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Abstract
The goal of this paper is to define and study the notion of infinity in the framework
of finitely supported structures, presenting new properties of infinite cardinalities.
Some of these properties are extended from the non-atomic Zermelo–Fraenkel set
theory to the world of atomic objects with finite support, while other properties are
specific to finitely supported structures.We compare alternative definitions for infinity
in the world of finitely supported sets, and provide relevant examples of atomic sets
which satisfy some forms of infinity, while do not satisfy others. Finally, we provide
a characterization of finitely supported countable sets.
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1 Introduction

The theory of finitely supported algebraic structures is essentially a reformulation of
Zermelo–Fraenkel set theory obtained by requiring that every set theoretical construc-
tion to be finitely supported according to a certain action of a group of permutations
of some basic elements named atoms. Its main purpose is to characterize infinite alge-
braic structures only by using their finite supports. This theory of finitely supported
algebraic structures is known also under the name of ‘nominal sets’ when dealing with
computer science applications. The theory of nominal sets is presented in a categorical
manner as a Zermelo–Fraenkel (ZF) alternative to Fraenkel and Mostowski permuta-
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tion models of Zermelo Fraenkel set theory with atoms [9]. A nominal set is defined
as a usual ZF set endowed with a group action of the group of (finitary) permutations
over a certain fixed countable ZF set A (also called the set of atoms by analogy with
the Fraenkel and Mostowski framework) formed by elements whose internal structure
is not taken into consideration (i.e. by elements that can be checked only for equality),
satisfying a finite support requirement. This requirement states that for any element in
a nominal set there should exist a finite set of atoms such that any permutation fixing
pointwise this set of atoms also leaves the element invariant under the related group
action. A finitely supported set is actually a finitely supported element in the powerset
of a nominal set. Nominal sets represent a categorical mathematical theory of names
studying scope, binding, freshness and renaming in formal languages based upon
symmetry. Inductively defined finitely supported sets involving the name-abstraction
together with Cartesian product and disjoint union can encode syntax modulo renam-
ing of bound variables. In this way, the theory of algebraic data types can be extended
to include signatures involving binding operators. In particular, there is an associated
notion of structural recursion for defining syntax-manipulating functions and a notion
of proof by structural induction. Various generalizations of nominal were used in order
to study automata, languages or Turing machines that operate over infinite alphabets;
for this a relaxed notion of finiteness, called ‘orbit finiteness’, was defined and means
‘having a finite number of orbits under a certain group action’ [4].

Finitely Supported Mathematics (shortly, FSM) is a general name for the theory of
finitely supported algebraic structures (that are finitely supported sets together with
finitely supported internal algebraic operations). It allows a discrete study of structures
which are possibly infinite, but contain enough symmetries such that they can be
concisely represented and manipulated. In order to develop FSM, the nominal sets are
used without the requirement that the set A of atoms is countable. By now on, these
sets will be called ‘invariant sets’, a name motivated by Tarski’s approach regarding
logicality (i.e. a logical notion is defined by Tarski as one that is invariant under the
permutations of the universe of discourse). The cardinality of the set of atoms cannot be
internally compared with any other ZF cardinality, and so we just say that atoms form
an infinite set without any specifications regarding its cardinality. In FSM, we actually
study the finitely supported subsets of invariant sets together with finitely supported
relations (order relations, functions, algebraic laws etc), and so FSM becomes a theory
of atomic algebraic structures defined according to the finite support requirement.
The requirement of being finitely supported under a canonical action of the group
of permutation of atoms (constructed under the rules of Proposition 3) is actually
an axiom adjoined to ZF, and so non-finitely supported structures are not allowed
in FSM. Formally, FSM contains both the family of ‘non-atomic’ (i.e., ordinary) ZF
structures which are proved to be trivial FSM structures (i.e., their elements are left
unchanged under the effect of the canonical permutation action) and the family of
‘atomic’ structures (i.e., structures that are hierarchically defined by involving at least
an element of A in a certain construction step). Our purpose is to analyze whether
a classical ZF result (obtained in the framework of non-atomic structures) can be
adequately reformulated by replacing ‘non-atomic ZF structure’ with ‘atomic and
finitely supported structure’ in order to be valid also for atomic setswith finite supports.
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The translation of the results from a non-atomic framework into an atomic frame-
work (such as Zermelo Fraenkel set theory with atoms (ZFA)) is not an easy task.
Results from ZF may lose their validity when reformulating them in ZFA. For exam-
ple, it is known thatmultiple choice principle andKurepa’smaximal antichain principle
are both equivalent to the axiom of choice in ZF. However, multiple choice principle
is valid in the Fraenkel Second Model, while the axiom of choice fails in this model
[7]. Furthermore, Kurepa’s maximal antichain principle is valid in the Fraenkel Basic
Model, while the axiom of choice fails in this model [7]. This means that the follow-
ing two statements that are valid in ZF, namely ‘Kurepa’s principle implies axiom of
choice’ and ‘Multiple choice principle implies axiom of choice’ fail in ZFA. Similarly,
there are examples of ZF results that cannot be reformulated into FSM (there exist an
analogy between ZFA and FSM, but wemention the construction of FSMmakes sense
over classical ZF without being necessary to modify the ZF axiom of extensionality);
we particularly mention choice principles (that are proved to be independent from ZF
axioms, but inconsistent in FSM) and Stone duality [1].

A proof of an FSM result should be internally consistent in FSM and not retrieved
from ZF, that means it should involve only finitely supported constructions (even
in the intermediate steps). The meta-theoretical techniques for the translation of a
result from non-atomic structures to atomic structures are based on a refinement of
the finite support principle from [9] called ‘S-finite supports principle’ claiming that
for any finite set S of atoms, anything that is definable in higher-order logic from S-
supported structures by using S-supported constructions is also S-supported [1]. The
formal involvement of the S-finite support principle actually implies a hierarchical
construction of the support of a structure by employing, step-by-step, the supports of
the substructures of a related structure.

In this paper we introduce and study the notion of ‘cardinality’ for a finitely sup-
ported set, proving several properties related to this concept. Some properties are
naturally extended from the non-atomic ZF framework into the world of atomic
structures, while other properties of atomic cardinalities do not have a non-atomic
correspondent. For example, we prove that Cantor-Schröder-Bernstein theorem for
cardinalities is still valid in FSM. However, its ZF dual is no longer valid in FSM.
Other order and arithmetic FSMproperties of cardinalities are analyzed.We also intro-
duce various definition for infinity and compare them, providing relevant examples
of atomic sets verifying the conditions of each such definition. The classical notion
of finite is related to the notion of ‘finite ordinal’ or natural number. In the presence
of the axiom of choice, every set can be well-ordered, and the multiple definitions of
‘(in)finite’ are proved to be equivalent. In FSM the choice principles fail [1], there
may exist FSM sets that are non well-orderable (particularly the set of atoms), and
so it makes sense to study various non-equivalent definitions for (in)finite. The study
of multiple definitions of (in)finite actually provides a way of classifying non well-
orderable sets according to their cardinal-invariant properties. An important question
is how ‘large’ an infinite set could be. For example, we prove that the set of atoms
and its finite powerset are infinite, but they do not contain infinite finitely supported
countable subsets, and for the finitely supported self-mappings defined on them, the
injectivity is equivalent with the surjectivity. The union A ∪ N between the set of
atoms and the set of natural numbers contains an infinite, finitely supported, countable
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subset, but there is no finitely supported bijection between A ∪ N and the disjoint
union (A ∪N)+ (A ∪N). Furthermore, there is a finitely supported bijection between
A × N and the disjoint union (A × N) + (A × N), but there is no finitely supported
bijection between A × N and the Cartesian product (A × N) × (A × N).

The notion ofDedekind infinitywas firstly discussed in [3]where the authors proved
that some basic atomic sets (such as the set of atoms, its FSM powerset, the finite
powerset of its FSM powerset, and the set of all permutation of atoms) are Dedekind
finite. In this paper we prove that even larger atomic sets, such as the set of all finitely
supportedmappings from the set of atoms to anFSMset that does not contain an infinite
uniformly supported subset is Dedekind finite. Moreover, new properties of Dedekind
(in)finite sets are established, and the notion of Dedekind infinity is connected with
other FSM concepts of infinity. Finally, we study the concept of countability in FSM.

2 Finitely supported sets

A finite set (without other specification) means a set for which there is a bijection with
a finite ordinal, i.e. to a set that can be represented as {x1, . . . , xn} for some n ∈ N.
An infinite set (without other specification) means ‘a set which is not finite’, i.e. a set
which is “FSM classical infinite" according to Definition 8. Adjoin to ZF a special
infinite set A (called ‘the set of atoms’; despite classical set theory with atoms we do
not need to modify the axiom of extensionality). Actually, atoms are entities whose
internal structure is considered to be irrelevant which are considered as basic for a
higher-order construction, i.e. their internal structure is not taken into consideration.

A transposition is a function (a b) : A → A defined by (a b)(a) = b, (a b)(b) = a
and (a b)(n) = n for n �= a, b. A (finitary) permutation of A in FSM is a one-to-one
transformation of A onto itself (a bijection of A) generated by composing finitelymany
transpositions. We denote by SA the set of all finitary permutations of A. According to
Proposition 2.6 from [1], a function f : A → A is a bijection on A in FSM if and only
if it leaves unchanged all but finitely many elements of A. Thus, in FSM a function is
a one-to-one transformation of A onto itself if and only if it is a (finitary) permutation
of A. Thus, the notions ‘permutation (bijection) of A’ and ‘finitary permutation of A’
coincide in FSM, and when saying ‘permutation of A’ we actually refer to a ‘finitary
permutation of A’.

Definition 1 Let X be a ZF set.

1. An SA-action on X is a function · : SA × X → X having the properties that
I d · x = x and π · (π ′ · x) = (π ◦ π ′) · x for all π, π ′ ∈ SA and x ∈ X , where I d
is the identity mapping on A. An SA-set is a pair (X , ·) where X is a ZF set, and
· : SA × X → X is an SA-action on X .

2. Let (X , ·) be an SA-set. We say that S ⊂ A supports x whenever for each π ∈
Fix(S) we have π · x = x , where Fix(S) = {π | π(a) = a,∀a ∈ S}. The least
finite set supporting x (which exists according to Proposition 1) is called the support
of x and is denoted by supp(x). An empty supported element is called equivariant;
this means that x ∈ X is equivariant if and only if π · x = x for all π ∈ SA.
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3. Let (X , ·) be an SA-set. We say that X is an invariant set if for each x ∈ X there
exists a finite set Sx ⊂ A which supports x .

Proposition 1 [1]Let X be an SA-set and let x ∈ X. If there exists a finite set supporting
x (particularly, if X is an invariant set), then there exists a least finite set supporting
x which is constructed as the intersection of all finite sets supporting x.

Proposition 2 [1] Let (X , ·) be an SA-set, and π ∈ SA. If x ∈ X is finitely supported,
then π · x is finitely supported and supp(π · x) = π(supp(x)).

Example 1 1. The set A of atoms is an SA-set with the SA-action · : SA × A → A
defined by π ·a := π(a) for all π ∈ SA and a ∈ A. (A, ·) is an invariant set because
for each a ∈ A we have that {a} supports a. Furthermore, supp(a) = {a} for each
a ∈ A.

2. The set SA is an SA-set with the SA-action · : SA × SA → SA defined by π ·
σ := π ◦ σ ◦ π−1 for all π, σ ∈ SA. (SA, ·) is an invariant set because for each
σ ∈ SA we have that the finite set {a ∈ A | σ(a) �= a} supports σ . Furthermore,
supp(σ ) = {a ∈ A | σ(a) �= a} for each σ ∈ SA.

3. Any ordinary (non-atomic) ZF-set X (such as N, Z, Q or R, for example) is an
invariant set with the single possible SA-action · : SA × X → X defined by
π · x := x for all π ∈ SA and x ∈ X .

Proposition 3 Let (X , ·) and (Y ,
) be SA-sets.

1. The Cartesian product X × Y is also an SA-set with the SA-action ⊗ : SA × (X ×
Y ) → (X × Y ) defined by π ⊗ (x, y) = (π · x, π 
 y) for all π ∈ SA and all
x ∈ X, y ∈ Y . If (X , ·) and (Y ,
) are invariant sets, then (X × Y ,⊗) is also an
invariant set.

2. The powerset ℘(X) = {Z | Z ⊆ X} is also an SA-set with the SA-action � :
SA × ℘(X) → ℘(X) defined by π�Z := {π · z | z ∈ Z} for all π ∈ SA, and
all Z ⊆ X. For each invariant set (X , ·), we denote by ℘ f s(X) the set formed
from those subsets of X which are finitely supported according to the action �

. (℘ f s(X), �|℘ f s (X)) is an invariant set, where �|℘ f s (X) represents the action �

restricted to ℘ f s(X).
3. The finite powerset of X ℘ f in(X) = {Y ⊆ X | Y finite} and the cofinite powerset

of X ℘cof in(X) = {Y ⊆ X | X\Y finite} are SA-sets with the SA-action � defined as
in item 2. If X is an invariant set, then both ℘ f in(X) and ℘cof in(X) are invariant
sets.

4. The disjoint union of X and Y is defined by X +Y = {(0, x) | x ∈ X}∪{(1, y) | y ∈
Y }. X + Y is an SA-set with the SA-action � : SA × (X + Y ) → (X + Y ) defined
by π�z = (0, π · x) if z = (0, x) and π�z = (1, π 
 y) if z = (1, y). If (X , ·) and
(Y ,
) are invariant sets, then (X + Y , �) is also an invariant set: each z ∈ X + Y
is either of the form (0, x) and supported by the finite set supporting x in X, or of
the form (1, y) and supported by the finite set supporting y in Y .

Definition 2 1. Let (X , ·) be an SA-set. A subset Z of X is called finitely supported if
and only if Z ∈ ℘ f s(X) with the notations from Proposition 3. A subset Z of X is
uniformly supported if all the elements of Z are supported by the same set S (and
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so Z is itself supported by S as an element of ℘ f s(X)). Generally, an FSM set is a
finitely supported subset (possibly equivariant) of an invariant set.

2. Let (X , ·) be a finitely supported subset of an SA- set (Y , ·). A subset Z of Y is
called finitely supported subset of X (and we denote this by Z ∈ ℘ f s(X)) if and
only if Z ∈ ℘ f s(Y ) and Z ⊆ X . Similarly, we say that a uniformly supported
subset of Y contained in X is a uniformly supported subset of X .

From Definition 1, a subset Z of an invariant set (X , ·) is finitely supported by a set
S ⊆ A if and only if π�Z ⊆ Z for all π ∈ Fix(S). This is because any permutation
of atoms should have finite order.

Proposition 4 1. Let X be a uniformly supported subset of an invariant set (U , ·).
Then X is finitely supported and supp(X) = ∪{supp(x) | x ∈ X}.

2. Let X be a finite subset of an invariant set (U , ·). Then X is finitely supported and
supp(X) = ∪{supp(x) | x ∈ X}.

Proof 1. Since X is uniformly supported, there exists a finite subset of atoms T
such that T supports every x ∈ X , i.e. supp(x) ⊆ T for all x ∈ X . Thus,
∪{supp(x) | x ∈ X} ⊆ T . Clearly, supp(X) ⊆ ∪{supp(x) | x ∈ X}. Conversely,
let a ∈ ∪{supp(x) | x ∈ X}. Thus, there exists x0 ∈ X such that a ∈ supp(x0).
Let b be an atom such that b /∈ supp(X) and b /∈ T . Such an atom exists because
A is infinite, while supp(X) and T are both finite. We prove by contradiction
that (b a) · x0 /∈ X . Indeed, suppose that (b a) · x0 = y ∈ X . According
to Proposition 2, we have supp(y) = (b a)(supp(x0)). Since a ∈ supp(x0),
we have b = (b a)(a) ∈ (b a)(supp(x0)) = supp((b a) · x0) = supp(y).
Since supp(y) ⊆ T , we get b ∈ T , a contradiction. Therefore, (b a)�X �= X ,
where � is the standard SA-action on ℘(U ) is defined in Proposition 3. Since
b /∈ supp(X), we prove by contradiction that a ∈ supp(X). Indeed, suppose
that a /∈ supp(X). It follows that the transposition (b a) fixes each element from
supp(X), i.e. (b a) ∈ Fix(supp(X)). Since supp(X) supports X , by Definition
1, it follows that (b a)�X = X , which is a contradiction. Thus, a ∈ supp(X).

2. Any finite set X = {x1, . . . , xk} is uniformly supported by S = supp(x1) ∪ . . . ∪
supp(xk), and so the result follows from the above item.


�
Corollary 1 Let X be a uniformly supported subset of an invariant set.
Then X is uniformly supported by supp(X).

Proof Since supp(X) = ∪{supp(x) | x ∈ X}, we have supp(x) ⊆ supp(X) for all
x ∈ X which means supp(X) supports every x ∈ X . 
�
Proposition 5 We have ℘ f s(A) = ℘ f in(A) ∪ ℘cof in(A).

Proof This result was proved as Proposition 3 in [3]. 
�
Definition 3 Let X and Y be invariant sets.

1. A function f : X → Y is finitely supported if f ∈ ℘ f s(X × Y ). The set of all
finitely supported functions from X to Y is denoted by Y X

f s .
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2. Let Z be a finitely supported subset of X and T a finitely supported subset of Y .
A function f : Z → T is finitely supported if f ∈ ℘ f s(X × Y ). The set of all
finitely supported functions from Z to T is denoted by T Z

f s .

Proposition 6 [1] Let (X , ·) and (Y ,
) be two invariant sets.

1. Y X (i.e. the set of all functions from X to Y ) is an SA-set with the SA-action
�̃ : SA × Y X → Y X defined by (π�̃ f )(x) = π 
 ( f (π−1 · x)) for all π ∈ SA,
f ∈ Y X and x ∈ X. A function f : X → Y is finitely supported in the sense of
Definition 3 if and only if it is finitely supported with respect to the permutation
action �̃.

2. Let Z be a finitely supported subset of X and T a finitely supported subset of Y . A
function f : Z → T is supported by a finite set S ⊆ A if and only if for all x ∈ Z
and all π ∈ Fix(S) we have π · x ∈ Z, π 
 f (x) ∈ T and f (π · x) = π 
 f (x).
Particularly, a function f : X → Y is supported by a finite set S ⊆ A if and only
if for all x ∈ X and all π ∈ Fix(S) we have f (π · x) = π 
 f (x).

3 Cardinalities and order properties

Definition 4 – An invariant partially ordered set (invariant poset) is an invariant
set (P, ·) together with an equivariant partial order relation � on P . An invariant
poset is denoted by (P,�, ·) or simply P .

– A finitely supported partially ordered set (finitely supported poset) is a finitely
supported subset X of an invariant set (P, ·) together with a partial order relation
� on X that is finitely supported as a subset of P × P .

The notion of cardinality cannot be developed in the world of atomic structures by
involving the classical notion of ordinal. This is because ordinals are defined within
non-atomic ZF, that is, they do not contain atoms. Despite of this, we are able to present
a specific notion of cardinality in FSM.

Definition 5 TwoFSMsets X andY are calledFSM equipollent if there exists a finitely
supported bijection f : X → Y .

Theorem 1 The equipollence relation is an equivariant equivalence relation on the
family of all FSM sets.

Proof 1. The equipollence relation is equivariant. For any FSM sets X and Y , when-
ever there is a finitely supported bijection f : X → Y , for any π ∈ SA we
have that π� f : π�X → π�Y , defined by (π� f )(π · x) = π · f (x) for
all x ∈ X , is bijective and finitely supported by π(supp( f )) ∪ π(supp(X)) ∪
π(supp(Y )). Indeed, according to Proposition 2 we have that π(supp(X))

supports π�X and π(supp(Y )) supports π�Y . Let σ ∈ Fix(π(supp( f )) ∪
π(supp(X)) ∪ π(supp(Y ))). Thus, σ(π(a)) = π(a) for all a ∈ supp( f ).
Therefore, π−1(σ (π(a))) = π−1(π(a)) = a for all a ∈ supp( f ). So we get
π−1◦σ ◦π ∈ Fix(supp( f )). From Proposition 6, this means (π−1◦σ ◦π)·x ∈ X
and f ((π−1 ◦ σ ◦ π) · x) = (π−1 ◦ σ ◦ π) · f (x) for all x ∈ X . Fix an arbitrary
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x ∈ X . We have that σ · (π · x) ∈ π�X , i.e. there exists x ′ ∈ X such that
(σ ◦ π) · x = π · x ′, and so x ′ = (π−1 ◦ σ ◦ π) · x . According to Proposition 6, we
have (π� f )(σ · (π · x)) = (π� f )(π · x ′) = π · f (x ′) = π · f ((π−1 ◦σ ◦π) · x) =
π ·((π−1◦σ ◦π) · f (x)) = (σ ◦π) · f (x) = σ ·(π · f (x)) = σ ·(π� f )(π ·x). Now,
from Proposition 6 we conclude that π� f is finitely supported. The bijectivity of
π� f is obvious. Thus, π�X is equipollent with π�Y whenever X is equipollent
with Y .

2. The equipollence relation is reflexive because for each FSM set X , the identity of
X is a finitely supported (by supp(X)) bijection from X to X .

3. The equipollence relation is symmetric because for any FSM sets X and Y ,
whenever there exists a finitely supported bijection f : X → Y , we have that
f −1 : Y → X is bijective and supported by supp( f ) ∪ supp(X) ∪ supp(Y ).
Indeed, let π ∈ Fix(supp( f ) ∪ supp(X) ∪ supp(Y )), and consider an arbi-
trary y ∈ Y . Since π−1 ∈ Fix(supp( f ) ∪ supp(X) ∪ supp(Y )), we have
f −1(π · y) = z ⇔ f (z) = π · y ⇔ π−1 · f (z) = y ⇔ f (π−1 · z) = y ⇔
π−1 · z = f −1(y) ⇔ z = π · f −1(y). Therefore, f −1(π · y) = π · f −1(y) for all
y ∈ Y , which, in the view of Proposition 6, means that f −1 is finitely supported.

4. The equipollence relation is transitive because for any FSM sets X , Y and Z ,
whenever there are two finitely supported bijections f : X → Y and g : Y → Z ,
there exists a bijection g ◦ f : X → Z which is finitely supported by supp( f ) ∪
supp(g). Indeed, let π ∈ Fix(supp( f ) ∪ supp(g)). According to Proposition 6,
we get π ·x ∈ X , π · f (x) ∈ Y , π ·g( f (x)) ∈ Z and (g◦ f )(π ·x) = g( f (π ·x)) =
g(π · f (x)) = π · g( f (x)) = π · (g ◦ f )(x) for all x ∈ X , and so the conclusion
follows by involving again Proposition 6.


�
We have to note that the equipollence relation is actually a relation of the family

of all FSM sets which is actually a class. However, invariant classes can be defined as
well in FSM, by updating Definition 1 accordingly.

Definition 6 The FSM cardinality of X is defined as the equivalence class of all FSM
sets equipollent to X , and is denoted by |X |.

According to Definition 6 for two FSM sets X and Y we have |X | = |Y | if and only
if there exists a finitely supported bijection f : X → Y . On the family of cardinalities
we can define the relations:

• ≤ by: |X | ≤ |Y | if and only if there is a finitely supported injective (one-to-one)
mapping f : X → Y .

• ≤∗ by: |X | ≤∗ |Y | if and only if there is a finitely supported surjective (onto)
mapping f : Y → X .

Theorem 2 1. The relation ≤ is equivariant, reflexive, anti-symmetric and transitive,
but it is not total.

2. The relation ≤∗ is equivariant, reflexive and transitive, but it is not anti-symmetric,
nor total.

Proof Firstly, we prove that ≤ and ≤∗ are well-defined, i.e. their definitions do not
depend on the chosen representatives for cardinalities. Assume that there exist the
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FSM sets X , Y and X ′, Y ′, such that |X | = |X ′| and |Y | = |Y ′| (i.e. there exist two
finitely supported bijections f : X → X ′ and g : Y → Y ′).

If |X | ≤ |Y |, i.e. if there is a finitely supported injection h : X → Y , then the
function g ◦ h ◦ f −1 : X ′ → Y ′ is injective and finitely supported by supp( f −1) ∪
supp(h) ∪ supp(g) = supp( f ) ∪ supp(h) ∪ supp(g). Thus, |X ′| ≤ |Y ′|.

If |X | ≤� |Y |, i.e. if there is a finitely supported surjection h′ : Y → X , then the
function f ◦ h′ ◦ g−1 : Y ′ → X ′ is injective and finitely supported by supp( f ) ∪
supp(h′) ∪ supp(g−1) = supp( f ) ∪ supp(h′) ∪ supp(g). Thus, |X ′| ≤� |Y ′|.
We start now to prove the mentioned properties for both relations: ≤ and ≤∗.

– ≤ and ≤∗ are equivariant because for any FSM sets X and Y , whenever there is
a finitely supported injection/ surjection f : X → Y , according to Proposition
2, we have that π� f : π�X → π�Y , defined by (π� f )(π · x) = π · f (x) for
all x ∈ X , is a finitely supported (by π(supp( f )) ∪ π(supp(X)) ∪ π(supp(Y )))
injective/surjective mapping, and so π�X is comparable with π�Y (under ≤ or
≤∗, after case).

– ≤ and ≤∗ are obviously reflexive because for each FSM set X , the identity of X
is a finitely supported (by supp(X)) bijection from X to X .

– ≤ and ≤∗ are transitive because for any FSM sets X , Y and Z , whenever there
are two finitely supported injections/surjections f : X → Y and g : Y → Z ,
there exists an injection/surjection g ◦ f : X → Z which is finitely supported by
supp( f ) ∪ supp(g).

– The anti-symmetry of ≤.

Lemma 1 Let (B, ·) and (C,
) be two invariant sets. If there exist a finitely supported
injective mapping f : B → C and a finitely supported injective mapping g : C → B,
then there exists a finitely supported bijective mapping h : B → C. Furthermore,
supp(h) ⊆ supp( f ) ∪ supp(g).

Proof of Lemma 1. Let us define F : ℘ f s(B) → ℘ f s(B) by
F(X) = B − g(C − f (X)) for all finitely supported subsets X of B.

Claim 1 F is correctly defined, i.e. I m(F) ⊆ ℘ f s(B).

For every finitely supported subset X of B, we have that f (X) is supported by
supp( f ) ∪ supp(X). Indeed, let π ∈ Fix(supp( f ) ∪ supp(X)). Let y be an arbi-
trary element from f (X); then y = f (x) for some x ∈ X . However, because
π ∈ Fix(supp(X)), it follows that π · x ∈ X and so, because supp( f ) supports
f and π fixes supp( f ) pointwise, from Proposition 6 we get π 
 y = π 
 f (x) =
f (π · x) ∈ f (X). Thus π�̃ f (X) = f (X), where �̃ is the SA-action on℘ f s(C) defined
as in Proposition 3. Similarly, g(Y ) is finitely supported by supp(g) ∪ supp(Y ) for
all Y ∈ ℘ f s(C). It is easy to remark that for every finitely supported subset X of B
we have that C − f (X) is also supported by supp( f ) ∪ supp(X), g(C − f (X)) is
supported by supp(g) ∪ supp( f ) ∪ supp(X), and B − g(C − f (X)) is supported by
supp(g) ∪ supp( f ) ∪ supp(X). Thus, F is well-defined.

Claim 2 F is a finitely supported function.
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We prove that F is finitely supported by supp( f ) ∪ supp(g). Let us consider
π ∈ Fix(supp( f ) ∪ supp(g)). Since π ∈ Fix(supp( f )) and supp( f ) supports f ,
according to Proposition 6 we have that f (π · x) = π 
 f (x) for all x ∈ B. Thus,
for every finitely supported subset X of B we have f (π�X) = { f (π · x) | x ∈ X} =
{π 
 f (x) | x ∈ X} = π�̃ f (X), where � is the SA-action on ℘ f s(B) and �̃ is the SA-
action on℘ f s(C). Similarly, g(π�̃Y ) = π�g(Y ) for any finitely supported subset Y of

C . Therefore, F(π�X) = B − g(C − f (π�X)) = B − g(C − π�̃ f (X))
π�̃C=C= B −

g(π�̃(C− f (X))) = B−(π�g(C− f (X)))
π�B=B= π�(B−g(C− f (X))) = π�F(X).

From Proposition 6 it follows that F is finitely supported.Moreover, because supp(F)

is the least set of atoms supporting F , we have supp(F) ⊆ supp( f ) ∪ supp(g).

Claim 3 For any X , Y ∈ ℘ f s(B) with X ⊆ Y , we have F(X) ⊆ F(Y ). This remark
follows by direct calculation.

Claim 4 The set S := {X | X ∈ ℘ f s(B), X ⊆ F(X)} is a non-empty finitely sup-
ported subset of℘ f s(B). Obviously, ∅ ∈ S. We claim that S is supported by supp(F).
Let π ∈ Fix(supp(F)), and X ∈ S. Then X ⊆ F(X). From the definition of �

(see Proposition 3) we have π�X ⊆ π�F(X). According to Proposition 6, because
supp(F) supports F , we have π�X ⊆ π�F(X) = F(π�X), and so π�X ∈ S. It
follows that S is finitely supported, and supp(S) ⊆ supp(F).

Claim 5 T := ∪X∈S X is finitely supported by supp(S).

Letπ ∈ Fix(supp(S)), and t ∈ T . Since T = ∪X∈S X , we have that there exists Z ∈ S
such that t ∈ Z . Therefore, π · t ∈ π�Z . However, since π fixes supp(S) pointwise
and supp(S) supports S, we have that π�Z ∈ S. Thus, there exists Y ∈ S such that
π�Z = Y . Therefore π · t ∈ Y , and so π · t ∈ ∪X∈S X . It follows that∪X∈S X is finitely
supported, and so T = ∪X∈S X ∈ ℘ f s(B). Furthermore, supp(T ) ⊆ supp(S).

Claim 6 We prove that F(T ) = T .

Let X ∈ S arbitrary. We have X ⊆ F(X) ⊆ F(T ). By taking the supremum on S,
this leads to T ⊆ F(T ). However, because T ⊆ F(T ), from Claim 3 we also have
F(T ) ⊆ F(F(T )). Furthermore, F(T ) is supported by supp(F) ∪ supp(T ) (i.e. by
supp( f ) ∪ supp(g)), and so F(T ) ∈ S. According to the definition of T , we get
F(T ) ⊆ T .

We get T = B − g(C − f (T )), or equivalently, B − T = g(C − f (T )). Since g
is injective, we obtain that for each x ∈ B − T , g−1(x) is a set containing exactly one
element. Let us define h : B → C by

h(x) =
{

f (x), for x ∈ T ;
g−1(x), for x ∈ B − T .

Claim 7 We claim that h is supported by the set supp( f ) ∪ supp(g) ∪ supp(T )

(more exactly, by supp( f ) ∪ supp(g), according to previous claims). Let π ∈
Fix(supp( f ) ∪ supp(g) ∪ supp(T )), and x an arbitrary element of B.
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If x ∈ T , because π ∈ Fix(supp(T )) and supp(T ) supports T , we have π ·x ∈ T .
Thus, from Proposition 6 we get h(π · x) = f (π · x) = π 
 f (x) = π 
 h(x).

If x ∈ B −T , we have π ·x ∈ B −T . Otherwise, we would obtain the contradiction
x = π−1 · (π · x) ∈ T because π−1 also fixes supp(T ) pointwise. Thus, because g
is finitely supported, according to Proposition 6 we have h(π · x) = g−1(π · x) =
{y ∈ C | g(y)=π · x} = {y ∈ C | π−1 · g(y)=x} = {y ∈ C | g(π−1 
 y)=

x} π−1
y:=z= {π 
 z ∈ C | g(z)=x} = π 
 {z ∈ C | g(z)=x} = π 
 g−1(x) = π 
 h(x).
We obtained h(π ·x) = π 
h(x) for all π ∈ Fix(supp( f )∪supp(g)∪supp(T )) and
all x ∈ B. According to Proposition 6, we get that h is finitely supported. Furthermore,

we also have that supp(h) ⊆ supp( f ) ∪ supp(g) ∪ supp(T )
Claim 5⊆ supp( f ) ∪

supp(g)∪supp(S)
Claim 4⊆ supp( f )∪supp(g)∪supp(F)

Claim 2⊆ supp( f )∪supp(g).

Claim 8 h is a bijective function.

First we prove that h is injective. Let us suppose that h(x) = h(y). We claim that
either x, y ∈ T or x, y ∈ B − T . Indeed, let us suppose that x ∈ T and y /∈ T (the
case x /∈ T , y ∈ T is similar). We have h(x) = f (x) and h(y) = g−1(y). If we denote
g−1(y) = z, we have g(z) = y. However, we supposed that y ∈ B − T , and so there
exists u ∈ C − f (T ) such that y = g(u). Since y = g(z), from the injectivity of g
we get u = z. This is a contradiction because u /∈ f (T ), while z = f (x) ∈ f (T ).
Since we proved that both x, y are contained either in T or in B − T , the injectivity
of h follows from the injectivity of f or g, respectively.

Now we prove that h is surjective. Let y ∈ C be arbitrarily chosen. If y ∈ f (T ),
then there exists z ∈ T such that y = f (z), and so y = h(z). If y ∈ C − f (T ), and
because g(C − f (T )) = B − T , there exists x ∈ B − T such that g(y) = x . Thus,
y ∈ g−1(x). Since g is injective, and so g−1(x) is a one-element set, we can say that
g−1(x) = y with x ∈ B − T . Thus we have y = h(x).

Lemma 2 Let (B, ·) and (C,
) be two invariant sets (in particular, B and C could
coincide), B1 a finitely supported subset of B and C1 a finitely supported subset of
C. If there exist a finitely supported injective mapping f : B1 → C1 and a finitely
supported injective mapping g : C1 → B1, then there exists a finitely supported
bijective mapping h : B1 → C1. Furthermore, supp(h) ⊆ supp( f ) ∪ supp(g) ∪
supp(B1) ∪ supp(C1).

Proof of Lemma 2. We follow the proof of Lemma 1. We define F : ℘ f s′(B1) →
℘ f s′(B1) by F(X) = B1 − g(C1 − f (X)) for all X ∈ ℘ f s′(B1), where ℘ f s′(B1)

is a finitely supported subset of the invariant set ℘ f s(B) (supported by supp(B1))
defined by℘ f s′(B1) = {X ∈ ℘ f s(B) | X ⊆ B1}. As in the previous lemma, but using
Proposition 6, we get that F is well-defined, i.e. for every X ∈ ℘ f s′(B1) we have that
F(X) is supported by supp( f )∪ supp(g)∪ supp(B1)∪ supp(C1)∪ supp(X) which
means F(X) ∈ ℘ f s′(B1). Moreover, F is itself finitely supported (in the sense of
Definition 3) by supp( f )∪ supp(g)∪ supp(B1)∪ supp(C1). The set S := {X | X ∈
℘ f s′(B1), X ⊆ F(X)} is contained in ℘ f s′(B1) and it is supported by supp(F) as a
subset of ℘ f s(B). The set T := ∪X∈S X ∈ ℘ f s′(B1) is finitely supported by supp(S),
and it is a fixed point of F .
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As in the proof of Lemma 1, we define the bijection h : B1 → C1 by

h(x) =
{

f (x), for x ∈ T ;
g−1(x), for x ∈ B1 − T .

According to Proposition 6, we obtain that h is finitely supported by supp( f ) ∪
supp(g) ∪ supp(B1) ∪ supp(C1) ∪ supp(T ), and supp(h) ⊆ supp( f ) ∪ supp(g) ∪
supp(B1)∪ supp(C1). Thus, h is the required finitely supported bijection between B1
and C1.

The anti-symmetry of ≤ follows from Lemmas 1 and 2 because FSM sets are
actually finitely supported subsets of invariant sets.

– ≤∗ is not anti-symmetric.

Lemma 3 There are two invariant sets B and C such that there exist both a finitely
supported surjective mapping f : C → B and a finitely supported surjective mapping
g : B → C, but it does not exist a finitely supported bijective mapping h : B → C.

Proof of Lemma 3. We consider C to be family T f in(A) = {(x1, . . . , xm) ⊆ (A ×
. . . × A) | m ≥ 0} of all finite injective tuples from A (including the empty tuple
denoted by ∅̄) with the SA-action � : SA × T f in(A) → T f in(A) defined by π�∅̄ = ∅̄
for all π ∈ SA and π�(x1, . . . , xm) = (π · x1, . . . , π · xm) for all non-empty tuples
(x1, . . . , xm) ∈ T f in(A) and all π ∈ SA. We consider B to be T ∗

f in(A) = T f in(A)\∅̄
which is an equivariant subset of T f in(A), being itself an invariant set. The result
follows from Theorem 3(11) of [3].

– ≤ and ≤� are not total. We have that whenever X is an infinite ordinary (non-
atomic) ZF-set, for any finitely supported function f : A → X and any finitely
supported function g : X → A, I m( f ) and I m(g) are finite. This result is pre-
sented as Theorem 1(1) and proved in [3]. As a direct consequence there are no
finitely supported injectivemappings andnofinitely supported surjectivemappings
between A and X .


�
Corollary 2 There exist two invariant sets B and C such that there is a finitely supported
bijection between ℘ f s(B) and ℘ f s(C), but there is no finitely supported bijection
between B and C.

Proof Firstly we prove the following lemma.

Lemma 4 Let X and Y be two FSM sets and f : X → Y a finitely supported surjective
function. Then the mapping g : ℘ f s(Y ) → ℘ f s(X) defined by g(V ) = f −1(V ) for all
V ∈ ℘ f s(Y ) is well-defined, injective and finitely supported by supp( f )∪supp(X)∪
supp(Y ).

Proof of Lemma 4. We slightly generalize the proof of Lemma 2 from [3]. Let V be an
arbitrary element from ℘ f s(Y ). We claim that f −1(V ) ∈ ℘ f s(X). Indeed we prove
that the set f −1(V ) is supported by supp( f ) ∪ supp(V ) ∪ supp(X) ∪ supp(Y ). Let
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π ∈ Fix(supp( f ) ∪ supp(V ) ∪ supp(X) ∪ supp(Y )), and x ∈ f −1(V ), meaning
f (x) ∈ V . According to Proposition 6, and because π fixes supp( f ) pointwise and
supp( f ) supports f , we have f (π · x) = π · f (x) ∈ π�V = V , and so π · x ∈
f −1(V ) (we denoted the actions on X and Y generically by ·, and the actions on
their powersets by �). Therefore, f −1(V ) is finitely supported, and so the function
g is well-defined. We claim that g is supported by supp( f ) ∪ supp(X) ∪ supp(Y ).
Let π ∈ Fix(supp( f ) ∪ supp(X) ∪ supp(Y )). For any arbitrary V ∈ ℘ f s(Y ) we
get π�V ∈ ℘ f s(Y ) and π�g(V ) ∈ ℘ f s(X), and by Proposition 6 we have that
π−1 ∈ Fix(supp( f )), and so f (π−1 · x) = π−1 · f (x) for all x ∈ X . For any
arbitrary V ∈ ℘ f s(Y ), we have that z ∈ g(π�V ) = f −1(π�V ) ⇔ f (z) ∈ π�V ⇔
π−1 · f (z) ∈ V ⇔ f (π−1 · z) ∈ V ⇔ π−1 · z ∈ f −1(V ) ⇔ z ∈ π� f −1(V ) =
π�g(V ). If follows that g(π�V ) = π�g(V ) for all V ∈ ℘ f s(Y ), and so g is finitely
supported. Moreover, because f is surjective, a simple calculation shows us that g
is injective. Indeed, let us suppose that g(U ) = g(V ) for some U , V ∈ ℘ f s(Y ). We
have f −1(U ) = f −1(V ), and so f ( f −1(U )) = f ( f −1(V )). Since f is surjective,
we get U = f ( f −1(U ))= f ( f −1(V )) = V .

We start now the proof of the Corollary. As in Lemma 3, we consider the sets
B = T f in(A)\∅̄ and C = T f in(A). According to Lemma 3 there exists a finitely
supported surjective function f : C → B and a finitely supported (equivariant)
surjection g : B → C . Thus, according to Lemma 4, there exist a finitely supported
injective function f ′ : ℘ f s(B) → ℘ f s(C) and a finitely supported injective function
g′ : ℘ f s(C) → ℘ f s(B). According to Lemma 1, there is a finitely supported bijection
between℘ f s(B) and℘ f s(C). However, we proved in Lemma 3 that there is no finitely
supported bijection between B = T f in(A)\∅̄ and C = T f in(A). 
�

The following result communicated by Levy in 1965 for non-atomic ZF sets can
be reformulated in the world of finitely supported atomic structures.

Corollary 3 Let X and Y be two invariant sets with the property that whenever |2X
f s | =

|2Y
f s | we have |X | = |Y |. If |X | ≤� |Y | and |Y | ≤� |X |, then |X | = |Y |.

Proof According to the hypothesis and to Lemma 4 there exist two finitely supported
injective functions f : ℘ f s(Y ) → ℘ f s(X) and g : ℘ f s(X) → ℘ f s(Y ). According
to Lemma 1, there is a bijective mapping h : ℘ f s(X) → ℘ f s(Y ) . According to
Theorem 3, we get |2X

f s | = |2Y
f s |, and so we get |X | = |Y |. 
�

Proposition 7 (Cantor) Let X be a finitely supported subset of an invariant set (Y , ·).
Then |X | � |℘ f s(X)| and |X | �

∗ |℘ f s(X)|
Proof First we prove that there is no finitely supported bijection between X and
℘ f s(X), and so their cardinalities cannot be equal. Assume, by contradiction, that
there is a finitely supported surjective mapping f : X → ℘ f s(X). Let us consider
Z = {x ∈ X | x /∈ f (x)}. We claim that supp(X) ∪ supp( f ) supports Z . Let π ∈
Fix(supp(X)∪supp( f )). Let x ∈ Z . Then π ·x ∈ X and π ·x /∈ π� f (x) = f (π ·x).
Thus, π · x ∈ Z , and so Z ∈ ℘ f s(X). Therefore, since f is surjective there is x0 ∈ X
such that f (x0) = Z . However, from the definition of Z we have x0 ∈ Z if and
only if x0 /∈ f (x0) = Z , which is a contradiction. Now, it is clear that the mapping
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i : X → ℘ f s(X) defined by i(x) = {x} is injective and supported by supp(X). Thus,
|X | � |℘ f s(X)|. Let us fix an atom y ∈ X . We define s : ℘ f s(X) → X by

s(U ) =
{

u, if U is a one-element set {u} ;
y, if U has more than one element .

Clearly, s is surjective. We claim that s is supported by supp(y) ∪ supp(X). Let
π ∈ Fix(supp(y)∪supp(X)). Thus, y = π ·y. IfU is of formU = {u}, we obviously
have s(π�U ) = s({π · u}) = π · u = π · s(U ). If U has more than one element, then
π�U has more than one element, and we have s(π�U ) = y = π · y = π · s(U ). Thus,
π�U ∈ ℘ f s(X),π ·s(U ) ∈ X , and s(π�U ) = π ·s(U ) for allU ∈ ℘ f s(X) . According
to Proposition 6, we have that s is finitely supported. Therefore, |X | �

∗ |℘ f s(X)|. 
�
Proposition 7 used a technique for constructing a surjection starting from an injec-

tion (defined in the opposite way); this technique can be generalized.

Proposition 8 Let X and Y be finitely supported subsets of invariant sets. If |X | ≤ |Y |,
then |X | ≤� |Y |. The converse is not valid. However, if |X | ≤� |Y |, then |X | ≤
|℘ f s(Y )|.
Proof We generically denote the (possibly different) actions of the invariant sets con-
taining X , Y by ·, and the actions of powersets by �. Suppose there exists a finitely
supported injective mapping f : X → Y . We consider the case Y �= ∅ (otherwise, the
result follows trivially). Fix x0 ∈ X , and define the mapping f ′ : Y → X by

f ′(y) =
{

f −1(y), if y ∈ I m( f );
x0, if y /∈ I m( f ) .

Since f is injective, it follows that f −1(y) is a one-element set for each y ∈ I m( f ),
and so f ′ is a function. Clearly, f ′ is surjective. We claim that f ′ is supported by
the set supp( f ) ∪ supp(x0) ∪ supp(X) ∪ supp(Y ). Indeed, let us consider π ∈
Fix(supp( f ) ∪ supp(x0) ∪ supp(X) ∪ supp(Y )). Whenever y ∈ I m( f ) we have
y = f (z) for some z ∈ X and π · y = π · f (z) = f (π · z) ∈ I m( f ), which
means I m( f ) is finitely supported by supp( f ). Consider an arbitrary y0 ∈ I m( f ),
and thus π · y0 ∈ I m( f ). Then f ′(y0) = f −1(y0) = z0 with f (z0) = y0, and so
f (π · z0) = π · f (z0) = π · y0, which means f ′(π · y0) = f −1(π · y0) = π · z0 =
π · f −1(y0) = π · f ′(y0). Now, for y /∈ I m( f ) we have π · y /∈ I m( f ), which means
f ′(π · y) = x0 = π · x0 = π · f (y) since π fixes x0 pointwise. Thus, |X | ≤� |Y |.
Conversely, from the proof of Lemma 3 (which is related to the proof of Theorem 3(11)
in [3]), we know that there is a finitely supported surjection g : T f in(A)\∅̄ → T f in(A),
but there does not exist a finitely supported injection h : T f in(A) → T f in(A)\∅̄.

Assume now there is a finitely supported surjective mapping f : Y → X . We
proceed similarly as in the proof of Lemma 4. Fix x ∈ X . Then f −1({x}) is supported
by supp( f ) ∪ supp(x) ∪ supp(X). Indeed, let π ∈ Fix(supp( f ) ∪ supp(x) ∪
supp(X)), and y ∈ f −1({x}). This means f (y) = x . According to Proposition 6, we
have f (π ·y) = π · f (y) = π ·x = x , and soπ ·y ∈ f −1({x}). Define g : X → ℘ f s(Y )

by g(x) = f −1({x}). We claim that g is supported by supp( f ) ∪ supp(X). Let
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π ∈ Fix(supp( f )∪ supp(X)). For any arbitrary x ∈ X , we have that z ∈ g(π · x) =
f −1({π · x}) ⇔ f (z) = π · x ⇔ π−1 · f (z) = x ⇔ f (π−1 · z) = x ⇔ π−1 · z ∈
f −1({x}) ⇔ z ∈ π� f −1({x}) = π�g(x). From Proposition 6 it follows that g is
finitely supported. Since g is also injective, we get |X | ≤ |℘ f s(Y )|. 
�

As in the ZF case, we can define operations between FSM cardinalities.

Definition 7 Let X and Y be finitely supported subsets of invariant sets.
We define:

1. |X | + |Y | = |X + Y |, where X + Y = {(0, x) | x ∈ X} ∪ {(1, y) | y ∈ Y };
2. |X | · |Y | = |X × Y |, where X × Y = {(x, y) | x ∈ X , y ∈ Y };
3. |Y ||X | = |Y X

f s | = |{ f : X → Y | f is finitely supported}|.
We prove that the above definitions are correct (i.e. they do not depend on the chosen
representatives for equivalence classes). Let us assume that there exist the finitely
supported sets X ′, Y ′ with |X | = |X ′| and |Y | = |Y ′|. We generically denote the
(possibly different) actions on the invariant sets containing X , Y , X ′, Y ′ by ·, the
actions on functions spaces by �, the actions on Cartesian products by ⊗ and the
actions on disjoint unions by 
.
1. There exist two finitely supported bijectivemappings f : X → X ′ and g : Y → Y ′.

Define h : X+Y → X ′+Y ′ by h((0, x)) = (0, f (x)) for all x ∈ X and h((1, y)) =
(1, g(y)) for all y ∈ Y . Clearly, h is bijective. Let π ∈ Fix(supp( f ) ∪ supp(g)).
According to Proposition 6we have h(π 
(0, x)) = h((0, π ·x)) = (0, f (π ·x)) =
(0, π · f (x)) = π 
 (0, f (x)) = π 
 h((0, x)) for all x ∈ X , and similarly, h(π 

(1, y)) = h((1, π · y)) = (1, g(π · y)) = (1, π ·g(y)) = π 
h((1, y)) for all y ∈ Y .
According to Proposition 6, we get that h is supported by supp( f )∪ supp(g), and
so |X + Y | = |X ′ + Y ′|.

2. There exist two finitely supported bijectivemappings f : X → X ′ and g : Y → Y ′.
Define h : X × Y → X ′ × Y ′ by h(x, y) = ( f (x), g(y)) for all x ∈ X and all
y ∈ Y . Clearly, h is bijective. Let π ∈ Fix(supp( f ) ∪ supp(g)). According to
Proposition 6, we have h(π ⊗ (x, y)) = h(π · x, π · y) = ( f (π · x), g(π, ·y)) =
(π · f (x), π · g(y)) = π ⊗ ( f (x), g(y)) = π ⊗ h(x, y) for all x ∈ X and y ∈ Y .
According to Proposition 6, we get that h is supported by supp( f )∪ supp(g), and
so |X × Y | = |X ′ × Y ′|.

3. There exist two finitely supported bijectivemappings f : X → X ′ and g : Y → Y ′.
Defineϕ : Y X

f s → Y ′X ′
f s byϕ(h) = g◦h◦ f −1 for anyfinitely supportedmapping h :

X → Y . Clearly,ϕ is bijective. Letπ ∈ Fix(supp( f )∪supp(g)) andh an arbitrary
finitely supported mapping from X to Y . Fix an arbitrary x ′ ∈ X ′. According
to Proposition 6 and because f −1 is also supported by supp( f ), ϕ(π�h)(x ′) =
(g ◦ (π�h) ◦ f −1)(x ′) = g((π�h)( f −1(x ′))) = g(π · h(π−1 · f −1(x ′))) = g(π ·
h( f −1(π−1 ·x ′))) = π ·g(h( f −1(π−1 ·x ′))) = π ·ϕ(h)(π−1 ·x ′) = (π�ϕ(h))(x ′).
Thus, ϕ(π�h) = π�ϕ(h) for all h ∈ Y X

f s , and so ϕ is finitely supported according

to Proposition 6, which means |Y ||X | = |Y ′||X ′|.

Proposition 9 Let X , Y , Z be finitely supported subsets of invariant sets.
The following properties hold:
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1. |Z ||X |·|Y | = (|Z ||Y |)|X |;
2. |Z ||X |+|Y | = |Z ||X | · |Z ||Y |;
3. (|X | · |Y |)|Z | = |X ||Z | · |Y ||Z |.

Proof We generically denote the (possibly different) actions of the invariant sets con-
taining X , Y , Z by ·, the actions on Cartesian products by ⊗, the actions of function
spaces by �, and the actions on disjoint unions by 
.

1.Weprove that there is a bijection, finitely supported by S = supp(X)∪supp(Y )∪
supp(Z), between Z X×Y

f s and (ZY
f s)

X
f s . Let us define ϕ : Z X×Y

f s → (ZY
f s)

X
f s in the

following way. For each finitely supported mapping f : X × Y → Z and each x ∈ X
we consider ϕ( f ) : X → ZY

f s to be the function defined by (ϕ( f )(x))(y) = f (x, y)

for all y ∈ Y . Let us prove that ϕ is well-defined. For a fixed x ∈ X we firstly
prove that ϕ( f )(x) is a finitely supported mapping from Y to Z . Indeed, according
to Proposition 6 (since π fixes supp( f ) pointwise and supp( f ) supports f ), for
π ∈ Fix(supp(x) ∪ supp( f ) ∪ S) we have (ϕ( f )(x))(π · y) = f (x, π · y) =
f (π · x, π · y) = f (π ⊗ (x, y)) = π · f (x, y) = π · (ϕ( f )(x))(y) for all y ∈ Y ,
and using again Proposition 6, we obtain that ϕ( f )(x) is a finitely supported function.
Now we prove that ϕ( f ) : X → ZY

f s is finitely supported by supp( f ) ∪ S. Let
π ∈ Fix(supp( f ) ∪ S). In the view of Proposition 6 we have to prove that ϕ( f )(π ·
x) = π�ϕ( f )(x) for all x ∈ X . Fix x ∈ X and consider an arbitrary y ∈ Y .
We have (ϕ( f )(π · x))(y) = f (π · x, y). According to Proposition 6, we also have
(π�ϕ( f )(x))(y) = π ·(ϕ( f )(x))(π1 · y) = π · f (x, π−1 · y) = f (π ⊗(x, π−1 · y)) =
f (π · x, y). Thus, ϕ( f ) : X → ZY

f s is finitely supported. Now we claim that ϕ is
finitely supported by S. Let π ∈ Fix(S). In the view of Proposition 6 we have to prove
that ϕ(π� f ) = π�ϕ( f ) for all f : X × Y → Z . Fix f : X × Y → Z . We have to
prove that ϕ(π� f )(x) = (π�ϕ( f ))(x) for all x ∈ X . Fix some x ∈ X and consider an
arbitrary y ∈ Y . We have (ϕ(π� f )(x))(y) = (π� f )(x, y) = π · f (π−1 ⊗ (x, y)) =
π · f (π−1 · x, π−1 · y). Furthermore, ((π�ϕ( f ))(x))(y) = (π�ϕ( f )(π−1 · x))(y) =
π · (ϕ( f )(π−1 · x))(π−1 · y) = π · f (π−1 · x, π−1 · y), and so our claim follows.

Similarly, define ψ : (ZY
f s)

X
f s → Z X×Y

f s in the following way. For any finitely

supported function g : X → ZY
f s , define ψ(g) : X × Y → Z by ψ(g)(x, y) =

(g(x))(y) for all x ∈ X and y ∈ Y . Firstly we prove that ψ(g) is well-defined. Let
π ∈ Fix(supp(g)). According to Proposition 6we haveψ(g)(π⊗(x, y)) = ψ(g)(π ·
x, π ·y) = (g(π ·x))(π ·y) = (π�g(x))(π ·y) = π ·(g(x))(π−1·(π ·y)) = π ·(g(x))(y)

= π · ψ(x, y) for all (x, y) ∈ X × Y . Thus, in the view of Proposition 6 we conclude
thatψ(g) is supported by supp(g). Now, let us prove thatψ is finitely supported by S.
We should prove that for π ∈ Fix(S), ψ(π�g) = π�ψ(g) for any finitely supported
function g : X → ZY

f s . Fix such a g and consider some arbitrary x ∈ X , y ∈ Y . We

have ψ(π�g)(x, y) = ((π�g)(x))(y) = (π�g(π−1 · x))(y) = π · (g(π−1 · x))(π−1 ·
y) = π · ψ(g)(π−1 · x, π−1 · y) = π · ψ(g)(π−1 ⊗ (x, y)) = (π�ψ(g))(x, y).

It is routine to prove that ψ ◦ ϕ = 1|Z X×Y
f s

and ϕ ◦ ψ = 1|(ZY
f s )

X
f s
; thus, ψ and ϕ are

bijective, the first being the inverse of the other.
2.Weprove that there is a bijection, finitely supported by S = supp(X)∪supp(Y )∪

supp(Z), between Z X+Y
f s and Z X

f s × ZY
f s . We define ϕ : Z X+Y

f s → Z X
f s × ZY

f s as
follows. If f : X + Y → Z is a finitely supported mapping, then ϕ( f ) = ( f1, f2)
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Various forms of infinity for finitely… 189

where f1 : X → Z , f1(x) = f ((0, x)) for all x ∈ X , and f2 : Y → Z , f2(y) =
f ((1, y)) for all y ∈ Y . Clearly,ϕ is well-defined since f1 and f2 are both supported by
supp( f ). Furthermore, ϕ is bijective. It remains to prove that ϕ is supported by S. Let
π ∈ Fix(S) and consider an arbitrary f : X + Y → Z . We have ϕ(π� f ) = (g1, g2)
where g1(x) = (π� f )((0, x)) = π · f (π−1 
 (0, x)) = π · f ((0, π−1 · x)) =
π · f1(π−1 · x) = (π� f1)(x) for all x ∈ X , and similarly, g2(y) = (π� f )((1, y)) =
π · f (π−1
(1, y)) = π · f ((1, π−1 · y)) = π · f2(π−1 · y) = (π� f2)(y) for all y ∈ Y .
Thus, ϕ(π� f ) = (g1, g2) = (π� f1, π� f2) = π ⊗ ( f1, f2) = π ⊗ ϕ( f ). According
to Proposition 6, we have that ϕ is supported by S.

3.Weprove that there is a bijection, finitely supported by S = supp(X)∪supp(Y )∪
supp(Z), between (X ×Y )Z

f s and X Z
f s ×Y Z

f s . We define ϕ : X Z
f s ×Y Z

f s → (X ×Y )Z
f s

by ϕ( f1, f2)(z) = ( f1(z), f2(z)) for all f1 ∈ X Z
f s , all f2 ∈ Y Z

f s and all z ∈ Z .
Fix some finitely supported mappings f1 : Z → X and f2 : Z → Y . For π ∈
Fix(supp( f1) ∪ supp( f2)), according to Proposition 6 we have ϕ( f1, f2)(π · z) =
( f1(π · z), f2(π · z)) = (π · f1(z), π · f2(z)) = π ⊗( f1(z), f2(z)) = π ⊗ϕ( f1, f2)(z)
for all z ∈ Z . Thus, ϕ( f1, f2) is a finitely supported mapping, and so ϕ is well-
defined. Furthermore, ϕ is bijective. Let us prove that ϕ is finitely supported by S.
Let π ∈ Fix(S). Fix some arbitrary f1 ∈ X Z

f s , f2 ∈ Y Z
f s and z ∈ Z . We have

ϕ(π ⊗ ( f1, f2))(z) = ϕ(π� f1, π� f2)(z) = ((π� f1)(z), (π� f2)(z)) = (π · f1(π−1 ·
z), π · f2(π−1 · z)) = π ⊗ ( f1(π−1 · z), f2(π−1 · z)) = π ⊗ ϕ( f1, f2)(π−1 · z) =
(π�ϕ( f1, f2))(z). According to Proposition 6, ϕ is finitely supported. 
�
Proposition 10 Let X , Y , Z be finitely supported subsets of invariant sets. The follow-
ing properties hold:

1. If |X | ≤ |Y |, then |X | + |Z | ≤ |Y | + |Z |;
2. If |X | ≤ |Y |, then |X | · |Z | ≤ |Y | · |Z |;
3. If |X | ≤ |Y |, then |X Z

f s | ≤ |Y Z
f s |;

4. If |X | ≤ |Y | and Z �= ∅, then |Z X
f s | ≤ |ZY

f s |;
5. |X | + |Y | ≤ |X | · |Y | whenever both X and Y have more than two elements.

Proof We generically denote the (possibly different) actions of the invariant sets con-
taining X , Y , Z by ·, the actions on function spaces by �̃, the actions on Cartesian
products by ⊗ and the actions on disjoint unions by 
.
1. Suppose there exists a finitely supported injective mapping f : X → Y . Define

the injection g : X + Z → Y + Z by

g(u) =
{

(0, f (x)), if u = (0, x) with x ∈ X;
(1, z), if u = (1, z) with z ∈ Z .

Since f is finitely supported we have that f (π · x) = π · f (x) for all x ∈ X and
π ∈ Fix(supp( f )). Using Proposition 6, i.e verifying that g(π 
 u) = π 
 g(u)

for all u ∈ X + Z and all π ∈ Fix(supp( f ) ∪ supp(X) ∪ supp(Y ) ∪ supp(Z)),
we have that g is also finitely supported.

2. Suppose there is a finitely supported injective mapping f : X → Y . Define the
injection g : X × Z → Y × Z by g((x, z)) = ( f (x), z) for all (x, z) ∈ X × Z .
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190 A. Alexandru, G. Ciobanu

Clearly, g is injective. Since f is finitely supported we have that f (π ·x) = π · f (x)

for all x ∈ X and π ∈ Fix(supp( f )), and so g(π ⊗ (x, z)) = g((π · x, π · z)) =
( f (π · x), π · z) = (π · f (x), π · z) = π ⊗ g((x, z)) for all (x, z) ∈ X × Z and
π ∈ Fix(supp( f )∪supp(X)∪supp(Y )∪supp(Z)), which means g is supported
by supp( f ) ∪ supp(X) ∪ supp(Y ) ∪ supp(Z).

3. Suppose there exists a finitely supported injective mapping f : X → Y . Define
g : X Z

f s → Y Z
f s by g(h) = f ◦ h. We have that g is injective and for any π ∈

Fix(supp( f ))wehaveπ�̃ f = f , and so g(π�̃h) = f ◦(π�̃h) = (π�̃ f )◦(π�̃h) =
π�̃( f ◦ h) = π�̃g(h) for all h ∈ X Z

f s . We used the relation (π�̃ f ) ◦ (π�̃h) =
π�̃( f ◦ h) for all π ∈ SA. This can be proved as follows. Fix x ∈ Z , we have
(π�̃( f ◦ h))(x) = π · ( f (h(π−1 · x))). Also, if we denote (π�̃h)(x) = y we have
y = π · (h(π−1 · x)) and ((π�̃ f ) ◦ (π�̃h))(x) = (π�̃ f )(y) = π · ( f (π−1 · y)) =
π · ( f ((π−1 ◦ π) · h(π−1 · x))) = π · ( f (h(π−1 · x))). We finally obtain that g is
supported by supp( f ) ∪ supp(X) ∪ supp(Y ) ∪ supp(Z).

4. Suppose there exists a finitely supported injective mapping f : X → Y . According
to Proposition 8, there is a finitely supported surjective mapping f ′ : Y → X .
Define the injective mapping g : Z X

f s → ZY
f s by g(h) = h ◦ f ′. As in item 3 one

can prove that g is finitely supported by supp( f ′)∪supp(X)∪supp(Y )∪supp(Z).
5. Fix x0, x1 ∈ X with x0 �= x1 and y0, y1 ∈ Y with y0 �= y1. Define the injection

g : X + Y → X × Y by

g(u) =
⎧

⎨

⎩

(x, y0), if u = (0, x) with x ∈ X , x �= x0;
(x0, y), if u = (1, y) with y ∈ Y ;
(x1, y1), if u = (0, x0).

It follows easily that g is supported by supp(x0)∪supp(y0)∪supp(x1)∪supp(y1)∪
supp(X) ∪ supp(Y ), and g is injective. 
�

Theorem 3 Let (X , ·) be a finitely supported subset of an invariant set (Z , ·). There
exists a one-to-one mapping from ℘ f s(X) onto {0, 1}X

f s which is finitely supported by
supp(X), where ℘ f s(X) is considered the family of those finitely supported subsets
of Z contained in X.

Proof The theorem is proved in [2] as Theorem 4.7. 
�
One can easy verify that the properties of ≤ presented in Proposition 10 (1), (2)

and (4) also hold for ≤�. We left the details to the reader.

Theorem 4 There exists an invariant set X having the following properties:

1. |X × X | �
∗ |℘ f s(X)|;

2. |X × X | � |℘ f s(X)|;
3. |X × X | �

∗ |X |;
4. |X × X | � |X |;
5. For each n ∈ N, n ≥ 2 we have |X | � |℘n(X)| � |℘ f s(X)|, where ℘n(X) is the

family of all n-sized subsets of X;
6. For each n ∈ N we have |X | �

∗ |℘n(X)| �
∗ |℘ f s(X)|;

7. |X | � |℘ f in(X)| � |℘ f s(X)|;
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8. |X | �
∗ |℘ f in(X)| �

∗ |℘ f s(X)|;
9. |℘ f s(X) × ℘ f s(X)| �

∗ |℘ f s(X)|;
10. |℘ f s(X) × ℘ f s(X)| � |℘ f s(X)|;
11. |X + X | �

∗ |X × X |;
12. |X + X | � |X × X |.

Proof 1. According to Theorem 3(1) in [3], there does not exist a finitely supported
surjective mapping f : ℘ f s(A) → A × A. Thus, |A × A| �

∗ |℘ f s(A)|;
2. According to Theorem 3(2) in [3], there does not exist a finitely supported injective

mapping f : A × A → ℘ f s(A). Thus, |A × A| � |℘ f s(A)|;
3. According toTheorem3(9) in [3], there does not exist a finitely supported surjection

f : A → A × A, and so |A × A| �
∗ |A|;

4. According toTheorem3(10) in [3], there does not exist a finitely supported injection
f : A×A → A, whichmeans |A×A| � |A|; Alternatively, one can prove that there
does not exist a one-to-one mapping from A × A to A (and so neither a finitely
supported one). Suppose, by contradiction, that there is a an injective mapping
i : A× A → A. Let us fix two atoms x and y with x �= y. The sets {i(a, x) | a ∈ A}
and {i(a, y) | a ∈ A} are disjoint and infinite. Thus, {i(a, x) | a ∈ A} is an infinite
and coinfinite subset of A, which contradicts the fact that any subset of A is either
finite or cofinite.

5. We proved in Theorem 3(7) of [3] that |A| � |℘n(A)| � |℘ f s(A)| for all n ≥ 2.
6. Fix n ∈ N. As in the above item there does not exist neither a finitely supported

bijection between ℘n(A) and ℘ f s(A), nor a finitely supported bijection between
A and ℘n(A). However, there exists a finitely supported injection i : A → ℘n(A).
Fix an atom a ∈ A. The mapping s : ℘n(A) → A defined by

s(X) =
{

i−1(X), if X ∈ I m(i);
a, if X /∈ I m(i)

is supported by supp(i) ∪ {a} and is surjective. Now, fix n atoms x1, . . . , xn . The
mapping g : ℘ f s(A) → ℘n(A) defined by

g(X) =
{

X , if X ∈ ℘n(A);
{x1, . . . xn}, if X /∈ ℘n(A)

is supported by {x1, . . . xn} and is surjective.
7. According to Theorem 3(8) in [3] we have that |A| � |℘ f in(A)| � |℘ f s(A)|.
8. From the above item there does not exist neither a finitely supported bijection

between ℘ f in(A) and ℘ f s(A), nor a finitely supported bijection between A and
℘ f in(A). Fix an atom a ∈ A. The mapping s : ℘ f in(A) → A defined by

s(X) =
{

x, if X is a one-element set {x};
a, if X is not a one-element set
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is supported by {a} and is surjective. Now, fix an atom b. The mapping g :
℘ f s(A) → ℘ f in(A) defined by

g(X) =
{

X , if X ∈ ℘ f in(A);
{b}, if X /∈ ℘ f in(A)

is supported by {b} and is surjective.
9. According to Theorem 3(3) in [3], we get |℘ f s(A) × ℘ f s(A)| �

∗ |℘ f s(A)|.
10. According to Theorem 3(4) in [3], we obtain |℘ f s(A) × ℘ f s(A)| � |℘ f s(A)|.
11. In the view of Proposition 10(5), there is a finitely supported injection from A + A

into A× A, and a finitely supported surjection from A× A onto A+ A (Proposition
8). Thus, |A + A| ≤ |A × A| and |A + A| ≤∗ |A × A|. Fix three different atoms
a, b, c ∈ A, and define the mapping f : A + A → ℘ f s(A) by

f (u) =
⎧

⎨

⎩

{x}, if u = (0, x) with x ∈ A;
{a, y}, if u = (1, y) with y ∈ A, y �= a;
{b, c}, if u = (1, a).

One can directly prove that f is injective and supported by {a, b, c}. According to
Proposition 8, we have |A + A| ≤∗ |℘ f s(A)|. If we had |A × A| = |A + A|, we
would obtain |A × A| ≤∗ |℘ f s(A)| which contradicts item 1.

12. According to the above item |A + A| ≤ |℘ f s(A)|. If we had |A × A| = |A + A|,
we would obtain |A × A| ≤ |℘ f s(A)| which contradicts item 2.


�
Proposition 11 There exists an invariant set X having the properties:

1. |X | � |X | + |X |;
2. |X | �

∗ |X | + |X |.
Proof 1. This item follows from Proposition 4.9 in [2].

We can consider X = ℘ f in(A) or X = ℘cof in(A).
2. It remains to prove that there is a finitely supported surjection from ℘ f s(A) onto

℘ f in(A). We either use Proposition 8 or we effectively construct the surjection as
below. Fix a ∈ A. We define g : ℘ f s(A) → ℘ f in(A) by

g(U ) =
{

U , if U ∈ ℘ f in(A);
{a}, if U /∈ ℘ f in(A) .

Clearly, g is supported by {a} and is surjective. We can consider X = ℘ f in(A) or
X = ℘cof in(A). 
�

4 Definitions of infinity for finitely supported structures

The notion of infinity appears at a variety of levels in computer science. Actually
computers are able to work over discrete models, meaning that the ‘infinity’ can be at
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Various forms of infinity for finitely… 193

most approximated, but not effectively computed. The theory of finitely supported sets
allows the computational study of structures which are very large, possibly infinite,
but containing enough symmetries such that they can be concisely represented and
manipulated. The equivalence of various definitions of infiniteness is provable in ZF
under the consideration of the axiom of choice. Since in FSM the axiom of choice
fails, our goal is to study various FSM forms of infinite and to provide several relations
between them. We also present relevant examples of atomic sets that satisfy some
forms of infinity, while do not satisfy other forms of infinity. In this way we prove the
non-equivalence of various FSM definitions of infinity.

Definition 8 Let X be a finitely supported subset of an invariant set Y .

1. X is called FSM classical infinite if X does not correspond one-to-one and onto
to a finite ordinal, i.e. if X cannot be represented as {x1, . . . , xn} for some n ∈ N.
We simply call an FSM classical infinite set as infinite, and an FSM non-classical
infinite set as finite.

2. X is FSM covering infinite if there is a finitely supported directed family F of
finitely supported subsets of Y with the property that X is contained in the union
of the members of F , but there does not exist Z ∈ F such that X ⊆ Z ;

3. X is called FSM Tarski I infinite (TI i) if there exists a finitely supported one-to-one
mapping of X onto X × X , i.e. if |X | = |X |2.

4. X is called FSM Tarski II infinite (TII i) if there exists a finitely supported family
of finitely supported subsets of X , totally ordered by inclusion, having no maximal
element.

5. X is called FSM Tarski III infinite (TIII i) if there exists a finitely supported one-
to-one mapping of X onto X + X (where X + X is the disjoint union of X with
X ), i.e. if |X | = 2|X |.

6. X is called FSM Mostowski infinite (M i) if there exists an infinite finitely supported
totally ordered subset of X .

7. X is calledFSM Dedekind infinite (D i) if there exists a finitely supported one-to-one
mapping of X onto a finitely supported proper subset of X .

8. X is called FSM ascending infinite (Asc i) if there is a finitely supported increasing
countable chain of finitely supported sets X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . with
X ⊆ ∪Xn , but there does not exist n ∈ N such that X ⊆ Xn ;

Note that in the definition of FSM Tarski II infiniteness for a certain X , the existence
of a finitely supported family of finitely supported subsets of X is required, while
in the definition of FSM ascending infiniteness for X , the related family of finitely
supported subsets of X has to be FSM countable (i.e. the mapping n �→ Xn should be
finitely supported, which means the family (Xn)n∈N is also uniformly supported). It
is immediate that if X is FSM ascending infinite, then it is also FSM Tarski II infinite,
while the reverse is not necessarily valid in the absence of axiom of choice over ZF
sets (see Remark 3).

Theorem 5 Let X be a finitely supported subset of an invariant set Y .

1. X is FSM classical infinite if and only if X is FSM covering infinite.
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2. X is FSM classical infinite if and only if there exists a non-empty finitely sup-
ported family of finitely supported subsets of X having no maximal element under
inclusion.

Proof 1. Let us suppose that X is FSMclassical infinite. LetF be the family of all FSM
classical non-infinite (FSM classical finite) subsets of X ordered by inclusion. Since
X is finitely supported, it follows that F is supported by supp(X). Moreover, since
all the elements of F are finite sets, it follows that all the elements of F are finitely
supported. Clearly, F is directed and X is the union of the members of F . Suppose
by contradiction, that X is not FSM covering infinite. Then there exists Z ∈ F such
that X ⊆ Z . Thus, X should by FSM classical finite which is a contradiction with our
original assumption.

Conversely, assume that X is FSM covering infinite. Suppose, by contradiction,
that X is FSM classical finite, i.e. X = {x1, . . . , xn}. Let F be an arbitrary directed
family such that X is contained in the union of the members of F (at least one such a
family exists, for example ℘ f s(X)). Then for each i ∈ {1, . . . , n} there exists Fi ∈ F
such that xi ∈ Fi . Since F is directed, there is Z ∈ F such that Fi ⊆ Z for all
i ∈ {1, . . . , n}, and so X ⊆ Z with Z ∈ F , which is a contradiction.

2. Assume that X is FSM classical infinite. By contradiction, suppose that every
non-empty finitely supported family of finitely supported subsets of X has a maximal
element under inclusion. Particularly, ℘ f in(X) is an equivariant family of finite (and
so finitely supported) subsets of X , and so it should have a maximal element Z ∈
℘ f in(X). Assume Z = {z1, . . . , zn}. Since X is infinite, there is an element z ∈ X
different from all z1, . . . , zn . However, in this case we have {z1, . . . , zn, z} ∈ ℘ f in(X)

and {z1, . . . , zn} � {z1, . . . , zn, z} contradicting the maximality of Z .
Conversely, assume there exists a non-empty finitely supported family of finitely

supported subsets of X having no a maximal element under inclusion. Suppose, by
contradiction, that X is finite. Then X has only finitelymany subsets, and all its subsets
are finite. Let F be an arbitrary family of subsets of X . Then F is a finite family of
finite sets, and so the elements of F of greatest cardinality are maximal elements of
F with respect to inclusion, contradicting the assumption. 
�

The notion of FSM Dedekind infiniteness was also introduced in Section 4.2 of [3]
(or in [2], in a rather primary form). In this paper we extend the results obtained in [3]
and in [2], providing new properties of FSM Dedekind infinite sets, and presenting
much stronger examples of FSM sets that are not FSM Dedekind infinite, such as
T f in(A)A

f s and ℘ f s(A)A
f s . The following theorem generalizes Theorem 2 from [3]

that establishes Dedekind finiteness properties of basic atomic sets such as A,℘ f s(A),
℘ f in(℘ f s(A)) and SA.

Theorem 6 The following properties of FSM Dedekind infinite sets hold.

1. Let X be a finitely supported subset of an invariant set Y . Then X is FSM Dedekind
infinite if and only if there is a finitely supported one-to-one mapping f : N →
X. As a consequence, an FSM superset of an FSM Dedekind infinite set is FSM
Dedekind infinite, and an FSM subset of an FSM set that is not Dedekind infinite
is also not FSM Dedekind infinite.
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2. Let X be an infinite finitely supported subset of an invariant set Y . Then the sets
℘ f s(℘ f in(X)) and ℘ f s(T f in(X)) are FSM Dedekind infinite.

3. Let X be an infinite finitely supported subset of an invariant set Y . Then the set
℘ f s(℘ f s(X)) is FSM Dedekind infinite.

4. Let X be a finitely supported subset of an invariant set Y such that X does not
contain an infinite uniformly supported subset Z. Then X is not FSM Dedekind
infinite.

5. Let X be a finitely supported subset of an invariant set Y such that X does not contain
an infinite uniformly supported subset. Then the set ℘ f in(X) = {Z ⊆ X | Z finite}
does not contain an infinite uniformly supported subset, and ℘ f in(X) is not FSM
Dedekind infinite.

6. Let X and Y be two finitely supported subsets of an invariant set Z. If neither X
nor Y is FSM Dedekind infinite, then X × Y is not FSM Dedekind infinite.

7. Let X and Y be two finitely supported subsets of an invariant set Z. If neither X
nor Y is FSM Dedekind infinite, then X + Y is not FSM Dedekind infinite.

8. Let X be a finitely supported subset of an invariant set Y . Then ℘ f s(X) is FSM
Dedekind infinite if and only if X is FSM ascending infinite.

9. Let X be a finitely supported subset of an invariant set Y . If X is FSM Dedekind
infinite, then X is FSM ascending infinite. The reverse implication is not valid.

Proof 1. We slightly generalize the proof of Lemma 1 from [3]. Let us suppose that
(X , ·) is FSM Dedekind infinite, and g : X → X is an injection supported by
the finite set S � A with the property that I m(g) � X . This means that there
exists supp(g) ⊆ S and there exists x0 ∈ X such that x0 /∈ I m(g). We can form
a sequence of elements from X which has the first term x0 and the general term
xn+1 = g(xn) for all n ∈ N. Since x0 /∈ I m(g) it follows that x0 �= g(x0). Since g
is injective and x0 /∈ I m(g), by induction we obtain that gn(x0) �= gm(x0) for all
n, m ∈ N with n �= m. Furthermore, xn+1 is supported by supp(g)∪ supp(xn) for
all n ∈ N. Indeed, let π ∈ Fix(supp(g)∪ supp(xn)). According to Proposition 6,
π · xn+1 = π · g(xn) = g(π · xn) = g(xn) = xn+1. Since supp(xn+1) is the
least set supporting xn+1, we obtain supp(xn+1) ⊆ supp(g) ∪ supp(xn) for all
n ∈ N. By finite recursion, we have supp(xn) ⊆ supp(g)∪supp(x0) for all n ∈ N.
Since all xn are supported by the same set of atoms supp(g) ∪ supp(x0), we have
that the function f : N → X , defined by f (n) = xn , is also finitely supported
(by the set supp(g) ∪ supp(x0) ∪ supp(X) not depending on n). Indeed, for any
π ∈ Fix(supp(g) ∪ supp(x0) ∪ supp(X)) we have f (π 
 n) = f (n) = xn =
π · xn = π · f (n) for all n ∈ N, where by 
 we denoted the trivial SA-action on
N. Furthermore, because π fixes supp(X) pointwise we have π · f (n) ∈ X for all
n ∈ N. From Proposition 6 we have that f is finitely supported. Obviously, f is
also injective.
Conversely, suppose there exists a finitely supported injectivemapping f : N → X .
According to Proposition 6, it follows that for any π ∈ Fix(supp( f )) we have
π · f (n) = f (π 
 n) = f (n) and π · f (n) ∈ X for all n ∈ N. We define
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g : X → X by

g(x) =
{

f (n + 1), if there existsn ∈ Nwith x = f (n);
x, if x /∈ I m( f ) .

We claim that g is supported by supp( f ) ∪ supp(X). Indeed, let us consider
π ∈ Fix(supp( f ) ∪ supp(X)) and x ∈ X . If there is some n such that x = f (n),
we have that π · x = π · f (n) = f (n), and so g(π · x) = g( f (n)) = f (n +
1) = π · f (n + 1) = π · g(x). If x /∈ I m( f ), we prove by contradiction that
π · x /∈ I m( f ). Indeed, suppose that π · x ∈ I m( f ). Then there is y ∈ N

such that π · x = f (y) or, equivalently, x = π−1 · f (y). However, since π ∈
Fix(supp( f )), from Proposition 6 we have π−1 · f (y) = f (π−1 
 y), and so
we get x = f (π−1 
 y) = f (y) ∈ I m( f ) which contradicts the assumption that
x /∈ I m( f ). Thus, π · x /∈ I m( f ), and so g(π · x) = π · x = π · g(x). We obtained
that g(π ·x) = π ·x = π ·g(x) for all x ∈ X and allπ ∈ Fix(supp( f )∪supp(X)).
Moreover, π ·g(x) ∈ π�X = X (where by �we denoted the SA-action on℘ f s(Y )),
and so g is finitely supported. Since f is injective, it follows immediately that g is
injective. Furthermore, I m(g) = X\{ f (0)} which is a proper subset of X , finitely
supported by supp( f (0)) ∪ supp(X) = supp( f ) ∪ supp(X).

2. The family℘ f in(X) represents the family of those finite subsets of X (these subsets
of X are finitely supported as subsets of the invariant set Y in the sense of Definition
2). Obviously, ℘ f in(X) is a finitely supported subset of the invariant set ℘ f s(Y ),
supported by supp(X). This is because whenever Z is an element of ℘ f in(X) (i.e.
whenever Z is a finite subset of X ) and π fixes supp(X) pointwise, we have that
π�Z is also a finite subset of X . The family℘ f s(℘ f in(X)) represents the family of
those subsets of℘ f in(X)which are finitely supported as subsets of the invariant set
℘ f s(Y ) in the sense of Definition 2. As above, according to Proposition 2, we have
that ℘ f s(℘ f in(X)) is a finitely supported subset of the invariant set ℘ f s(℘ f s(Y )),
supported by supp(℘ f in(X)) ⊆ supp(X).
Let Xi be the set of all i-sized subsets from X , i.e. Xi = {Z ⊆ X | |Z | = i}.
Since X is infinite, it follows that each Xi , i ≥ 1 is non-empty. Obviously, we have
that any i-sized subset {x1, . . . , xi } of X is finitely supported (as a subset of Y )
by supp(x1) ∪ . . . ∪ supp(xi ). Therefore, Xi ⊆ ℘ f in(X) and Xi ⊆ ℘ f s(Y ) for
all i ∈ N. Since · is a group action, the image of an i-sized subset of X under an
arbitrary permutation is an i-sized subset of Y . However, any permutation of atoms
that fixes supp(X) pointwise also leaves X invariant, and so for any permutation
π ∈ Fix(supp(X)) we have that π�Z is an i-sized subset of X whenever Z is
an i-sized subset of X . Thus, each Xi is a subset of ℘ f in(X) finitely supported
by supp(X), and so Xi ∈ ℘ f s(℘ f in(X)). We define f : N → ℘ f s(℘ f in(X)) by
f (n) = Xn . We claim that supp(X) supports f . Indeed, let π ∈ Fix(supp(X)).
Since supp(X) supports Xn for all n ∈ N, we have π� f (n) = π�Xn = Xn =
f (n) = f (π 
 n) (where 
 is the trivial SA-action on N) and π� f (n) = π�Xn =
Xn ∈ ℘ f s(℘ f in(X)) for all n ∈ N. According to Proposition 6, we have that
f is finitely supported. Furthermore, f is injective, and by item 1 we have that
℘ f s(℘ f in(X)) is FSM Dedekind infinite. If we consider Yi the set of all i-sized
injective tuples formed by elements of X , we have that eachYi is a subset of T f in(X)
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supported by supp(X), and the family (Yi )i∈N is a countably infinite, uniformly
supported, subset of℘ f s(T f in(X)). From item 1 we get that℘ f s(T f in(X)) is FSM
Dedekind infinite.

3. The proof is the same as for the above item because every Xi ∈ ℘ f s(℘ f s(A)).
4. If there does not exist a uniformly supported subset of X , then there does not exist

a finitely supported injective mapping f : N → X , and so f cannot be FSM
Dedekind infinite.

5. Suppose, by contradiction, that the set ℘ f in(X) contains an infinite subset F such
that all the elements of F are different and supported by the same finite set S.
Therefore, we can express F as F = (Xi )i∈I ⊆ ℘ f in(X) with the properties that
Xi �= X j whenever i �= j and supp(Xi ) ⊆ S for all i ∈ I . Fix an arbitrary j ∈ I .
However, from Proposition 4, because supp(X j ) = ∪

x∈X j
supp(x), then X j has the

property that supp(x) ⊆ S for all x ∈ X j . Since j has been arbitrarily chosen from
I , it follows that every element from every set of form Xi is supported by S, and
so ∪

i
Xi is an uniformly supported subset of X (all its elements being supported

by S). Furthermore, ∪
i∈I

Xi is infinite because the family (Xi )i∈I is infinite and

Xi �= X j whenever i �= j . Otherwise, if ∪
i

Xi was finite, the family (Xi )i∈I would

be contained in the finite set℘(∪
i

Xi ), and so it couldn’t be infinite with the property

that Xi �= X j whenever i �= j . We were able to construct an infinite uniformly
supported subset of X , namely∪

i
Xi , and this contradicts the hypothesis that X does

not contain an infinite uniformly supported subset.
We proved that if X does not contain an infinite uniformly supported subset, then
℘ f in(X) does not contain an infinite uniformly supported subset. Suppose, by
contradiction, that ℘ f in(X) is FSM Dedekind infinite. According to item 1, there
exists a finitely supported injective mapping f : N → ℘ f in(X). Thus, because
N is a trivial invariant set, according to Proposition 6, there exists an infinite
injective (countable) sequence f (N) = (Xi )i∈N ⊆ ℘ f in(X) having the prop-
erty supp(Xi ) ⊆ supp( f ) for all i ∈ N. We obtained that ℘ f in(X) contains an
infinite uniformly supported subset (Xi )i∈N, which is a contradiction.

6. Suppose, by contradiction, that X × Y is FSM Dedekind infinite. According to
item 1, there exists a finitely supported injective mapping f : N → X × Y Thus,
according to Proposition 6, there exists an infinite injective sequence f (N) =
((xi , yi ))i∈N ⊆ X × Y with the property that supp((xi , yi )) ⊆ supp( f ) for all
i ∈ N (1). Fix some j ∈ N. We claim that supp((x j , y j )) = supp(x j )∪ supp(y j ).
Let U = (x j , y j ), and S = supp(x j ) ∪ supp(y j ). Obviously, S supports U .
Indeed, let us consider π ∈ Fix(S). We have that π ∈ Fix(supp(x j )) and also
π ∈ Fix(supp(y j )) Therefore, π · x j = x j and π · y j = y j , and so π ⊗ (x j , y j ) =
(π · x j , π · y j ) = (x j , y j ), where ⊗ represents the SA action on X × Y described
in Proposition 3. Thus, supp(U ) ⊆ S. It remains to prove that S ⊆ supp(U ).
Fix π ∈ Fix(supp(U )). Since supp(U ) supports U , we have π ⊗ (x j , y j ) =
(x j , y j ), and so (π · x j , π · y j ) = (x j , y j ), from which we get π · x j = x j and
π · y j = y j . Thus, supp(x j ) ⊆ supp(U ) and supp(y j ) ⊆ supp(U ). Hence
S = supp(x j ) ∪ supp(y j ) ⊆ supp(U ). According to relation (1) we obtain,
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supp(xi ) ∪ supp(yi ) ⊆ supp( f ) for all i ∈ N. Thus, supp(xi ) ⊆ supp( f ) for all
i ∈ N and supp(yi ) ⊆ supp( f ) for all i ∈ N (2). Since the sequence ((xi , yi ))i∈N
is infinite and injective, then at least one of the sequences (xi )i∈N and (yi )i∈N
is infinite. Assume that (xi )i∈N is infinite. Then there exists an infinite subset B
of N such that (xi )i∈B is injective, and so there exists an injection u : B → X
defined by u(i) = xi for all i ∈ B which is supported by supp( f ) (according to
relation (2) and Proposition 6). However, since B is an infinite subset of N, there
exists a ZF bijection h : N → B. The construction of h requires only the fact that
N is well-ordered which is obtained from the Peano construction of N and does
not involve a form of the axiom of choice. Since both B and N are trivial invariant
sets, it follows that h is equivariant. Thus, u ◦ h is an injection from N to X which
is finitely supported by supp(u) ⊆ supp( f ). This contradicts the assumption that
X is not FSM Dedekind infinite.

Remark 1 Similarly, using the relation supp(x) ∪ supp(y) = supp((x, y)) for all
x ∈ X and y ∈ Y , it can be proved that X × Y does not contain an infinite uniformly
supported subset if neither X nor Y contain an infinite uniformly supported subset.

7. Suppose, by contradiction, that X + Y is FSM Dedekind infinite. According to
item 1, there exists a finitely supported injective mapping f : N → X + Y . Thus,
there exists an infinite injective sequence (zi )i∈N ⊆ X + Y such that supp(zi ) ⊆
supp( f ) for all i ∈ N. According to the construction of the disjoint union of
two SA-sets (see Proposition 3), as in the proof of item 6, there should exist an
infinite subsequence of (zi )i of form ((0, x j ))x j ∈X which is uniformly supported
by supp( f ), or an infinite sequence of form ((1, yk))yk∈Y which is uniformly
supported by supp( f ). Since 0 and 1 are constants, this means there should exist
at least an infinite uniformly supported sequence of elements from X , or an infinite
uniformly supported sequence of elements from Y . This contradicts the hypothesis
neither X nor Y is FSM Dedekind infinite.

Remark 2 Similarly, it can be proved that X +Y does not contain an infinite uniformly
supported subset if neither X nor Y contain an infinite uniformly supported subset.

8. Let us suppose that ℘ f s(X) is FSM Dedekind infinite. Assume that (Xn)n∈N is an
infinite countable family of different subsets of X such that the mapping n �→ Xn

is finitely supported. Thus, each Xn is supported by the same set S = supp(n �→
Xn). We define a countable family (Yn)n∈N of subsets of X that are non-empty and
pairwise disjoint. A ZF construction of such a family belongs to Kuratowski and
can also be found in Lemma 4.11 from [6]. This approach works also in FSM in the
view of the S-finite support principle because every Yk is defined only involving
elements in the family (Xn)n∈N, and so whenever (Xn)n∈N is uniformly supported
(meaning that all Xn are supported by the same set of atoms), we get that (Yn)n∈N
is uniformly supported. Formally the sequence (Yn)n∈N is recursively constructed
as below. For n ∈ N, assume that Ym is defined for any m < n such that the set
{Xk\ ∪

m<n
Ym | k ≥ n} is infinite. Define n′ = min{k | k ≥ n and Xk\ ∪

m<n
Ym �=
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∅ and (X\Xk)\ ∪
m<n

Ym �= ∅}. Define

Yn =
{

Xn′ \ ∪
m<n

Ym, if {Xk\(Xn′ ∪ ∪
m<n

Ym) | k > n′} is infinite;
(X\Xn′)\ ∪

m<n
Ym, otherwise.

Obviously, Y1 is supported by S ∪ supp(X). By induction, assume that Ym is
supported by S∪supp(X) for eachm < n. Since Yn is defined as a set combination
of Xi ’s (which are all S-supported) and Ym’s with m < n, we get that Yn is
supported by S ∪ supp(X) according to the S-finite support principle. Therefore
the family (Yi )i∈N is uniformly supported by S ∪ supp(X). Let Ui = Y0 ∪ . . .∪Yi

for all i ∈ N. Clearly, all Ui are supported by S ∪ supp(X), and U0 � U1 �

U2 � . . . � X . Let Vn = (X\ ∪
i∈N Ui ) ∪ Un . Clearly, X = ∪

n∈NVn . Moreover, Vn

is supported by S ∪ supp(X) for all n ∈ N. Therefore, the mapping n �→ Vn is
finitely supported. Obviously, V0 � V1 � V2 � . . . � X . However, there does
not exist n ∈ N such that X = Vn , and so X is FSM ascending infinite.
The converse holds since if X is FSMascending infinite, there is a finitely supported
increasing countable chain of finitely supported sets X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . .

with X ⊆ ∪Xn , but there does not exist n ∈ N such that X ⊆ Xn . In this sequence
there should exist infinitely many different elements of form Xi (otherwise, their
union is a term of the sequence), and the result follows from Proposition 21.

9. Suppose X is FSM Dedekind infinite. Therefore, ℘ f s(X) is FSM Dedekind infi-
nite. According to item 8, we have that X is FSM ascending infinite. The reverse
implication is not valid because, as we prove in Proposition 16, ℘ f in(A) is FSM
ascending infinite while it is not FSM Dedekind infinite.


�
Lemma 5 Let S = {s1, . . . , sn} be a finite subset of an invariant set (U , ·) and X a
finitely supported subset of an invariant set (V ,
). Then if X does not contain an
infinite uniformly supported subset, we have that X S

f s does not contain an infinite
uniformly supported subset.

Proof First we prove that there is an FSM injection g from X S
f s into X |S|. For f ∈ X S

f s
define g( f ) = ( f (s1), . . . , f (sn)). Clearly, g is injective (and it is also surjective).
Let π ∈ Fix(supp(s1) ∪ . . . ∪ supp(sn) ∪ supp(X)). Thus, g(π�̃ f ) = (π 
 f (π−1 ·
s1), . . . , π 
 f (π−1 · sn)) = (π 
 f (s1), . . . , π 
 f (sn)) = π ⊗ g( f ) for all f ∈ X S

f s ,

where ⊗ is the SA-action on X |S| defined as in Proposition 3. Hence g is finitely
supported, and the conclusion follows from Theorem 6(1) and by repeatedly applying
similar arguments as in Theorem 6(6) (if we slightly modify the proof of the theorem,
using the fact that supp(x) ∪ supp(y) = supp((x, y)) for all x, y ∈ X , we show that
the |S|-time Cartesian product of X , i.e. X |S| does not contain an infinite uniformly
supported subset; otherwise X should contain itself an infinite uniformly supported
subset, which contradicts the hypothesis - see also Remark 1). 
�
Lemma 6 Let S = {s1, . . . , sn} be a finite subset of an invariant set (U , ·) and X a
finitely supported subset of an invariant set (V ,
). Then if X is not FSM Dedekind
infinite, we have that X S

f s is not FSM Dedekind-infinite.
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Proof We proved that there is an FSM injection g from X S
f s into X |S|. The conclusion

follows from Theorem 6(1) and by repeatedly applying Theorem 6(6) (from which we
know that the |S|-timeCartesian product of X , i.e. X |S|, is not FSMDedekind-infinite).


�
Theorem 7 Let X be a finitely supported subset of an invariant set (Y , ·) such that X
does not contain an infinite uniformly supported subset. The set X A

f s does not contain
an infinite uniformly supported subset, and so it is not FSM Dedekind infinite.

Proof Assume, by contradiction, that, for a certain finite set S ⊆ A, there exist
infinitely many functions f : A → X that are supported by S. Each S-supported
function f : A → X can be uniquely decomposed into two S-supported functions
f |S and f |A\S (this follows from Proposition 6 and because both S and A\S are
supported by S). Since there exist only finitely many functions from S to X sup-
ported by S (see Lemma 5), there should exist an infinite family F of functions
g : (A\S) → X which are supported by S (the functions g are the restrictions of
the functions f to A\S). Let us fix an element a ∈ A\S. Consider an arbitrary S-
supported function g : (A\S) → X . For each π ∈ Fix(S ∪ {a}), according to
Proposition 6, we have π · g(a) = g(π(a)) = g(a) which means that g(a) is sup-
ported by S ∪ {a}. However, in X there are at most finitely many elements supported
by S ∪ {a}. Therefore, there is n ∈ N such that h1(a), . . . , hn(a) are distinct ele-
ments in X with h1, . . . , hn ∈ F , and h(a) ∈ {h1(a), . . . , hn(a)} for all h ∈ F . Fix
some h ∈ F and an arbitrary b ∈ A\S (which means that the transposition (a b)

fixes S pointwise). We have that there is i ∈ {1, . . . , n} such that h(a) = hi (a).
Since h, hi are supported by S and (a b) ∈ Fix(S), from Proposition 6 we have
h(b) = h((a b)(a)) = (a b) · h(a) = (a b) · hi (a) = hi ((a b)(a)) = hi (b), which
finally leads to h = hi since b was arbitrarily chosen from their domain of defini-
tion. Thus, the family F = {h1, . . . , hn}, which means F is finite, and so we get a
contradiction. 
�
Corollary 4 Let X be a finitely supported subset of an invariant set (Y , ·) such that
X does not contain an infinite uniformly supported subset. The set X An

f s does not
contain an infinite uniformly supported subset, and so it is not FSM Dedekind infinite,
whenever n ∈ N.

Proof We prove the result by induction on n. For n = 1, the result follows from
Theorem 7. Assume that X An−1

f s does not contain an infinite uniformly supported

subset. According to Proposition 9, we have |X An

f s | = |X An−1×A
f s | = |X ||An−1×A| =

|X ||An−1|·|A| = (|X ||An−1|)|A| = |(X An−1

f s )A
f s |, which means that there is a finitely

supported bijection between X An

f s and (X An−1

f s )A
f s . However, by Theorem 7, (X An−1

f s )A
f s

does not contain an infinite uniformly supported subset (since the set Z = X An−1

f s
does not contain an infinite uniformly supported subset according to the inductive
hypothesis). The result now follows. 
�
Corollary 5 The set ℘ f s(An) (where An is the n-times Cartesian product of A) does
not contain an infinite uniformly supported subset, and so it is not FSM Dedekind
infinite.
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Proof According to Theorem 3, we have |℘ f s(An)| = |{0, 1}An

f s |. The result follows
from Corollary 4 since {0, 1} does not contain an infinite uniformly supported subset.


�
Corollary 6 Let X be a finitely supported subset of an invariant set (Y , ·) such that
℘ f s(X) does not contain an infinite uniformly supported subset. The set (℘ f s(An))X

f s
does not contain an infinite uniformly supported subset, and so it is not FSM Dedekind
infinite.

Proof According to Corollary 4, the set (℘ f s(X))An

f s does not contain an infinite
uniformly supported subset. However, according to Theorem 3 and Proposition 9,
|(℘ f s(X))An

f s | = |({0, 1}X
f s)

An

f s | = (|{0, 1}||X |)|An | = |{0, 1}||X |·|An | = |{0, 1}||An |·|X |

= (|{0, 1}||An |)|X | = |({0, 1}An

f s )
X
f s | = |(℘ f s(An))X

f s |. Thus, there is a finitely sup-

ported bijection between (℘ f s(X))An

f s and (℘ f s(An))X
f s , and the result follows. 
�

The following corollary represents an extension of Theorem 2 in [3]: now we are
able to prove that T f in(A)A

f s and ℘ f s(A)A
f s are not FSM Dedekind infinite.

Corollary 7 The following sets and all of their FSM classical infinite subsets are FSM
classical infinite, but they are not FSM Dedekind infinite.

1. The invariant set A of atoms.
2. The powerset ℘ f s(A) of the set of atoms.
3. The set T f in(A) of all finite injective tuples of atoms.
4. The invariant set AA

f s of all finitely supported functions from A to A.
5. The invariant set of all finitely supported functions f : A → An, n ∈ N.
6. The invariant set of all finitely supported functions f : A → T f in(A).
7. The invariant set of all finitely supported functions f : A → ℘ f s(A).
8. The sets ℘ f in(A), ℘cof in(A), ℘ f in(℘ f s(A)), ℘ f in(℘cof in(A)), ℘ f in(℘ f in(A)),

and ℘ f in(AA
f s).

9. Any construction of finite powersets of the following forms ℘ f in(. . . ℘ f in(A)),
℘ f in(. . . ℘ f in(P(A))), or ℘ f in(. . . ℘ f in(℘ f s(A))).

10. Every finite Cartesian combination between the set A, ℘ f in(A), ℘cof in(A), ℘ f s(A)

and AA
f s .

11. The disjoint unions A + AA
f s , A +℘ f s(A), ℘ f s(A)+ AA

f s and A +℘ f s(A)+ AA
f s

and all finite disjoint unions between A, AA
f s and ℘ f s(A).

Proof 1. A does not contain an infinite uniformly supported subset, and so it is not
FSM Dedekind infinite (according to Theorem 6(4)).

2. ℘ f s(A) does not contain an infinite uniformly supported subset because for any
finite set S of atoms there exist only finitely many elements of ℘ f s(A) supported
by S, namely the subsets of S and the supersets of A\S. Thus, ℘ f s(A) is not FSM
Dedekind infinite (Theorem 6(4)).

3. T f in(A) does not contain an infinite uniformly supported subset because the finite
injective tuples of atoms supported by a finite set S are only those injective tuples
formed by elements of S, being at most 1+ A1|S| + A2|S| + . . . + A|S|

|S| such tuples,
where Ak

n = n(n − 1) . . . (n − k + 1).
4–7. This items follow directly from Theorem 7.
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8. The sets ℘ f in(A), ℘cof in(A), ℘ f in(℘ f s(A)), ℘ f in(℘cof in(A)), ℘ f in(℘ f in(A)),
and ℘ f in(AA

f s) do not contain infinite uniformly supported subsets, and so they
are not FSM Dedekind infinite (Theorem 6(5)).

9. Directly from Theorem 6(5).
10. According to Theorem 6(6).
11. According to Theorem 6(7). 
�
Corollary 8 There exist two FSM sets that whose cardinalities incomparable via the
relation ≤ on cardinalities, and none of them is FSM Dedekind infinite.

Proof According to Corollary 7, none of the sets A× A and℘ f s(A) is FSMDedekind
infinite. According to Theorem 4, there does not exist a finitely supported injective
mapping f : A× A → ℘ f s(A). According to Lemma 11.10 from [7] that is preserved
in FSM (proof omitted) there does not exist a finitely supported injective mapping
f : ℘ f s(A) → A × A. 
�
Corollary 9 The following sets and all of their supersets, their powersets and the
families of their finite subsets, are both FSM classical infinite and FSM Dedekind
infinite.

1. The invariant sets ℘ f s(℘ f s(A)), ℘ f s(℘ f in(A)) and N.
2. The set of all finitely supported mappings from X to Y , and the set of all finitely

supported mappings from Y to X, where X is a finitely supported subset of an
invariant set with at least two elements, and Y is an FSM Dedekind infinite set.

3. The set of all finitely supported functions f : ℘ f in(Y ) → X and the set of all finitely
supported functions f : ℘ f s(Y ) → X, where Y is an infinite finitely supported
subset of an invariant set, and X is a finitely supported subset of an invariant set
with at least two elements.

4. The set T δ
f in(A) = ∪

n∈NAn of all finite tuples of atoms (not necessarily injective).

Proof 1. This follows from Theorems 6(3) and 6 (2).
2. Let (yn)n∈N be an injective, uniformly supported, countable sequence in Y (it exists

according to Theorem 6(1)). Thus, each yn is supported by the same set S of atoms.
In Y X we consider the injective family ( fn)n∈N of functions from X to Y where
for each i ∈ N we define fi (x) = yi for all x ∈ X . According to Proposition
6, each fi is supported by S, and so is the infinite family ( fn)n∈N, meaning that
there is an S-supported injective mapping from N to Y X . In this case it is necessary
to require only that X is non-empty. Fix two different elements x1, x2 ∈ X . Take
F = (yn)n∈N an injective, uniformly supported (by T ), countable sequence in Y .
In XY we consider the injective family (gn)n∈N of functions from Y to X where
for each i ∈ N we define

gi (y) =
{

x1 if y = yi ;
x2 if y = y j with j �= i, or y /∈ F .

According to Proposition 6, each gi is supported by the finite set supp(x1) ∪
supp(x2) ∪ T , and so the infinite family (gn)n∈N is uniformly supported, i.e. that
there is an injective mapping fromN to XY supported by supp(x1)∪supp(x2)∪T .
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3. From Theorem 3, there exists a one-to-one mapping from ℘ f s(U ) onto {0, 1}U
f s

for an arbitrary finitely supported subset of an invariant set U . Fix two distinct
elements x1, x2 ∈ X . There exists a finitely supported (by supp(x1) ∪ supp(x2))
bijectivemapping from {0, 1}U

f s to {x1, x2}U
f s which associates to each f ∈ {0, 1}U

f s

an element g ∈ {x1, x2}U
f s defined by g(x) =

{

x1 for f (x) = 0
x2 for f (x) = 1

for all x ∈ U

and supported by supp(x1) ∪ supp(x2) ∪ supp( f ). Obviously, there is a finitely
supported injection between {x1, x2}U

f s and XU
f s . Thus, there is a finitely supported

injection from ℘ f s(U ) into XU
f s . If we take U = ℘ f in(Y ) or U = ℘ f s(Y ), the

result follows from Theorem 6(1), Theorem 6(2) and Theorem 6(3).
4. Fix a ∈ A and i ∈ N. We consider the tuple xi = (a, . . . , a) ∈ Ai . Clearly, xi is

supported by {a} for each i ∈ N, and so (xn)n∈N is a uniformly supported subset
of T δ

f in(A).

�

By definition, if a set X is not FSM Dedekind infinite (which is equivalent with
the non-existence of a finitely supported injection from N into X ), then every finitely
supported injection from X into X is also surjective. However, there may exist a
finitely supported surjection from X onto X which is not injective. For example, let
us consider X = T f in(A) which is not FSM Dedekind infinite. Similarly as in the
proof of Theorem 3(11) from [3] we can define an equivariant surjective function
f : T f in(A) → T f in(A) by

f (y) =
{ ∅̄, if y is a tuple with exactly one element, or y = ∅̄;

y′, otherwise ,

where y′ is a new tuple of atoms formed by deleting the first element in the tuple y.
Clearly, g is not injective because every one-element tuple of atoms is mapped into
the empty tuple. Despite of this, whenever ℘ f s(X) is not FSM Dedekind infinite
we are able to prove the equivalence between injectivity and surjectivity for finitely
supported self-mappings of X . This follows from Proposition 12, and from the fact
that whenever ℘ f s(X) is not FSM Dedekind infinite we also have that X is not FSM
Dedekind infinite, and so the finitely supported injective self-mappings of X should
be surjective.

Proposition 12 Let X be a finitely supported subset of an invariant set.
If ℘ f s(X) is not FSM Dedekind infinite, then each finitely supported surjective map-
ping f : X → X should be injective. The converse does not hold.

Proof Let f : X → X be a finitely supported surjection. Since f is surjective, we can
define the function g : ℘ f s(X) → ℘ f s(X) by g(Y ) = f −1(Y ) for all Y ∈ ℘ f s(X)

which is finitely supported and injective according to Lemma 4. Since ℘ f s(X) is not
FSMDedekind infinite, it follows that g is surjective. Now let us consider two elements
a, b ∈ X such that f (a) = f (b). We prove by contradiction that a = b. Suppose
that a �= b, and consider Y={a} and Z={b}. Obviously, Y , Z ∈ ℘ f s(X). Since g is
surjective, for Y and Z there exist Y1, Z1 ∈ ℘ f s(X) such that f −1(Y1) = g(Y1) = Y

123



204 A. Alexandru, G. Ciobanu

and f −1(Z1) = g(Z1) = Z . We know that f (Y ) ∩ f (Z) = { f (a)}. Thus, f (a) ∈
f (Y ) = f ( f −1(Y1)) ⊆ Y1. Similarly, f (a) = f (b) ∈ f (Z) = f ( f −1(Z1)) ⊆ Z1,
and so f (a) ∈ Y1 ∩ Z1. Thus, a ∈ f −1(Y1 ∩ Z1) = f −1(Y1) ∩ f −1(Z1) = Y ∩ Z .
However, since we assumed that a �= b, we have that Y ∩ Z = ∅, which represents a
contradiction. It follows that a = b, and so f is injective.

In order to prove the invalidity of the reverse implication, we prove that any
finitely supported surjective mapping f : ℘ f in(A) → ℘ f in(A) is also injective,
while ℘ f s(℘ f in(A)) is FSM Dedekind infinite. Let consider a finitely supported sur-
jection f : ℘ f in(A) → ℘ f in(A), and X ∈ ℘ f in(A). Then supp(X) = X . By
Proposition 6, for any π ∈ Fix(supp( f ) ∪ supp(X)) = Fix(supp( f ) ∪ X) we
have π� f (X) = f (π�X) = f (X) which means supp( f ) ∪ X supports f (X), that is
f (X) = supp( f (X)) ⊆ supp( f )∪ X (1). If X ⊆ supp( f ), we get f (X) ⊆ supp( f )

(2).
For a fixed m ≥ 1, let us fix m (arbitrarily chosen) atoms b1, . . . , bm ∈

A\supp( f ), and takeU = {{a1, . . . , an, b1, . . . , bm} | a1, . . . , an ∈ supp( f ), n ≥ 1}
∪ {{b1, . . . , bm}}. The set U is finite since supp( f ) is finite and b1, . . . , bm ∈
A\supp( f ) are fixed. Let us consider Y ∈ U , that is, Y\supp( f ) = {b1, . . . , bm}.
There exists Z ∈ ℘ f in(A) such that f (Z) = Y . According to relations (1) and (2),
Z should be of form Z = {c1, . . . , ck, bi1 , . . . , bil } with c1, . . . , ck ∈ supp( f )

and bi1 , . . . , bil ∈ A\supp( f ) or of form Z = {bi1 , . . . , bil } with bi1 , . . . , bil ∈
A\supp( f ). Furthermore, by (1), in either case, {b1, . . . , bm} ⊆ {bi1 , . . . , bil }. We
prove that l = m. Assume by contradiction that there exists bi j with j ∈ {1, . . . , l}
such that bi j /∈ {b1, . . . , bm}. Then (bi j b1)�Z = Z since both bi j , b1 ∈ Z and
Z is a finite subset of atoms (bi j and b1 are interchanged in Z under the effect
of the transposition (bi j b1), but the whole Z is left invariant). Furthermore, since
bi j , b1 /∈ supp( f ) we have (bi j b1) ∈ Fix(supp( f )), and by Proposition 6 we
get f (Z) = f ((bi j b1)�Z) = (bi j b1)� f (Z) which is a contradiction because
b1 ∈ f (Z) while bi j /∈ f (Z). Thus, {bi1 , . . . , bil } = {b1, . . . , bm}, and so Z ∈ U .
Thus, U ⊆ f (U ), which means |U | ≤ | f (U )|. However, since f is a function and
U is finite, we get | f (U )| ≤ |U |. We obtain |U | = | f (U )|, and because U is finite
with U ⊆ f (U ), we get U = f (U ), which means f |U : U → U is surjective (3).
Since U is finite, f |U should be injective, which means f (U1) �= f (U2) whenever
U1, U2 ∈ U with U1 �= U2 (4).

If d1, . . . , dv ∈ A\supp( f ) with{d1, . . . , dv} �= {b1, . . . , bm}, v ≥ 1, and we con-
sider V = {{a1, . . . , an, d1, . . . , dv} | a1, . . . , an ∈ supp( f ), n ≥ 1}∪{{d1, . . . , dv}},
then U and V are disjoint. Whenever U1 ∈ U and V1 ∈ V we have f (U1) ∈ U and
f (V1) ∈ V (using the same arguments we involved to prove relation (3)), and so
f (U1) �= f (V1) (5).
If T = {{a1, . . . , an} | a1, . . . , an ∈ supp( f )} and Y ∈ T , then there is T ′ ∈

℘ f in(A) such that Y = f (T ′). According to (3) we should have T ′ ∈ T (otherwise,
if T ′ belongs to some V considered in the above paragraph, i.e. if T ′ contains an
element outside supp( f ), we would get the contradiction Y = f (T ′) ∈ V , i.e. we
would get that Y contains an element outside supp( f )), and so T ⊆ f (T ) fromwhich
T = f (T ) because T is finite (using similar arguments as those we involved to prove
relation (3) from U ⊆ f (U )). Thus, f |T : T → T is surjective. Since T is finite,
f |T should also be injective which means f (T1) �= f (T2) whenever T1, T2 ∈ T with
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T1 �= T2 (6). The case supp( f ) = ∅ is included in the above analysis and leads to
f (∅) = ∅ and f (X) = X for all X ∈ ℘ f in(A).
We also have f (T1) �= f (V1) whenever T1 ∈ T and V1 ∈ V since f (T1) ∈ T ,

f (V1) ∈ V and T and V are disjoint (7). Since b1, . . . , bm and d1, . . . , dv were
arbitrarily chosen from A\supp( f ), the injectivity of f follows from (4), (5), (6) and
(7) that describe all the possible cases for considering two different finite subsets of
atoms for which we compare the values of f on them. 
�
Proposition 13 1. Let X be a finitely supported subset of an invariant set. If ℘ f in(X) is

FSM Dedekind infinite, then X should be FSM non-uniformly amorphous, meaning
that X should contain two disjoint, infinite, uniformly supported subsets.

2. Let X be a finitely supported subset of an invariant set. If ℘ f s(X) is FSM Dedekind
infinite, then X should be FSM non-amorphous (N-am), meaning that X should
contain two disjoint, infinite, finitely supported subsets. The reverse implication is
not valid.

Proof 1. Assume that (Xn)n∈N is a countable family of different finite subsets of X
such that themapping n �→ Xn is finitely supported. Thus, each Xn is supported by
the same set S = supp(n �→ Xn). Since each Xn is finite (and the support of a finite
set coincides with the union of the supports of its elements), we have that ∪

n∈NXn is

uniformly supported by S. Furthermore, ∪
n∈NXn is infinite since all Xi are pairwise

different.Moreover, the countable sequence (Yn)n∈N defined by Yn = Xn\ ∪
m<n

Xm

is a uniformly supported (by S) sequence of pairwise disjoint uniformly supported
sets with ∪

n∈NXn = ∪
n∈NYn . Again since each Yn is finite (and the support of a finite

set coincides with the union of the supports of its elements), any element belonging
to a set from the sequence (Yn)n∈N is S-supported. Since the union of all Yn is
infinite, and each Yn is finite, there should exist infinitely many terms from the
sequence (Yn)n∈N that are non-empty. Assume that (Yn)n∈M⊆N with M infinite is a
subset of (Yn)n∈N formed by non-empty terms. Let U1 = {∪Yk | k ∈ M, k is odd}
and U2 = {∪Yk | k ∈ M, k is even}. Then U1 and U2 are disjoint, uniformly
S-supported and infinite subsets of X .

2. Assume that ℘ f s(X) is FSM Dedekind infinite. As in the proof of Theorem 6(8),
we can define a uniformly supported, countable family (Yn)n∈N of subsets of X
that are non-empty and pairwise disjoint. Let V1 = {∪Yk | k is odd} and V2 =
{∪Yk | k is even}. Then V1 and V2 are disjoint, infinite subsets of X . Since each
Yi is supported by S′ = supp(n �→ Yn) we have π�Yi = Yi for all i ∈ N and
π ∈ Fix(S′). Fix π ∈ Fix(S′) and x ∈ V1. Thus, there is l ∈ N such that
x ∈ Y2l+1. We obtain π · x ∈ π�Y2l+1 = Y2l+1, and so π · x ∈ V1. Thus, V1 is
supported by S′. Similarly, V2 is supported by S′, and so X is FSMnon-amorphous.
Conversely, the set A + A = {0, 1} × A (disjoint union of A and A) is obviously
non-amorphous because {(0, a) | a ∈ A} is equivariant, infinite and coinfinite. One
can define the equivariant bijection f : ℘ f s(A) × ℘ f s(A) → ℘ f s({0, 1} × A) by
f (U , V ) = {(0, x) | x ∈ U } ∪ {(1, y) | y ∈ V } for all U , V ∈ ℘ f s(A). Clearly,
f is equivariant because for each π ∈ SA we have f (π�U , π�V ) = π� f (U , V ).
However, ℘ f s(A) × ℘ f s(A) is not FSM Dedekind infinite according to Corollary
7(2) and Theorem 6(6). 
�
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It is also worth noting that non-uniformly amorphous FSM sets are non-amorphous
FSMsets since uniformly supported sets are obviously finitely supported. The converse
however is not valid since ℘ f in(A) is non-amorphous, but it has no infinite uniformly
supported subset (the only finite subsets of atoms supported by a finite set S of atoms
being the subsets of S), and so it cannot be non-uniformly amorphous.

Corollary 10 Let X be a finitely supported amorphous subset of an invariant set (i.e.
any finitely supported subset of X is either finite or cofinite). Then each finitely sup-
ported surjective mapping f : X → X should be injective.

Proof Since any finitely supported subset of X is either finite or cofinite, then any
uniformly supported subset of X is either finite or cofinite. From Proposition 13,
℘ f in(X) is not FSM Dedekind infinite. For the rest of the proof we follow step-
by-step the proof of Proposition 12 (and of Lemma 4). If X is finite, we are done,
so assume X is infinite. If Y ∈ ℘ f in(X), then f −1(Y ) ∈ ℘ f s(X) (supported by
supp( f )∪supp(X)∪supp(Y )). Since X is amorphous, it follows that f −1(Y ) is either
finite or cofinite. If f −1(Y ) is cofinite, then its complementary {x ∈ X | f (x) /∈ Y }
is finite. This means that all but finitely many elements in X would have their image
under f belonging to the finite set Y . Therefore, I m( f ) would be a finite subset of
X , which contradicts the surjectivity of f . Thus, f −1(Y ) is a finite subset of X . In
this sense we can define the function g : ℘ f in(X) → ℘ f in(X) by g(Y ) = f −1(Y )

which is supported by supp( f ) ∪ supp(X) and injective. Since ℘ f in(X) is not FSM
Dedekind infinite, it follows that g is surjective, and so f is injective exactly as in the
last paragraph of the proof of Proposition 12. 
�
Proposition 14 1. Let X be an FSM Dedekind infinite set. Then there is a finitely

supported surjection j : X → N. The reverse implication is not valid.
2. If X is a finitely supported subset of an invariant set such that there exists a finitely

supported surjection j : X → N, then ℘ f s(X) is FSM Dedekind infinite. The
reverse implication is also valid.

Proof 1. Let X be an FSM Dedekind infinite set. According to Theorem 6(1), there
is a finitely supported injection i : N → X . Let us fix n0 ∈ N. We define the
function j : X → N by

j(x) =
{

i−1(x), if x ∈ I m(i);
n0, if x /∈ I m(i) .

Since I m(i) is supported by supp(i) and n0 is empty supported, by verifying the
condition in Proposition 6 we have that j is supported by supp(i) ∪ supp(X).
Indeed, when π ∈ Fix(supp(i) ∪ supp(X)), then x ∈ I m(i) ⇔ π · x ∈ I m(i),
and n = i−1(π · x) ⇔ i(n) = π · x ⇔ π−1 · i(n) = x ⇔ i(π−1 
 n) =
x ⇔ i(n) = x ⇔ n = i−1(x), where 
 is the trivial action on N; similarly
y /∈ I m(i) ⇔ π · y /∈ I m(i) and j(π · y) = n0 = π 
 n0 = π 
 j(y). Clearly,
j is surjective. However, the reverse implication is not valid because the mapping
f : ℘ f in(A) → N defined by f (X) = |X | for all X ∈ ℘ f in(A) is equivariant and
surjective, but ℘ f in(A) is not FSM Dedekind infinite.
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2. Suppose now there exists a finitely supported surjection j : X → N. Clearly,
for any n ∈ N, the set j−1({n}) is non-empty and supported by supp( j). Define
f : N → ℘ f s(X) by f (n) = j−1({n}). For π ∈ Fix(supp( j)) and an arbitrary
n ∈ N we have j(x) = n ⇔ j(π−1 · x) = n, and so x ∈ j−1({n}) ⇔ π−1 · x ∈
j−1({n}), which means f (n) = π� f (n) for all n ∈ N, and so f is supported by
supp( j). Since f is also injective, by Theorem 6(1) we have that ℘ f s(X) is FSM
Dedekind infinite.
Conversely, assume that℘ f s(X) is FSMDedekind infinite.As in the proof ofTheo-
rem6(8),we can define a uniformly supported, countable family (Yn)n∈N of subsets
of X that are non-empty and pairwise disjoint. The mapping f can be defined by

f (x) =
{

n, if ∃n.x ∈ Yn;
0, otherwise

, and obviously, f is supported by supp(n �→ Yn). 
�

Proposition 15 Let X be an infinite finitely supported subset of an invariant set. Then
there exists a finitely supported surjection f : ℘ f s(X) → N.

Proof Let Xi be the set of all i-sized subsets from X , Xi = {Z ⊆ X | |Z | = i}. The
family (Xi )i∈N is uniformly supported by supp(X) and all Xi are non-empty and

pairwise disjoint. We define f by f (Y ) =
{

n, if Y ∈ Xn;
0, if Y is infinite.

According to Proposition 6, f is supported by supp(X) (since any Xn is supported by
supp(X)) and it is surjective. We actually proved the existence of a finitely supported
surjection from ℘ f in(X) onto N. 
�

The sets A and ℘ f in(A) are both FSM classical infinite and none of them is FSM
Dedekind infinite.Weprove below that A is not FSMascending infinite,while℘ f in(A)

is FSM ascending infinite.

Proposition 16 1. The set A is not FSM ascending infinite.
2. Let X be a finitely supported subset of an invariant set U. If X is FSM classical

infinite, then the set ℘ f in(X) is FSM ascending infinite.

Proof 1. In order to prove that A is not FSM ascending infinite, we prove firstly that
each finitely supported increasing countable chain of finitely supported subsets
of A must be stationary. Indeed, if there exists an increasing countable chain
X0 ⊆ X1 ⊆ . . . ⊆ A such that n �→ Xn is finitely supported, then, according
to Proposition 6 and because N is a trivial invariant set, each element Xi of the
chain must be supported by the same S = supp(n �→ Xn). However, there are
only finitely many such subsets of A namely the subsets of S and the supersets of
A\S. Therefore the chain is finite, and because it is ascending, there exists n0 ∈ N

such that Xn = Xn0 for all n ≥ n0. Now, let Y0 ⊆ Y1 ⊆ . . . ⊆ Yn ⊆ . . . be a
finitely supported countable chain with A ⊆ ∪

n∈NYn . Then A ∩ Y0 ⊆ A ∩ Y1 ⊆
. . . ⊆ A ∩ Yn ⊆ . . . ⊆ A is a finitely supported countable chain of subsets of A
(supported by supp(n �→ Yn)) which should be stationary (finite). Furthermore,
since ∪

i∈N(A ∩ Yi ) = A ∩ ( ∪
i∈NYi ) = A, there is some k0 such that A ∩ Yk0 = A,

and so A ⊆ Yk0 . Thus, A is not FSM ascending infinite.
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2. We know that ℘ f in(X) is a subset of the invariant set ℘ f in(U ) supported by
supp(X). Let us consider Xn = {Z ∈ ℘ f in(X) | |Z | ≤ n}. Clearly, X0 ⊆ X1 ⊆
. . . ⊆ Xn ⊆ . . .. Furthermore, because permutations of atoms are bijective, we
have that for an arbitrary k ∈ N, |π�Y | = |Y | for all π ∈ SA and all Y ∈ Xk , and
so π�Y ∈ Xk for all π ∈ Fix(supp(X)) and all Y ∈ Xk . Thus, each Xk is a subset
of ℘ f in(X) finitely supported by supp(X), and so (Xn)n∈N is finitely (uniformly)
supported by supp(X). Obviously, ℘ f in(X) = ∪

n∈NXn . However, there exists no

n ∈ N such that ℘ f in(X) = Xn . Thus, (℘ f in(X), �) is FSM ascending infinite.

�

Theorem 8 Let X be a finitely supported subset of an invariant set (Z , ·).
1. If X is FSM Dedekind infinite, then X is FSM Mostowski infinite.
2. If X is FSM Mostowski infinite, then X is FSM Tarski II infinite. The reverse

implication is not valid.

Proof 1. Suppose X is FSM Dedekind infinite. According to Theorem 6(1) there
exists an uniformly supported infinite injective sequence T = (xn)n∈N of elements
from X . Thus, each element of T is supported by supp(T ) and there is a bijective
correspondence between N and T defined as n �→ xn which is supported by
supp(T ). If we define the relation � on T by: xi � x j if and only if i < j , we
have that � is a (strict) total order relation supported by supp(T ). Thus T is an
infinite finitely supported (strictly) totally ordered subset of X , and so X is FSM
Mostowski infinite since any strict total order can be extended to a total order.

2. Suppose that X is not FSM Tarski II infinite. Then every non-empty finitely
supported family of finitely supported subsets of X which is totally ordered by
inclusion has a maximal element under inclusion. Let (U ,<) be a finitely sup-
ported strictly totally ordered subset of X (any total order relation induces a strict
total order relation). We prove that U is finite, and so X is not FSM Mostowski
infinite. In this sense it is sufficient to prove that< and> are well-orderings. Since
both of them are (strict) total orderings, we need to prove that any finitely supported
subset of U has a least and a greatest element wrt <, i.e. a minimal and a maximal
element (because < is total). Let Y be a finitely supported subset of U . The set
↓ z = {y ∈ Y | y < z} is supported by supp(z)∪supp(Y )∪supp(<) for all z ∈ Y .
The family T = {↓ z | z ∈ Y } is itself finitely supported by supp(Y ) ∪ supp(<)

because for all π ∈ Fix(supp(Y ) ∪ supp(<)) we have π · ↓ z =↓ π · z. Since
< is transitive, we have that T is (strictly) totally ordered by inclusion, and so it
has a maximal element, which means Y has a maximal element. Similarly, the set
↑ z = {y ∈ Y | z < y} is supported by supp(z)∪supp(Y )∪supp(<) for all z ∈ Y
and the family T ′ = {↑ z | z ∈ Y } is itself finitely supported by supp(Y )∪supp(<)

because for all π ∈ Fix(supp(Y ) ∪ supp(<)) we have π · ↑ z =↑ π · z. The
family T ′ is (strictly) totally ordered by inclusion, and so it has a maximal element,
from which Y has a minimal element. We used the obvious properties z < t if and
only if ↓ z ⊂↓ t , and z < t if and only if ↑ t ⊂↑ z.
Conversely, according to Proposition 16, ℘ f in(A) is FSM ascending infinite, and
so it is FSM Tarski II infinite. However ℘ f in(A) is not FSM Mostowski infinite
according to Corollary 12

123



Various forms of infinity for finitely… 209


�
Proposition 17 Let X be a finitely supported subset of an invariant set (Z , ·). If X is
FSM Mostowski infinite, then X is non-amorphous meaning that X can be expressed
as a disjoint union of two infinite finitely supported subsets. The reverse implication
is not valid.

Proof Suppose that there is an infinite finitely supported totally ordered subset (Y ,≤
) of X . Assume, by contradiction, that Y is amorphous, meaning that any finitely
supported subset of Y is either finite or cofinite. As in the proof of Theorem 8 (without
making the requirement that ≤ is strict, which anyway would not essentially change
the proof), for z ∈ Y we define the finitely supported subsets ↓ z = {y ∈ Y | y ≤ z}
and ↑ z = {y ∈ Y | z ≤ y} for all z ∈ Y . We have that the mapping z �→↓ z from Y to
T = {↓ z | z ∈ Y } is itself finitely supported by supp(Y ) ∪ supp(≤). Furthermore it
is bijective, and so T is amorphous. Thus, any subset Z of T is either finite or cofinite,
and obviously any subset Z of T is finitely supported. Similarly, the mapping z �→↑ z
from Y to T ′ = {↑ z | z ∈ Y } is finitely supported and bijective, which means that any
subset of T ′ is either finite or cofinite, and clearly any subset of T ′ is finitely supported.

We distinguish the following two cases:
1. There are only finitely many elements x1, . . . , xn ∈ Y such that ↓ x1, . . . ,↓ xn are
finite. Thus, for y ∈ U = Y\{x1, . . . , xn} we have ↓ y infinite. Since ↓ y is a subset
of Y , it should be cofinite, and so ↑ y is finite (because ≤ is a total order relation).
Let M = {↑ y | y ∈ U }. As in Theorem 8, we have that M is totally ordered with
respect to sets inclusion. Furthermore, for an arbitrary y ∈ U we cannot have y ≤ xk

for some k ∈ {1, . . . , n} because ↓ y is infinite, while ↓ xk is finite, and so ↑ y is
a subset of U . Thus, M is an infinite, finitely supported (by supp(U ) ∪ supp(≤)),
totally ordered family formed by finite subsets of U . Since M is finitely supported,
for each y ∈ U and each π ∈ Fix(supp(M)) we have π · ↑ y ∈ M . Since ↑ y
is finite, we have that π · ↑ y is finite having the same number of elements as ↑ y.
Since π · ↑ y and ↑ y are comparable via inclusion, they should be equal. Thus,
M is uniformly supported. Since ≤ is a total order, for π ∈ Fix(supp(↑ y)) we
have ↑ π · y = π · ↑ y =↑ y, and so π · y = y, from which supp(y) ⊆ supp(↑
y). Therefore, U is uniformly supported. Since any element of U has only a finite
number of successors (leading to the conclusion that ≥ is an well-ordering on U
uniformly supported by supp(U )) and U is uniformly supported, we can define an
order monomorphism betweenN andU which is supported by supp(U ). For example,
choose u0 �= u1 ∈ U , then let u2 be the greatest element (w.r.t. ≤) in U\{u0, u1},
u3 be the greatest element in U\{u0, u1, u2} (no choice principle is used since ≥ is
an well-ordering, and so such a greatest element is precisely defined), and so on, and
find an infinite, uniformly supported countable sequence u0, u1, u2, . . .. Since N is
non-amorphous (being expressed as the union between the even elements and the odd
elements), we conclude that U is non-(uniformly) amorphous containing two infinite
uniformly supported disjoint subsets.

2. We have cofinitely many elements z such that ↓ z is finite. Thus, there are
only finitely many elements y1, . . . , ym ∈ Y such that ↓ y1, . . . ,↓ ym are infi-
nite. Since every infinite subset of Y is cofinite, only ↑ y1, . . . ,↑ ym are finite.
Let z ∈ Y\{y1, . . . , ym} which means ↑ z infinite. Since ↑ z is a subset of Y it
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should be cofinite, and so ↓ z is finite. As in the above item, the set M ′ = {↓ z | z ∈
Y\{y1, . . . , ym}} is an infinite, finitely supported, totally ordered (by inclusion) family
of finite sets, and so it has to be uniformly supported, from which Y\{y1, . . . , ym} is
uniformly supported, and so ≤ is an FSM well-ordering on Y\{y1, . . . , ym}. There-
fore, Y\{y1, . . . , ym} has an infinite, uniformly supported, countable subset, and so
Y\{y1, . . . , ym} is non-(uniformly) amorphous containing two infinite uniformly sup-
ported disjoint subsets. Thus, Y is non-amorphous, and so X is non-amorphous.

Conversely, the set A + A (disjoint union of A and A) is obviously non-amorphous
because {(0, a) | a ∈ A} is equivariant, infinite and coinfinite. However, if we assume
there exists a finitely supported total order relation on an infinite subset of A + A, then
there should exist an infinite, finitely supported, total order on at least one of the sets
{(0, a) | a ∈ A} or {(1, a) | a ∈ A}, which leads to an infinite finitely supported total
order relation on A. However A is not FSM Mostowski infinite by Corollary 12. 
�
Theorem 9 Let X be a finitely supported subset of an invariant set (Z , ·). If X contains
no infinite uniformly supported subset, then X is not FSM Mostowski infinite.

Proof Assume, by contradiction, that X is FSM Mostowski infinite, meaning that X
contains an infinite, finitely supported, totally ordered subset (Y ,≤). We claim that Y
is uniformly supported by supp(≤) ∪ supp(Y ). Let π ∈ Fix(supp(≤) ∪ supp(Y ))

and let y ∈ Y an arbitrary element. Since π fixes supp(Y ) pointwise and supp(Y )

supportsY , we obtain thatπ ·y ∈ Y , and sowe should have either y < π ·y, or y = π ·y,
or π · y < y. If y < π · y, then, because π fixes supp(≤) pointwise and because the
mapping z �→ π ·z is bijective from Y toπ�Y , we get y < π ·y < π2 ·y < . . . < πn ·y
for alln ∈ N. However, since anypermutation of atoms interchanges onlyfinitelymany
atoms, it has a finite order in the group SA, and so there is m ∈ N such that πm = I d.
This means πm · y = y, and so we get y < y which is a contradiction. Similarly, the
assumption π · y < y, leads to the relation πn · y < . . . < π · y < y for all n ∈ N

which is also a contradiction since π has finite order. Therefore, π · y = y; because
y was arbitrary chosen form Y , Y should be a uniformly supported infinite subset of
X . 
�
Looking to the proof of Proposition 17, the following result follows directly.

Corollary 11 Let X be a finitely supported subset of an invariant set (Z , ·). If X is
FSM Mostowski infinite, then X is non-uniformly amorphous meaning that X has two
disjoint, infinite, uniformly supported subsets.

Remark 3 In a permutation model of set theory with atoms, a set can be well-ordered
if and only if there exists a one-to-one mapping of the related set into the kernel of
the model. Furthermore, in a permutation model defined by using supports, a set U is
well-orderable in the model if and only if there exists a set supporting every element
in U . Also it is noted that the axiom of choice is valid in the kernel of the model
[7]. Therefore, totally ordered, finitely supported sets in Basic Fraenkel Model (that
are proved to be uniformly supported similarly as in Theorem 9, and so they are
well-orderable according to the above statements) can be embedded into the kernel
of the model, and they should contain countable (uniformly supported) subsets; this
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provides an equivalence between Dedekind infinity and Mostowski infinity in the
related permutation model. Although FSM (or the theory of nominal sets) is somehow
related to (has connections with) permutation models of set theory with atoms, it is
independently developed over ZF without being necessary to relax the ZF axiom of
extensionality. FSM sets are ZF sets together with group actions satisfying a certain
finite support requirement, and such a theory makes sense over ZF without being
necessary to impose the validity of the axiom of choice on (non-atomic) ZF sets. Thus,
FSM is described as the entire ZF together with atomic sets/structures with finite
supports, where the set of atoms is a fixed ZF set (formed by elements whose internal
structure is ignored). There could exist infinite ZF sets that do not contain infinite
countable subsets, and there could also exist infinite uniformly supported FSM sets
(particularly such ZF sets) that do not contain infinite countable, uniformly supported
subsets.

Corollary 12 1. The sets A, A + A and A × A are FSM classical infinite, but they are
not FSM Mostowski infinite, nor FSM Tarski II infinite.

2. None of the sets ℘ f in(A), ℘cof in(A), ℘ f s(A) and ℘ f in(℘ f s(A)) is Mostowski
infinite in FSM.

3. None of the sets AAn

f s , T f in(A)An

f s and ℘ f s(A)An

f s is FSM Mostowski infinite.

Proof In the view of Theorem 9, it is sufficient to prove that none of the sets A,
℘ f in(A), ℘cof in(A), ℘ f s(A), A + A, A × A, AAn

f s ,T f in(A)An

f s and ℘ f s(A)An

f s contain
infinite uniformly supported subsets. For A, ℘ f in(A), ℘cof in(A) and ℘ f s(A) this is
obvious since for any finite set S of atoms there are at most finitely many subsets
of A supported by S, namely the subsets of S and the supersets of A\S. Moreover,
℘ f in(℘ f s(A)) does not contain an infinite uniformly supported subset according to
Theorem 6(5), since ℘ f s(A) does not contain an infinite uniformly supported subset.

From Theorem 7 and Corollary 4, the invariant sets AAn

f s , T f in(A)An

f s and ℘ f s(A)An

f s
do not contain infinite uniformly supported subsets.

We also have that A is not FSMTarski II infinite because℘ f s(A) contains no infinite
uniformly supported subsets, and so every totally ordered subset (particularly via
inclusion) of ℘ f s(A) should be finite meaning that it should have a maximal element.
Furthermore, we have that there is an equivariant bijection between ℘ f s(A + A) and
℘ f s(A) × ℘ f s(A). Since ℘ f s(A) does not contain an infinite uniformly supported
subset, we have that℘ f s(A)×℘ f s(A) does not contain an infinite uniformly supported
subset (the proof is quasi-identical to the one of Theorem 6(6) without taking count
on the countability of the related infinite uniformly supported family). Therefore,
any infinite totally ordered (via inclusion) uniformly supported family of ℘ f s(A +
A) should be finite containing a maximal element. There is an equivariant bijection
between℘ f s(A)A

f s and℘ f s(A×A). Therefore anyuniformly supported totally ordered
subset of ℘ f s(A × A) should be finite containing a maximal element. 
�
Corollary 13 Let X be a finitely supported subset of an invariant set Y such that X
does not contain an infinite uniformly supported subset. Then the set ℘ f in(X) is not
FSM Mostowski infinite.

Proof According to Theorem 6(5), ℘ f in(X) does not contain an infinite uniformly
supported subset. Thus, by Theorem 9, ℘ f in(X) is not FSM Mostowski infinite. 
�
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Theorem 10 Let X be a finitely supported subset of an invariant set (Y , ·).
1. If X is FSM Tarski I infinite, then X is FSM Tarski III infinite. The converse does

not hold. However if X is FSM Tarski III infinite, then ℘ f s(X) is FSM Tarski I
infinite.

2. If X is FSM Tarski III infinite, then X is FSM Dedekind infinite. The converse does
not hold. However if X is FSM Dedekind infinite, then ℘ f s(X) is FSM Tarski III
infinite.

Proof 1.We consider the casewhen X has at least two elements (otherwise the theorem
is trivial). Let X be FSM Tarski I infinite. Then |X × X | = |X |. Fix two elements
x1, x2 ∈ X with x1 �= x2. We can define an injection f : X × {0, 1} → X × X by

f (u) =
{

(x, x1) for u = (x, 0)
(x, x2) for u = (x, 1)

. Clearly, by checking the condition in Proposition

6 and using Proposition 3, we have that f is supported by supp(X) ∪ supp(x1) ∪
supp(x2) (since {0, 1} is necessarily a trivial invariant set), and so |X × {0, 1}| ≤
|X × X |. Thus, |X ×{0, 1}| ≤ |X |. Obviously, there is an injection i : X → X ×{0, 1}
defined by i(x) = (x, 0) for all x ∈ X which is supported by supp(X). According to
Lemma 2, we obtain 2|X | = |X × {0, 1}| = |X |.

Let us consider X = N × A. We make the remark that |N × N| = |N| by con-
sidering the equivariant injection h : N × N → N defined by h(m, n) = 2m3n and
using Lemma 2. Similarly, |{0, 1}×N| = |N| by considering the equivariant injection
h′ : N × {0, 1} → N defined by h′(n, 0)=2n , h′(n, 1)=3n and using Lemma 2. We
have 2|X | = 2|N||A| = |N||A| = |X |. However, we prove that |X × X | �= |X |.
Assume the contrary, and so |N × (A × A)| = |N × A × N × A| = |N × A|. Thus,
there is a finitely supported injection g : A × A → N × A, and by Proposition
8 there is a finitely supported surjection f : N × A → A × A. Let us consider
three different atoms a, b, c /∈ supp( f ). There exists (i, x) ∈ N × A such that
f (i, x) = (a, b). Since (a b) ∈ Fix(supp( f )) and N is trivial invariant set, we
have f (i, (a b)(x)) = (a b) f (i, x) = (a b)(a, b) = ((a b)(a), (a b)(b)) = (b, a).
We should have x = a or x = b, otherwise f is not a function. Assume with-
out losing the generality that x = a, which means f (i, a) = (a, b). Therefore
f (i, b) = f (i, (a b)(a)) = (a b) f (i, a) = (a b)(a, b) = (b, a). Similarly, since
(a c), (b c) ∈ Fix(supp( f )), we have f (i, c) = f (i, (a c)(a)) = (a c) f (i, a) =
(a c)(a, b) = (c, b) and f (i, b) = f (i, (b c)(c)) = (b c) f (i, c) = (b c)(c, b) =
(b, c). But f (i, b) = (b, a) contradicting the functionality of f . Therefore, X is FSM
Tarski III infinite, but it is not FSM Tarski I infinite.

Now, suppose that X is FSM Tarski III infinite, which means |{0, 1} × X | = |X |.
We define ψ : ℘ f s(X) × ℘ f s(X) → ℘ f s({0, 1} × X) by f (U , V ) = {(0, x) | x ∈
U }∪ {(1, y) | y ∈ V } for all U , V ∈ ℘ f s(X). Clearly, ψ is well-defined and bijective,
and for each π ∈ Fix(supp(X)) we have ψ(π�U , π�V ) = π�ψ(U , V ) which
means ψ is finitely supported. Therefore, |℘ f s(X)×℘ f s(X)| = |℘ f s({0, 1}× X)| =
|℘ f s(X)|. The last equality follows by applying twice Lemma 4 (using the fact that
there is a finitely supported surjection from X onto X ×{0, 1} and a finitely supported
surjection from X × {0, 1} onto X , we obtain there is a finitely supported injection
from ℘ f s(X × {0, 1}) into ℘ f s(X), and a finitely supported injection from ℘ f s(X)

into ℘ f s(X × {0, 1})) and Lemma 2.
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2. Suppose X is FSM Tarski III infinite. Let us consider an element y1 belonging
to an invariant set (with action denoted also by ·) and y1 /∈ X (such an element can
be, for example, a non-empty element in ℘ f s(X)\X ). Fix y2 ∈ X . We can define

a mapping f : X ∪ {y1} → X × {0, 1} by f (x) =
{

(x, 0) for x ∈ X
(y2, 1) for x = y1

. Clearly,

f is injective and it is supported by S = supp(X) ∪ supp(y1) ∪ supp(y2) because
for all π fixing S pointwise we have f (π · x) = π · f (x) for all x ∈ X ∪ {y1}.
Therefore, |X ∪ {y1}| ≤ |X × {0, 1}| = |X |, and so there is a finitely supported
injection g : X ∪ {y1} → X . The mapping h : X → X defined by h(x) = g(x) is
injective, supported by supp(g) ∪ supp(X), and g(y1) ∈ X\h(X), which means h is
not surjective. It follows that X is FSM Dedekind infinite.

Let us consider X = A∪N. Since A andN are disjoint, we have that X is an invariant
set (similarly as in Proposition 3). Clearly, X is FSM Dedekind infinite. Assume, by
contradiction, that |X | = 2|X |, that is |A ∪ N| = |A + A + N| = |({0, 1} × A) ∪ N|.
Thus, there is a finitely supported injection f : ({0, 1}× A)∪N → A∪N, and so there
exists a finitely supported injection f : ({0, 1}× A) → A∪N.We prove that whenever
ϕ : A → A∪N is finitely supported and injective, for a /∈ supp(ϕ)we have ϕ(a) ∈ A.
Assume, by contradiction, that there is a /∈ supp(ϕ) such that ϕ(a) ∈ N. Since
supp(ϕ) is finite, there exists b /∈ supp(ϕ), b �= a. Thus, (a b) ∈ Fix(supp(ϕ)), and
soϕ(b) = ϕ((a b)(a)) = (a b)
ϕ(a) = ϕ(a) since (N,
) is a trivial invariant set. This
contradicts the injectivity of ϕ. We can consider the mappings ϕ1, ϕ2 : A → A ∪ N

defined by ϕ1(a) = f (0, a) for all a ∈ A and ϕ2(a) = f (1, a) for all a ∈ A, that are
injective and supported by supp( f ). Therefore, f ({0}× A) = ϕ1(A) contains at most
finitely many element from N, and f ({1} × A) = ϕ2(A) also contains at most finitely
many element from N. Thus, f is an injection from ({0, 1} × A) to A ∪ Z where Z is
a finite subset of N. It follows that f ({0} × A) contains an infinite subset of atoms U ,
and f ({1} × A) contains an infinite subset of atoms V . Since f is injective, it follows
that U and V are infinite disjoint subsets of A, which contradicts Proposition 5 stating
that A is amorphous.

Now, if X is FSM Dedekind infinite, we have that there is a finitely supported
injection h from X onto a finitely supported proper subset Z of X . Consider an element
y1 belonging to an invariant setwith y1 /∈ X .We candefine an injection h′ : X∪{y1} →
X by taking h′(x) = h(x) for all x ∈ X and h′(y1) = b with b ∈ X\Z . Clearly, h′
is supported by supp(h) ∪ supp(y1) ∪ supp(b). Since there also exists an supp(X)-
supported injection from X to X ∪ {y1}, according to Lemma 2, one can define a
finitely supported bijectionψ from X to X ∪{y1}. According to Lemma 4 the mapping
g : ℘ f s(X ∪{y1}) → ℘ f s(X) defined by g(V ) = f −1(V ) for all V ∈ ℘ f s(X ∪{y1})
is finitely supported and injective. Therefore, 2|X | ≥ 2|X |+1 = 2 · 2|X | which in the
view of Lemma 2 (since we also have 2|X | ≤ 2 · 2|X |) leads to the conclusion that
℘ f s(X) is FSM Tarski III infinite. 
�
Corollary 14 1. The set N × A is FSM Tarski III infinite, but it is not FSM Tarski I

infinite.
2. The set A ∪ N is FSM Dedekind infinite, but it is not FSM Tarski III infinite.

Corollary 15 The following sets are FSM classical infinite, but they are not FSM Tarski
I infinite, nor FSM Tarski III finite.
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1. The invariant set A.
2. The invariant set ℘ f s(A).
3. The invariant sets ℘ f in(A) and ℘cof in(A).
4. The set ℘ f in(X) where X is a finitely supported subset of an invariant set containing

no infinite uniformly supported subset.

Proof The result follows directly because, according to Theorem 6 and Corollary 7,
the related sets are not FSM Dedekind infinite. 
�
Corollary 16 Let X be an infinite finitely supported subset of an invariant set. Then
℘ f s(℘ f s(℘ f s(X))) is FSM Tarski III infinite, and consequently,℘ f s(℘ f s(℘ f s(℘ f s(X))))

is FSM Tarski I infinite.

Proof Since℘ f s(℘ f s(X)) is FSMDedekind infinite, as in the proof of Theorem 10(2)
one can prove |℘ f s(℘ f s(X))| + 1 = |℘ f s(℘ f s(X))|. The result now follows directly
using arithmetic properties of FSM cardinalities proved above. 
�

In a future work we intend to prove an even stronger result claiming that
℘ f s(℘ f s(X)) is FSMTarski III infinite, and consequently,℘ f s(℘ f s(℘ f s(X))) is FSM
Tarski I infinite, whenever X is an infinite finitely supported subset of an invariant set.

Corollary 17 The sets AN

f s and N
A
f s are FSM Tarski I infinite, and so they are also

Tarski III infinite.

Proof There is an equivariant bijectionψ between (AN)2f s and AN×{0,1}
f s that associates

to each Cartesian pair ( f , g) of mappings from N to A a mapping h : N×{0, 1} → A
defined as follows:

h(u) =
{

f (n) if u = (n, 0);
g(n) if u = (n, 1).

The equivariance of ψ follows from Proposition 6; when π ∈ SA, we have ψ(π�̃ f ,

π�̃g) = h′, where h′(n, 0) = (π�̃ f )(n) = π( f (n)) and h′(n, 1) = (π�̃g)(n) =
π(g(n)). Thus, h′(u) = π(h(u)) for all u ∈ N × {0, 1} which means h′ = π�̃h =
π�̃ψ( f , g).

There also exists an equivariant bijection ϕ between (NA)2f s and (N × N)A
f s that

associates to each Cartesian pair ( f , g) of mappings from A to N a mapping h :
A → N × N defined by h(a) = ( f (a), g(a)) for all a ∈ A. The equivariance of ϕ

follows from Proposition 6; if π ∈ SA we have ϕ(π�̃ f , π�̃g) = h′, where h′(a) =
((π�̃ f )(a), (π�̃g)(a)) = ( f (π−1(a)), g(π−1(a))) = h(π−1(a)) = (π�̃h)(a) for all
a ∈ A, and so h′ = π�̃h = π�̃ϕ( f , g). Therefore, |(AN)2f s | = |AN×{0,1}

f s | = |AN

f s |.
Thus, |(NA)2f s | = |(N × N)A

f s | = |NA
f s | according to Proposition 10(3) and Lemma 2

(we used |N × N| = |N|). 
�
Theorem 11 Let X be a finitely supported subset of an invariant set (Y , ·). If ℘ f s(X)

is FSM Tarski I infinite, then ℘ f s(X) is FSM Tarski III infinite. The converse does not
hold.
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Proof The direct implication is a consequence of Theorem 10(1). Thus, we focus on
the proof of the invalidity of the reverse implication. Firstly, we make the remark that
whenever U , V are finitely supported subsets of an invariant set with U ∩ V = ∅,
we have that there is a finitely supported (by supp(U ) ∪ supp(V )) bijection from
℘ f s(U ∪ V ) into ℘ f s(U ) × ℘ f s(V ) that maps each X ∈ ℘ f s(U ∪ V ) into the pair
(X ∩ U , X ∩ V ). Similarly, whenever B, C are invariant sets there is an equivariant
bijection from ℘ f s(B) × ℘ f s(C) into ℘ f s(B + C) mapping each pair (B1, C1) ∈
℘ f s(B) × ℘ f s(C) into the set {(0, b) | b ∈ B1} ∪ {(1, c) | c ∈ C1}. This follows
directly by verifying the conditions of Proposition 6.

Let us consider the set A ∪ N which is FSM Dedekind infinite. According to
Theorem 10(2), we have that ℘ f s(A ∪N) is FSM Tarski III infinite. We prove that it is
not FSMTarski I infinite. Assume, by contradiction that |℘ f s(A∪N)×℘ f s(A∪N)| =
|℘ f s(A∪N)|whichmeans |℘ f s(A+N+A+N)| = |℘ f s(A∪N)|, and so |℘ f s(A+A+
N)| = |℘ f s(A∪N)|. Thus, according to Proposition 10(4), there is a finitely supported
injection from ℘ f s(A + A) to ℘ f s(A ∪ N), which means there is a finitely supported
injection from ℘ f s(A) × ℘ f s(A) to ℘ f s(A) × ℘ f s(N), and so there is a finitely
supported injection from A × A to ℘ f s(A) × ℘ f s(N). According to Proposition 8,
there should exist a finitely supported surjection f : ℘ f s(A)×℘ f s(N) → A×A. Let us
consider two atomsa, b /∈ supp( f )witha �= b. It follows that (a b) ∈ Fix(supp( f )).
Since f is surjective, there exists (X , M) ∈ ℘ f s(A) × ℘ f s(N) such that f (X , M) =
(a, b). According to Proposition 6 and because N is a trivial invariant set meaning that
(a b)�M = M , we have f ((a b)�X , M) = f ((a b)⊗ (X , M)) = (a b)⊗ f (X , M) =
(a b)⊗(a, b) = ((a b)(a), (a b)(b)) = (b, a). Due to the functionality of f we should
have ((a b)�X , M) �= (X , M), which means (a b)�X �= X .

We prove that if both a, b ∈ supp(X), then (a b)�X = X . Indeed, suppose a, b ∈
supp(X). Since X ∈ ℘ f s(A), from Proposition 5 we have that X is either finite or
cofinite. If X is finite, then supp(X) = X , and so a, b ∈ X . Therefore, (a b)�X =
{(a b)(x) | x ∈ X} = {(a b)(a)}∪ {(a b)(b)}∪ {(a b)(c) | c ∈ X\{a, b}} = {b}∪ {a}∪
(X\{a, b}) = X . Now, if X is cofinite, then supp(X) = A\X , and so a, b ∈ A\X .
Since a, b /∈ X , we have a, b �= x for all x ∈ X , which means (a b)(x) = x for all
x ∈ X , and again (a b)�X = X .

Thus, one of a or b does not belong to supp(X). Assume b /∈ supp(X). Let us
consider c �= a, b, c /∈ supp( f ), c /∈ supp(X). Then (b c) ∈ Fix(supp(X)), and
so (b c)�X = X . Moreover, (b c) ∈ Fix(supp( f )), and by Proposition 6 we have
(a, b) = f (X , M) = f ((b c)�X , M) = f ((b c) ⊗ (X , M)) = (b c) ⊗ f (X , M) =
(b c) ⊗ (a, b) = (a, c) which is a contradiction because b �= c. 
�
Proposition 18 Let X be a finitely supported subset of an invariant set (Y , ·). If X is
FSM Tarski III infinite, then there exists a finitely supported bijection g : N× X → X.
The reverse implication is also valid.

Proof By hypothesis, there is a finitely supported bijection ϕ : {0, 1} × X → X .
Let us consider the mappings f1, f2 : X → X defined by f1(x) = ϕ(0, x) for all
x ∈ X and f2(x) = ϕ(1, x) for all x ∈ X , that are injective and supported by supp(ϕ)

according to Proposition 6. Since ϕ is injective we also have I m( f1) ∩ I m( f2) = ∅,
and because ϕ is surjective we get I m( f1)∪ I m( f2) = X . We prove by induction that
the n-times auto-composition of f2, denoted by f n

2 , is supported by supp( f2) for all
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n ∈ N. For n = 1 this is obvious. So assume that f n−1
2 is supported by supp( f2). By

Proposition 6 we must have f n−1
2 (σ · x) = σ · f n−1

2 (x) for all σ ∈ Fix(supp( f2))
and x ∈ X . Let us fix π ∈ Fix(supp( f2)). According to Proposition 6, we have
f n
2 (π · x) = f2( f n−1

2 (π · x)) = f2(π · f n−1
2 (x)) = π · f2( f n−1

2 (x)) = π · f n
2 (x) for

all x ∈ X , and so f n
2 is finitely supported from Proposition 6. Define f : N × X →

X by f ((n, x)) = f n
2 ( f1(x)). Let π ∈ Fix(supp( f1) ∪ supp( f2)). According to

Proposition 6 and since (N,
) is a trivial invariant set, we get f (π ⊗ (n, x)) =
f ((n, π · x)) = f n

2 ( f1(π · x)) = f n
2 (π · f1(x)) = π · f n

2 ( f1(x)) = π · f ((n, x)) for
all (n, x) ∈ N × X , which means that f is supported by supp( f1) ∪ supp( f2). We
prove the injectivity of f . Assume f ((n, x)) = f ((m, y)) which means f n

2 ( f1(x)) =
f m
2 ( f1(y)). If n > m this leads to f n−m

2 ( f1(x)) = f1(y) (since f2 is injective) which
is in contradiction with the relation I m( f1) ∩ I m( f2) = ∅. Similarly, we cannot have
n < m. Thus, n = m which leads to f1(x) = f1(y), and so x = y due to the injectivity
of f1. Therefore, f is injective. Since we obviously have a finitely supported injection
from X into N × X (e.g x �→ (0, x) which is supported by supp(X)), in the view of
Lemma 2 we can find a finitely supported bijection between X and N × X .

The reverse implication is almost trivial. There is a finitely supported injection from
{0, 1} × X into N × X . If there is a finitely supported injection from N × X into X ,
then there is a finitely supported injection from {0, 1} × X into X . The desired result
follows from Lemma 2. 
�

5 Countability in FSM

Definition 9 Let Y be a finitely supported subset of an invariant set X .
Then Y is countable in FSM (or FSM countable) if there exists a finitely supported
onto mapping f : N → Y .

Proposition 19 Let Y be a finitely supported countable subset of an invariant set (X , ·).
Then Y is uniformly supported.

Proof There exists a finitely supported onto mapping f : N → Y . Thus, for each
arbitrary y ∈ Y , there exists n ∈ N such that f (n) = y. According to Proposition 6,
for each π ∈ Fix(supp( f ))we have π · y = π · f (n) = f (π 
n) = f (n) = y, where

 is the necessarily trivial action on N. Thus, Y is uniformly supported by supp( f ). 
�

Proposition 20 Let Y be a finitely supported subset of an invariant set X. Then Y is
countable in FSM if and only if there exists a finitely supported one-to-one mapping
g : Y → N.

Proof Suppose that Y is countable in FSM. Then there exists a finitely supported onto
mapping f : N → Y . We define g : Y → N by g(y) = min[ f −1({y})], for all
y ∈ Y . According to Proposition 6, g is supported by supp( f )∪ supp(Y ). Obviously,
g is one-to-one. Conversely, if there exists a finitely supported one-to-one mapping
g : Y → N, then g(Y ) is supported is equivariant as a subset of the trivial invariant set
N. Thus, there exists a finitely supported bijection g : Y → g(Y ), where g(Y ) ⊆ N.
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We define f : N → Y by

f (n) =
{

g−1(n) if n ∈ g(Y )

t if n ∈ N\g(Y )
,

where t is a fixed element ofY . According to Proposition 6, we have that f is supported
by supp(g) ∪ supp(Y ) ∪ supp(t). Moreover, f is onto. 
�
Proposition 21 Let Y be an infinite, finitely supported, countable subset of an invariant
set X. Then there exists a finitely supported bijective mapping g : Y → N.

Proof First we prove that for any infinite subset B of N, there is an injection
from N into B. Fix such a B. It follows that B is well-ordered. Define f :
N → B by: f (1) = min(B), f (2) = min(B\ f (1)), and recursively f (m) =
min(B\{ f (1), f (2), ..., f (m − 1)}) for all m ∈ N (since B is infinite). Since N

is well-ordered, choice is not involved. Obviously since both B and N are trivial
invariant sets, we have that f is equivariant. Since B is a subset of N we also have
an equivariant injective mapping h : B → N. According to Lemma 1, there is an
equivariant bijection between B and N (we can even prove that f is bijective).

Since Y is countable, there exists a finitely supported one-to-one mapping u :
Y → N. Thus, the mapping u : Y → u(Y ) is finitely supported and bijective. Since
u(Y ) ⊆ N , we have that there is an equivariant bijection v between u(Y ) and N, and
so there exists a finitely supported bijective mapping g : Y → N defined by g = v ◦u.


�
From [1]we know that the (in)consistency of the choice principleCC(fin) in FSM is

an open problem, meaning that we do not know whether this principle is consistent or
notwith respect to the FSMaxioms.A relationship between countable union principles
and countable choice principles is presented in ZF in [6]. Below we prove that such a
relationship is preserved in FSM.

Definition 10 1. The Countable Choice Principle for finite sets in FSM CC(fin) has
the form “Given any invariant set X , and any countable familyF = (Xn)n of finite
subsets of X such that the mapping n �→ Xn is finitely supported, there exists a
finitely supported choice function on F ."

2. The Countable Union Theorem for finite sets in FSM, CUT(fin), has the form
“Given any invariant set X and any countable family F = (Xn)n of finite subsets
of X such that themapping n �→ Xn is finitely supported, then there exists a finitely
supported onto mapping f : N → ∪

n
Xn".

3. The Countable Union Theorem for k-element sets in FSM, CUT(k), has the form
“Given any invariant set X and any countable family F = (Xn)n of k-element
subsets of X such that the mapping n �→ Xn is finitely supported, then there exists
a finitely supported onto mapping f : N → ∪

n
Xn".

4. The Countable Choice Principle for sets of k-element sets in FSM, CC(k) has the
form “Given any invariant set X , and any countable familyF = (Xn)n of k-element
subsets of X in FSM such that the mapping n �→ Xn is finitely supported, there
exists a finitely supported choice function on F".
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Proposition 22 In FSM, the following equivalences hold.

1. CUT(fin) ⇔ CC(fin);
2. CUT(2) ⇔ CC(2);
3. CUT(n) ⇔ CC(i) for all i ≤ n.

Proof 1. Let us assume that CUT(fin) is valid in FSM. We consider the finitely
supported countable family F = (Xn)n in FSM, where each Xn is a non-empty
finite subset of an invariant set X in FSM. From CUT(fin), there is a finitely sup-
ported onto mapping f : N → ∪

n
Xn . Since f is onto and each Xn is non-empty,

we have that f −1(Xn) is a non-empty subset of N for each n ∈ N. Consider the
function g : F → ∪F , defined by g(Xn) = f (min[ f −1(Xn)]). We claim that
supp( f ) ∪ supp(n �→ Xn) supports g. Let π ∈ Fix(supp( f ) ∪ supp(n �→ Xn)).
According to Proposition 6, because N is a trivial invariant set and each element Xn

is supported by supp(n �→ Xn), we have π · g(Xn) = π · f (min[ f −1(Xn)]) =
f (π 
 min[ f −1(Xn)]) = f (min[ f −1(Xn)]) = g(Xn) = g(π�Xn), where by � we
denoted the SA-action onF , by ·we denoted the SA-action on∪F and by 
we denoted
the trivial action on N. Therefore, g is finitely supported. Moreover, g(Xn) ∈ Xn , and
so g is a choice function on F .

Conversely, let F = (Xn)n be a countable family of finite subsets of X such that
the mapping n �→ Xn is finitely supported. Thus, each Xn is supported by the same
set S = supp(n �→ Xn). Since each Xn is finite (and the support of a finite set
coincides with the union of the supports of its elements) we have that Y = ∪

n∈NXn

is uniformly supported by S. Moreover, the countable sequence (Yn)n∈N defined by
Yn = Xn\ ∪

m<n
Xm is a uniformly supported (by S) sequence of pairwise disjoint

uniformly supported sets with Y = ∪
n∈NYn . Consider the infinite family M ⊆ N such

that all the terms of (Yn)n∈M are non-empty.
For each n ∈ M , the set Tn of total orders on Yn is finite, non-empty, and uniformly

supported by S. Thus, by applying CC(fin) to (Tn)n∈M , there is a choice function
f on (Tn)n∈M which is also supported by S. Furthermore, f (Tn) is supported by
supp( f )∪ supp(Tn) = S for all n ∈ M . One can define a uniformly supported (by S)
total order relation on Y (which is also a well-order relation on Y ) as follows x ≤ y

if and only if

⎧

⎨

⎩

x ∈ Yn and y ∈ Ym with n < m
or
x, y ∈ Yn and x f (Tn)y.

Clearly, if Y is infinite, then there is an S-supported order isomorphism between
(Y ,≤) and M with the natural order, which means, according to Proposition 21, that Y
is countable.

2. As in the above item CUT(2) ⇒ CC(2).
For proving CC(2) ⇒ CUT(2), let F = (Xn)n be a countable family of 2-element

subsets of X such that the mapping n �→ Xn is finitely supported. According to
CC(2) we have that there exists a finitely supported choice function g on (Xn)n . Let
xn = g(Xn) ∈ Xn . As in the above item, we have that supp(n �→ Xn) supports xn

for all n ∈ N. For each n, let yn be the unique element of Xn\{xn}. Since for any n
both xn and Xn are supported by the same set supp(n �→ Xn), it follows that yn is
also supported by supp(n �→ Xn) for all n ∈ N.
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Define f : N → ∪
n

Xn by f (n) =
{

x n
2

if n is even
y n−1

2
if n is odd . We can equivalently

describe f as being defined by f (2k) = xk and f (2k + 1) = yk . Clearly, f is onto.
Furthermore, because all xn and all yn are uniformly supported by supp(n �→ Xn),
we have that f (n) = π · f (n), for all π ∈ Fix(supp(n �→ Xn)) and all n ∈ N.
According to Proposition 6, we obtain that f is also supported by supp(n �→ Xn),
and so ∪

n
Xn is FSM countable.

3. Similar to the proof of item 1. 
�

We can note that under CC(fin) a finitely supported subset X of an invariant set is
FSM Dedekind infinite if and only if ℘ f in(X) is FSM Dedekind infinite.

Proposition 23 Let Y be a finitely supported countable subset of an invariant set X.
Then the set ∪

n∈NY n is countable, where Y n is the n-time Cartesian product of Y .

Proof Since Y is countable, we can order it as a sequence Y = {x1, . . . , xn, . . .}. The
other sets of formY k are uniquely representedwith respect to the previous enumeration
of the elements of Y . Since Y is finitely supported and countable, all the elements of Y
are supported by the same set S of atoms. Thus, in the view of Proposition 3, all the
elements of Y k are supported by S for each k ∈ N. Fix n ∈ N. On Y n define the
S-supported strict well-order relation � by (xi1 , xi2 , . . . , xin ) � (x j1 , x j2 , . . . , x jn )

if and only if

⎧

⎪

⎪

⎨

⎪

⎪

⎩

i1 < j1 or
i1 = j1 and i2 < j2 or
. . . or
i1 = j1, . . . , in−1 = jn−1 and in < jn .

Now, we define an S-supported strict well-order relation ≺ on ∪
n∈NY n by

u ≺ v if and only if

⎧

⎨

⎩

u ∈ Y n and v ∈ Y m with n < m
or
u, v ∈ Yn and u � v.

Thus,

there is an S-supported order isomorphism between ( ∪
n∈NY n,≺) and (N,<). 
�

6 Conclusion

In this paper we study infinite cardinalities of finitely supported structures. For two
finitely supported sets X and Y we say that they have the same cardinality, i.e.
|X | = |Y |, if and only if there exists a finitely supported bijection f : X → Y .
This equivalence relation is well-defined in FSM according to Theorem 1.We are able
to prove that the relation ≤ on FSM cardinalities (where the cardinalities are ordered
via finitely supported injective mappings) is well-defined, equivariant, reflexive, anti-
symmetric and transitive, but it is not total, while the relation ≤∗ on FSM cardinalities
(where the cardinalities are ordered via finitely supported surjective mappings) is
well-defined, equivariant, reflexive and transitive, but it is not anti-symmetric, nor
total. Operations on cardinalities such as sum, product and exponential can be well-
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X is FSM Tarski I
infinite

X is FSM Tarski
III infinite

The FSM
powerset of X is
FSM Tarski I

infinite

There is a
finitely

supported
bijection

between X and
the Cartesian
product of the
set of positive
integers and X

There is a
finitely

supported
surjection of X
onto X which is
not injective

X is FSM
Dedekind infinite

The FSM
powerset of X is
FSM Tarski III

infinite

X is FSM
Mostowski
infinite

The finite
powerset of X is
FSM Dedekind

infinite

The finite
powerset of X
contains an

infinite
uniformly
supported
subset

X is FSM
ascending
infinite

X contains an
infinite uniformly
supported subset

X is FSM Tarski
II infinite

X is FSM non
uniformly
amorphous

X is FSM
classical infinite

X is FSM non
amorphous

X is FSM
classical infinite

X is FSM
covering infinite

The FSM
powerset of the
finite powerset
of X is FSM
Dedekind
infinite

The finite
powerset of X is
FSM ascending

infinite

The powerset of
X is FSM
Dedekind
infinite

There exists a
finitely

supported
surjection from
X onto the set
of positive
integers

Fig. 1 Relationships between various forms of infinity in FSM

defined in FSM and their properties are studied in Proposition 9 and Proposition 10.
Several other properties of cardinalities are also mentioned in Sect. 3.

In Fig. 1 we summarize the relationship results between the FSM definitions of
infinity proved in this paper. The ‘ultra thick arrows’ symbolize strict implications
(of from p implies q, but q does not imply p), while ‘thin dashed arrows’ symbolize
implications for which is not proved yet if they are strict or not (the validity of the
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reverse implications follows when assuming choice principles over non-atomic ZF
sets; see Remark 3). ‘Thick arrows’ match equivalences.

We study various forms of infinity (of Tarski type, Dedekind type, Mostowski type,
…), and provide several relationship results between them. The idea of presenting
various approaches regarding ‘infinity’ belongs to Tarski who formulates in 1924
several definitions of infinite. The independence of these definitions was later proved
in set theory with atoms by Levy [8]. Such independence results can be transferred into
classical ZF set theory by employing Jech-Sochor’s embedding theorem stating that
permutation models of set theory with atoms can be embedded into symmetric models
of ZF, and so a statement which holds in a given permutation model of set theory with
atoms and whose validity depend only on a certain fragment of that model, also holds
in some well-founded model of ZF. In this paper we emphasized the connections and
differences between various definitions of infinity internally in FSM. By presenting
examples of atomic sets that satisfy a certain form of infinity, while they do not satisfy
other forms of infinity, we were able to conclude that the FSM definitions of infinity
are pairwise non-equivalent.

We particularly focused on the notion of FSM Dedekind infinity, and we proved a
full characterization of FSM Dedekind (in)finite sets. The notion of Dedekind infinity
is related to the notion of uniform support. Uniformly supported sets are of interest
because they involve boundedness properties of supports, meaning that the support
of each element in a uniformly supported set is contained in the same finite set of
atoms; in this way, all the individuals in an infinite uniformly supported family can
be characterized by involving only the same finitely many characteristics. Those sets
that do not contain infinite uniformly supported subsets are also of interest since
they are FSM Dedekind finite, and for them several properties such as fixed point
properties, stability properties, calculability properties, or approximation properties
could be proved; this will be the topic of a future work.

We proved (see Theorem 7 and Corollary 4) that the set of all finitely supported
functions from An (with n an arbitrary positive integer) to an FSM set that does not
contain an infinite uniformly supported subset also does not contain an infinite uni-
formly supported subset, and so it is Dedekind finite, although this set seems to be
‘very large’ since it is constructed as a function space on two infinite sets. Particu-
larly, AAn

f s , ℘ f s(A)An

f s , T f in(A)An

f s are FSM Dedekind finite. Such properties extend
related properties presented by the authors in [2] or [3]. The notion of ‘countabil-
ity’ is described in Sect. 5, where we present connections between countable choice
principles and countable union theorems within finitely supported sets.

In the following table we present the forms of infinity satisfied by the classical
infinite atomic sets in Finitely Supported Mathematics, such as the set of atoms, its
(finite) powerset, the set of all finite injective tuples of atoms, the set of all finitely
supported functions from the set of atoms to its powerset, the powerset of the n-times
Cartesian product of the set of atoms, the union and the Cartesian product between
the set of atoms and a non-atomic set, the powerset of the union between the set of
atoms and a non-atomic set, the set of all finitely supported functions between the set
of atoms and a non-atomic set, the second-order powerset of atoms, etc.
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Set TI i TIII i D i M i Asc i TII i N-am

A No No No No No No No
A + A No No No No No No Yes
A × A No No No No No No Yes
℘ f in(A) No No No No Yes Yes Yes
T f in(A) No No No No Yes Yes Yes
℘ f s (A) No No No No Yes Yes Yes
℘ f in(℘ f s (A)) No No No No Yes Yes Yes
AAn

f s No No No No Yes Yes Yes

T f in(A)An

f s No No No No Yes Yes Yes

℘ f s (A)An

f s No No No No Yes Yes Yes
℘ f s (An) No No No No Yes Yes Yes
A ∪ N No No Yes Yes Yes Yes Yes
A × N No Yes Yes Yes Yes Yes Yes
℘ f s (A ∪ N) No Yes Yes Yes Yes Yes Yes
℘ f s (℘ f s (A)) ? Yes Yes Yes Yes Yes Yes
AN

f s Yes Yes Yes Yes Yes Yes Yes

N
A
f s Yes Yes Yes Yes Yes Yes Yes
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