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Abstract
Sections 1 through 4 define, in the usual inductive style, various classes of object
including one which is called the “combinatory terms of polymorphic type”. Section
5 defines a reduction relation on these terms. Section 6 shows that the weak normaliz-
ability of the combinatory terms of polymorphic type entails the weak normalizability
of the lambda terms of polymorphic type. The entailment is not vacuous, because
the combinatory terms of polymorphic type are indeed weakly normalizable, as is
proven in Sect. 7 using Tait and Girard’s computability predicates. The remainder of
the paper is devoted to arguing that interesting consequences would follow from the
existence of an “ordinally informative” proof, i.e. one which uses transfinite induction
over recursive ordinal numbers and otherwise finitary methods, of normalizability for
as large a class of the terms as possible.

Keywords Combinatory logic · Polymorphic types · System F · Normalizability

Mathematics Subject Classification 03Fxx

1 Introduction

Sometimes problems about a λ-calculus are most easily solved through consideration
of the corresponding combinatory calculus. This is because combinatory terms have,
in a way, a simpler structure than λ-terms, being built up from atoms by (in the untyped
or simply typed case) the single operation of application rather than the two operations
of application on the one hand and λ-binding of variables on the other.

However it is not the case that, for every λ-calculus, an equivalent combinatory
calculus has as yet been formulated. While there is indeed an untyped combinatory
calculus which is (in a sense that can be made precise) equivalent to the untyped λη-
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318 R. Stirton

calculus1 and something similar holds for the simply typed λη-calculus, there is as yet
no combinatory calculus that is equivalent to the polymorphically typed λη-calculus.2

The purpose of the present paper is to close this gap.
A particular example of a problem concerning a combinatory calculus which seems

to be technically easier than the corresponding problem for the equivalent λη-calculus
will be discussed in Sect. 8 below. Moreover, according to [3] (p. 656), ‘a computer
handles λ-terms more easily if these are translated into combinatory terms’.3

The structure of this paper is as follows. Sections 2 through 5 are fundamental to the
rest: they are devoted to defining the concept of a polymorphically typed combinatory
term and a reduction relation on these terms. Sections 6 through 11 are devoted to
demonstrating that results concerning polymorphically typed combinatory terms will
have applications to other areas of logic, above all to the polymorphically typed λ-
calculus and to the proof theory of second-order logic. These later sections are to a
large extent independent of each other and can be read, apart from the need for a few
cross-references, in any order. Readers who are concerned about motivational matters
might like to look at the later sections first.

2 Classes of terms, type-assignment systems and equational calculi

The concept of a polymorphically typed λ-term is presumably familiar tomost readers,
but for the sake of maximum precision one particular definition of this concept will be
presented in the present section. This section will also define the common substratum
of all the various languages that will be studied in the sequel.

In Definition 2.1 below, the concept of a (polymorphic) semi-type is defined simul-
taneously with the function VarF which takes every semi-type to a (possibly empty)
set of bindable type-variables. Throughout this paper, ‘≡’ will denote identity between
syntactic objects (terms, formulae and types).

Definition 2.1 (i) Each free type-variable (α, β, γ, α0, α1, . . .) is a semi-type.
VarF(α) = {}.

(ii) Each bindable type-variable (φ,ψ, ω, φ0, φ1, . . .) is a semi-type.VarF(φ) = {φ}.
(iii) If A and B are semi-types, so is (A→B). VarF(A→B) = VarF(A) ∪ V ar F(B).
(iv) If A is a semi-type, so is ∀φA for every bindable type-variable φ. VarF(∀φA) =

VarF(A) − {φ}.
As usual, outermost parentheses are omitted and A→B→C should be understood

as short for A→(B→C).Note that in clause (iv) there is noprohibition on∀φ occurring
in A. To ensure that a bindable variable is bound by at most one quantifier, the binding
relation is defined as follows:

1 A definition of “equivalent” and a proof of the statement are given in section 6E of [4]. The problem of
finding a combinatory calculus which is equivalent to the untyped λβ-calculus seems to be considerably
harder and will be ignored here. See [18] for discussion.
2 Other than, perhaps, the attempt made in [20], which is superseded by the present treatment.
3 Compare a similar remark at the foot of p. 122 of [19].
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Definition 2.2 The relation binds, which holds between quantifier-occurrences and
bindable variable-occurrences, is defined by recursion on lengths of semi-types. Sup-
pose that 	 is an occurrence of φ inside the semi-type A; then

(i) If 	 is not within the scope of some quantifier ∀φ occurring inside A, 	 is bound
by the outermost ∀φ in ∀φ A.

(ii) If 	 is within the scope of some quantifier ∀φ occurring inside A, then the same
quantifier-occurrence binds 	 within ∀φ A as binds it within A.

Definition 2.3 A semi-type A is a (sc., polymorphic) type iff VarF(A) = {}.
Definition 2.4 A semi-type A is a simple type iff it is built up from free type-variables
by clause (iii) alone of Definition 2.1.

Types can be thought of as formulae of second-order implicational logic, as on p.
345f. of [24]. The notion of substituting a type B for a free type-variable occurring
in a type A can therefore be defined as is standardly done in textbooks on second-
order logic (loc. cit.). Changing bindable variables in B is unnecessary, thanks to
Definition 2.2.

Definition 2.5 The result of substituting the type B for the free variable α in type A
shall be A(αB).

Notational conventions As it is usually possible to tell from the context which
variable it is for which a substitution is being made, this notation can be simplified.
For example, if “A(α)” and “A(B)” are used in the same context, “A(B)” should be
read as meaning A(αB). This implies that α does not occur in A(B), unless it is in B.

Occasionally the notion of substitution will be applied also to semi-types: thus “A(
φ
α)”

and “A(αφ)” will be used with the obvious meaning. When either of these last two
symbols is used, it must be understood that the indicated occurrences of φ are not
bound by a quantifier in A, i.e. that they are in V ar F(A). In the case of “A(αφ)”, this
can be ensured by tacitly changing some of the binding variables in A if necessary.

Every one of the languages studied in this paper includes among its atomic terms
a stock of variables. These will occasionally be called term-variables, when it is
necessary to emphasize that they are distinct from the type-variables introduced by
Definition 2.1. For each type A, denumerably many variables of type A are assumed,
over which letters like “x A”, “y A”, “x A

0 ”, “x A
1 ”, . . . range; or (when it is not essential

to draw attention to the type) simply “x”, “y”. . .. Also that there is a denumerable
stock of untyped variables (x , y, etc.). When x and y are variables, x ≡ y only if x
and y are either both untyped or both have the same type.

Sometimes, for example in Definition 5.4, it is useful to be able to assume that the
variables within each type are ordered as an ω-sequence, so this will be required from
the outset.

Definition 2.6 (i) The class 
 of untyped λ-terms is built up from the untyped vari-
ables by application and λ-abstraction, as on p. 3 of [9].

(ii) The class C L of untyped combinatory terms is built up from untyped variables
and the three combinators S, K and I by application alone.
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320 R. Stirton

(iii) The class J of untyped J-terms is built up from the same basis as CL, but
employing λ-abstraction as well.

Remark in this paper λx .x and λy.y count as distinct terms unless x ≡ y.

In addition to the three classes of untyped terms distinguished byDefinition 2.6, this
paper will distinguish six classes of typed terms. An inductive definition of a class of
typed terms can be presented in the shape of a formal system such as the one in Table
2.1 (cf. p. 16 of [2]). The expression “∈ 
2(A)” should be read as “is an 
2-term of
type A”. The first line of Table 2.1 shows the shape of initial statements of this formal
system; the other four lines show the rules of inference.

Table 2.1: the formal system 
2

(a) x A ∈ 
2(A) for every polymorphic type A
(b) a ∈ 
2(B) ⇒ λx Aa ∈ 
2(A→B)

(c) a ∈ 
2(A→B), b ∈ 
2(A) ⇒ ab ∈ 
2(B)

(d) a ∈ 
2(A(α)) ⇒ 
α,φa ∈ 
2(∀φ A(φ))

(e) a ∈ 
2(∀φ A(φ)) ⇒ aC ∈ 
2(A(C)) for any type C

In clause (d), it is required that α be in the type of no free variable in a and that φ
differ from every variable ψ such that ∀ψ occurs in A and has α within its scope.

The rules presented in clauses (b)−(e) of Table 2.1 clearly resemble the rules of a
natural deduction calculus and will be called →I, →E, ∀I and ∀E respectively.

Definition 2.7 For any a, a shall be a 
2-term iff a ∈ 
2(A) for some A.

Definition 2.8 (i) 
→ is the subystem of 
2 in which all types are required to be
simple and the only rules of inference are →I and →E.

(ii) For any a, a is a 
→-term iff a ∈ 
→(A) for some simple type A.

Definition 2.9 J→ shall be the formal system defined otherwise like 
→ but with all
statements of the shapes shown in Table 2.2 included among the initial statements.

Table 2.2

(a) IA ∈ J→(A→A) for every simple type A
(b) KAB ∈ J→(A→B→A) for all simple types A, B
(c) SABC ∈ J→((A→B→C)→(A→B)→A→C) for all simple types A, B, C

Definition 2.10 (i) CL→ is the formal system defined otherwise like J→ but with
only one rule of inference, namely →E (clause (c) of Table 2.1).

(ii) For any a, a is a J→-term iff a ∈ J→(A) for some simple type A.
(iii) For any a, a is a CL→-term iff a ∈ C L→(A) for some simple type A.

Definition 2.11 A function x A, a �→ [x A]a which, for any term a and variable x A of
C L→, outputs a new term [x]a is defined by recursion on lengths of terms.

(a) If a ∈ C L→(B) and x A does not occur in a, then [x A]a ≡ KB Aa;
(b) If a ≡ x A, then [x A]a ≡ IA;
(c) If a ≡ bx A for some b in which x A does not occur, then [x A]a ≡ b; and
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(f) If a ≡ bc for some bc, if a is not as described in any of clauses (a)−(c), if
b ∈ C L→(B→C) while c ∈ C L→(B), then [x A]a ≡ SABC [x A]b[x A]c.

Definition 2.12 A function x, a �→ [x]a which takes a term a and variable x of C L
to a new term [x]a is defined by deleting all references to types from Definition 2.11
and generalizing over C L-terms instead of C L→-terms.

Remark the clauses of these definitions are labelled (a), (b), (c) and (f) because of
tradition. See p. 190 of [4] and cf., for example, Definition 2.18 on p. 26 of [9].

Discussion: the formal systems
2,
→, J→ and CL→ are all paradigms of what will
here be called “systems á la Church” or “Church-style systems”. See, for example, p.
16 of [2]. Usually nowadays ([1], [19]), these names are given to systems in which the
terms have shapes like λx A.x , in which typed variables occur in binding, untyped in
bound, positions.4 Such systems will, however, play no part in the present paper. It is
for this reason that our definition of the set of terms of 
2 is taken from [7] (p. 82f.)
rather than [1] or [19], while the style of formulation is that used on p. 16 of [2].

While
2 is the polymorphic extension of
→, polymorphic extensions of J→ and
CL→ have not yet been defined. The goal of the present paper is to close this gap.

Seven classes of term have been defined in this section: the three untyped classes
mentioned in Definition 2.6 and the four typed classes mentioned in the discussion
following Definition 2.11. In the following two definitions, the letter “�” ranges over
these seven classes.

Definition 2.13 A �-equation is an equation a = b, where a, b ∈ � and (if � is a
typed class) a, b have the same type.

Definition 2.14 For any �, a calculus of �-terms is a deductive system having as
axioms some nonempty set of �-equations and rules of inference expressing general
properties of equality, including possibly some form of rule (ξ) appropriate to �.

Thus, for example, the familiar untyped calculi λβ and λη are both calculi of
-terms.

3 A problem and its solution

The main problem in finding a Church-style system that stands in the same sort of
relation to CL→ as 
2 stands in to 
→ is that it is not easy to see how anything
corrresponding to rules →I and ∀I can be derivable within it. The general shape of ∀I
must be: from 
 	 a0 : A(α) infer 
 	 a1 : ∀φ A(φ), but what will be the relationship
between a0 and a1? a0 ≡ a1 is not possible as, in a Church-style system, each term
must determine its type uniquely. The two obvious strategies are:

(1) To introduce a new combinator � and stipulate that a1 ≡ �a0.
(2) To postulate some new operation of term-construction, distinct from application,

which, applied to a0 (alongside possibly other arguments), yields a1.

4 On p. 18 of [2], systems of this last kind are called “de Bruijn systems”.
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Both strategies run into difficulties. The class of combinators � envisaged in (1), if
applicable to arbitrary terms, would have to inhabit between them all types of the
shape A(α)→∀φ A(φ); but formulae of this shape are not in general admissible in
a sound logical calculus. As for (2), it is not clear how a calculus of combinatory
terms constructed in accordance with (2) could admit the rule of β-conversion. In the
combinatory calculi that have been constructed so far, the fact that the set of terms is
closed under the function x B, a �→ [x B]a or x, a �→ [x]a (Definitions 2.11 and 2.12)
is what makes β-conversion admissible; but these functions are in general applicable
only to terms built up by application alone and would not necessarily be applicable if
a new term-building operation were allowed.

Rejection of (2) motivates experimenting with the idea that a1, a term of type
∀φ A(φ), should be built up fromatomswithout using any term-constructing operations
other than application. This problem is a bit like the problem of finding a formal system
that generates the first-order logical validities without any quantifier-introducing rules
of inference. This problem had been solved at least by the time Quine wrote [13];
however the solution depends on stipulating that the set of logical axioms shall be
closed under prefixing of quantifiers. In the present context, this would be like insisting
that there must be, not only for every type of the shape A→B→A but also for every
type of the shape ∀φ(A→B→A) and so on, a typed instance of K which inhabits that
type. Since this contradicts the usual way of thinking about combinators, the solution
adopted here will be to postulate, after all, a new term-constructing operation which,
applied to a term of type A(α) yields a term of type ∀φ A(φ), but to allow this new
operation to be applied only to terms which contain no variables. In this way, it does
not impede the definition of an operation which generalizes the one defined in 2.11.
At the same time, we also admit new combinators with the property that (1) envisages
� as having, but with the restriction that they can be applied to a term of type A only
if α does not occur in A. The detailed working-out of these ideas is found in Sect. 4
below.

4 The formal systems CL2 and J2

The goal of the next few definitions is to define the Church-style system J2, which
extends J→ and which will be, in a sense to be explored presently, equivalent to 
2.
The shapes of the initial statements of J2 are enumerated in the following Table,
which extends Table 2.2. The expression “∈ J2(A)” should be read as “is a J2-term
of type A”.
Table 4.1

(a) x A ∈ J2(A) for every type A
(b) IA ∈ J2(A→A) for every type A
(c) KAB ∈ J2(A→B→A) for all types A, B
(d) SABC ∈ J2((A→B→C)→(A→B)→A→C) for all types A, B, C
(e) U∀φB(φ)→B(C) ∈ J2(∀φB(φ)→B(C)) under the conditions described below
(f) �∀φ(F→G) ∈ J2(∀φ(F→G)→∀φF→∀φG)

(g) �∀φB ∈ J2(B→∀φB) for every type B
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In line (e) B(α) and C must be types and φ a variable such that no quantifier in
B(α) that binds φ should have α in its scope.

In (f), F, G must be semi-types and φ a variable such that (V ar F(F) ∪
V ar F(G))−{φ} = ∅.

In (g), the requirement that B be a type (not a semi-type) entails that the outermost
quantifier in ∀φB does not actually bind anything.

The rules of inference of J2 are shown in Table 4.2:
Table 4.2

(a) a ∈ J2(B) ⇒ λx Aa ∈ J2(A→B)

(b) a ∈ J2(A→B), b ∈ J2(A) ⇒ ab ∈ J2(B)

(c) a ∈ J2(A(α)) ⇒ 
α,φa ∈ J2(∀φ A(φ))

(d) a ∈ J2(A(α)) ⇒ �α,φa ∈ J2(∀φ A(φ))

In (c), α must not occur in the type of any term-variable free in a. In (d), a may not
contain any free term-variables. In lines (c) and (d), it is required that the variable φ

be distinct from every ψ that occurs in a quantifier ∀ψ in A having α within its scope.

Remark the difference in function between the prefixes 
α,φ and �α,φ will become
clear in the next section. It will turn out that whether rule (c) or rule (d) is used in
building up a J2-term makes a difference to how the term may be reduced.

Definition 4.1 The subsystem of J2 in which only clauses (b) and (d) of Table 4.2 are
used shall be CL2.

Definition 4.2 “J2-term” and “CL2-term” shall be defined analogously to “
2-term”
etc (see Sect. 2 above); and “∈ CL2(A)” analogously to “∈ 
2(A)’.

Thus the CL2-terms are precisely the atoms shown in Table 4.1 together with well-
formed terms built up from them by the two operations a, b �→ ab and a �→ �α,φa.

Definition 4.3 Whenever a and b are C L2-terms, b is an α/φ-generalization of a iff:

(i) b ≡ �α,φa; or
(ii) b ≡ �∀φ Aa; or
(iii) There are terms a0, a1, b0, b1 and semi-types F , G such that:

(α) b0 and b1 are α/φ-generalizations of a0, a1 respectively; and
(β) b0 ∈ CL2(∀φ(F→G)) and b1 ∈ CL2(∀φF); and
(γ ) a ≡ a0a1 and b ≡ (�∀φ(F→G)b0)b1, abbreviated as usual to �∀φ(F→G)b0b1.

Definition 4.4 A free type-variable α is used as an eigenvariable in a C L2-term a iff
there are b and φ such that �α,φb is a subterm of a.

Proposition 4.5 For any C L2-term a and any type-variables α and φ such that

(i) α is not used as an eigenvariable in a; and
(ii) B(α) is the type of a; and
(iii) α does not occur in the type of any term-variable inside a; and
(iv) No occurrence of ∀φ in B has α within its scope,
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there is an α/φ-generalization b of a having type ∀φB(φ).

Proof if a contains no variables, we can take�α,φa for b. If α does not occur in B(α),
we can take �∀φBa for b. The case where a is a variable with α in its type does not
arise. The only remaining possibility, therefore, is that a ∈ CL2B(α) in virtue of line
(b) of Table 4.2, which means a is a CL2-term because both its immediate subterms
are. Then the theorem is proven by induction on the construction of a and applying
clause (iii) of Definition 4.3.

Discussion: if α is used as an eigenvariable in a, then there will always be another
term, differing from a only in that eigenvariables have been changed, in which α is no
longer used as an eigenvariable. Proposition 4.5 means in effect that the third rule in
Table 2.1 can be mimicked in CL2. We will express this by saying that ∀I is derivable
in both these systems. In general, there will be more than one way of forming an
α/φ-generalization of a given term. It is possible, however, to define a function from
terms to their α/φ-generalizations by requiring that, whenever clauses (i) and (ii) of
Definition 4.3 are applied to suberms of a, the subterms chosen shall be as large as
possible. The α/φ-generalization of a formed in this way shall be called ∧α,φa.

If a is a CL2-term of type C and x A a CL2-variable, the term [x A]a is defined by:-

Definition 4.6 (a) If x A does not occur in a, then [x A]a ≡ KC Aa.
(b) If a ≡ x A, then [x A]a ≡ IA.
(c) If a ≡ bx A for some b in which x A does not occur, then [x A]a ≡ b.
(f) If a ≡ bc and a is not as described in clause (a), (b) or (c), if b ∈ CL2(B→C)

and c ∈ CL2(B), then [x A]a ≡ SABC [x A]b[x A]c.
Proposition 4.7 Every CL2-term has one of the four shapes distinguished in Defini-
tion 4.6.

Proof by Definition 4.1, using the fact that a term of the shape �α,φa contains no
term-variables.

Corollary for every CL2-term a of type C, [x A]a is defined and has type A→C.

This corollary may be expressed by saying that rule →I is derivable in CL2.

Remark the formulation of J2 implements the ideas outlined informally in the last
paragraph of Sect. 3. The “new term-forming operation” mentioned there is precisely
the operation which takes b to �α,φb when there are no variables in b. The “new
combinators” mentioned two sentences later are those introduced in line (g) of Table
4.1. Other new combinators, introduced in line (f) of Table 4.1, are needed in order to
make these ideas work.

5 Reduction of CL2-terms

In section 6F2 of [4], the relation of strong reduction on CL-terms is defined by first
embedding the CL-terms in the wider class of J-terms (see Definition 2.6 above) and
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then defining strong reduction over the J-terms. Similarly, a form of strong reduction
on CL2-terms will be defined here by first defining a reduction relation on J2-terms
and then restricting it to CL2-terms.

The class of J2-terms which may be reduced is defined by reference to the class Ir,
which comprises precisely the CL2-termswhichmay not be reduced. First an auxiliary
definition:

Definition 5.1 For any J2-terms a, b, we say that b is a head of a or occurs in head
position within a iff one of the following holds.

(i) a is an atom and b ≡ a; or
(ii) a ≡ a0a1 and b is either a itself or a head of a0; or
(iii) a ≡ λx Ac and b is a head of c; or
(iv) a ≡ 
α,φc and b is a head of c; or
(v) a ≡ �α,φc and b is a head of c.

A maximal head of a is a head of a that is not a proper part of any larger head of a.

The inductive definition of the class Ir itself will be presented in a similar style to the
definition of the class of J2-terms; here “∈ Ir(A)” should be read as “is an irreducible
term of type A”.

Table 5.1

(a) x A ∈ I r(A) for every typed variable x A of CL2
(b) a ∈ I r(B) ⇒ [x A]a ∈ Ir(A→B) subject to restrictions (see below)
(c) a ∈ I r(B(α)) ⇒ a′ ∈ I r(∀φB(φ)) whenever a′ is an α/φ-generalization of a
(d) a ∈ I r(A→B), b ∈ I r(A) ⇒ ab ∈ I r(B) subject to restrictions (see below)
(e) a ∈ I r(∀φB(φ)) ⇒ U∀φB(φ)→B(C)a ∈ I r(B(C)) subject to restrictions (below)
(f) a ∈ I r(∀φ(F→G)), b ∈ I r(∀φF) ⇒ �∀φ(F→G)ab ∈ I r(∀φG)

(g) a ∈ I r(∀φ(F→G)) ⇒ �∀φ(F→G)a ∈ I r(∀φF→∀φG)

In (b) it is required that at least one of the two following conditions should hold:-

(3) [x A]a is not formed from a by clause (c) of Definition 4.6 alone; or
(4) a does not have a variable in head position and, if a has aU-term in head position,

a has the shape U∀φB(φ)→B(C)x .

In (d) it is required that a should have either a variable or a U-term in head position
but not be itself a U-term.

In (e) and (g), it is required that a should not be a generalization and, in ( f ), that
at least one of a, b should not be a generalization.

The motivation for these restrictions, and indeed for the way the rules presented in
Table 5.1 are formulated, will be discussed in Sect. 9.

Proposition 5.2 Every irreducible term is a C L2-term

Proof if every occurrence of “Ir” in Table 5.1 is replacedwith “CL2”, then the resulting
rules are all either primitive or admissible rules of CL2. This can be checked using, in
particular, Proposition 4.5 and the Corollary to 4.7.
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326 R. Stirton

Definition 5.3 A J2-term is reducible iff it is not in Ir.

Five classes of J2-terms will now be identified as redexes and a contractum will be
associated with every redex. The first three classes of redex correspond to what are
called, at p. 223 of [4], “type I (resp. II resp. III) redexes”; but it may be inadvisable in
the present context to overwork the word “type”. So the five classes will here be called:
(I) weak redexes; (II) open redexes; (III) λ′-redexes; (IV) ∧-redexes; (V) 
-redexes.
Throughout Table 5.2 and Definitions 5.4 to 5.7, it is required that the terms a, b, c be
in Ir (a requirement which means that the reduction relation defined here somewhat
resembles the strict or standard reduction of [23]).

The weak redexes comprise all CL2-terms of the shapes displayed in the left-hand
column of Table 5.2, while the shapes of the corresponding contracta are on the right.
In the last row it is required that a, besides being irreducible, should be an α/φ-
generalization of b ∈ CL2(B(α)).
Table 5.2

Redex Contractum

SABC abc ac(bc)
KABab a
IAa a
U∀φB(φ)→B(C)a b(αC )

The second class of redexes is defined by:

Definition 5.4 (i) An open C L2-term is one of the shape SABC ab or SABC a, where
a, b ∈ Ir.

(ii) Any open5, reducible C L2-term a of type A→B is an open redex. Its contractum
is λx A.ax A, where x A is the first term-variable of type A that does not occur in a
and is also distinct from every λ-binding variable that has a within its scope.

Definition 5.5 A λ′-redex is any J2-term of the shape λx .a, where a ∈ I r . Its con-
tractum is [x]a.
Definition 5.6 A ∧-redex is any CL2-term of the shape �∀φ(F→G)(∧α,φa)(∧α,φb),
where ab /∈ Ir. Its contractum is 
α,φ(ab).

Remark this reduction rule does for reducible terms of the shape ∧α,φa roughly the
same job as Definition 5.4 does for open reducible terms. Despite what the notation
might suggest,∧α,φa will in general have a radically different form from
α,φa, since
the latter is formed from a by a single term-building operation while the operation
which forms∧α,φa from a may be complicated and, in general, a will not be a subterm
of ∧α,φa.

5 Why it is possible to restrict the class of open redexes to terms of the two shapes mentioned in clause (1)
is explained at pp. 91–93 of [5].
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Definition 5.7 A 
-redex is any J2-term of the shape 
α,φa, where a ∈ I r . Its
contractum is ∧α,φa.

Corollaries a redex has the same type as its contractum. No redex has more than one
contractum.

Let the maximal head of a J2-term a be written as Xa1a2...an , where X is an atom
and a1, a2 . . . an are arbitrary J2-terms. Then we define:

Definition 5.8 A subterm b of a is an active redex within a iff one of the following
holds.

(i) ai ∈ Ir for each i such that 1 ≤ i ≤ n and b is in head position within a and b is
a weak redex; or

(ii) ai ∈ Ir for each i such that 1 ≤ i ≤ n and Xa1a2...an is an open redex or a
∧-redex and b ≡ Xa1a2...an ; or

(iii) b ≡ λx A(Xa1a2...an) for some x A and b is a λ′-redex; or
(iv) b ≡ 
α,φ(Xa1a2...an) for some α, φ and b is a 
-redex; or
(v) j < n, a1, a2, . . . a j ∈ Ir, a j+1 /∈ Ir and b is an active redex in a j+1.

Corollary No J2-term contains more than one active redex.

Definition 5.9 (i) a �1 b shall hold iff b is derived from a by replacing the active
redex in a with its contractum.

(ii) A reduction (sequence) for a shall be any sequence a, a1, a2, . . .with the property
that, for a any nonterminal ai , ai �1 ai+1.

(iii) a � b shall mean that a and b are, respectively, the first and last elements of some
reduction sequence.

(iv) A complete reduction sequence is one which either continues ad infinitum or else
has a last element which contains no active redex.

(v) The last element (if it exists) of any complete reduction sequence for a shall be
the normal form of a.

Proposition 5.10 Suppose a ∈ J2(A); then the following are all equivalent.

(i) a ∈ I r(A).
(ii) a contains no active redex.
(iii) a contains no redexes.
(iv) a is a normal form.

Proof that (i) implies (iii) is easily seen by induction on the deduction of a ∈ Ir(A)
(Table 5.1). (iii) implies (ii) because every active redex is a redex. That (ii) implies (i)
is proven by induction on the deduction of a ∈ J2(A).

If a ≡ λxb or a ≡ 
α,φb, then a is its own active redex if b ∈ Ir. If b /∈ Ir, then by
the (contraposition of the) I.H., there is an active redex in b and therefore in a.

If a ≡ Xa1a2...an and some ai is reducible, then, again by the contraposition of
the I.H., the leftmost such ai contains the active redex of a. From now on, therefore,
we assume that every ai within Xa1a2...an is irreducible. If Xa1a2...an begins with
a combinator but has no active redex, then a must have one of the following shapes:
SABC , KAB , KABb (with b ∈ Ir), IA, SABC b, SABC bc. In the first four cases, a ∈ Ir is
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then easily shown using Table 5.1. If a ≡ SABC b or a ≡ SABC bc where b, c ∈ Ir and
if a is not a redex, then a ∈ Ir by contraposing Definition 5.4. Similarly, if Xa1a2...an

begins with a U-term, a variable, a �-term or a �-term and contains no active redex,
a ∈ Ir can be shown using the rules of Table 5.1.

If a ≡ �α,φb for some b which has no active redex, then a ∈ Ir follows easily from
the I.H. and rule (c) of Table 5.1.

(ii) and (iv) are equivalent because, by Definition 5.9, a is a normal form iff there
is no active redex in a.

Proposition 5.11 If a′ is the normal form of a and α is not used as an eigenvariable
in the construction of a, then a′(αC ) is the normal form of a(αC ), for any type C.

Proof by induction on the length of the reduction sequence leading from a to a′.

6 Relations between the calculi of32-terms and CL2-terms

In this section, M, N , P, Q, M0, M1, . . . shall be
2-termswhilea, b, c, d, e, a0, a1, . . .
shall be J2-terms. M =
2 N shall mean that the equation M = N is provable in the
calculus of 
2-terms defined on p. 83 of [7], with η-conversion included.

The H-transformation defined by the following definition takes each 
2-term M
to a CL2-term MH .

Definition 6.1 (i) If M is a variable, then MH ≡ M .
(ii) If M ≡ PQ, then MH ≡ PH Q H .
(iii) If M ≡ λx A N , then MH ≡ [x A](NH ) as defined by Definition 4.6.
(iv) If M ≡ 
α,φ N , then MH ≡ ∧α,φ(NH ).
(v) If M ≡ NC for N ∈ 
2(∀φ A(φ)) and some type C , then MH ≡

U∀φ A(φ)→A(C)(NH ).

Proposition 6.2 When a C L2-term b is itself a redex, the active redex within b is b
itself.

Proof immediate from Definition 5.8.

Proposition 6.3 If MH ≡ SABC ab, then M =
2 λz A.N z A(Pz A) for some N , P such
that NH ≡ a, PH ≡ b.

Proof assume first that M contains no η-redexes. Then inspection of the right-hand
terms ofDefinition 6.1 shows that M must be eitherλz A.L or L0L1 for some L, L0, L1.
In the former case, since MH ≡ SABC ab, L must be K0K1 for some K0, K1. So
M ≡ λz A(K0K1) =
2 λz A.((λvA K0)z A((λvA K1)z A)) where (λvA.K0)H ≡ a and
(λvA.K1)H ≡ b.

If M ≡ L0L1, for some L0, L1, then L0H ≡ SABC a and L1H ≡ b and either
L0 ≡ K0K1 for some K0, K1 with K0H ≡ SABC and K1H ≡ a or L0 ≡ λy A→B K
for some K . In the latter case, inspection of Definition 6.1 shows that (λy A→B K )H ≡
SABC a is possible only if K ≡ λz A.J (y A→B z A) for some J in which y A→B does
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not occur. As before, λy A→B z A.J (y A→B z A) =
2 λy A→B z A.(λvA J )z A(y A→B z A)

where (λvA J )H ≡ a. Then (λy A→B K )L1 =
2 λz A.(λvA J )z A(L1z A), where
(L1)H ≡ b.

If L0 ≡ K0K1, then K0H ≡ SABC while K1H ≡ a. In this case, inspection
of Definition 6.1 shows that K0 ≡ λx A→B→C y A→B z A.x A→B→C z A(y A→B z A) is a
necessary condition of K0H ≡ SABC . So L0L1 ≡ K0K1L1 =
2 λz A(K1z A(L1z A)),
where K1H ≡ a and L1H ≡ b.

If M contains η-redexes and M ′ is the term obtained from M by contracting them
all, then by Definitions 4.6 and 6.1 MH ≡ M ′

H and the foregoing argument applies.

Proposition 6.4 If MH ≡ SABC abc, then M =
2 (λz A.N z A(Pz A))Q for some
N , P, Q such that NH ≡ a, PH ≡ b and Q H ≡ c.

Proof as before, the general case can be reduced to the case where M contains no
η-redexes. Then inspection of the right-hand terms of Definition 6.1 shows that M
can only have the shape M0Q, where Q H ≡ c and M0H ≡ SABC ab. Now apply
Proposition 6.3.

Proposition 6.5 If e ≡ MH is a weak redex which contracts to e′, then M =
2 R for
some R such that RH ≡ e′.

Proof e must have one of the four shapes shown in Table 5.2. If e ≡ SABC abc, then
by Proposition 6.4, M =
2 N Q(P Q) for some N , P, Q such that (N Q(P Q))H ≡
ac(bc). If e ≡ KABab then either M ≡ (λvB M1)M2 where M1H ≡ a and M2H ≡ b
or M ≡ M0M1M2, where M0H ≡ KAB , M1H ≡ a and M2H ≡ b. In either case,
M =
2 M1 and M1H ≡ a ≡ e′. If e ≡ IAa then M ≡ (λvA.vA)N , where NH ≡ a ≡
e′. Finally, if e ≡ U∀φ A(φ)→A(C) ∧α,φ a then M ≡ (
α,φ N )C for some N having type
A(α) such that NH ≡ a. Then M =
2 N (αC ) and N (αC )H ≡ a(αC ).

Proposition 6.6 If MH ≡ ∧α,φa, then M =
2 
α,φ N for some N such that NH ≡ a.

Proof by Definition 4.3, ∧α,φa will have one of the following shapes: �α,φa, �∀φBa,
�∀φ(F→G)bc. In the first and third cases, the stronger proposition M ≡ 
α,φ N holds.
For�α,φa can only be the H-transform of
α,φ N for some N such that NH ≡ a. In the
third case, it might seem that∧α,φa could also be theH-transform of M0M1, where, for
example, M0H ≡ �∀φ(F→G)b and M1H ≡ b. However there is no 
2-term of which
�∀φ(F→G)b is the H-transform, just as if there is none of which�∀φ(F→G) is. An atom
of this last shape could only be obtained by the H-transformation of Definition 6.1
if an application of clause (iv) yielded �∀φ(F→G)xy and this were followed by two
applications of clause (iii); but an application of clause (iv) can only yield terms of
the shape �∀φ(F→G)bc where b and c are themselves generalizations, which means
they cannot be variables.

If ∧α,φa ≡ �∀φBa, then a can indeed be a variable and M can be an applicative
term M0M1. In this case, M0 ≡ λx B
α,φ.x B so that M0H ≡ [x B]�∀φB x B ≡ �∀φB ,
while M1H ≡ a. But then M0M1 β-contracts to 
α,φ M1 where M1H ≡ a.

Definition 6.7 If b is the active redex in a, then d(b, a), the depth of b within a, is
defined to be:
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(i) 0 if b is in head position within a;
(ii) d(b, e)+1 if a ≡ ce and b occurs inside e.

Proposition 6.8 If MH ≡ a and b is the normal form of a, then there is an N such that
M =
2 N and NH ≡ b.

Proof as a is an H-transform, by Definition 6.1 a will be a CL2-term. Moreover,
�-terms will occur in a only at the head of generalizations: that is, in a context
�∀φ(F→G)cd, where c and d are themselves generalizations.

The proposition is trivial if there are no redexes in a. Assume then that there are
redexes in a and let n be the number of terms following a in the reduction sequence
which leads from a to b, let p be the depth of the active redex within a and let q be
the number of times the operation c �→ �α,φc is used in the construction of a. The
proposition is now proven by transfinite induction on ωn + p + q.

Only composite terms can be reduced, so a has either the shape�α,φa0 or the shape
a0a1. In the former case, the proposition easily follows from the I.H., so we assume
now that a ≡ a0a1.

Case 1 a is ce1e2...em , where 0 ≤ m and the active redex in a is c, which is a
weak redex. If MH ≡ ce1e2...em , then by Definition 6.1 M ≡ P Q1Q2...Qm for some
P, Q1, Q2, . . . Qm such that PH ≡ c etc. By Proposition 6.5, there is a P ′ such that
P Q1Q2...Qm =
2 P ′Q1Q2...Qm and P ′

H ≡ c′, where c′ is the contractum of c. By
the hypothesis of the induction on n, there is a term N such that NH is the normal
form of c′e1e2...em and P ′Q1Q2...Qm =
2 N . The conclusion follows using the
transitivity of =.

Case 2 a is SABC c1...ci where i ∈ {1, 2} and c1, . . . ci ∈ Ir. If i = 2, then a reduces
in two steps to λx A.c1x A(c2x A). By Proposition 6.3 there are terms N , P such that
M =
2 λz A.N z A(Pz A) and NH ≡ c1, PH ≡ c2. By the stipulations of Sect. 5, a
has a normal form only if c1x A(c2x A) does. By Definition 6.1, (N x A(Px A))H ≡
c1x A(c2x A). Since the normal form of c1x A(c2x A) is reached in ≤ n−3 steps, the
I.H. of the induction on n entails there is a term Q such that N x A(Px A) =
2 Q and
Q H is the normal form of c1x A(c2x A). By rule (ξ), λx A.N x A(Px A) =
2 λx A.Q
while, by Definition 6.1, (λx A.Q)H ≡ [x A]Q H and, by the stipulations of Sect. 5,
[x A]Q H is the normal form of a. It follows that λx A.Q is the term required to make
the proposition true.

If i = 1, M ≡ λvA→B K for some K such that K H ≡ SABC c1vA→B for some vA→B

not in c1. By the argument of the last paragraph, there is then a Q such that K =
2

λx A.Q and (λx A.Q)H ≡ e for some e which is the normal form of SABC c1vA→B . In
that case, [vA→B]e is the normal form of SABC c1 and (λvA→B x A.Q)H ≡ [vA→B]e.

Case 3 a is a∧-redex, say∧α,φb. ByDefinition 5.6 andProposition 6.2, a �1 
α,φb.
Since a is a redex it follows fromDefinition 5.6 that b is reducible. There is therefore a
reduction of n−2 steps taking b to its normal form b′. By Proposition 6.6, M ≡ 
α,φ P
for some P such that PH ≡ b, so by the I.H. on n there is a Q such that P =
2 Q
and Q H ≡ b′. By rule (ξ ) for type-abstraction, M ≡ 
α,φ P =
2 
α,φ Q, so 
α,φ Q
is the term that makes the proposition true in this case.

Case 4 by Definition 5.8, the only remaining possibility is that a ≡ Xd1d2...dm

for some atom X and the active redex in a is inside dk . In this case, there are various
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possible shapes that M may have but, by Propositions 6.3, 6.4 and 6.6, M will have a
component Qk such that Qk H ≡ dk . By Definition 5.8, the reduction of a must begin
by repeatedly contracting the active redex in dk until its normal form d ′ is reached, at
which point either we have reached the normal form of a or else there is an active redex
in Xd1d2...d ′...dm . In the latter case, since less than n steps are needed in order to
reach d ′, by the I.H. of the induction on n there is a 
2-term Q′ such that Qk =
2 Q′
and Q′

H ≡ d ′, from which follows that M can be converted to a term M ′ such that
M ′

H ≡ Xd1d2...d ′...dm by converting the component Qk to Q′ while, by another
application of the I.H. on n, M ′ can in turn be converted to a term N such that NH is
the normal form of Xd1d2...d ′...dm and therefore of a.

If n reduction steps are needed in order to reduce dk to its normal form, then use is
made of the I.H. on the depth of the active redexes, since this is smaller for dk than it
is for a.

Proposition 6.9 If MH ∈ Ir and there are no η-redexes in M, then there are no β-
redexes in M either.

Proof by induction on the construction of M .
If M ≡ M0M1, then MH ≡ M0H M1H . Because M0H M1H is in Ir, it follows from

the definition of Ir (Table 5.1) together with Proposition 5.10 that M0H and M1H

contain no redexes. It follows by the I.H. that M0 and M1 contain no redexes of 
2.
Nor can M0M1 be a β-redex because, if it were, either M0 would be an η-redex or
M0H M1H would be a weak redex and therefore not in Ir.

If M ≡ λvA N for some vA and N , then by Definition 6.1 MH is SABC ab, KB Aa
or IA for some a, b, B, C (there would be other possibilities if M were an η-redex but
it is not). So one of the following must hold: N ≡ N0N1, NH ≡ a or N ≡ vA. In
the second and third cases, N clearly contains no β-redex (using the I.H. in the case
where NH ≡ a). By definition of Ir, SABC ab is in Ir only if NH is. By the I.H., NH

is in Ir only if N contains no β-redex.
If M ≡ 
α,φ N then MH ≡ ∧α,φ NH . By the definition of Ir (Table 5.1; especially

row (c) and the condition appended to (f)) ∧α,φ NH is in Ir only if NH is. By the I.H.,
there are no β-redexes in N .

If M ≡ NC for some type C , then by Definition 6.1 MH ≡ U∀φB(φ)→B(C)NH for
some B and φ. Since this is in Ir, so is NH and therefore, by the I.H., N contains no
β-redexes.

Proposition 6.10 If MH ∈ Ir, there are no type-redexes in M.

Proof by induction on the construction of M .
If M ≡ NC for some type C , then by Definition 6.1 MH ≡ U∀φB(φ)→B(C)NH

for some B and φ. Since this term is in Ir it is, by Proposition 5.10, not a redex and
therefore NH is not a generalization. By Definition 6.1, it follows that N is not formed
by 
-abstraction.

That no subterm of M is a type-redex is shown, both in this case and in general,
using the definition of Ir and the I.H., just as in the proof of 6.9.

Theorem 1 If � is a class of C L2-terms such that every term in � has a normal form,
so does every 
2-term M such that MH is in �.

123



332 R. Stirton

Proof if MH ∈ �, by Proposition 6.8 there is an N such that M =
2 N and NH is
the normal form of MH . Let all η-redexes in N be contracted and let N ′ be the result.
By Definition 4.6, NH ≡ N ′

H . By Propositions 6.9 and 6.10, N ′ contains no redexes.

7 Normalizability of CL2-terms

Theorem 1 shows (or, at least, so it will be argued in Sect. 8) that interesting conse-
quences follow from the assumption that all CL2-terms are normalizable. The theorem
will, admittedly, be of limited interest if there are CL2-terms which are not normaliz-
able. The purpose of this section is to apply the method invented by Girard ([6]) and
used in [1,7,12,19,24] to show that there are no such terms.

Definition 7.1 The rank of a type A, henceforth ρ(A), is defined to be:-

(i) 0 if A is a type-variable.
(ii) max{ρ(B), ρ(C)} + 1 if A ≡ B→C .
(iii) ρ(B(α)) + 1 if A ≡ ∀φB(φ).

Definition 7.2 For each type A, a subset S of C L2(A) is regular iff:

(i) Every term in S has a normal form.
(ii) S contains every term of type A that can be built up by starting with either

a variable or a term of the shape �∀φ(F→G)ab which is irreducible and not a
generalization and applying the two operations:

(α) a �→ ab1b2...bn for some normalizable C L2-terms b1, b2, . . . bn .
(β) a �→ Xa, for some U-term X .

(iii) If a′ ∈ S and a � a′, then a ∈ S.
(iv) If a ∈ S and a � a′, then a′ ∈ S.

Definition 7.3 A valuation (sc., of the free type-variables) is a function ξ with the
property that, for every α, there is an A such that ξ(α) is a regular subset of C L2(A).

The letters ξ, ξ ′, ξ ′′, . . . will range over valuations.

Definition 7.4 For each type A, Aξ is the type defined by:

(i) If A ≡ α, then Aξ is the type of the elements of ξ(α).
(ii) If A ≡ B→C , then Aξ ≡ Bξ→Cξ .
(iii) If A ≡ ∀φ(B(αφ)), then Aξ ≡ ∀φ(Bξ ′

(αφ)), where ξ ′ assigns an arbitrary regular
set of type α to α and otherwise agrees with ξ .

Corollary if ξ(α) is a set of type C, then (A(α))ξ ≡ Aξ (C).

Definition 7.5 For any C L2-term a and any valuation ξ , the term aξ shall be con-
structed as follows:

(i) If a is an atom of type A described on some row of Table 4.1, aξ shall be the
atom of type Aξ on the same row.
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(ii) If a ≡ a0a1, then aξ shall be aξ
0aξ

1

(iii) If a ≡ �α,φa0, then aξ shall be �α,φ(aξ ′
0 ), where ξ ′ takes α to a set of type α

but otherwise agrees with ξ .

Corollary if a ∈ CL2(A) then aξ ∈ CL2(Aξ ).

The next definition defines the sequence of sets Compξ,A, read as “the set of terms
that are computable relative to A and ξ”, for each ξ and A.6 The definition is by
recursion on ρ(A). In clause (iii), the type ∀φB(φ) shall be (∀φ A(φ))ξ .

Definition 7.6 (i) If A ≡ α, then Compξ,A = ξ(α).
(ii) Compξ,A→B = {a : if b ∈ Compξ,A then ab ∈ Compξ,B}.
(iii) Compξ,∀φ A(φ) = {a : for each type C , U∀φB(φ)→B(C)a ∈ Compξ ′,A(α) for every

valuation ξ ′ which assigns a regular set of type C to α and otherwise agrees with
ξ}.

Proposition 7.7 For each A and ξ , Compξ,A is a subset of CL2(Aξ ).

Proof by induction on ρ(A). If A ≡ B→C , then by clause (ii) of Definition 7.6,
Compξ,A is a set of terms each of which, applied to a term in Compξ,B yields a term in
Compξ,C . Applying the I.H., this is equivalent to saying Compξ,A is a set of terms of
type Bξ→Cξ . Suppose A is a quantified type and Aξ ≡ ∀φB(φ). Then the elements
of Compξ,A must have type ∀φB(φ) in order for U∀φB(φ)→B(C)a to be well-formed.

Definition 7.8 For any term b of type B and any A and ξ such that Aξ ≡ B, a term c
is an (A, ξ)-supplementation of b iff one of the following conditions is fulfilled:

(i) A is a type-variable and c ≡ b.
(ii) A ≡ A0→A1 and c is an (A1, ξ)-supplementation of bd for some d in CompA0,ξ .
(iii) A ≡ ∀φD(φ) for some D, which means that B is also a quantified type, say

∀φE(φ). Moreover, there is a C such that ξ(α) is of type C , (D(α))ξ ≡ E(C)

and c is a (D(α), ξ)-supplementation of U∀φE(φ)→E(C)b.

It follows easily from this definition that an (A, ξ )-supplementation of a term in
CL2(Aξ ) will have the type of the terms in ξ(β), for some β. Further work, though, is
needed to show that it will also be in ξ(β) for some β.

Proposition 7.9 For any term b of type B and any A and ξ such that Aξ ≡ B, if every
(A, ξ)-supplementation of b is in ξ(α) for some α occurring in A, then b ∈ Compξ,A.

Proof by induction onρ(A). If A is a type-variable, the proposition is obvious. Suppose
A ≡ A0→A1 and let d be in Compξ,A0 . By the I.H., if every (A1, ξ)-supplementation
of bd is in Compξ,α for some α occurring in A1, then bd is in Compξ,A1 . By Defini-
tions 7.6 and 7.8, this is equivalent to the proposition to be proven.

To deal with the case where A ≡ ∀φD(φ), note that the last sentence of clause (iii)
of Definition 7.8 is equivalent (using the corollary to Definition 7.4) to the following:

6 If the normalizability proof presented in this section appears complicated, this is largely to be put down
to the fact that the type of terms in Compξ,A is Aξ , which is not, in general, the same as A. This is due to
the fact that the terms in ξ(α) may have any type (not necessarily α); and this in turn seems unavoidable in
view of the fact that valuations were introduced in order to deal with instantiations of universal quantifiers
ranging over all types. Valuable discussions of the heuristic thinking behind Girard’s proof can be found in
[7,12] (“Appendix B”) and [23] (Sect. 7.9).
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There are a C and a ξ ′ such that ξ ′ takes α to a set of type C and otherwise agrees
with ξ ; and c is a (D(α), ξ ′)-supplementation of U∀φE(φ)→E(C)b.

Suppose now A ≡ ∀φD(φ) while Aξ ≡ ∀φE(φ) and every (∀φD(φ), ξ)-
supplementation of b is in ξ(β) for some β occurring in A. That is, by Definition 7.8,
for every C and ξ ′ such that ξ ′ takes α to a set of type C and otherwise agrees with
ξ , every (D(α), ξ ′)-supplementation of b is in ξ(β) for some β occurring in A. Since
α does not occur in A, β is distinct from α and “ξ(β)” may here be replaced with
“ξ ′(β)”. Then by the I.H.U∀φE(φ)→E(C)b is in Compξ ′,D(α) for every such ξ ′. But this
is precisely the condition for b to be in Compξ,∀φD(φ).

Proposition 7.10 (i) For every ξ and A, every element of Compξ,A has a normal form.
(ii) For every term-variable x A and every ξ , (x A)ξ ∈ Compξ,A.

Proof the two halves are proven simultaneously by induction on ρ(A). If A is a type-
variable α, then (x A)ξ ∈ Compξ,A by clause (ii) of Definition 7.2 while every element
of Compξ,A has a normal form by clause (i) of the same definition.

Suppose ρ(A) > 0. Then an (A, ξ )-supplementation of (x A)ξ is built up by start-
ing with (x A)ξ and applying the two operations a �→ ab1b2...bn for computable
b1, b2, . . . bn anda �→ Xa, for someU-term X . The terms b1, b2, . . . bn used in the first
operation all have normal forms by part (i) of the I.H., so every (A, ξ )-supplementation
of (x A)ξ is in ξ(β) for some β by clause (ii) of Definition 7.2, which is sufficient by
Proposition 7.9 for (x A)ξ to be in Compξ,A.

Suppose a ∈ Compξ,A and A ≡ A0→A1. Any variable x B , where B ≡ Aξ
0, is in

Compξ,A0 by part (ii) of the I.H. By Definition 7.6 therefore, ax B is in Compξ,A1 and
therefore has a normal form, say a′, by part (i) of the I.H. So [x B]a′ is irreducible by
clause (b) of Table 5.1 and is also, by Sect. 5, a term to which a reduces.

Finally if a ∈ Compξ,A, if A ≡ ∀φB(φ) and if Bξ (α) ≡ D(α), then by clause (iii)
of Definition 7.6, U∀φD(φ)→D(α)a ∈ Compξ ′,B(α) where ξ ′ is a valuation which takes
α to a set of type α and otherwise agrees with ξ . B(α) has a lower rank than ∀φB(φ),
so by part (i) of the I.H. U∀φD(φ)→D(α)a has a normal form, which can only be the
case if U∀φD(φ)→D(α)a′, where a′ is the normal form of a, is a term of its reduction
sequence.

Proposition 7.11 Every (A, ξ)-supplementation of a term b in Compξ,A belongs to
ξ(β) for some β which occurs in A.

Proof by induction on ρ(A). If A is a type-variable α, then ξ(α) = Compξ,A. Suppose

Aξ ≡ B. If A ≡ A0→A1 then B ≡ B1→B1, where Bi ≡ Aξ
i for i = 1,2. Let c be an

arbitrary term in Compξ,A0 ; then by the I.H. every (A1, ξ)-supplementation of bc is in
ξ(β) for some β; but by Definition 7.8 this is all that is required. If A ≡ ∀φD(φ) then
B ≡ ∀φE(φ), for some E(α) such that D(α) ≡ E(α)ξ

′
, for any valuation ξ ′ which

takes α to a set of terms of type α and otherwise agrees with ξ . Suppose that ξ takes
D(α) to E(C); then, by the I.H., every (D(α), ξ)-supplementation of U∀φE(φ)→E(C)b
is in ξ(β) for some β; but then by Definition 7.8 so is every (A, ξ)-supplementation
of b.
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Proposition 7.12 Compξ,A is a regular set for every ξ and A.

Proof by Proposition 7.10, Compξ,A has property (i) of the four properties mentioned
in Definition 7.2.

That it has property (ii) will be shown by induction on ρ(A). The basis is obvious.
Let A ≡ A0→A1 and a be a term of type Aξ that is built up in the manner described
in clause (ii) of Definition 7.2. Let b be a normalizable term of type Aξ

0; now by the
I.H. Compξ,A1 is a regular set and therefore contains ab, since that term is of the shape
described in clause (ii) of Definition 7.2. If this is so for every normalizable b, then a
fortiori (by Proposition 7.10) it is so for every b that is in Compξ,A0 . But the latter is
the very condition required by Definition 7.6 for a to be in Compξ,A. A fairly similar
argument deals with the case where A is a quantified type.

That Compξ,A has properties (iii) and (iv) of the four properties mentioned in
Definition 7.2 can be shown by considering an arbitrary (A, ξ)-supplementation of a
term in Compξ,A and applying Propositions 7.9 and 7.11.

Corollary if a is in Compξ,A, then so is every term to which a reduces.

Proposition 7.13 Compξ,A(D) = Compξ ′,A(α) for every ξ ′ such that ξ ′(α) = Compξ,D

and ξ ′ otherwise agrees with ξ .

Proof by induction on ρ(A(α)) (cf. lemma 11.3.6 in [24]).

Proposition 7.14 If a ∈ C L2(A) is an atomic term, then aξ ∈ Compξ,A for every ξ .

Proof if a is a variable, this is Proposition 7.10. If a is an atomic constant, six cases
are distinguished according to which kind of constant a is.

(Case 1) a ≡ SC DE . By Definition 7.6 and Proposition 7.9, it suffices to show that,
whenever cξ , dξ , eξ belong to Compξ,C→D→E , Compξ,C→D , Compξ,C respectively

and f (Sξ
C DE cξ dξ eξ ) is an (A, ξ)-supplementation of Sξ

C DE , then f (Sξ
C DE cξ dξ eξ ) ∈

ξ(β) for some β.
By Proposition 7.10, each of cξ , dξ , eξ has a normal form; let c′ξ , d ′ξ , e′ξ be the

respective normal forms of cξ , dξ , eξ . By the corollary to Proposition 7.12, c′ξ , d ′ξ , e′ξ
belong to Compξ,C→D→E , Compξ,C→D and Compξ,C respectively. By clause (ii) of
Definition 7.6, c′ξ e′ξ (d ′ξ e′ξ ) ∈ Compξ,E and therefore (by Proposition 7.11) there is
a β such that f (c′ξ e′ξ (d ′ξ e′ξ )) ∈ ξ(β), where f is as in the last paragraph. By clause
(iii) of Definition 7.2, f (Sξ

C DE cξ dξ eξ ) ∈ ξ(β) follows.
Cases 2 and 3, i.e. where a is a typed instance of K or I are treated likewise.
Case 4 a ≡ U∀φB(φ)→B(C). Let (∀φB(φ)→B(C))ξ ≡ ∀φD(φ)→D(E) and let b

be inCompξ,∀φB(φ). By clause (iii) ofDefinition 7.6,U∀φD(φ)→D(E)b is inCompξ ′,B(α)

for every ξ ′ that takes α to a set of type E and otherwise agrees with ξ , including
the particular ξ ′ that takes α to Compξ,C . By Proposition 7.13, U∀φD(φ)→D(E)b ∈
Compξ,B(C), from which the conclusion follows by clause (ii) of Definition 7.6.

Case 5 a ≡ �∀φ(F→G). Let D(α) and E(α) be types such that ∀φD(φ) ≡ ∀φF and
∀φE(φ) ≡ ∀φG. Let b, c belong to Compξ,∀φ(F→G), Compξ,∀φF respectively and

let f (U∀φ(Dξ (φ)→Eξ (φ))→Dξ (C)→Eξ (C)(�
ξ

∀φ(F→G)bc)) be an (A, ξ)-supplementation
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of �
ξ

∀φ(F→G). Under these assumptions, it suffices to show this last term belongs to
ξ(β) for some β.

The assumptions on b and c entail, by Proposition 7.10, that b and c have normal
forms; let the latter be b′ and c′ respectively.

Subcase 5a in both of the reduction sequences leading from b to b′ and from c to c′,
there are α/φ-generalizations; let ∧α,φe0 and ∧α,φe1 be the first such generalizations
which appear in the two respective reduction sequences.

The computability of b and c also entails, by clause (iii) of Definition 7.6, that
U∀φ(Dξ (φ)→Eξ (φ))→Dξ (α)→Eξ (α)b(U∀φ(Dξ (φ)→Dξ (α)c) is in Compξ ′,E(α) for every ξ ′
that takes α to a set of type α. This term therefore has a terminating complete reduction
that proceeds through U∀φ(Dξ (φ)→Eξ (φ))→Dξ (α)→Eξ (α)(∧α,φe′

0)(U
∀φ(Dξ (φ)→Dξ (α)

(∧α,φe′
1)), where e′

0 and e′
1 are the respective normal forms of e0 and e1. Let its

normal form, therefore, be e′.
By Sect. 5, the term f (U∀φ(Dξ (φ)→Eξ (φ))→Dξ (C)→Eξ (C)(�

ξ

∀φ(F→G)bc)) is reduced

by first replacing the component �ξ

∀φ(F→G)bc with successive reducts as follows:

�
ξ

∀φ(F→G)bc � �
ξ

∀φ(F→G)(∧α,φe0)c

� �
ξ

∀φ(F→G)(∧α,φe′
0)c

� �
ξ

∀φ(F→G)(∧α,φe′
0)(∧α,φe′

1)

� 
α,φ(e′
0e′

1) by Definitions 5.6 and 5.8, assuming e′
0e′

1 /∈ Ir
� 
α,φ(e′) because e′

0e′
1 � e′ (see above)

� ∧α,φ(e′)

The term f (U∀φ(Dξ (φ)→Eξ (φ))→Dξ (C)→Eξ (C)(�
ξ

∀φ(F→G)bc)) therefore reduces to
f (e′(αC )).

On the other hand, U∀φ(Dξ (φ)→Eξ (φ))→Dξ (C)→Eξ (C)b(U∀φ(Dξ (φ)→Dξ (C)c) is in
Compξ,D(α) in consequence of the assumptions b ∈ Compξ,∀φ(F→G) and c ∈
Compξ,∀φF , so the term f (U∀φ(Dξ (φ)→Eξ (φ))→Dξ (C)→Eξ (C)b(U∀φ(Dξ (φ)→Dξ (C)c)),
being a (D(α), ξ)-supplementation of it, is in ξ(β) for some β by Proposition 7.11.
By Sect. 5, it reduces to f (e′

0(
α
C )e′

1(
α
C )), which, by Proposition 5.11, also reduces to

f (e′(αC )). By clause (iv) of Definition 7.2, this is in ξ(β) for some β, hence by clause
(iii) of the same Definition so is any term that reduces to f (e′(αC )).

Subcase 5b �
ξ

∀φ(F→G)b
′c′ is not an α/φ-generalization. Then, by clause (ii) of Def-

inition 7.2, f (U∀φ(Dξ (φ)→Eξ (φ))→Dξ (C)→Eξ (C)(�
ξ

∀φ(F→G)b
′c′)), being irreducible,

belongs to ξ(β) for everyβ. By clause (iii), so does f (U∀φ(Dξ (φ)→Eξ (φ))→Dξ (C)→Eξ (C)

(�
ξ

∀φ(F→G)bc)).
Case 6 a ≡ �∀φB . An arbitrary (∀φB, ξ )-supplementation of this has the shape

f (U∀φ(Bξ (φ)→Bξ (C)(�
ξ
∀φBb)), where b ∈ Compξ,B and therefore has a normal form

b′. Moreover, b′ is also the normal form of U∀φ(Bξ (φ)→Bξ (C)(�
ξ
∀φBb), since, as we

saw in Sect. 4, the outermost quantifier in ∀φB does not actually bind anything. So
f (b′) is a well-formed term. Moreover, by the corollary to Proposition 7.12 together
with Proposition 7.11, f (b′) is in ξ(β) for some β. By clause (iii) of Definition 7.2,
so is f (U∀φ(Bξ (φ)→Bξ (C)(�

ξ
∀φBb)).

123



Combinatory logic with polymorphic types 337

Proposition 7.15 For every term a of C L2(A) and every ξ , aξ is in Compξ,A.

Proof by induction on the construction of terms. If a is formed by application, then the
conclusion follows from the I.H. by clause (ii) of Definition 7.6. Suppose a ≡ �α,φb
and let b have type B(α). Then an arbitrary (∀φB(φ), ξ )-supplementation of a has the
shape f (U∀φ(Bξ (φ)→Bξ (C)(�α,φb)ξ ). By the I.H.,

bξ ∈ Compξ,B(α) for every ξ. (5)

Let ξ now be fixed and let D be such that Dξ ≡ C . Then, instantiating (5), bξ ′ ∈
Compξ ′,B(α) for any valuation ξ ′ that takes α to Compξ,D and otherwise agrees with
ξ . So by Proposition 7.13 bξ ′ ∈ Compξ,B(D) and therefore f (bξ ′

) is in ξ(β) for

some β. bξ ′
is the same term as (b(αD))ξ and f (U∀φ(Bξ (φ)→Bξ (C)(�α,φb)ξ ) reduces to

f ((b′(αD))ξ ), where b′ is the normal form of b. However, by clauses (iii) and (iv) of
Definition 7.2, any term that reduces to f ((b′(αD))ξ ) is in ξ(β) for some β.

Theorem 2 Every C L2-term has a normal form.

Proof by Propositions 7.10 and 7.15.

8 The importance of Theorem 1 and the possible utility of CL2-terms

Theorems 1 and 2 together entail that every 
2-term has a normal form. It may be
objected that this has already been repeatedly proven ([1,6,7,12,19,24]). The answer
to this objection is that, for some purposes, a proof of Theorem 2 like the one given
here will not be optimal. There are advantages in being able to produce normalizability
proofs that can be formalized in primitive recursive arithmetic (PRA) augmented only
by transfinite induction (applied to predicates in the language of PRA) over some
initial segment of the recursive ordinal numbers. The predicates “∈ Compξ,A”, used
in Sect. 7, are of course very far from being formalizable in the language of PRA.

In the terminology used by proof theorists, a normalizability proof of the kind
envisaged here is called “ordinally informative”.7

Definition 8.1 The n-th polymorphic Church numeral is the 
2-term 
α,φλyα→α

λxα(yα→α(yα→α...(yα→α

︸ ︷︷ ︸

n

xα)...)), abbreviated henceforth to cn .

Definition 8.2 For any m-place function f of natural numbers, f is represented by the

2-term M iff, for every m-tuple cn1 , cn2 , . . . , cnm of polymorphic Church numerals8

Mcn1cn2 ...cnm =
2 c f (n1,n2,...,nm )

7 For a rough definition of “ordinally informative”, see [14]. For the present purpose, “terms” has to be
read in place of “proofs”
8 This definition is taken from p. 283 of [19].
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Definition 8.3 A class � of numerical functions is represented by a class � of terms
of 
2 iff each function in � is represented by some term in �.

Up till now, ordinally informative proofs of normalizability have been developed
much less for 
2-terms than for the terms of Gödel’s T,9 which can however be
embedded in 
2 ([19], p. 283). A number of writers have exploited this work to prove
theorems along the following lines: if all the terms in � can be shown to have normal
forms bymeans of transfinite induction up to some ordinal number α and� represents
the class �, then each function in � can be defined by ordinal recursion up to some
ordinal below α. See for example [11,17,22].

Ordinal recursion has been felt to be a natural and illuminating way of defining
subrecursive classes ([15], chapter 3) and convenient for proving the identity of classes
that have been defined in different ways (ibid., chapter 4). So ordinally informative
proofs of normalizability of classes of 
2-terms can be expected to show not only
that the terms have normal forms but also that the functions they represent can be
characterized in a way that is intelligible to people who are not acquainted with 
2
and arguably more illuminating even to people who are.

There is another advantage which at least some ordinally informative proofs of
normalizability have over proofs of the kind presented in Sect. 7. If it should prove
possible to define a function F which takes terms in class � to recursive ordinal
numbers in such a way that:

(6) If M reduces to N , then F(M) > F(N ).

then this very easily yields not only a proof that the terms of � all have normal forms
but also a definition by ordinal recursion of a function which outputs an upper bound
to the number of reduction steps needed to reach the normal form.10

Theorem1 above entails that an ordinally informative proof of the normalizability of
some class� ofCL2-terms is also an ordinally informative proof of the normalizability
of the set of 
2-terms that have H-images in �. It remains to discuss why there might
be any advantages in trying to achieve such a result for CL2 first rather than tackling

2 directly. To some extent, the answer has to be that the best way to tackle 
2 is
not yet known but it makes sense for researchers to arm themselves in advance with
any tool which might potentially be useful. But one point can be made already. The
most obvious form for the definition of an ordinal assignment function F to take
is for it to follow the construction of terms: to each operation in the construction
of terms (term-application, λ-abstraction, type-abstraction and type-application) shall
correspond a function taking the F-images of immediate subterms of M to F(M)

itself. As CL2-terms are built up by fewer and simpler operations than 
2-terms—
only term-application and a restricted form of type-abstraction denoted by�α,φ—it is
a reasonable expectation that the invention of a suitable ordinal assignment function
for CL2-terms will be a simpler matter than for 
2-terms.

Not all of the ordinal assignment functions in the proof-theoretic literature do follow
this obvious pattern, but some do, notably in [10,16] (pp. 105–112). The normaliz-
ability proof in [10] is for T formulated using
→-terms, in [16] it is for T formulated

9 For a history of T, see Sect. 10.5 of [19] or Sect. 1.6 of [23]; Sect. 2.2.35 of [23] surveys proofs of
normalizability published before 1973. Important contributions made since that date are [11,22,25].
10 See for example Sect. 6 of [20].
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using CL→-terms. The assignment in [10] is more complicated in two respects: firstly
what is assigned to each term in [16] is a finite sequence of ordinal numbers whereas
in [10] it is a finite sequence of functions of ordinal numbers; in the second place in
[10] the finite sequence assigned to a term is calculated by means of two operations,
corresponding to term-application and λ-application respectively, whereas in [16] only
one operation is needed, corresponding to application alone.

9 Irreducible terms; connections to second-order logic

Any deduction formed using rules (a)−(e) of Table 5.1 can be transformed into a
proof in the natural deduction calculus →∀2Nip2 (described in [24], p. 345), in the
following way: every statement a ∈ Ir2(A) should be transformed into a sequent that
has, on the left, the types of the variables in a and, on the right, just the formula A. This
transformation will be called the statements-to-sequents transformation. Under it, the
rules (a)−(e) of Table 5.1 become rules of →∀2Nip2. It will be permitted, however,
that in translating from a statement to a sequent, formulae may be inserted on the left
of the sequent which are not necessarily types of free variables in the subject of the
statement.

Provided that the given deduction is constructed in accordance with the restrictions
stated after Table 5.1, it is possible to see that its image under the statements-to-
sequents transformation will actually be a normal proof in →∀2Nip2.

If the term a in a particular application of rule (b) of Table 5.1 satisfies the suffixed
condition (3), then [x A]a has a combinator in head position. If a satisfies condition (4)
but not (3), then either [x A]a is a U-term or [x A]a has in head position a combinator
or a �-term. There are no other possibilities. It might seem at first that [x A]a could
have a �-term in head position, but this is so only if a has the shape �∀φ(F→G)bx∀φF

or �∀φ(F→G)x∀φ(F→G). However, by Definition 4.3, no term of any such shape is a
generalization and it was stipulated that rules ( f ) and (g) have not been used in the
deduction.

On the other hand, the conditions on rule (d) in Table 5.1 were that, in the left
premiss a ∈ I r(A→B) of an application of this rule, a had to have either a variable
or a U-term in head position, but could not be itself a U-term. This means that a
conclusion of rule (b) cannot be a left premiss of an application of rule (d). In the
terminology used to talk about natural deduction calculi this is expressed by saying
that the main premiss of an application of →-elimination may not be the conclusion
of an application of →-introduction.

The argument of the last two paragraphs may be summarized by saying that, in a
deduction using the rules of Table 5.1, or in its image under the statements-to-sequents
transformation, the conclusion of an introduction inferencemay not be the sole premiss
of a ∀E-inference nor themain premiss of a→E-inference.When the only connectives
present are ∀ and → this entails ([24], p. 179) that the deduction is normal.

This equivalence can now be used to show that the set of sequents provable in
→∀2Nip2 is just the image under the statements-to-sequents transformation of the set
of statements provable in CL2.
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Proposition 9.1 If a sequent is provable in →∀2Nip2, it is the image under the
statements-to-sequents transformation of a statement provable in CL2.

Proof every initial sequent is the image of a statement of the shape x A ∈ CL2(A). The
rules∀I (second-order) and→I are admissible byPropositions 4.5 and 4.7 respectively.
The rule→E is a primitive rule of CL2. As for ∀E: if a ∈CL2(∀φ A(φ)) is deducible in
CL2, then, in virtue of the initial statements and rules of CL2, so is U∀φ A(φ)→A(C)a ∈
A(C); while, if the statements-to-sequents transformation takes a ∈ CL2(∀φ A(φ)) to

 	 ∀φ A(φ), it also takes U∀φ A(φ)→A(C)a ∈ A(C) to 
 	 A(C).

Proposition 9.2 If a sequent 
 	 A is the image under the statements-to-sequents
transformation of a statement a ∈ C L2(A), provable in CL2, then 
 	 A is also
provable in →∀2Nip2.

Proof by Theorem 2, a has a normal form a′ which also has type A. By Proposition
5.10 and the first corollary following Definition 5.7, there is then a deduction D of
a′ ∈ Ir(A) in Ir. Taking advantage, if necessary, of the right to add extra formulae
on the left (see above), 
 	 A is also the image under the statement-to-sequents
transformation of a′ ∈ Ir(A). Suppose, first, that the deduction D uses only rules
(a)−(e). Then, applying the statements-to-sequents transformation to the whole of
D, we obtain, as the foregoing discussion showed, a proof in →∀2Nip2 (and, indeed,
a normal proof). Even if D makes use of rules ( f ) and (g), the images of these rules
under the statement-to-sequents transformation are rules admissible in →∀2Nip2.

The proof of Proposition 9.1 introduces in effect a mapping which takes derivations
in →∀2Nip2 to CL2-terms. The image of a derivation D under this mapping will be
called the term which encodes D. It is used in the next theorem.

Theorem 3 If a class� of C L2-terms contains normalizable terms only and the deriva-
tion D is encoded by a term in �, then the conclusion of D is also the conclusion of
some normal derivation.

Proof if a C L2-term c is formed by the method described in the proof of Proposi-
tion 9.1, it will contain no subterms which begin with a �-term but which are not
generalizations. Moreover, a term of the shape �∀φ(F→G)ab where a and b are gener-
alizations does not lose that shape under reduction of terms, so if c has the normal form
c′ and a deduction of c′ ∈ Ir(A) is formed, the deduction will make no use of rules
( f ) and (g) and therefore, by the discussion at the beginning of this section, the image
of c′ under the statements-to-sequents transformation will be a normal derivation in
→∀2Nip2. This suffices to establish the theorem.

It is hoped (see the last section) that future proofs of normalizability will correlate,
for some proper subsets� of the set of all CL2-terms, each such� with an initial case
of transfinite induction which suffices to prove the normalizability of all the terms in
�. Just as Theorem 1 showed that, for each such �, a proof of the normalizability
of all terms in � entails the normalizability of a certain related class of 
2-terms, so
theorem 3 shows that the normalizability of terms in � entails the normalizability of
derivations encoded by terms in �. It is shown, further, in [24] (especially pp. 346
and 351f.), that normalizability of →∀2Nip2 entails normalizability of intuitionist
second-order logic generally.
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Although the discussion at the beginning of this section showed that applying the
statements-to-sequents transformation to a deduction in Ir using rules (a)–(e) only
yields a proof in →∀2Nip2, this does not apply to deductions in CL2, which in shape
resemble axiomatic deductions of second order logic rather than natural deduction
ones.

Section 5.3 of [19] indicates how CL→-terms can be read as encoding axiomatic
deductions in intuitionist implicational logic. A popular way (perhaps first used in
[13], pp. 80–85) of axiomatizing quantificational logic (first or second order), in such
away that no specifically quantificational rules of inference are needed but onlymodus
ponens, is to stipulate that every generalization of an axiom is also an axiom and to
adopt, as specifically quantificational axioms, all formulae of the following shapes:

∀φ A(φ) → A(C)

A → ∀φ A where φ does not occur free in A
∀φ(F → G) → ∀φF → ∀φG where F, G are as in Table 4.1

But these three schemata are just the schemata exemplified by the types ofU-terms,
�-terms and �-terms respectively (Table 4.1). Closure of the set of axioms under
generalization is obtained by using the function a �→ �α,φa (Table 4.2).

10 Further possible applications

The Church-style and de Bruijn-style systems mentioned in Sect. 2 above are often
(e.g. [1], Sect. 3) contrasted with Curry-style systems, also called theories of type-
assignment. Section 4.1 of [1] defines a theory of this kind, which assigns polymorphic
types to 
-terms. This can easily be turned into a theory which assigns polymorphic
types to CL-terms (i.e., untyped combinatory terms), simply by reading the variables
which, in the formulation of the theory, range over 
-terms as ranging over their
H-transforms instead (here “H-transform” refers not to the H-transformation of Defi-
nition 6.1 but to a simpler H-transformation which takes 
 into CL: see p. 212 of [4]).
The theory of type-assignment formed in this way shall be called Curry-style CL2.

It is obvious that from a term a in CL2(A), a unique deduction in CL2 of a ∈
CL2(A) can be reconstructed. Thus a can be read as encoding a deduction of the fact
that a itself has the type it does have. Somewhat similarly, a CL2-term of type A can
be read as encoding a deduction in Curry-style CL2 that a certain CL-term can be
assigned the type A. How it can be so read should be clear from a reading of Sect. 5A
of [8], where 
→-terms are used to encode deductions in a Curry-style theory that
assigns simple types to those 
-terms that can be formed from 
→-terms by erasing
their types.

Normalizabilitymoreover is carried over from
→-terms to their erasures ([8], Sect.
5C). Something similar has been done with CL2-terms (see [21] for a first attempt),
but the notion of erasure that needs to be defined is more complicated and things do
not work as neatly as they do in the case of 
→-terms. In any event, it has to be
admitted that not many people will necessarily wish to master the machinery of the
present paper for the sake of this application alone.
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11 Conclusion

An ordinally informative proof of the normalizability of a class of CL2-terms will
yield an ordinally informative proof of the normalizability both of a certain class of

2-terms and of a certain fragment of second-order intuitionist logic. There is some
reason, moreover, to expect that such proofs will be easier to achieve by concentrating
on CL2-terms than by tackling either 
2-terms or second-order logic directly. It is
hoped that future work will vindicate this claim.
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