3, there is x ∈ U that is M(U) generic over M . Moreover as U
is Ramsey and by Lemma 4.4, any y ⊆∗ x is also generic over M . Let N be the
transitive collapse of M , α := ωN

1 = M ∩ ω1 and let y ∈ X be arbitrary such that

y ⊆∗ x . Let β = ‖ f (y)‖, then β ∈ N [y] and thus β < α = ω
N [y]
1 . As y was arbitrary,

we have shown that the set X ′ = {y : f (y) ∈ WO ∧ ‖ f (y)‖ ≤ α} ⊆ X contains
{y ⊆∗ x : y ∈ X}. This means that X ′ also generates U . But X ′ is Borel and cannot
generate an ultrafilter. ��

5 11
2 versus5

1
1

Using a result of Shelah we can show the following.

Theorem 5.1 It is consistent that every P-point is �1
2 and has no �1

1 base.

Proof This follows immediately by [19, Theorem XVIII.4.1] and the subsequent
remark, which states that starting from L we can choose any Ramsey ultrafilter U
and pass to an extension in which U generates the unique P-point up to permutation
of ω. Moreover this ultrafilter will stay Ramsey.
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Thus let U be any (definition of a) �1
2 Ramsey ultrafilter in L . Now apply Shelah’s

theorem to this ultrafilter and pass to an extension V of L in which U L generates the
unique P-point and is Ramsey. In V , UV will still have the finite intersection property
andU L ⊆ UV by Shoenfield’s absolutness theorem. Thus in V ,UV generates the same
ultrafilter as U L . As UV is �1

2, the ultrafilter it generates will be �1
2 as well. We know

that inV , there is for everyP-pointV a permutation f ofω so thatV ∈ V ↔ f (V ) ∈ U .
In particular V has a �1

2( f ) definition. On the other hand, every P-point is a Ramsey
ultrafilter so none of them can have a �1

1 base by Theorem 1.3. ��
Proof of Theorem 1.4 To simplify notation we assume that r = 0. Let U be a �1

n+1
ultrafilter. Let us introduce the following notation. For y ∈ [ω × ω]ω, we let yn be y’s
n’th vertical section. We let z(y) = {n ∈ ω : yn �= ∅}. When z(y) is infinite then we
denote with yn , the n’th nonempty vertical section of y.

The Fubini product of U , U ⊗ U , consists of all y ∈ [ω × ω]ω so that

{n ∈ ω : yn ∈ U} ∈ U .

U ⊗ U is again an ultrafilter. We will show that it has a �1
n base. Let ϕ(x, w) be

�1
1 so that

x ∈ U ↔ ∃w ∈ 2ω(ϕ(x, w)).

Let r : ω × 2ω → 2ω be a recursive function such that for any sequence 〈wn〉n∈ω

there is w ∈ 2ω, which is not eventually constant, so that r(n, w) = wn for every
n ∈ ω.

Let O : [ω × ω]ω → 2ω be the function defined by

O(y)(n) =

⎧

⎪
⎨

⎪
⎩

0 if |z(y)| < ω

0 if min yn ≥ min yn+1

1 if min yn < min yn+1.

O is obviously lightface Borel. Let us define X ⊆ [ω × ω]ω as follows:

y ∈ X ↔ |z(y)| = ω ∧ ϕ(z(y), r(0, O(y)))

∧∀n ∈ ω∃s ∈ [ω]<ω[ϕ(s ∪ yn, r(n + 1, O(y)))].

X is obviously �1
n . Moreover X ⊆ U ⊗ U . To see this let us decode what y ∈ X

means. The first clause in the definition of X says that y has infinitely many nonempty
vertical sections. The next clause ensures that z(y) ∈ U as witnessed by r(0, O(y)),
the 0’th real coded by O(y). The last clause ensures that for every nonempty vertical
section yn of y, s ∪ yn is in U for some finite s as witnessed by r(n + 1, O(y)),
the n + 1’th real coded by O(y). In particular yn ∈ U . Thus we indeed have that
y ∈ X → y ∈ U ⊗ U .

Moreover we have that X is a base for U ⊗ U . To see this fix u ∈ U ⊗ U and we
show that there is y ∈ X so that y ⊆ u. First let y0 = ⋃{{n} × un : n ∈ ω, un ∈ U},
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i.e. we remove from u the vertical sections that are not in U . Then we let w0 be such
that ϕ(z(y0), w0) holds true. Further we let wn+1 be such that ϕ(yn0 , wn+1) holds
true. Let w ∈ 2ω be a single real coding the sequence 〈wn〉n∈ω via r , i.e. r(n, w) =
wn for every n ∈ ω. Find a sequence 〈mn〉n∈ω so that mn ∈ yn0 for every n and
w(n) = 1 iff mn+1 > mn . Such a sequence can be constructed recursively. Whenever
w(n) = 1 we can simply find mn+1 ∈ yn+1

0 large enough such that mn+1 > mn and
if additionally w(n + 1), . . . , w(n + k) is a maximal block of 0s in w then we let
mn+1 = · · · = mn+k+1 ∈ yn+1 ∩ · · · ∩ yn+k+1. Finally given the sequence 〈mn〉n∈ω

let y = ⋃{{z(y0)(n)} × (yn0\mn) : n ∈ ω}, where z(y0)(n) is the n’th element of
z(y0). We see that y ⊆ y0 ⊆ u, that z(y) = z(y0), that yn =∗ yn0 for every n and that
O(y) = w. In particular y ∈ X by definition of X . ��
Remark 5.2 Let U be an ultrafilter. Then U ⊗ U is neither a P- nor a Q-point.

Proof To see that U ⊗U is not a P-point, consider its elements of the form [n, ω) × ω

for n ∈ ω. Whenever y is a pseudointersection of {[n, ω) × ω : n ∈ ω}, then yn , the
n’th vertical section of y, is finite for every n ∈ ω. Thus y is not a member of U ⊗ U .

For Q-points, consider the partition of ω × ω consisting of sets of the form an :=
{n} × n or bn := (n + 1) × {n}, for n ∈ ω. Assume y ∈ U ⊗ U is such that
|y ∩ an|, |y ∩ bn| ≤ 1 for every n ∈ ω. Then there are m < n so that yn, ym ∈ U . In
particular, yn ∩ ym is infinite and we find i ∈ (yn ∩ ym)\n. But then, as i > n,m, we
have that (m, i), (n, i) ∈ y ∩ bi and (n, i) �= (m, i) – a contradiction to |y ∩ bi | ≤ 1.

��

6 Adding reals

The purpose of the following section is to study the indestructibility of definitions
for ultrafilters via forcings that add splitting reals, and as a consequence destroy all
ultrafilters from a ground model (in the sense that they do not generate an ultrafilter
in the extension). We will show that classical forcing notions adding splitting reals,
namelyCohen,Random and Silver forcing, fail in preserving definitions for ultrafilters.

Let A ⊆ V . A set X ∈ V is called OD(A) if it is definable over V from ordinals
and elements of A as parameters. Recall that a poset P is weakly homogeneous if for
any p, q ∈ P, there is an automorphism π : P → P so that π(p) is compatible to q.
In this section we will denote with PA the collection of weakly homogeneous OD(A)

posets.

Lemma 6.1 Let c be a Cohen real over V , P ∈ (PV )V [c] and G a P-generic filter over
V [c]. Then in V [c][G], c is splitting over any set of reals with the finite intersection
property that is OD(V ).

Proof Let X ∈ V [c][G] be an OD(V ) set of reals with the finite intersection property,
say V [c][G] |� “Ẋ = {x ∈ [ω]ω : ϕ(x, a, ᾱ)}” where a ∈ V and ᾱ is a finite
sequence of ordinals. Wlog we may assume that X is a filter, since the filter generated
by X is also OD(V ). Suppose c does not split X . This means exactly that c ∈ X or
ω\c ∈ X . Thus there is s ⊆ c, deciding the formula and parameters defining P, and ṗ
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with ṗ[c] ∈ G, (s, ṗ) � “ϕ defines a filter” so that either

(s, ṗ) � ċ ∈ Ẋ

or

(s, ṗ) � ω\ċ ∈ Ẋ .

But now notice that c′ = s ∪ {(n, 1 − m) : (n,m) ∈ c, n ≥ |s|} is also Cohen
over V with s ⊆ c′ (we identify c as a subset of ω with its characteristic function).
Moreover V [c] = V [c′] and thus Ṗ[c] = Ṗ[c′]. Let p0 := ṗ[c] and p1 := ṗ[c′].
Working in V [c] we find that p0, p1 ∈ P, so there is an automorphism π of P so that
π(p1) is compatible to p0. Let H be P-generic over V [c] containing p0 and π(p1). In
either of the above cases, V [c][H ] |� ϕ(c, a, ᾱ) ∧ ϕ(c′, a, ᾱ). This is a contradiction
to (s, ṗ) � “ϕ defines a filter”. ��
Lemma 6.2 Let r be a random real over V ,P ∈ (PV )V [r ] and G aP-generic filter over
V [r ]. Then in V [r ][G], r is splitting over any set of reals with the finite intersection
property that is OD(V ).

Proof Let us assume that P is simply the trivial forcing, since this part of the argument
is essentially the same as in the last proof. As before we fix X ∈ V [r ] an OD(V ) set
with the finite intersection property and we assume that it is already a filter.

First note that any finite modification of r is still a random real. Moreover, as
complementation is a measure preserving homeomorphism of 2ω, the complement of
a random real is still random. Thus any r ′ =∗ ω\r is still random.

Now similarly as in the proof for Cohen forcing we find that there is Borel set B
of positive measure coded in V so that r ∈ B and

B � ṙ ∈ X

or

B � ω\ṙ ∈ X .

Recall that for any Borel set A of positive measure, its E0 closure Ã = {x ∈ 2ω :
∃y ∈ A(x =∗ y)} has full measure. To see this Let ε > 0 be arbitrarily small. Apply
Lebesgue’s density theorem to find a basic open set [s] ⊆ 2ω so that μ(A∩[s])

μ([s]) > 1− ε.

Follow from this that μ( Ã) > 1 − ε.
Now let C := {ω\x : x ∈ B̃}. C is coded in V and has full measure. Thus we have

that r ∈ B ∩ C . By definition of C , there is r ′ ∈ B so that r ′ =∗ ω\r . Moreover r ′ is
also a random real over V by our first remark. r , r ′ ∈ X and ω\r , ω\r ′ ∈ X are both
contradictions to X having the finite intersection property. ��

Recall that Silver forcing consists of partial functions p : ω → 2 so thatω\ dom(p)
is infinite.

123



Coanalytic ultrafilter bases 579

Lemma 6.3 Let s be a Silver real over V , P ∈ (PV )V [s] and G a P-generic filter over
V [s]. Then, in V [s], there is a real splitting over any set of reals that is OD(V ) in
V [s][G].
Proof Again we only consider the case when P is trivial. Let X ∈ V [s] be an OD(V )

filter. Let Ss = {n ∈ ω : |{m < n : s(m) = 1}| is even}. As before assume p ⊆ s is
such that either

p � Sṡ ∈ X

or

p � ω\Sṡ ∈ X .

Let n = min(ω\ dom(p)) and note that s′ defined by s′(i) = s(i) for all i �= n
and s′(n) = 1 − s(n) is also Silver and p ⊆ s′. But Ss′ =∗ ω\Ss . We get the same
contradiction as in the last two proofs. ��
Corollary 6.4 Let r ∈ 2ω and assume that there is a Cohen, a random or a Silver real
over L[r ]. Then there is no �1

2(r) ultrafilter.

In particular, the existence of a �1
2(r) ultrafilter implies that ω1 = ω

L[r ]
1 .

Proof Suppose that ϕ is a �1
2(r) definition for an ultrafilter and that c is a Cohen,

random or Silver real over L[r ]. In L[r ][c], the set defined by ϕ will have the finite
intersection property by downwards absoluteness. Thus by Theorems 6.1, 6.2 or 6.3
respectively, L[r ][c] |� ∃x ∈ [ω]ω∀y ∈ [ω]ω(¬ϕ(y)∨(|x∩y| = ω∧|x∩ω\y| = ω)).
This is a �1

3(x, c) statement, so by upwards Shoenfield absoluteness it holds true in
V ⊇ L[x][c]. Thus ϕ cannot define an ultrafilter in V .

The second part follows, since whenever ω
L[r ]
1 < ω1, there is a Cohen real in V

over L[r ]. ��
Another way of seeing the above for Cohen or random forcing is to use the classical

result of Judah and Shelah (see [13]), saying that the existence of a Cohen or random
real over L[r ] is equivalent to every �1

2(r) set having the Baire property or being
Lebesgue measurable respectively.

Theorem 6.5 There is no OD(R) ultrafilter, in particular no projective one, after
addingω1 many Cohen reals in a finite support iteration, random reals using a product
of Lebesgue measure or Silver reals in a countable support iteration.

Proof Let 〈cα : α < ω1〉 be Cohen reals added via a finite support iteration over
a ground model V and suppose that in V [〈cα : α < ω1〉] there is an ultrafilter U
definable from a real a and ordinals. It is well known that there is ξ < ω1 so that
a ∈ V [〈cα : α ∈ ω1\{ξ}〉]. But then, by Lemma 6.1, cξ is splitting over U , since
V [〈cα : α < ω1〉] = V [〈cα : α ∈ ω1\{ξ}〉][cξ ].

The argument for random reals is essentially the same.
Let 〈Pα, Q̇α : α ≤ ω1〉 be the ω1-length countable support iteration of Silver

forcing. Any real a appears in V Pξ for some ξ < ω1. But now note that Pω1 is OD(V )
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and weakly homogeneous. Moreover, Pω1
∼= Pξ ∗ Ṗω1 . Thus applying Lemma 6.3,

we find that there is no ultrafilter definable from parameters in V Pξ over V Pω1 . In
particular there is no OD({a}) ultrafilter in V Pω1 . ��

7 The Borel ultrafilter number

The ultrafilter number u is the least size of a base for an ultrafilter. Aswithmad families
(see [16]) and maximal independent families (see [3]) it makes sense to introduce a
Borel version of the ultrafilter number that is closely related to the definability of
ultrafilters.

Definition 7.1 The Borel ultrafilter number is defined as

uB := min{|B| : B ⊆ �1
1,

⋃

B is an ultrafilter}.

Note that ℵ1 ≤ uB , as a countable union of Borel sets is Borel.

Remark 7.1 Let u′
B = min{|B| : B ⊆ �1

1,
⋃B is an ultrafilter base} and u′′

B =
min{|B| : B ⊆ �1

1,
⋃B generates an ultrafilter}. Then u′′

B = u′
B = uB .

Proof Obviously, u′′
B ≤ u′

B ≤ uB . Remember that whenever B is Borel, then the
filter FB that it generates is analytic. Thus u′′

B is uncountable as well. Now let B be
a collection of Borel sets, whose union generates an ultrafilter. We may assume that
B is closed under finite unions. For every B ∈ B, let FB be the filter generated by B.
Since FB is analytic, we can write it as an ω1-union FB = ⋃

α<ω1
Fα
B of Borel sets.

Now consider {Fα
B : B ∈ B, α < ω1}. It has the same size as B and is a witness for

uB . ��
Any coanalytic set is an ω1-union of Borel sets. Thus the existence of a coanalytic

ultrafilter base implies that uB = ℵ1.

Theorem 7.2 cov(M), cov(N ), b ≤ uB ≤ u.

Proof LetB be a collection of< cov(M)manyBorel sets and assume that
⋃B has the

finite intersection property. Let M � H(θ) for some large θ , so that |M | < cov(M)

and B ⊆ M . Then there is a Cohen real c over M . But then in M[c], c is splitting
over every B ∈ B. Moreover in V it is true that c is splitting over B, by �1-upwards-
absoluteness. Thus c is splitting over

⋃Bwhich cannot be an ultrafilter. The argument
for random forcing is exactly the same.

For b ≤ uB , note that any Borel filter is meager. By a classical result of Talagrand
(see [20]), meager filters F are exactly those for which there is f ∈ ωω so that
∀x ∈ F∀∞n ∈ ω(x ∩ [n, f (n)) �= ∅). For B a collection of Borel filters, we let fB
be such a function for every B ∈ B. If B has size smaller than b, then there is a single
function f ∈ ωω so that fB <∗ f for each B ∈ B. Now note that x0 ∪ x1 = ω, where
x0 := ⋃

n∈ω[ f 2n(0), f 2n+1(0)) and x1 := ⋃

n∈ω[ f 2n+1(0), f 2n+2(0)). But neither
x0 nor x1 can be in

⋃B. ��
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The following questions are answered positively in [17].

Question 7.1 Is it consistent that uB < u? Is it consistent that there is a �1
1 ultrafilter

base while ℵ1 < u?
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