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Abstract
We show that the quantifier elimination result for the Shelah-Spencer almost sure
theories of sparse random graphs G(n, n−α) given by Laskowski (Isr JMath 161:157–
186, 2007) extends to their various analogues. The analogues will be obtained as
theories of generic structures of certain classes of finite structures with a notion of
strong substructure induced by rank functions and we will call the generics Baldwin–
Shi hypergraphs. In the process we give a method of constructing extensions whose
‘relative rank’ is negative but arbitrarily small in context. We give a necessary and
sufficient condition for the theory of aBaldwin–Shi hypergraph to have atomicmodels.
We further show that for certain well behaved classes of theories of Baldwin–Shi
hypergraphs, the existentially closed models and the atomic models correspond.

Keywords Generic structures · Quantifier elimination · Atomic models

Mathematics Subject Classification 03C10

1 Introduction

Fix a finite relational language L where each relation symbol has arity at least 2 and
let KL be the class of finite structures where each relation symbols is interpreted
reflexively and symmetrically. Fix a function α : L → (0, 1] with the additional
restriction that if all the relation symbols are 2-ary then it is not the case α(E) = 1 for
each E ∈ L . Define a rank function δ : KL → R by δ(A) = |A| − ∑

E∈L α(E)|EA|
where |EA| is the number of subsets of A on which E holds. Let Kα = {A ∈ KL :
δ(A′) ≥ 0 for all A′ ⊆ A}. Given A,B ∈ Kα , we say that A ≤ B if and only if
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A ⊆ B and δ(A) ≤ δ(A′) for all A ⊆ A′ ⊆ B. The class (Kα,≤) forms a Fraïssé
class, i.e. Kα has amalgamation and joint embedding under≤. In [4], Baldwin and Shi
initiated a systematic study of the generic structures constructed from various sub-
classes K ∗ ⊆ Kα where (K ∗,≤) forms a Fraïssé class. In particular they obtained the
stability of the theory of the generic for (Kα,≤). We call the generic for (Kα,≤) the
Baldwin–Shi hypergraph for α.

In [2], Baldwin and Shelah showed that the results regarding almost sure theories
of graphs studied by Shelah and Spencer in [10] extended to their natural hyper-
graph counterparts. They further connected two disparate lines of research when they
showed that these almost sure theories corresponded to certain theories of Baldwin–
Shi hypergraphs, allowing us to establish the Baldwin–Shi hypergraphs as analogues
of the almost sure theories. These results of [2] hinge on a ∀∃∀-axiomatization of
the resulting theory. Assuming that the values of α(E) as E ranges through L is lin-
early independent over Q, Laskowski in [8], provided a simpler ∀∃-axiomatization of
the corresponding theories of Baldwin–Shi hypergraphs. He also obtained quantifier
elimination result down to chain minimal formulas (see Definition 4.2) Later, in [7]
Ikeda, Kikyo and Tsuboi showed that the ∀∃-axiomatization, denoted by Sα , holds for
all theories of Baldwin–Shi hypergraphs. However their methods did not establish a
quantifier elimination result in the spirit of Laskowski.

In this paper we begin by extending Laskowski’s quantifier elimination for all Sα .
We then isolate properties of α; coherence, i.e. the linear dependence of {α(E) : E ∈
L}, and rationality, i.e. α(E) is rational for all E ∈ L , that play a role in determining
properties of Sα .We show that coherence is a necessary and sufficient condition for the
existence of atomic models and that rationality is a necessary and sufficient condition
to guarantee that the atomic and existentially closed models correspond.

We begin in Sect. 2 by introducing preliminary notions that we will be using
throughout this paper. In Sect. 3 we deal primarily with finite structures. One of
the key results is Theorem 3.1, which yields the existence of certain finite structures
over some fixed finite structure that witness a very small drop in rank. This theorem
plays a central role in many results throughout this paper and in [5]. Another key
result is Theorem 3.2 which establishes the existence of rank 0 extensions of finite
substructures given coherence of α.

The key result of Sect. 4, which is mainly aimed at generalizing the results of
[8], is Theorem 4.2. It states that Sα admits quantifier elimination down to the level
of chain minimal extension formulas. It also yields the completeness of Sα and a
characterization of algebraically closed sets for Sα as stated in Theorem 4.3. We end
the section with some basic facts about types over (algebraically) closed sets that will
be useful throughout.

Section 5 is devoted to a study of the atomic models of Sα . In Theorem 5.3 of
Sect. 5 we establish that coherence of α is a necessary and sufficient condition for
the corresponding Sα to have atomic models. In Theorem 5.4 we show that rationality
of α is equivalent to every model of the Sα being isomorphically embeddable in an
atomic model of Sα . We end with “Appendix A” which contains a collection of well
known number theoretic results that is used throughout.

The author would like to thank Chris Laskowski for all his help and guidance in
the preparation of this paper.
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2 Preliminaries

We work throughout with a finite relational language L where each relation symbol
E ∈ L is at least binary. Let ar : L → {n : n ∈ ω and n ≥ 2} be a function that
takes each relation symbol to its arity. This section is devoted to introducing notation,
definitions and some facts about the rank function δ (see Definition 2.1) that will be
useful throughout. The results in this section are well known or follow from routine
calculations involving δ.

2.1 Some general notions

We begin with some notation.

Notation 2.1 Fraktur letters will denote L-structures. Their Latin counterparts will, as
we shall see, denote either the structure or the underlying set. Let Z be an L-structure
and let X , Y ⊆ Z . We will adapt the practice of writing XY for X ∪ Y . Since we are
in a finite relational language X , Y , XY will have a natural L-structures associated
with them, i.e. the L-structures with universe X , Y , XY that are substructures of Z,
respectively. By a slight abuse of notation we write X , Y , XY for these L-structures.
It will be clear by context what the notation refers to. We write X ⊆Fin Z , X ⊆Fin Z
to indicate that |X | is finite.
Notation 2.2 Wewill use ∅ to denote the unique L-structure with no elements. Further
given L-structures X,Y, there is a uniquely determined L-structure whose universe
is X ∩ Y . We denote this structure by X ∩ Y.

Notation 2.3 We let KL denote the class of all finite L structures A (including the
empty structure), where each E ∈ L is interpreted symmetrically and irrelexively in
A: i.e. A ∈ KL if and only if for every E ∈ L , if A |� E(a), then a has no repetitions
and A |� E(π(a)) for every permutation π of {0, . . . , n − 1}. By KL we denote
the class of L-structures whose finite substructures all lie in KL , i.e. KL = {M :
M an L − structure and if A ⊆Fin M, then A ∈ KL}.
Notation 2.4 Fix any E ∈ L . GivenA ∈ KL , NE (A)will denote the number of distinct
subsets of A on which E holds positively inside of A. The set of such subsets will be
denoted by EA. Consider an L-structure whose finite substructures are all in KL and
let A, B, C ⊆ Z be finite. Now NE (A, B)will denote the number of distinct subsets of
AB on which E holds with at least one element from A and at least one element from
B inside of AB. We further let NE (A, B, C) denote the number of distinct subsets
of A ∪ B ∪ C on which E holds with at least one element from A and at least one
element from C .

We now introduce the class Kα as a subclass of KL .

Definition 2.1 Fix a function α : L → (0, 1] with the property that if all of the relation
symbols in L have arity 2, then it is not the case that α(E) = 1 for all E ∈ L . Define
a function δ : KL → R by δ(A) = |A| − ∑

E∈L α(E)NE (A) for each A ∈ KL . We
let Kα = {A|δ(A′) ≥ 0 for all A′ ⊆ A}.
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We adopt the convention ∅ ∈ KL and hence ∅ ∈ Kα as δ(∅) = 0. It is easily
observed that Kα is closed under substructure. Further the rank function δ allows us
to view both KL and Kα as collections of weighted hypergraphs. We proceed to use
the rank function to define a notion of strong substructure ≤. Typically the notion of
≤ is usually defined on Kα × Kα . However, we define the concept on the broader
class KL × KL . This will allow us to make the exposition significantly simpler via
Remark 2.2.

Definition 2.2 Given A,B ∈ KL with A ⊆ B, we say that A is strong in B, denoted
by A ≤ B if and only if A ⊆ B and (A) ≤ (A′) for all A ⊆ A′ ⊆ B.

Remark 2.1 The relation ≤ on KL × KL is reflexive, transitive and has the property
that given A,B,C ∈ KL , if A ≤ C, B ⊆ C then A ∩ B ≤ B (use (2) of Fact 2.3).
The same statement holds true if we replace KL by Kα in the above. Further for any
given A ∈ Kα , ∅ ≤ A.

Remark 2.2 Let A ∈ Kα , B ∈ KL with A ⊆ B. Using (2) of Fact 2.3, we easily
obtain that if A ≤ B, then B ∈ Kα .

Definition 2.3 By Kα we denote the class of all L-structureswhose finite substructures
are all in Kα , i.e. Kα = {M : M an L − structure and if A ⊆Fin M, then A ∈ Kα}.

The following definition extends the notion of strong substructure to structures in
KL :

Definition 2.4 Let X ∈ KL . For A ⊆Fin X, A is strong in X, denoted by A ≤ X, if
A ≤ B for all A ⊆ B ⊆Fin X. Given A′ ∈ KL an embedding f : A′ → X is called a
strong embedding if f (A′) is strong in X.

Definition 2.5 Let n be a positive integer. A set {Bi : i < n} of elements of Kα

is disjoint over A if A ⊆ Bi for each i < n and the pairwise intersection of the
universes of the distinctBi is A. If {Bi : i < n} is disjoint over A, thenD is a join of
{Bi : i < n} if the universe D is the union of the Bi and theBi are all substructures of
D. A join is called the free join, which we denote by⊕i<nBi if there are no additional
relations. We note that there are obvious extension of these notions to KL , KL , Kα

and to infinitely many structures {Xi : i < κ} being disjoint/joined/freely joined over
some fixed Y ⊆ Xi for each i < κ .

Fact 2.1 If B,C ∈ Kα , A = B ∩ C, and A ≤ B, then B ⊕A C ∈ Kα and
C ≤ B ⊕A C.

We now turn our attention towards constructing the generic structure for (Kα,≤).
But first we recall that a class (K ,≤) (with K ⊆ KL ) has the Joint Embedding
Property (JEP) if for any A,B ∈ Kα , there is some C ∈ K and strong embeddings
f : A → C, g : B → C and that (K ,≤) has the Amalgamation Property (AP) if for
any A,B,C ∈ Kα and strong embeddings f : A → B, g : A → C there is some
D ∈ K and strong embeddings j : B → D, h : C → D such that j f = hg. If ∅ ∈ K ,
a simple argument yields that AP implies JEP.
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Definition 2.6 A countable structureM ∈ Kα is said to be the generic for (Kα,≤) if

1. M is the union of a strong ω-chain, i.e. Ai ≤ Ai+1 with each Ai ∈ Kα .
2. If A,B ∈ Kα with A ≤ B, any strong embedding f : A → M can be extended

to a strong embedding f ′ : B → M.

Fact 2.2 (Kα,≤) is a Fraïssé class (i.e. (Kα,≤) satisfies joint embedding and amal-
gamation with respect to ≤) and a generic structure for (Kα,≤) exists and is unique
up to isomorphism.

This justifies the following definition:

Definition 2.7 For a fixed α we call the generic for (Kα,≤) the Baldwin–Shi hyper-
graph for α.

2.2 Closed sets

In this section we generalize the notion of strong substructure to substructures of
arbitrary size by introducing the notion of a closed set. This will provide us with a
useful tool for analyzing the various theories of Baldwin–Shi hypergraphs.

Definition 2.8 Let A,B ∈ KL . Now (A,B) is a minimal pair if and only if A ⊆ B,
A ≤ C for all A ⊆ C ⊂ B but A � B.

Note that (A,B) is a minimal pair if and only if A ⊆ B, (A) ≤ (C) for all
A ⊆ C ⊂ B but (B) < (A).

Definition 2.9 Let Z ∈ KL and X ⊆ Z . We say X is closed in Z if and only if for all
A ⊆Fin X , if (A,B) is a minimal pair with B ⊆ Z , then B ⊆ X .

Remark 2.3 As any A,B,C ∈ KL with A ≤ C and B ⊆ C satisfies A ∩ B ≤ B (see
Remark 2.1) an easy argument yields that given Z ∈ KL and A ⊆Fin Z, A ≤ Z if and
only if A is closed in Z.

It is immediate from the above definition that any Z ∈ KL , Z is closed in Z and
that the intersection of a family of closed sets of Z is again closed. These observations
justify the following definition:

Definition 2.10 Let Z ∈ KL and X ⊆ Z . The intrinsic closure of X in Z , denoted by
iclZ(X) is the smallest set X ′ such that X ⊆ X ′ ⊆ Z and X ′ is closed in Z .

2.3 Some basic properties of the rank function

We start exploring the rank function δ in more detail.

Definition 2.11 Let Z ∈ KL and let A, B ⊆Fin Z . Now δ(B/A) = δ(B A) − δ(A).
We will call δ(B/A), the relative rank of B over A. When B and A are understood in
context we will just say relative rank.
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We introduce some notation:

Notation 2.5 For readability, we will often write αE in place of α(E). Given
Z ∈ KL and A, B, C ⊆Fin Z , we write e(A) for

∑
E∈L αE NE (A), e(A, B) for∑

E∈L αE NE (A, B) and e(A, B, C) for
∑

E∈L αE NE (A, B, C).

The following collects some useful facts about the behavior of the rank function δ

routine computations:

Fact 2.3 Let Z ∈ KL and let A, B, C, Bi ⊆Fin Z.

1. δ(B/A) = δ(B) − δ(A ∩ B) − e(A − B, A ∩ B, B − A) and hence if either A
or B is in Kα , δ(B/A) ≤ δ(B) − e(A − B, A ∩ B, B − A). Further if A, B are
disjoint then δ(B/A) = δ(B) − e(A, B).

2. Let A′ = A ∩ B. Now δ(B/A′) ≥ δ(B/A) = δ(AB/A), while δ(AB/A) + αE =
δ(B/A) + αE ≤ δ(B/A′) whenever E AB �= E A ∪ E B.

3. Assume that BC ∩ A = ∅, A ≤ AB and A ≤ AC. Then δ(BC/A) ≤ δ(B/A) +
δ(C/A).

4. If {Bi : i < n} is disjoint over A and Z = ⊕i<n Bi is their free join over A,
then δ(Z/A) = ∑

i<n δ(Bi/A). In particular, if A ≤ Bi for each i < n, then
A ≤ ⊕i<n Bi .

5. δ(B1B2 . . . Bk/A) = δ(B1/A) + ∑k
i=2 δ(Bi/AB1 . . . Bi−1) .

3 Existence theorems

In this section we establish several results that can be viewed as results that are purely
about finite weighted hypergraphs. The results are all obtained by explicitly construct-
ing various weighted hypergraphs. Fix an α. We begin with the following definitions:

Definition 3.1 LetB ∈ Kα with δ(B) > 0.We callD ∈ Kα withB ⊆ D an essential
minimal pair if (B,D) is a minimal pair and for any D′

� D, δ(D′/D′ ∩ B) ≥ 0.

Remark 3.1 The notion of an essential minimal pair also appear in the literature as
biminimal pairs (see [6]). We adopt the terminology of essential minimal pair as it
seems to better capture the salient property: i.e. the entirety of the base structure B
and the extension D is required to witness the minimal pair (B,D).

Definition 3.2 We say that α is rational if αE is rational for all E ∈ L .

Definition 3.3 We use ar(L) to denote max{ar(E) : E ∈ L}.
One of the main results of Sect. 3 is Theorem 3.1. It states that given B ∈ Kα

with δ(B) > 0, there exists infinitely many non-isomorphic D ∈ Kα where (B,D)

is an essential minimal pair that satisfies −ε ≤ δ(D/B) < 0 where ε is, in context,
arbitrarily small. The overall proof of this theorem has the following structure:

1. We begin by introducing the notion of an L-collection. An L-collection r will be a
multiset, i.e. a set with repeated elements, where each element is an element of L .
For any E in L , we let r(E) be the number of times E is repeated in r .
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2. Nextwe introduce the notion of a template. A template,will be a triple 〈n, r , t〉. Here
n is a positive integer and r = 〈r1 . . . , rn〉 will index a sequence of L-collections.
Further each ri will have the property that for each E ∈ L , ri (E) < m pt , wherem pt

is a fixed positive integer thatwewill introduce shortly. Finally t = {E1, . . . , En−1}
is an indexed L-collection. The idea is that the extensionD ⊇ Bwill have universe
D − B = {d1, . . . , dn}. Further, for each E ∈ L , it will have r( j)(E) many
relations involving only subsets of B and d j . Also there will be precisely one
relation involving t( j), {d j , d j+1} and a subset of B and no other relations (besides
the ones already inB) will hold.

3. A moments’ reflection shows that under the above conditions, not all B ∈ Kα

will have extensions by templates (for example L might contain only one relation
symbol whose arity ar(E) is much larger than |B|). We identify crude bounds such
as m pt and on |B| that will make the construction of an extension by a template
feasible. Let ar(L) = max{ar(E) : E ∈ L} The bound on |B| will be picked so
that there are at least mptar(L) disjoint subsets of B.

4. With these technical details aside, we isolate the notions of acceptable and good
templates for a fixed B ∈ Kα with positive rank. A good template Θ is set up in
such a way that guarantees that an extension D of B using Θ will be an essential
minimal pair. Thus we are left with generating good templates, which we carry out
with the help of some number theoretic results (see “Appendix A”). The notion of
acceptable, which is weaker than the notion of good, is isolated as it plays a part
in the second main result of this section, i.e. Theorem 3.2.

5. We prove Lemma 3.8, which states: GivenB ∈ Kα with |B| sufficiently large and
δ(B) > 0 that there are here exists infinitely many non-isomorphicD ∈ Kα where
(B,D) is an essential minimal pair that satisfies −ε ≤ δ(D/B) < 0. Here again,
ε is, in context, arbitrarily small. Finally in Theorem 3.1 we establish the desired
result.

We now introduce some of the notions that we alluded to above:

Definition 3.4 Wedefinempt be the least positive integerm ∈ ω such that 1−mptαE <

0 for all E ∈ L . We let msuff be the product mptar(L).

Remark 3.2 Note that if B ∈ KL and D ∈ KL is a one point extension of B and
δ(D/B) ≥ 0, then the number of relations that include the single point in D − B
and B is less than mpt. It can be seen that given an essential minimal pair (A,C) and
c ∈ C − A, then N (c, A) < mpt. Now msuff gives a crude lower bound over the size
of B ∈ Kα over which we can construct essential minimal pairs. Here msuff stands
for sufficient.

The other main result in this section, Theorem 3.2, is concerned with building
D ∈ Kα such that δ(D) = 0 that extendB ∈ Kα with δ(B) > 0. We will see that the
existence of such structures can be characterized by the notion of coherence.

Definition 3.5 We say that α is coherent if there exists 〈m E : E ∈ L, m E ∈ ω, m E >

0〉 such that
∑

E∈L m EαE ∈ Q.
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Remark 3.3 Clearly if α is rational, then α is coherent. We now give an example of a
coherent α that is not rational: Fix 0 < β < 1/2 irrational. If α(E1) = β for some
E1 ∈ L and α(E2) = 1 − β for some E2 ∈ L and α(E) ∈ {β, 1 − β} for all E ∈ L ,
then α is coherent but not rational.

In Sect. 5, we use these structures to classify the α for which the corresponding
theory of the Baldwin–Shi hypergraph has atomic models. The construction of the
required D will again be done with the help of templates and will reuse the ideas
developed in the constructions of essential minimal pairs with some caveats.

3.1 Templates and extensions

We begin by defining a template.

Definition 3.6 A multiset r where the elements of r are relation symbols from L will
be called an L-collection. Given E ∈ L , r(E) will denote the number of times that E
is repeated in r . Further we let |r | = ∑

E∈L r(E). Given a L-collections r and r ′, we
say that r ′ is a sub-collection of L if r ′ ⊆ r .

Notation 3.1 Throughout the rest of Sect. 3, wewill use the letters r , s (with orwithout
various subscripts) to denote L-collections.

Definition 3.7 Let n ≥ 3 be a fixed positive integer. Let r = 〈r1, . . . rn〉 where each ri

is an L-collection. Further let t be an indexed L-collection with |t | = n−1, i.e. there is
a fixed enumeration E1, . . . , En−1 of the elements of t . We call a triple Θ = 〈n, r , t〉
an n-template if for each 1 ≤ i ≤ n, E ∈ L we have that ri (E) < mpt.

Given a template andB ∈ KL , we use the template to create an extensionD ofB.
As noted previously the constructions of interest are the ones where given B ∈ Kα

and we can create D extending B such that D ∈ Kα and D satisfies other desirable
properties. We now make precise the notion of an extension by a template that was
somewhat loosely described at the beginning of Sect. 3.

Definition 3.8 Let B ∈ KL such that |B| ≥ msuff. Let Θ be an n-template. An
extension of B by Θ is some D in KL that satisfies

1. B ⊆ D
2. The universe of D − B is {d1, . . . , dn}, i.e. it consists of n-points.
3. For each 1 ≤ i ≤ n − 1, there is a subset Q ⊆ B of size ar(Ei ) − 2 such that

{di , di+1} ∪ Q ∈ E D
i (where Q is possibly empty).

4. If ri (E) > 0 for some E ∈ L , there are precisely ri (E) distinct subsets
Q1, . . . , Qri (E) of B of size ar(E)−1 such that {di }∪Q j ∈ E D for 1 ≤ j ≤ ri (E).

5. There are no further relations inD than the ones that were originally inB and the
ones that are described above.

In the case for any b ∈ B, there exist some d j , Q′ ⊆ D and E ∈ L such that
{b, d j } ∪ Q′ ∈ ED, we say that D covers B.
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Lemma 3.1 Let B ∈ KL such that |B| ≥ msuff. Let Θ be an n-template. There is an
an extension D ⊇ B of B by Θ . Moreover if

∑n
i=1 |ri | ≥ |B| or if

∑
ar(E)≥3(t(E) +

∑n
i=1 ri (E)) ≥ |B| there exists D that covers B.

Proof Take D0 = {d1, . . . , dn} and consider the L structureD0 with universe D0 and
no relations in D0. Now D will be a structure with universe B ∪ D0.

First note that since |B| ≥ msuff, B has at leastmpt distinct subsets of size ar(E)−1
for each E ∈ L . For each 1 ≤ i ≤ n − 1 we may fix some subset Q ⊆ B and add a
relation so that {di , di+1} ∪ Q ∈ E D

i . Here Q is possibly empty: in fact Q is empty if
and only if Ei is a binary relation symbol.

Now fix 1 ≤ i ≤ n. For each E ∈ L we have ri (E) < mpt. Thus for fixed E ∈ L ,
as |B| ≥ msuff, we may choose ri (E) distinct subsets Q j as 1 ≤ j ≤ ri (E), of B
where each Q j is of size ar(E) − 1. Add relations so that {di } ∪ Q j ∈ E ′D for
1 ≤ j ≤ ri (E). Do this for each relation symbol E ∈ L . Now assume that this process
of adding relations has been carried out for each 1 ≤ i ≤ n. Let the resulting structure
be D. Note that the relations that hold on D are precisely the ones that turn B to B
and the relations described so far. It is now clear that the resulting structure satisfies
the properties required of D.

If
∑n

i=1 |ri | ≥ |B| we may insist that the choice of Q j , as E ranges through L ,
be made so that their union is B. If

∑
ar(E)≥3(t(E) + ∑n

i=1 ri (E)) ≥ |B|, then we
may insist that the choice of the various Q and Q j be made so that the union is B. In
either case the statement that for any b ∈ B, there exists some d j , Q′ ⊆ D such that
{b, d j } ∪ Q′ ∈ ED for some E ∈ L holds. ��
Remark 3.4 Note that an extension by Θ need not be unique up to isomorphism over
B. However given two non-isomorphic extensions D,D′ of B by Θ their relative
ranks are identical: δ(D/B) = δ(D′/B). Hence δ(D) = δ(D′). Further, we note that
the structureD depends on |B|.
Notation 3.2 Let Θ = 〈n, r , t〉 be an n-template. Fix 1 ≤ j ≤ n. Let B ∈ KL such
that |B| ≥ msuff and letD be an extension by Θ ofB. Under the natural enumeration
of D − B = {d1, . . . , dn} used to construct the extension; we let D j denote the
substructure of D with universe B ∪ {d1, . . . , d j } for 1 ≤ j ≤ n and we let D j,k

denote the substructure of D with = B ∪ {d j , . . . dk} for any 1 ≤ j ≤ k ≤ n.

We now define the acceptable and good templates. As noted previously, good tem-
plates are defined with the construction of essential minimal pairs in mind. Acceptable
templates capture a weaker notion that is common to both the essential minimal pairs
and the rank zero extensions that are dealt with in Sect. 3.3.

Whendealingwith templates itwill oftenbe convenient to focus on the sub-language
of the symbols that occur in Θ . We make the following somewhat broader definition.

Definition 3.9 Given a triple Θ = 〈n, r , t〉, the localization of L to Θ , denoted by
LΘ is the subset of L such that E ∈ LΘ if and only if E occurs positively in Θ , i.e.
r j (E) > 0 for some 1 ≤ j ≤ n or E = E j for some 1 ≤ j ≤ n − 1. Further we
let GrΘ(2) denote the least positive value of

∑
E∈LΘ α(E)nE − 1 for non-negative

integers nE .
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Remark 3.5 The reason behind using the notation GrΘ(2) will become clear in
Sect. 3.2.

Definition 3.10 Let B ∈ Kα be such that |B| ≥ msuff and δ(B) > 0. Let Θ be a
n-template and letD be an extension ofB by Θ . We say that Θ is acceptable forB if

1. 0 < −δ(D/B) ≤ min{δ(B), GrΘ(2)}.
2. δ(D j/B) ≥ 0 for 1 ≤ j ≤ n − 1.
3. α(E j ) − δ(D j/B) > 0 for 1 ≤ j ≤ n − 1.

We say that Θ is good for B if

1. Θ is acceptable for B.
2. α(E j ) − δ(D j/B) + δ(D/B) ≥ 0 for 1 ≤ j ≤ n − 1.
3. We may in addition assume that D can be chosen so that it covers B.

The following lemma captures the key properties of extensions by acceptable and
good templates.

Lemma 3.2 Let B ∈ Kα be such that |B| ≥ msuff and δ(B) > 0. Let Θ be an n-
template and let w = n −(

∑n−1
i=1 αEi +

∑n
i=1

∑
E∈L αEri (E)). Let D be an extension

by Θ of B

1. If Θ is acceptable, then

1.a For any B ⊆ D′
� D such that dn /∈ D′, δ(D′/B) ≥ 0

1.b For any D′
� D such that dn /∈ D′, δ(D′/D′ ∩ B) ≥ 0

1.c For any B ⊆ D′ ⊆ D, δ(D′/B) ≥ w

2 If Θ is good for B, we may choose D so that D covers B and then

2.a D ∈ Kα

2.b For any proper B ⊆ D′
� D, δ(D′/B) ≥ 0

2.c For any D′
� D, δ(D′/B ∩ D′) ≥ 0

i.e. (B,D) is an essential minimal pair with δ(D/B) = w.

Proof We begin with (1): For (1.a), the case D′ = D j for some 1 ≤ j ≤ n − 1
is immediate. Consider the case that D′ = Dk+1, j where 1 ≤ k < j ≤ n − 1. As
there is only a single relation, namely Ek , that contains the points dk, dk+1, it follows
that δ(Dk+1, j/B) = δ(D j/Dk) + α(Ek). Further δ(Dk+1, j/B) = δ(D j/B) −
δ(Dk/B)+α(Ek). But α(Ek)−δ(Dk/B)+δ(D j/B) ≥ 0 by using conditions 2 and
3 of Θ being acceptable. Since an arbitraryB ⊆ D′

� D with dn /∈ D can be written
as the free join differentDk, j overB, it follows that for B ⊆ D′

� D′, δ(D′/B) ≥ 0.
Now consider an arbitraryD′ ⊆ D such that dn /∈ D′ andB � D′. By (2) of Fact 2.3
δ(D′/B ∩ D′) ≥ δ(B D′/B). But the above shows that δ(B D′/B) ≥ 0 and thus (1.b)

follows.
For (1.c), note that for 1 ≤ j ≤ n, δ(D j/B) < 0 if and only if j = n if and only if

δ(D j/B) = w. As δ(Dk+1, j/B) = δ(D j/B)+α(Ek)−δ(Dk/B) for 1 ≤ k < j ≤ n
and since D′ can be written as the free join of several Dk, j and over B and at most
one of the Dk, j satisfies 0 > δ(Dk, j/B) ≥ w, it follows that δ(D′/B) ≥ w.
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Now consider (2): We are assuming D covers B. As δ(D/B) = w by construction
both (2.a) and the statement regarding (B,D) being an essential minimal pair follows
from (2.b) and (2.c). For the proof of 2.b, first considerD′ = D j+1,n for 1 ≤ j ≤ n−1.
By arguing as above we obtain that δ(D j+1,n/B) = α(E j ) − δ(D j/B) + δ(D/B).
By using condition (2) of good, it follows that α(E j ) − δ(D j/B) + δ(D/B) ≥ 0.
As Θ is good, it is also acceptable and thus δ(Dk, j/B) ≥ 0 for 1 ≤ k ≤ j ≤ n − 1.
Since an arbitraryB ⊆ D′

� D can be written as the free join differentDk, j over B
it follows that for B ⊆ D′

� D′, δ(D′/B) ≥ 0. δ(D′/B) ≥ 0.
It remains to show that for a general substructure D′

� D, we have that
δ(D′/B ∩ D′) ≥ 0. If D′ − B �= D − B, then this follows easily by (1.b) and (2) of
Fact 2.3. So assume that D′− B = D− B. SinceD′

� D, it follows thatD′ ∩ B �= B.
Fix a relation E ∈ L such that it holds with a point from D′ − B and at least one point
from B − B ′. By using (2) of Fact 2.3 we see that δ(D′/D′ ∩ B) ≥ δ(D/B)+α(E).
Since−GrΘ(2) ≤ δ(D/B), it follows that 0 ≤ GrΘ(2)+αE ≤ δ(D/B)+αE . Thus
(2.c) follows. ��

3.2 Generating templates

In this section we introduce the notions of acceptable pairs and good pairs. We will
show how to construct a good/acceptable template by using a good/acceptable pair.
The acceptable and good pairs are easily obtained by the well known number theoretic
results that can be found in the “Appendix”. This allows us to establish that the con-
structions in Sect. 3.1 can indeed be carried out.We finish this section with Lemma 3.1
and Theorem 3.1 which generalize results in [8]. We begin by introducing the notion
of granularity.

Definition 3.11 Given m ∈ ω with m ≥ 2 and L0 ⊆ L , we define GrL0(m), the
granularity m relative to L0, to be the smallest positive value

∑
E∈L0

αE nE − k
where k is an integer satisfying 0 < k < m and each nE ∈ ω. In case L = L0 we call
GrL(m) the granularity of m and denote it by Gr(m).

Remark 3.6 Let m ∈ ω with m ≥ 2 and A,B ∈ Kα . If |B − A| < m, then δ(B/A) ≤
−Gr(m). This observation is crucial for many of the arguments in [8].

Remark 3.7 Note that given a triple Θ = 〈n, r , t〉, GrΘ(2) = GrLΘ (2). Further if
Gr(2) = ∑

E∈L nEαE − 1, then
∑

E∈L nE < m pt

The following is immediate from the definition of granularity.

Lemma 3.3 For all E ∈ L, Gr(2) ≤ αE .

We now turn our attention to good pairs and acceptable pairs. The goal will be to
use good/acceptable pairs to generate good/acceptable templates, which we proceed
to do in Lemma 3.4.

Definition 3.12 Given a non-negative integer n and an L-collection r , we let the
weighted sum n − ∑

E∈L αEr(E) be denoted by w(n, r).
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Definition 3.13 Let B ∈ Kα with δ(B) > 0. Let n ∈ ω and let s be an L-collection.
Let L0 ⊆ L be such that E ∈ L0 if and only if s(E) > 0. We say that 〈n, s〉 is an
acceptable pair forB, if

1. min{δ(B), GrL0(2)} ≥ −w(n, s) > 0
2. |s| ≥ n

We say that 〈n, s〉 is a good pair for B

1. 〈n, s〉 is acceptable
2. |s| ≥ |B| + (n − 1) or

∑
ar(E)≥3(t(E) + ∑n

i=1 ri (E)) ≥ |B|
3. For all m ≤ n and sub-collections s′ of s, w(m, s′) not in the interval (w(n, s), 0).

Often we will not mention B as it will be clear from context.

Lemma 3.4 Let B ∈ Kα with δ(B) > 0, |B| ≥ msuff. If 〈n, s〉 is an acceptable pair
for B, then there exists an acceptable n-template Θ = 〈n, r , t〉. If 〈n, s〉 is good, then
Θ will be good for B.

Proof We begin with the observation that if u is a sub-collection of s, then s − u is
the residual multiset with (s − u)(E) = s(E) − u(E). Our first goal is to define the
triple Θ = 〈n, r , t〉. We do this in Step 1. We do this using a “greedy algorithm”. In
Step 2, we establish that the triple Θ we have constructed is indeed a template and it
is acceptable/good based on the corresponding properties of (n, s).
Step 1 We first define t . For 1 ≤ j ≤ n − 1 inductively define E j so that E j is
in the residual multiset s − {E1, . . . , E j−1} and α(E j ) = max{α(E) : E ∈ s −
{E1, . . . , E j−1}}. If there is E ∈ L with arity at least 3 such that s(E) ≥ n − 1 ≥ |B|
and α(E) ≥ α(E∗) for all E∗ ∈ L , then we insist that the above E j satisfy E j = E .
Let t be the ordered L-collection 〈E1 . . . , En−1〉. Let s1 be the residual multiset
s − {E1, . . . , En−1}. For 1 ≤ j ≤ n define the potential relative rank Rel( j) =
∑ j

i=1 w(1, ri ) − ∑ j−1
i=1 α(Ei ).

First let r1 ⊆ s1 be an L-collection such that Rel(1) = w(1, r1) achieves the least
possible non-negative value. Assume that for 1 ≤ j ≤ n − 1 that r j , s j have been
defined and take s j+1 to be the residual multiset s j − r j . For 1 ≤ j < n − 1 pick
r j+1 ⊆ s j+1 such that Rel( j + 1) = Rel( j) + w(1, r j+1) − α(E j ) attains the least
possible non-negative value and let rn = sn . Let r = 〈r1, . . . , rn〉 and let Θ be the
triple 〈n, r , t〉.
Step 2 We first show that Θ is indeed an n-template. We begin with the following
claims.

Claim 1 For 1 ≤ j < n, s j+1 is non-empty: We begin by noting that as |s| ≥ n, s1 is
non-empty. Now assume to the contrary that s j+1 is empty for some 1 ≤ j < n and
let j0 be the least positive integer for which s j0+1 is empty. Then for all j ′ ≥ j0 + 1,
s′

j , w(1, r j ′) = 1. Now it follows that 0 > w(n, s) = Rel(n) = Rel( j0) + (n − j0) −
∑n−1

i= j0 α(Ei ). By construction Rel( j0) ≥ 0. Further as for each E ∈ L , α(E) ≤ 1

implies that (n − j0) − ∑n−1
i= j0 α(Ei ) ≥ 0. But this yields a contradiction that proves

the claim.
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Claim 2 For 1 ≤ j < n, Rel( j) < α(E j ): If not, Rel( j) ≥ α(E j ) for some
1 ≤ j < n. FromClaim 1 it follows that there is some E ∈ LΘ such that s j+1(E) > 0.
By our choice of the Ei , it follows that α(E j ) ≥ α(E). However this shows that
Rel( j) − α(E) ≥ α(E j ) − α(E) ≥ 0 which contradicts our choice of r j .

Note that to show that Θ is an n-template it suffices to show that for 1 ≤ j ≤ n,
w(1, r j ) ≥ 0. Now for all 1 ≤ j < n −1, Rel( j +1) ≥ 0 and Rel( j) < α(E j ) yields
thatw(1, r j+1) = Rel( j +1)+α(E j )− Rel( j) ≥ 0. Now assume thatw(1, rn) < 0.
Then w(1, rn) ≤ −GrΘ(2). Now Rel(n) = w(1, rn) + Rel(n − 1) − α(En−1) <

−GrΘ(2) which contradicts −Rel(n) ≥ GrΘ(2). Thus it follows that w(1, rn) ≥ 0.
Hence Θ is indeed a n-template.

LetD be an extension ofB byΘ as given by Lemma 3.1. Observe that δ(D j/B) =
Rel( j) for 1 ≤ j ≤ n. It immediately follows that if 〈n, s〉 is acceptable, thenΘ is also
acceptable. Now assume that 〈n, s〉 is good. We claim that Θ is good. By construction
|s| = |t | + ∑n

i=1 |ri |. Recall condition (2) of good. If |s| ≥ |B| + (n − 1), then∑n
i=1 |ri | ≥ |B|. Else we have that

∑
ar(E)≥3(t(E) + ∑n

i=1 ri (E)) ≥ |B|. Now
Lemma 3.1 shows that D can be constructed in a manner covers B. Thus in order to
establish that Θ is good it suffices to show α(E j ) − δ(D j/B) + δ(D/B) ≥ 0 for
1 ≤ j ≤ n − 1. Suppose to the contrary that a = α(E j ) − δ(D j/B) + δ(D/B) < 0
for some 1 ≤ j ≤ n − 1. Thus we may write a = w(m, s′) for some m ≤ n and some
sub-collection s′ of s. Now by clause (3) of goodness and the fact that 〈n, s〉 is good, it
follows that a ≤ w(n, s). But w(n, s) = δ(D/B) and hence α(E j ) − δ(D j/B) ≤ 0,
a contradiction to Claim 2. Thus Θ is good. ��
Corollary 3.1 Let B ∈ Kα with δ(B) > 0, |B| ≥ msuff and 〈n, s〉 a good pair with
n ≥ 3. Then there is an D ∈ Kα such that (B,D) is an essential minimal pair with
w(n, s) = δ(D/B) < 0.

Proof This follows directly from Lemma 3.2 and 3.4. ��
In Remark 3.6, we established a link between the relative rank of structures and

granularity. As it turns out, granularity offers us a very convenient way of establishing
a connection between acceptable/good pairs and the number theoretic facts in the
“Appendix” (see Lemma 3.6 and Theorem 3.1 below). Thus granularity takes on two
separate roles: it’s original role in [8] and the one just mentioned (replacing the role
played by local optimality, in Section 4 of [8]). There is no interaction between the
different roles.

We now turn our attention towards using the number theoretic results in the
“Appendix” to construct good pairs.

Lemma 3.5 The sequence given by 〈Gr(m) : m ∈ ω〉 is a monotonic decreasing
sequence. If α is not rational, then 〈Gr(m) : m ∈ ω〉 converges to 0. If α is rational,
then Gr(m) is eventually constant with Gr(m) = 1/c for sufficiently large m.

Proof If α is not rational then there is some E ∈ L such that αE is irrational. Now
the required result follows from Remark A.2. If α is rational, then the required result
follows from Remark A.1. ��
Notation 3.3 We fix some notation: Whenever the assumption that α is rational is in
effect, we assume that αE = pE

qE
in reduced form and that c = lcm(qE ).

123



892 D. K. Gunatilleka

Lemma 3.6 Let n ∈ ω with n ≥ 3 and s be an L-collection. For 1 ≤ m ≤ n and any
sub-collection s′ of s, w(m, s′) is not in the interval (−Gr(n + 1), 0).

Proof Let n, s, m, s′ be as above. As granularity is monotonically decreasing, Gr(n +
1) ≥ Gr(m +1). Assume to the contrary thatw(m, s′) ∈ (−Gr(n+1), 0). This yields
that Gr(n + 1) > w(m, s′) > 0. But w(m, s′) ≥ Gr(m + 1) > 0, a contradiction
which established the claim. ��
Lemma 3.7 Let B ∈ Kα with δ(B) > 0 and |B| ≥ msuff.

1. Let ε > 0 and assume that α is not rational. Then for any E ∈ L such that
αE is irrational, there are infinitely many good pairs (n, s) for B such that 0 <

−w(n, s) < ε and s is such that s(E∗) > 0 if and only if E∗ = E for all E ∈ L.
2. If α is rational, then we may obtain infinitely many good pairs (n, s) for B such

that −w(n, s) = 1/c.

Proof (1) Let E ∈ L be such that α(E) is irrational. Let L ′ = {E} and let α = α(E).
Note that wemay as well assume that ε ≤ min{δ(B), GrL ′(2)}. As limn GrL ′(n) = 0,
there is an infinite set A of positive integers such that GrL ′(n + 1) < GrL ′(k) for all
2 ≤ k ≤ n. For each n ∈ A, let ln be such that GrL ′(n + 1) = lnα − n. Since ε,
|B| are fixed and α < 1, all but finitely many n ∈ A satisfy 0 < lnα − n < ε and
ln ≥ |B| + (n − 1). Given such n, let s be the L-collection that contains ln many E
relation symbols and no other relation symbols. It is immediate that by our choice of
n and s that (n, s) is a good pair with 0 < −w(n, s) < ε and that s satisfies the other
properties given in (1).
(2) Assume that α is rational. The proof now splits off into two cases depending on
the value of c.

First consider the case c > 1: Then Gr(n′) = 1/c < 1 for all sufficiently large
n′. Note that δ(B) = k/c for some k ∈ ω, k �= 0 and thus δ(B) ≥ 1/c. Let L ′ =
{L ∈ E : αE < 1}. Using Remark A.1 of the “Appendix”, there is an infinite set A of
positive integers n such that GrL ′(n + 1) = 1/c. For each n ∈ A, let ln : L ′ → ω be a
function such that GrL ′(n +1) = ∑

E∈L ′ ln(E)αE −n. Since |B| is fixed and αE < 1
for each E ∈ L ′, all but finitely many n ∈ A satisfy

∑
E∈L ′ αEln(E) − n = 1/c and∑

E∈L ′ ln(E) ≥ |B| + (n − 1). Given such n, let s be the L-collection that contains
exactly ln(E)many E relation symbols for E ∈ L ′ and no other relation symbols. Now
by our choice of n, s it is immediate that (n, s) is a good pair with −w(n, s) = 1/c.

Now consider the case c = 1: Now for each E ∈ L , α(E) = 1, Gr(m) = 1 for
all m ≥ 2 and all finite structures have integer rank. Note that there is some E ∈ L
that has arity at least 3 as α(E) = 1 for each E ∈ L implies that arity of each relation
symbol cannot be 2. Fix such an E ∈ L and let L ′ = {E}. Then for any n ≥ |B| + 1
take s to be the L-collection with n many E relations and no other relations. A routine
verification shows that 〈n, s〉 is a good pair. ��

We now put the previous results together to establish:

Lemma 3.8 Let B ∈ Kα with δ(B) > 0 and |B| ≥ msuff.

1. Let ε > 0 and assume that α is not rational. Now given any E ∈ L such that αE

is irrational, we can construct infinitely many non-isomorphic D ∈ Kα such that
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(B,D) is an essential minimal pair that satisfies −min{ε, δ(B)} < δ(D/B) < 0
where the new relations that appear in D that were not in B are E relations.

2. If α is rational, then we can construct infinitely many non-isomorphic D ∈ Kα

such that (B,D) is an essential minimal pair that satisfies δ(D/B) = −1/c.

Proof Use Lemma 3.7 to obtain a good pair (n, s) forB that satisfies 0 < −w(n, s) ≤
Gr(m). Now use Corollary 3.1 to construct an essential minimal pair (B,D) with
w(n, s) = δ(D/B) < 0. As (n, s) is a good pair, D ∈ Kα . We can obtain infinitely
many D as required by varying our choice of good pairs. Further (1), (2) can be
obtained by choosing suitable good pairs using (1), (2) (respectively) of Lemma 3.7.

��
The two clauses of the following lemma illustrate some routine argument patterns

that can be used in constructing new structures by taking free joins. It will also yield
a substantial part of Theorem 3.1 and Lemma 4.1.

Lemma 3.9 Let A,B ∈ Kα with A ≤ B. Assume that (B,C) is an essential minimal
pair and let γ = −δ(C/B). Then

1. We can construct D∗ ∈ Kα such that B ⊆ D∗, A ≤ D∗ and 0 ≤ δ(D∗/A) < γ .
Further if (B,G) is a minimal pair with |G| < |C |, then G does not embed into
D∗ over B.

2. Assume that δ(A) ≥ γ . Then we can construct D∗ ∈ Kα such that B ⊆ D∗,
(A,D∗) is an essential minimal pair that satisfies 0 > δ(D∗/A) ≥ −γ

Proof Note that there is some non-negative integer k such that kγ ≤ δ(B/A) <

(k + 1)γ . Let D∗ be the free join of k-copies of C over B and enumerate the copies
of C in B by {Ci : 1 ≤ i ≤ k} (with B = D∗ if k = 0). We now show that D∗ has
the required properties. We begin by establishing some notation: Let D′ ⊆ D∗ be a
nonempty substructure of D∗ and let C′

i = Ci ∩ D′ and B′ = D′ ∩ B.
ClearlyB ⊆ D∗ andD∗ ∈ KL . By Remark 2.2,D∗ ∈ Kα follows if you show that

A ≤ D∗. This is equivalent to establishing δ(D′/A) ≥ 0 in the case that A ⊆ D′. So
we will assume that A ⊆ D′. Since A ≤ B, if D′ ⊆ B, we have the required result.
So consider D′

� B. We may view D′ as the free join of D′
i over B′. Note that

δ(D′/B′) = ∑k
i=1 δ(C′

i/B
′) by (4) of Fact 2.3. Since (B,C) are essential mini-

mal pairs, it follows that if B′ �= B, then δ(C′
i/B

′) ≥ 0. Further if B′ = B, then
δ(D′/B) ≥ −kγ with equality holding if and only ifD′ = D.

Assume that A ⊆ D′ ⊆ D∗. We need to establish that δ(D′/A) ≥ 0. First con-
sider the case where B′ �= B. Now δ(D′/B′) ≥ 0. Further δ(D′/A) = δ(D′/B′) +
δ(B′/A). Since A ≤ B and A ⊆ B′ ⊆ B, we have that δ(B′/A) ≥ 0. Thus
δ(D′/A) ≥ 0. Now consider the case B′ = B. In this case we have that δ(D′/A) =
δ(D′/B) + δ(B/A) ≥ −kγ + δ(B/A) ≥ 0. Hence A ≤ D.

A simple calculation yields δ(D∗/A) = −kγ + δ(B/A) < γ . We now show that
no G such that (B,G) is a minimal pair with |G| < |C | embeds into D∗ over B.
Assume such a minimal pair did embed intoD∗ overB and let its image beD′. Now
δ(D′/B) = ∑k

i=1 δ(C′
i/B). But each δ(C′

i/B) ≥ 0 unless C′
i = C. Thus |D′| ≥ |C |,

a contradiction.
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(2) Note that there is some non-negative integer k such that kγ ≤ δ(B/A) < (k+1)γ .
Consider the structure D∗ which is the free join of k + 1-copies of C over A where.
Enumerate these copies ofC asC1 . . .Ck+1. LetD′ ⊆ D∗ be non-empty,B′ = B ∩ D′
and C′

i = C ∩ D′
We begin by showing that D∗ ∈ Kα . We need to show that δ(D′) ≥ 0. As this

is immediate when D′ ⊆ B, we may as well assume that this is not the case. Now
as in (1), δ(D′/B′) = ∑k+1

i=1 δ(C′
i/B

′). As (B,C) is an essential minimal pair we
need only considerB′ = B (the other case follows easily as in (1)). Then δ(D′/B) ≥
−(k + 1)γ . But by our choice of k and using the assumption δ(A) ≥ γ , we see that
δ(B) ≥ −(k + 1)γ and hence δ(D′). Thus D′ ∈ Kα .

Now we show that (A,D∗) is an essential minimal pair with 0 > δ(D∗/A) ≥ −γ .
So assume thatA ⊆ D′

� D∗. IfB′ �= B, then δ(D′/A) = δ(D′/B′)+δ(B′/A) ≥ 0.
So assume that B′ = B. Thus δ(D′/A) = δ(D′/B) + kγ . Since each (B,Ci) is an
essential minimal pair, it follows that δ(D′/B) ≥ −kγ unlessD′ = D∗. Thus (A,D∗)
forms an essential minimal pair with the required properties. ��

Finally we are in a position to prove one of the key result of this section:

Theorem 3.1 Let A ∈ Kα with δ(A) > 0.

1. If α is not rational, then for any ε > 0, we can construct infinitely many non-
isomorphic D ∈ Kα such that (A,D) is an essential minimal pair that satisfies
−ε < δ(D/A) < 0.

2. If α is rational, then we can construct infinitely many non-isomorphic D ∈ Kα

such that (A,D) is an essential minimal pair that satisfies δ(D/A) = −1/c.
(Recall that c denotes the least common multiple of the denominators of the αE ).

Proof For |A| ≥ msuff, the required results are immediate fromLemma 3.8. So assume
that |A| < msuff. LetA0 be an L-structurewithmsuff many points such that no relations
hold on A0 and take B = A ⊕ A0. Clearly A ≤ B. Using Theorem 3.8 fix a C such
that (B,C) is an essential minimal pair C ∈ Kα . Note that if αE is irrational for some
E ∈ L and ε > 0, then we may assume that −min{ε, δ(A)} < δ(C/B) < 0 and if
α is rational, then we may assume δ(C/B) = −1/c. By using (2) of Lemma 3.9, we
obtain a required structureD. We observe that the non-isomorphicDmay be obtained
by varying our choice of C and leave it to the reader to verify that in the case α is
rational, we have δ(D/A) = −1/c as claimed. ��

3.3 Coherence and rank 0 structures

This section is dedicated to building finite extensions of rank 0. Our goal is to show
that if α is coherent, then for anyB ∈ Kα with δ(B) > 0, there is someD ∈ Kα with
B ⊆ D such that δ(D) = 0. If α is rational, this is easily achieved by repeated use of
(2) of Theorem 3.1. Thus we focus on the case that α is coherent but not rational.

Definition 3.14 Let α be coherent but not rational. Let β(α) = min{δ(A), Gr(2) :
A ∈ Kα, δ(A) > 0 and |A| < msuff}.
Remark 3.8 Note that β(α) > 0. Further if B ∈ Kα is such that 0 < δ(B) < β(α),
then |B| ≥ msuff.
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Proposition 3.1 Let B ∈ Kα . Then there is some Z ⊆ B such that δ(Z) = 0 and if
C ⊆ B is such that δ(C) = 0, then C ⊆ Z.

Proof LetB ∈ Kα and letA,C ⊆ B with δ(A) = δ(C) = 0. LetD be the join ofA,C
in B. Now 0 ≤ δ(D) ≤ δ(A) + δ(C) = 0 by (3) of Fact 2.3. Thus there is a unique
maximal (with respect to ⊆) Z ⊆ B such that δ(Z) = 0. ��
Definition 3.15 Let B ∈ Kα . The unique maximal (with respect to ⊆) Z ⊆ B such
that δ(Z) = 0 will be called the zero set of B and we denote Z by ZB. We will let Z B

denote the universe of ZB.

Lemma 3.10 Let α be coherent and assume that α is not rational. Let A ∈ Kα with
β(α) > δ(A) > 0. Then there exists A∗ ∈ Kα such that A∗ ⊇ A, 0 ≤ δ(A∗) < β(α)

and |A∗ − Z A∗ | < |A − Z A|.
Proof Choose B ⊆ A such that ZA � B ⊆ A and γ := δ(B) is least possible.
Clearly γ > 0 as ZA � B, B ≤ A as the rank of B is minimal and |B| ≥ msuff as
γ ≤ δ(A) < β(α). Further using (2) of Fact 2.3, it follows that for anyB′ ⊆ B, either
B′ ⊆ ZA or δ(B′) ≥ γ . We construct A∗ by taking a free join of A over B with a
suitably constructed structure D ∈ Kα withB ⊆ D.

Now as α is coherent there are infinitely many positive integers 〈n′, m′
E 〉E∈L such

that n′ − ∑
E∈L m′

EαE = 0. Using the fact that γ = δ(C), we obtain that δ(C) =
n0 − ∑

E∈L m0(E)αE for some non-negative integers 〈n0, m0(E)〉E∈L . Hence we
now obtain that there are infinitely many positive integers 〈n′′, m′′

E 〉E∈L such that
n′′−∑

E∈L m′′
EαE = −γ . Thuswe can construct acceptable 〈n, s〉 such thatw(n, s) =

−γ . Use Lemma 3.4 to construct an n-template Θ that corresponds to 〈n, s〉.
Fix any b∗ ∈ B − Z A. LetD be an extension ofB byΘ with the additional property

that there is some relation E and Q ∈ ED with {b∗, dn} ⊆ Q where dn is as described
in Notation 3.2. As δ(D/B) = −γ we have that δ(D) = 0. We claim that D ∈ Kα .

First note that ifB ⊆ D′ ⊆ D, then δ(D′/B) ≥ −γ by (1.c) of Lemma 3.2. Hence
we obtain that δ(D′) ≥ 0. Now choose D′ ⊆ D arbitrary and and let B′ = B ∩ D′.
There are now three possibilities. First consider the case dn /∈ D′. By (1.b) of
Lemma 3.2 we obtain that δ(D′/B′) ≥ 0 and hence we obtain that δ(D′) ≥ 0 as
B′ ∈ Kα . Now consider the case b∗ ∈ D′. Then we have that b∗ ∈ B ′ and hence
δ(B′) ≥ γ . As δ(D′/B′) ≥ δ(B D′/B) by (2) of Fact 2.3 and δ(B D′/B) ≥ −γ , we
conclude that δ(D′) ≥ 0. Finally consider the case dn ∈ D′ but b∗ /∈ D′. Thenwe have
that Q /∈ ED′

. So δ(D′/B′) ≥ δ(B D′/B) + α(E) ≥ 0. As δ(B ′) ≥ 0, δ(D′) ≥ 0.
Let A∗ be the free join D ⊕B A. As B ≤ A and D ∈ Kα , by Fact 2.1, we obtain

that A∗ ∈ Kα . Now δ(A∗/B) = δ(A/B) + δ(D/B) = δ(A/B) − γ and hence
0 ≤ δ(A∗) < β(α).

Finally note that the universe of A∗ is A ∪ D. As δ(D) = 0, we have that
B ⊆ D ⊆ ZA∗ . As b∗ ∈ B − Z A, we conclude that |A∗ − Z A∗ | < |A − Z A|. ��
Theorem 3.2 Let α be coherent. Then given any A ∈ Kα with δ(A) > 0 there is
D ∈ Kα such that D ⊇ A and δ(D) = 0.

Proof Case 1 Assume that α is not rational. Now there is some E ∈ L such that αE

is irrational. If 0 ≤ δ(A) < β(α), then we are done. So assume that δ(A) ≥ β(α).
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Since αE is irrational, we can find a minimal pair (A,B) with δ(B/A) as small as
we like using Theorem 3.1. Now fixing a minimal pair such that δ(B/A) < β(α)

and taking sufficiently many isomorphic copies of B freely joined over A, we can
find a A∗ ⊇ A such that A∗ ∈ Kα and 0 < δ(A∗) < β(α). Let l = |A∗ − Z A∗ |. By
iterating Lemma 3.10 at most l times, we may construct D ⊇ A∗ with D ∈ Kα such
that |D − Z D| = 0, i.e. δ(D) = 0.
Case 2 Assume that α is rational. Then δ(A) = k/c for some positive integer k, where
c is the least commonmultiple the qE where αE = pE/qE (in reduced form). As noted
in Theorem 3.1 we may create a minimal pair B over A such that δ(B/A) = −1/c
and for all B′

� B, δ(B′/A ∩ B′) ≥ 0. Let D = ⊕1≤i≤kBi/A, the free join of k
isomorphic copies of B over A. A routine argument now shows that δ(D) = 0 and
that D ∈ Kα . ��
Remark 3.9 We note that we may construct infinitely many such non-isomorphic D
by varying our choice of A∗ or B accordingly.

4 Quantifier elimination and the completeness of S˛

In this section we begin by introducing a collection of ∀∃-axioms that we denote by Sα

(see Definition 4.1). In Theorem 4.2 we observe that Sα admits quantifier elimination
down to the level of chain minimal extension formulas (see Definition 4.2). This
generalizes the results of Laskowski in [8]. In Theorem 4.3 we collect useful results
about Sα including the fact that Sα is the theory for the Baldwin–Shi hypergraph for
α. Lemma 4.2 gathers useful consequences of the quantifier elimination. Remark 4.2
is out of character with the rest of this paper: we sketch a proof of the dimensional
order property for Sα , again following ideas found in [8].

Definition 4.1 The theory Sα is the smallest set of sentences insuring that ifM |� Sα ,
then

1. M ∈ Kα , i.e. every finite substructure of M is in Kα .
2. For all A ≤ B from Kα , every (isomorphic) copy of A in M extends to a copy of

B.

Remark 4.1 We note that Sα is a collection of ∀∃-sentences.
Notation 4.1 LetN ∈ KL . Given A ∈ KL with a fixed enumeration a of A, we write
ΔA(x) for the atomic diagram of A. Also for A,B,C ∈ KL with A ⊆ B ⊆ C
and fixed enumerations a, b, c respectively with a an initial segment of b and b an
initial segment of c; we let ΔA,B(x, y) the atomic diagram of B with the universe
of A enumerated first according to the enumeration a. Similarly ΔA,B,C(x, y, z) will
denote the atomic diagram of C with the universe of A enumerated first by x , the
remainder B − A by y and then C − B by z according to the enumerations a, b, c.

Definition 4.2 Let A,B ∈ K and assume A ⊆ B. Let ΨA,B(x) = ΔA(x) ∧
∃yΔ(A,B)(x, y). Such formulas are collectively called extension formulas (over A).
A chain minimal extension formula is an extension formula ΨA,B where B us the
union of a minimal chain over A.
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4.1 Some preliminaries

This section contains several Lemmas that will be needed in the proof of the quantifier
elimination result of 4.2. We begin by generalizing Proposition 4.2 of [8]. Recall that
if α is not rational, then limn Gr(n) = 0. Thus in the case α is not rational we may
replace clause (1) of the following lemma with 0 ≤ δ(D∗/A) < μ where μ > 0. The
new statement thus obtained is precisely Proposition 4.2 of [8].

Lemma 4.1 Suppose that A ≤ B ∈ Kα and Φ ⊆Fin Kα are given such that B ⊆ C
with B � C for all C ∈ Φ. Let m ∈ ω. Then there is a D∗ ⊇ B, D∗ ∈ Kα such that

1. 0 ≤ δ(D∗/A) < Gr(m).
2. A ≤ D∗.
3. No C ∈ Φ isomorphically embeds into D∗ over B.

If α is rational then we can always find D∗ such that δ(D∗/A) = 0.

Proof FixA,B andΦ as above. Note that wemay replace eachC ∈ Φ byB ⊆ C′ ⊆ C
that is minimal and thus we may as well assume that (B,C) is a minimal pair for any
given C ∈ Φ. Now if δ(A) = δ(B), then take D∗ = B. So we may assume that
δ(A) < δ(B). Let u be a positive integer such that u > |C| for each C ∈ Φ. Now
using Theorem 3.1, fix a D ∈ Kα such that |D − B| > u and (B,D) is an essential
minimal pair that satisfies −min{Gr(m), δ(B/A)} ≤ δ(D/B) < 0. Using (1) of
Lemma 3.9, we may obtain D∗ with the required properties. ��
Definition 4.3 Let B ∈ Kα and let Φ ⊆Fin Kα such that each C ∈ Φ extends B.
For any M |� Sα , an embedding g : B → M omits Φ if there is no embedding
h : C → M extending g for any C ∈ Φ.

The following is a Proposition 4.4 of [8]. It’s proof follows along the same lines there
in with obvious modifications made to allow for the existence of structures D ∈ Kα

such that δ(D) = 0 in the case that α is rational.

Theorem 4.1 Suppose that A ≤ B are from Kα and Φ is a finite subset of of Kα such
that for each C ∈ Φ, A ≤ C, B ⊆ C but B � C. Then for any M |� Sα , for any
embedding f : A → M there are infinitely many embeddings gi : B → M extending
f such that each gi omits Φ and {gi (B) : i ∈ ω} is disjoint over f (A).

Corollary 4.1 Suppose that A,B ∈ Kα and A ≤ B and f : A → M∗ is strong where
M∗ |� Sα is ℵ0-saturated. Then there is a strong embedding g : B → M∗ extending
f . In particular, every B ∈ Kα embeds strongly into M∗.

4.2 Putting it all together

In this section we give a brief description of how to genaralize the results of [8]
mentioned at the beginning of this section.

Suppose that A ⊆ B are from Kα . Let C be the union of a maximal minimal chain
of minimal pairs over A inB. Then clearly C ≤ B. Since the sentence ∀x[ΔC(x) →
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∃yΔ(C,B)(x, y)] is an axiom Sα , the extension formula ΨA,B is Sα equivalent to the
chain-minimal extension formula ΨA,C, i.e. every extension formula is Sα equivalent
to a chain minimal extension formula.

Theorem 4.2 Every L-formula is Sα-equivalent to a boolean combination of chain-
minimal extension formulas.

Proof The proof is identical to the proof of Theorem 5.6 of [8]. The proof in [8]
depends on results in Section 3 and Proposition 4.4 of [8]. Aswe have noted previously,
Theorem4.1 generalizes Proposition 4.4 of [8]. The results in Section 3 of [8] are easily
seen to hold in this context. ��

Of the following results, (1) and (2) of Theorem 4.3 was first proved in full gen-
erality in [7] by Ikeda, Kikyo and Tsuboi. However their proof does not yield the
quantifier elimination result of Theorem 4.2. See Corollary 5.7 and Proposition 6.1 of
[8] for an alternate proof of Theorem 4.3 using the techniques found in this paper.

Theorem 4.3 1. Sα is the theory of the (Kα,≤)-generic Mα .
2. Fix M |� Sα and X ⊆ M. The following are equivalent:

(a) X is algebraically closed
(a) For any minimal pair (B,C) with C ⊆ M, if B ⊆ X, then C ⊆ X.
(b) For any finite B ⊆ M, B ∩ X ≤ B

The following lemma, will be useful in both Sect. 5. It is an immediate consequence
of the quantifier elimination:

Lemma 4.2 Let M |� Sα and A be a finite closed set of M. Suppose that π is a
consistent partial type over A. Then

1. If M is ℵ0-saturated and any realization b of π in M has the property that bA is
closed in M, then π has a unique completion to a complete type p over A.

2. If any realization b of the quantifier free type of π (over A) has the property
δ(b/A) = 0, then π has a unique completion p over A and further p is isolated
by the formula ΔA,Ab(a, x).

Proof (1): Note that by Theorem 4.2 it suffices to show that all chainminimal formulas
over A are determined by the given conditions. Let b |� π . Fix bA ⊆ D ∈ Kα and
let φD(x) = Δa,ab(a, x) ∧ ∃yΔa,ab,D−ab(a, x, y) be the corresponding extension

formula. Suppose that bA ≤ D. Now as bA ≤ M andM |� Sα , we obtain thatM |�
φD(b). Thus it follows that p � φD . Now suppose that bA � D. If π∗ = π ∪¬φD(x)

is consistent, then there is some realization of π∗ in M by ℵ0-saturation. Clearly no
realization of π∗ can be strong inM, and hence π � ¬φD(x). Thus π determines all
extension formulas including the chain minimal formulas over A and thus is complete.
So simply take p = π to obtain the required complete type.
(2): Consider a partial type given as above.Wemay as well assume thatΔA,Ab(a, x) ∈
π . Arguing as in part (1), we see that if bA ≤ D, then φD(x) ∈ π . So assume that
bA � D and that ¬φD(x) is consistent with π . As M is a model, there is some b′
realizing φD(x). But then, there is some C ⊆ M such that (bA, bAC) is a minimal

123



The theories of Baldwin–Shi hypergraphs and their atomic… 899

pair. Now δ(bAC/A) = δ(bAC/bA) + δ(bA/A) < 0. But this contradicts A ≤ M .
Thus the required result follows. ��

We take this opportunity to give a brief sketch of the fact that Sα has Dimensional
Order Property (DOP, see [1] for a definition). This result will is independent from
the rest of the results in the note.

Remark 4.2 It is well known that these theories are stable (see [4,11]). In [3], Baldwin
and Shelah gave a proof that Sα has DOP assuming that L has a binary relation. In
Corollary 7.10 of [8], Laskowski gave a proof of DOP by explicitly constructing a
type that witnesses the DOP. He did not assume that L contained a binary symbol,
however he did assume α satisfied certain properties. His proof contains two key steps:
Proposition 7.8 and Corollary 7.10 of [8]. We observe that we can prove a slightly
modified formof Proposition 7.8 of [8] by replacingA ≤ B butA �= B in its statement
with A ≤ B but δ(A) �= δ(B) using Lemma 4.1. The proof of Corollary 7.10 will
remain unchanged from [8], establishing DOP for Sα .

5 Atomic models of S˛

In this sectionwe study the atomicmodels of the theories of Baldwin–Shi hypergraphs.
Our main results begin with Theorem 5.2, in which we characterize the atomic models
as the existentially closed models of Sα with finite closures (see Definition 5.2) or
equivalently those with finite closures where the closed finite substructures are those
with rank 0. This immediately yields coherence of α as a necessary condition for
the existence of atomic models for Sα . We then proceed to combine the results in
Sect. 3.3 and chain arguments to obtain Theorem 5.3 which establishes coherence of
α is also sufficient for the existence of atomic models. We also explore the effect that
rationality of α, arguably the most natural form of coherence, has on atomic models
of Sα . Our exploration leads to Theorem 5.4 which allows us to categorize rational α
as precisely the coherent α with theories of Baldwin–Shi hypergraphs whose models
isomorphically embed into an atomic model of the same cardinality. We begin with
the following definitions.

Definition 5.1 We use S∀
α to denote the set of universal sentences of Sα . Note that an

L-structureM models Sα if and only ifM ∈ KL .

Definition 5.2 GivenM |� S∀
α , we say thatM has finite closures if for all A ⊆Fin M,

there is some finite B ≤ M with A ≤ M.

Definition 5.3 LetM |� S∀
α . By dM we denote the function dM : {A : A ⊆Fin M} :→

R such dM(A) = inf{δ(B) : A ⊆ B,B finite and B ≤ M}.
Our starting point is the following theorem due to Laskowski (Theorem 6.5 of [8]).

Its proof only uses the quantifier elimination result of Theorem 4.2 and thus holds in
our generalized context.

Theorem 5.1 Let M |� Sα . Now dM(A) = 0 for all finite A ⊆ M if and only if M is
an e.c. model.
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5.1 Atomic models

Our goal in this section is to prove Theorem 5.2. We begin with the following:

Remark 5.1 Given a countable model M |� Sα , M has finite closures if and only if
M is the union of a strong chain 〈Ai : i ∈ ω〉 of elements of Kα .

Lemma 5.1 Let M |� Sα and A ⊆Fin M with δ(A) = 0. Let a be a fixed enumeration
of A. Then A ≤ M and ΔA(x) isolates the tp(a) in M.

Proof This follows from an application of Lemma 4.2, by noting that ∅ ≤ M and
δ(A/∅) = 0. ��
Lemma 5.2 Let M |� Sα be atomic. Let A ⊆Fin M. Now A ≤ M if and only if
δ(A) = 0. Further M has finite closures.

Proof Let A,M be as stated above. Clearly if δ(A) = 0, then A ≤ M. Now suppose
that A ≤ M. If δ(A) > 0, then by Theorem 3.1 there are infinitely many non-
isomorphic C with (A, C) a minimal pair. It follows that no single chain minimal
formula, or indeed a boolean combination of chain minimal formulas can rule out the
existence of all of these minimal pairs over A as the sentences of Sα dealing with
extensions only insist upon the existence of strong extensions. Since any formula is
equivalent to a boolean combination of chain minimal formulas this contradicts the
fact that the model is atomic and hence tp(A/∅) is isolated. Thus δ(A) = 0.

We claim thatM has finite closures. Assume to the contrary thatM does not have
finite closures. LetA ⊆Fin M be such that there is no finite C ≤ M such thatA ⊆ C. It
now follows that there is a⊆ increasing sequence {Ai : i ∈ ω,Ai ⊆ M such that A0 =
A and each (Ai ,Ai+1) is a minimal pair}. Using the downward Lowenhiem Skolem
Theorem, we may construct a countable M′ � M such that

⋃
i<ω Ai ⊆ M ′. Note

that M ′ is a countable, atomic and hence prime model of Sα . We may as well assume
that M′ � M∗ for notational convenience. Recall that M∗ has finite closure and let
A ⊆ C ≤ M∗ where |C | is finite. Let i be the least integer such that Ai � C. Clearly
i ≥ 1 and C �= Ai−1 (for if Ai−1 = C , then Ai is a minimal pair over C , which
contradicts C ≤ M∗). Now C ≤ C Ai as C ≤ M∗ and Ai ⊆ C Ai . By using Fact 2.1
we obtain that C ∩ Ai ≤ Ai . Further Ai−1 ⊆ C ∩ Ai � Ai as Ai � C . But then
Ai−1 ≤ C ∩ Ai as (Ai , Ai+1) is a minimal pair. By the transitivity of≤we then obtain
Ai−1 ≤ Ai , a contradiction that shows M′ has finite closures. ��
Lemma 5.3 Let M |� Sα . Assume that dM(A) = 0 for all finite A ⊆ M and that M
has finite closures. Then M is atomic.

Proof Let A ⊆ M. We begin by fixing an enumeration a of A. Let iclM(A) = C. As
M has finite closures, it follows that C is finite. It is clear that dM(A) = dM(C) =
δ(C) = 0. Note that if A = C then we have already established the result and that if
A �= C, then there is no A ⊆ B � C such that δ(B) = 0. We claim that the formula
ΨA,C (x) = ΔA(x)∧∃yΔA,C (x, y) isolates tp(a). Now it suffices to show thatΨA,C (x)

decides the chain minimal extension formulas.
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Let M′ |� Sα and assume that A′ ⊆ M′. Let a′ be a fixed enumeration of A′ and
assume thatM′ |� ΨA,C (a′). Let A′ ⊆ C′ ⊆ M′ and c′ be an enumeration of C ′ − A′
such that M′ |� ΔA(a′) ∧ ΔA,C (a′, c′). Note that C ′ ≤ M ′ as δ(C′) = 0. Now given
a chain of minimal pairs A′ = B0 ⊆ . . . ⊆ Bn ⊆ M′, we have that Bn ⊆ C′ as
C′ is closed in M′. Thus ΨA,C (x) decides all chain minimal extension formulas thus
isolates the type of A. ��

We now obtain the following theorem:

Theorem 5.2 Let M |� Sα . The following are equivalent

1. M is atomic
2. dM(A) = 0 for all finite A ⊆ M and M has finite closures.
3. M is existentially closed and has finite closures.
4. For any A ⊆ M finite, there is B ⊇ A such that B ⊆ M, B is finite and δ(B) = 0

Proof The equivalence of (1) and (2) is immediate from lemma 5.2 and lemma 5.3.
The equivalence of (2) and (3) is immediate from Theorem 5.1. We now show the
equivalence of (2) and (4):

Assume (2). Then take icl(A) = B. Since M has finite closures, it follows that B
is finite. Since dM(A) = 0 it follows that dM(A) = δ(B) = 0 and thus (4) follows.
Now assume (4) holds. Since any B with δ(B) = 0 is strong in M. Now pick a B′
such that A ⊆ B′ ⊆ M and B′ is finite, ⊆ minimal and δ(B′) = 0. ��

5.2 Existence of atomic models

We begin this section by developing tools to prove Theorem 5.3 which establishes that
coherence is necessary and sufficient for the existence of atomic models. The proof
of sufficiency will involve several steps. The idea is to use the ∀∃-axiomatization of
Sα to construct atomic models as the union of a chain under ⊆. However, as dictated
by Theorem 5.2, atomic models of Sα must have finite closures. This introduces the
need to carefully keep track of how closures change as you go up along the chain.

We then proceed to prove Theorem 5.4 which establishes that for coherent α, the
rationality of α is equivalent to every model of Sα being isomorphically embeddable
in an atomic model of Sα . A key step in the proof is Lemma 5.11, which constructs a
model that does not embed into any atomic model by exploiting the fact that there is
no decreasing sequence of real numbers of order type ω1.

Definition 5.4 Let M,N |� S∀
α with M ⊆ N. We say that N preserves closures for

M if X ⊆ M is closed in M , then X is closed in N .

Lemma 5.4 Let M |� S∀
α and A,B ∈ Kα . Assume that B ∩ M = A and let

N = M ⊕A B.

1. If A ≤ B or A ≤ M, then N |� S∀
α .

2. If A ≤ B, then N preserves closures for M
3. If A ≤ M, then B ≤ N
4. If A ≤ B or A ≤ M and M has finite closures, then so does N.
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Proof (1): Assume that A ≤ B or A ≤ M. We show that N |� S∀
α . Note that if

not, there is some A ⊆ C ⊆Fin M such that for some B′ ⊆ B, A′ ⊆ A and C′ ⊆ C,
B′ ⊕A′ C′ /∈ Kα . But if this were the case then B ⊕A C /∈ Kα . However we have
that A ≤ C or A ≤ B by our assumption and hence B ⊕A C ∈ Kα by Fact 2.1. A
contradiction that establishes the our claim.
(2): Assume thatA ≤ B. Let X ⊆ M be closed inM. By way of contradiction assume
that X is not closed inN. Thus there is some D ⊆Fin X , E ⊆Fin N , (D, E) is aminimal
pair but E � X . Let A′ = E ∩ A, B ′ = E ∩(B − A) and D′ = E ∩(D − A). Now note
that 0 > δ(E/D) = δ(B ′/D′ A′) = δ(B ′) − e(B ′, D′ A′) ≥ δ(B ′) − e(B ′, D′ A) =
δ(B ′) − e(B ′, A) ≥ 0 using (1) of Fact 2.3. Thus it follows thatN preserves closures
forM.

For the proof of (3), (4), first note that if B ⊆ F ⊆Fin N , then we may write
F = B ⊕A F ′ with F ′ ⊆ M . Further if F ⊆ G ⊆ N with G = B ⊕A G ′, then
δ(G/F) = δ(G ′/F ′). Also to show that F ⊆Fin N is strong in N , it suffices to show
that δ(G/F) ≥ 0 for all finite F ⊆ G ⊆Fin N .
(3): Assume that A ≤ M. Given B ⊆ G ⊆Fin N . Take F = B ⊕A A = B and
G = B ⊕A G ′ where G ′ = G ∩ M . Now it follows that δ(G/F) = δ(G ′/A). Since
A ≤ M, it follows that δ(G ′/A) ≥ 0. Thus B ≤ N.
(4): Assume that M has finite closures. We wish to show that N has finite closures.
Let X ⊆Fin N . Since intrinsic closures are monotonic with respect to ⊆, we may as
well assume that B ⊆ X . Let F = iclM (X ∩ M). Note that F ′ is finite becauseM has
finite closures. Take F = B ⊕A F ′ and note that X ⊆ F . Fix F ⊆ G ⊆Fin N with
G = B ⊕A G ′ where G ′ = G ∩ N . Now δ(G/F) = δ(G ′/F ′) from which the result
follows as δ(G ′/F ′) ≥ 0 as F ′ ≤ M . ��
Lemma 5.5 Let 〈Mβ〉β<κ be a ⊆-chain of models of S∀

α with Mγ = ⋃
β<γ Mβ

for limit γ . Assume that Mβ+1 preserves closures for Mβ for each β < κ . Then
M = ⋃

β<κ Mβ preserves closures for each Mβ , β < κ . Further if Mβ has finite
closures for each β < κ , then so does M.

Proof Let M be as above and let X ⊆ Mβ be closed. We claim that if X is closed
in M, then it is closed in N. By way of contradiction, suppose not. Then there is
some minimal pair (A,B) with B ⊆ M,A ⊆ X and B � X that witnesses this. Let
γ > β be the least ordinal such thatB ⊆ Mγ . As closures are preserved for successor
ordinals, it follows that γ is not a successor ordinal. Thus γ must be a limit ordinal.
But Mγ = ⋃

β<γ Mβ which implies B ⊆ Mγ ′ for some γ ′ < γ . But then X is not
closed inMγ ′ , which contradicts the minimality of γ . Thus the first claim is true. The
second claim follows by a similar argument. ��

We now illustrate how to extend a model of the universal sentences of Sα to a model
of Sα , while preserving closures, a key step towards building atomic models.

Lemma 5.6 Let M |� S∀
α be infinite. There exists N |� Sα such that M ⊆ N, |M | =

|N |, N preserves closures for M. Further if M has finite closures, then N has finite
closures too.

Proof LetM |� S∀
α . Fix a finite A ⊆ M. A routine chain argument using Lemma 5.4

allows us to create M′ with the following properties:
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1. M′ preserves closures for M and |M ′| = |M |
2. IfB ∈ Kα with A ≤ B, there is some g that embeds B intoN over A.
3. If B1,B2 ∈ Kα with A ≤ B1,B2 and B1,B2 are not isomorphic over A, then

there are embeddings g1, g2 ofB1,B2 overA such that g1(B1), g2(B2) are freely
joined over A.

Note that A, when considered as a substructure of M′, satisfies the extension for-
mulas required by Sα . Further, by an application of Lemma 5.5, it follows that if M
has finite closures, then so does M′. Iterating this process and using a routine chain
argument, we can construct N as required. The fact that N has finite closures if M
does follows from an application of Lemma 5.5. ��

We now introduce the class K0. It contains all the finite structures of Kα that may
sit strongly inside an atomic model of Sα .

Definition 5.5 We let K0 = {A : A ∈ Kα and δ(A) = 0}. Further we let K0 = {X :
X |� S∀

α and for any A ⊆Fin Y there exists B ⊆Fin X with A ⊆ B and δ(B) = 0}.
Remark 5.2 Let D ∈ Kα , and X |� S∀

α with D ⊆ X. Note that if δ(D) = 0, then
D ≤ X. Thus it follows that if X ∈ K0, then X has finite closures.

We are now in a position to show that coherence of α is a sufficient condition for
the existence of atomic models.

Lemma 5.7 Let α be coherent. SupposeM ∈ K0 with |M | = κ . Then we can construct
N |� Sα such that N ⊇ M, N is atomic and |M | = |N |. Thus for any κ there is an
atomic model of Sα of size κ .

Proof Assume that |M | = κ . Enumerate the finite substructures of M0 = M by
{B0, . . .}. Let {Bn

0 : n < ω} enumerate, up to isomorphism F ∈ Kα such that
B0 ≤ F. Now consider C0 = iclM0(B0) which is finite and has rank 0 as M ∈ K0.
LetC′

1 = C0⊕B0B
0
0. SinceB0 ≤ B0

0 we have thatC
′
1 ∈ Kα . As α is coherent, we can

fix D0 ∈ Kα such that C′
1 ⊆ D0 and δ(D0) = 0. Now consider M1 = M0 ⊕C0 D0.

Note that as δ(C0) = 0, C0 ≤ D0. By (1) of Lemma 5.4,M1 |� S∀
α and by (2) ofM1

preserves closures for M.
We claim that M1 ∈ K0. From (4) of Lemma 5.4 we obtain that M1 has finite

closures. Let H = G1F1 be a finite substructure ofM1 with G1 ⊆ M0 and F1 ⊆ D1.
Now let G ′ = iclM0(G1). SinceM ∈ K0, G ′ is finite and δ(G ′) = δ(iclM(G1)) = 0.
Thus it follows that iclM1(G1) = G ′ as well. Now δ(G ′ D1) ≤ δ(G ′) + δ(D1) −
e(G ′ − D1, D1 − G ′) = −e(G ′ − D1, D1 − G ′) ≤ 0 by using (1) of Fact 2.3. But
as we have already established that M1 |� S∀

α , it follows that δ(G D1) = 0. Thus
any finite substructure of M1 is contained in a finite substructure with rank 0. Hence
M1 ∈ K0.

Now as noted above iclM1(B0) = C0. Thus we may recursively form a chain
〈Mi 〉i<ω such that Mn+1 = Mn ⊕Cn Dn so that δ(Dn) = 0, Bn

0 ⊆ Dn , Mn+1 ∈
K0 and iclMn+1(B0) = Cn+1 = C0. Now consider M1 = ⋃

i<ω Mn . Now since
Mn ∈ K0 for each n, it follows immediately that M1 ∈ K0. Note that M1 satisfies
all the extension formulas demanded by Sα forB0. It is clear that, by using the ideas
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behind the above construction ofM1 and taking unions at limit ordinals, we can build
a chain Mβ ∈ K0, < such that each Mβ ∈ K0 and for all γ < β, Mβ contains all
finite extensions of Bγ needed to satisfy the extensions dictated by Sα . Now clearly
Mκ ∈ K0 and all finite substructures of M have the extensions needed to satisfy the
extensions dictated by Sα in Mκ = N0. Now repeating this procedure we may form a
⊆-chain 〈Nβ〉 (taking unions at limit stages) where N = ⋃

β<κ Nβ satisfies N ∈ K0
and N |� Sα .

Since there areM ∈ K0 with |M | = κ0 for all infinite cardinals κ (for example, the
free join over ∅ of all the elements of K0 up to isomorphism, each repeated κ many
times in the free join) there are atomic models of size κ . ��

We now obtain the following:

Theorem 5.3 There exists atomic models of the theory Sα if and only if α is coherent.

Proof We begin by showing that if Sα has atomic models, then α is coherent. To see
this for each E ∈ L , fix a finite L structure AE such that at E holds on at least one
subset of AE and no other relation holds on AE . Let A = ⊕E∈LAE be the free join of
the AE over ∅. LetM |� Sα be atomic with A ⊆ M . Thus there is someB ⊇ A with
B ⊆Fin M and δ(B) = 0. It follows that δ(B) = 0 = n − ∑

E∈L m EαE . Thus α is
coherent.

The converse is immediate by Lemma 5.7. ��
Remark 5.3 The Shelah-Spencer almost sure theories do not have atomic models.

In the case that α is rational, an even stronger result than Theorem 5.3 is possible. In
this case the models of Sα displays similar behavior to that of classical Fraïssé limits
(i.e. theories of generics built from Fraïssé classes where ≤ corresponds to ⊆).

Lemma 5.8 Assume that α is rational. Let M |� Sα . Now M is atomic if and only if
M is an e.c. model. Hence every model of Sα embeds isomorphically into an atomic
model of Sα .

Proof Assume that α is rational and that M |� Sα and note that if αE is rational,
then Sα has finite closures. By Theorem 5.2 we immediately obtain that M is atomic
if and only if M is an e.c. model. Further, well known results about ∀∃-theories tell
us that every model of Sα sits as a substructure of an e.c. model of Sα of the same
cardinality. Since any model of Sα has finite closures, it follows that every model
embeds isomorphically into an atomic model. ��
Remark 5.4 Assume that α is rational. It is easily seen that any X |� S∀

α has finite
closures. Thus it follows from Lemma 5.6 that any X |� S∀

α embeds isomorphically
into someN |� Sα (taking the free join of ℵ0 many non-isomorphic copies of X over
∅ if X is finite). Thus from Lemma 5.8, it follows that given any X |� S∀

α , we see that
there is an atomic N′ |� Sα such that X embeds isomorphically into N′

We will now explore the behavior of atomic models when α is coherent but α is
not rational. We begin by showing that any countable X |� S∀

α with finite closures
embeds isomorphically into the countable atomicmodel of Sα mimicking the behavior
of Remark 5.4. Recall that if X ∈ K0, then X has finite closures.

123



The theories of Baldwin–Shi hypergraphs and their atomic… 905

Lemma 5.9 Let α be coherent and let M |� S∀
α be countable with finite closures. Then

1. There exists a countable M∗ ∈ K0 with M∗ ⊇ M.
2. There exists a countable atomic N |� Sα such that M ⊆ N.

Proof (1): SinceM has finite closures, wemaywriteM = ⋃
i<ω Ai whereAi ≤ Ai+1

for each i < ω. We will now construct M∗ as the union of a countable ⊆-chain
M0 ⊆ M1 ⊆ ... with M = M0 and |Mn − M0| finite for all n < ω as follows: Let
M0 = M and given Mn , let A∗

n = iclMn (An ∪ (Mn − M0)). Using Theorem 3.2
choose Bn ∈ Kα with A∗

n ⊆ B∗
n and δ(Bn) = 0. Let Mn+1 = Mn ⊕A∗

n
Bn . As

A∗
n ≤ M∗, it follows from Lemma 5.4 that eachMn |� S∀

α . Clearly |Mn − M0| is finite
as claimed. As each Mn |� S∀

α , M
∗ |� S∀

α where M∗ = ⋃
i<ω Mn . Note that given

any finite set of A ⊆ M∗, there is some n < ω such that A ⊆ Mn . By construction,
it follows that there is some k < ω such that A ⊆ B ⊆ Mn+k with B finite and
δ(B) = 0. Thus it follows that M∗ ∈ K0.
(2): We now do an alternating chain argument: We let M∗

0 = M. Thus M∗
0 has finite

closures. We build M∗
2n+1 |� Sα with M∗

2n ⊆ M∗
2n+1 such that M∗

2n+1 has finite
closures, preserves closures for M∗

2n and is countable by use of Lemma 5.6. We let
M∗

2n+2 be such that M∗
2n+1 ⊆ M∗

2n+2 and M∗
2n+2 ∈ K0 which exists by use of (1).

We let N = ⋃
n<ω M∗

n . Let B ⊆Fin N. Now as B ⊆ M∗
2n0+1 for some n0, a routine

argument shows that N |� Sα . As B ⊆ M∗
2n0+1 ⊆ M∗

2n0+2 it follows that D =
iclM2n0+2(B) is finite and δ(D) = 0. Thus it follows that iclM2n0+2(B) = iclN(B)

and hence N ∈ K0. Thus N is (up to isomorphism), the unique countable atomic
model of Sα by Theorem 5.2. ��

We now proceed to show that this behavior may fail for arbitrary X |� S∀
α .

Definition 5.6 Call a structureN |� S∀
α tent-like over M if

1. M is a set of points with no relations between them.
2. For all pairs {a, b} of distinct elements from M , there is a unique minimal pair

({a, b},Fa,b) in N.
3. N = ⋃

a,b∈A,a �=b F(a,b).

(a) For distinct a, b, b′ ∈ M , Fa,b,Fa,b′ are freely joined over a
(b) For distinct a, a′, b, b′ ∈ M , Fa,b,Fa,b′ are freely joined over ∅

4. iclN({a}) = {a} for each a ∈ M

We will refer to M as the base of the tent N over M.

Remark 5.5 Note that given afinite subset A0 = {an1, . . . , ank }of M wehave that A′ =⋃
Fa,b ⊆ iclN(A0)where (a, b) ranges through distinct pairs from A0. We claim that

this set is closed. Assume to the contrary that there is a minimal pair (D, DG) where
D ⊆ A′ and G is disjoint from A′. Note δ(G/D) ≥ δ(G/A′) using (2) of Fact 2.3.
Since N is tent-like over M, δ(G/A′) = δ(G/A0). From the tent-likeness of N over
M and our choice of A′ and G, it follows that δ(G/A0) = ∑

(a,b)/∈A0×A0,a �=b δ(G ∩
Fa,b/A0). Thus δ(G ∩ Fa,b/A0) for (a, b) /∈ A0 × A0, a �= b reduces to either
δ(G ∩ Fa,b) or δ(G ∩ Fa,b/c) where c = a or c = b. But since each a′ ∈ A is its own
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closure in N it follows that the δ(G ∩ Fa,b/c) ≥ 0. Thus it follows that A′ is closed.
Now by noting that each finite subset lies in finitely many of the Fa,b it follows that
N has finite closures.

Remark 5.6 Note that if N |� S∀
α is tent like over M, then N /∈ K0 as δ(icl(a)) = 1

for each a ∈ M .

Lemma 5.10 Let α be coherent but not rational. Suppose N |� S∀
α tent-like over M

where M is countable. Then there is an extension N∗ of N over M∗ where M ⊆ M∗
and M∗ has universe M{a∗}, where a∗ is a single new point such that N∗ is tent-like
over M∗. Thus there is some N′ where the corresponding base M′ has |M ′| = ℵ1.

Proof Enumerate M = {an : n ∈ ω}. Fix E ∈ L such that αE is irrational. Now for
each n ∈ ω we may choose an essential minimal pair F(an ,a∗) over {an, a∗} such that
−1/2n+1 < δ(F(an ,a∗)/{an, a∗}) < 0 using Theorem 3.1. Let D′ ⊆ Fan ,a∗ . Now if
D′ ∩ {an, a∗} contains exactly one element, then δ(D′/D ∩{an, a∗}) ≥ 0. So suppose
that D′ ∩ {an, a∗} = {an, a∗}. Since δ({an, a∗}/{a∗}) = δ({an, a∗}/{an}) = 1 and
δ(D′/{c}) = δ(D′/{an, a∗}) + δ({an, a∗}/c) ≥ −1/2n+1 + 1 ≥ 0 where c = an

or c = a∗ it follows that {an}, {a∗} ≤ Fan ,a∗ . Now consider the structure N∗ with
universe N ∪ {a∗} ∪ ⋃

an∈A Fa∗,an with

1. For distinct a, b, b′ ∈ Ma∗, Fa,b,Fa,b′ are freely joined over a.
2. For distinct a, a′, b, b′ ∈ Ma∗, Fa,b,Fa,b′ are freely joined over ∅.

Clearly M{a∗} is a set of points with no relations between them. Note that we have
shown that {a∗}, {an} ≤ Fan ,a∗ . Let G ⊆Fin N

∗. Suppose that the G ∩ M{a∗} = ∅.
Then because of the conditions regarding free joins we see that δ(G) = ∑

δ(Fa,b ∩
G) ≥ 0. Now consider the case G ∩ M{a∗} �= ∅. Put G ′ = G ∩ A{a∗}. Now
δ(G/G′) = δ((N ∩ G)/G′) + δ((N∗ − N) ∩ G/G′) = δ((N ∩ G)/N ∩ G′) +
δ((N∗ − N) ∩ G/G′) where δ((N ∩ G)/G′) = δ((N ∩ G)/N ∩ G′) follows by
considering the fact that the underlying finite structures are freely joined. Now
δ(G) = δ(G′)+ δ((N ∩ G)/N ∩ G′)+ δ((N∗ − N) ∩ G/G′). Suppose that a∗ /∈ G ′.
Then δ(G′) + δ((N ∩ G)/N ∩ G′) = δ((N ∩ G)) and δ((N∗ − N) ∩ G/G′) ≥ 0
by using an argument similar to that in Remark 5.5. So assume that a∗ ∈ G ′.
Now δ(G) = δ(G′ ∩ N) + δ((N ∩ G)/N ∩ G′) + δ(a∗) + δ((N∗ − N) ∩ G/G′).
It follows that δ(G′ ∩ N) + δ((N ∩ G)/N ∩ G′) ≥ 0 by an argument similar to the
above. But by construction of the new minimal pairs δ(a∗)+ δ((N∗ − N) ∩ G/G′) ≥
1 − ∑

1/2n+1 ≥ 0. Thus N∗ |� S∀
α .

Now each pair of points {a, b} from M{a∗} has aminimal pair over it; i.e. (ab,Fa,b)

is a minimal pair. Now consider Fa,b. Note that since a ≤ Fa,b′ and b ≤ Fb,b′ and
using the various properties regarding how the Fc,d are freely joined and arguing in a
similar manner to Remark 5.5 yields that Fa,b is closed in N∗ which establishes that
there is a unique minimal pair over ab. Now it also follows that for any a ∈ M{a∗}
the closure of a is itself. Thus N∗ is also tent-like.

By iterating this ω1 many times we obtain a tent-like structure where the corre-
sponding N′ over M′ where |M ′| = ℵ1. ��
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Lemma 5.11 Let α be coherent but not rational. Then there is X |� S∀
α of size ℵ1 such

that X has finite closures but there is no atomic model N of Sα such that N ⊇ X. Thus
there is M |� Sα such that M does not embed isomorphically into any atomic model
of Sα .

Proof Let X |� S∀
α be tent-like over Y where Y = {ai : i < ω1}. We claim that there

is no N ⊇ X such that N is an atomic model of Sα .
Assume to the contrary that there is such a N. Now for any aβ , iclN({aβ}) would

be finite and δ(iclN({aβ})) = 0 by use of Theorem 5.2. Note that for β, γ distinct,
Fβ,γ ⊆ iclN({aβ, aγ }). Now either (Fβ,γ − {aβ, aγ }) ∩ iclN({aβ}) �= ∅ or (Fβ,γ −
{aβaγ }) ∩ iclN({aβ}) �= ∅. For if not

δ(iclN({aβ })iclN({aγ })) = δ(iclN({aβ })) + δ(iclN({aγ })) − δ(iclN({aβ }) ∩ iclN({aγ }))
−e(iclN({aβ }) − iclN({aγ }), iclN({aγ }) − iclN({aβ }))

by use of (1) of Fact 2.3). This implies that δ(iclN({aβ})iclN({aγ })) = 0. But
then iclN({aβ})iclN({aγ }) is closed. Thus we obtain that, (F{aβ ,aγ } − {aβaγ }) �

iclN({aβaγ }) ⊆ iclN({aβ})iclN({aγ }), a contradiction.
Now for each β, iclN({aβ}) is finite. Thus there is some β∗ > β such that

iclN({aβ}) ∩ (F{aβ ,aγ } − {aβ, aγ }) = ∅

for all γ > β∗. But now by doing a standard catch your tail argument, we can find
β ′ < ω1 such that for all β < β ′, if iclN({aβ}) ∩ (F{aβ ,aγ } − {aβ, aγ }) �= ∅, then
γ < β ′. Choose γ > β ′. For all β < β ′, iclN({aβ}) ∩ (F{aβ ,aγ } − {aβ, aγ }) = ∅.
Hence iclN({aγ })∩ (F{aβ ,aγ } − {aβ, aγ }) �= ∅. But this is contradictory as iclN({aγ })
is finite and the F{aβ ,aγ } − {aβaγ } are distinct non-empty sets.

We can do an easy chain argument argument to show that there is some X ⊆ M
andM |� Sα . Clearly no suchM embeds into an atomic model as otherwise,Xwould
to. This finishes the proof. ��

We finally finish with Theorem 5.4, which shows that when α is coherent, αE being
rational for all E ∈ L can be characterized in terms of isomorphic embeddability into
atomic models.

Theorem 5.4 Let α be coherent. The following are equivalent

1. α is rational
2. Every M |� Sα embeds isomorphically into an atomic model of Sα

Proof The proof of this statement is immediate from Lemma 5.8 and Lemma 5.11. ��
Remark 5.7 Theorem 3.1 fails for the case that for each E in L , arity of E is 2 and
α(E) = 1. However it is possible to obtain the quantifier elimination result and the
results about atomic models by proving Theorem 3.2 and Lemma 4.1. These results
require ad hoc constructions that apply only to this specific case. We have omitted this
case in favor of a more streamlined presentation of the results.
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A Some relevant number theoretic facts

The number theoretic results concerning Diophantine equations can be found in Chap-
ter 5 of [9] and the number theoretic results concerning continued fractions can be
found in Chapter 7 therein.

Remark A.1 We note that in the case all the αE are rational the equation n −∑
E∈L αE m E = − 1

c has infinitelymany positive integer solutions, i.e. solutionswhere
n and all of the m E are positive. This follows from a straightforward argument using
basic number theoretic facts regarding the greatest common denominator, the fact that

linear diophantine equations have solutions and c =
∏

1≤i≤n qi∏
1≤i≤n gcd(qi ,lcm(qi+1,...,qn))

.

Remark A.2 Let 0 < β < 1 be irrational. Note that β has a simple continued fraction
form [0 : a1, a2, . . .] = 0 + 1 1

a1+ 1
a2+···

where ai ∈ ω is positive for i ≥ 1. Let

pk/qk = [0 : a1, . . . , ak] be the simple continued fraction approximation restricted
to k-terms. Now:

1. pk, qk are increasing sequences (and hence pk, qk → ∞)
2. 〈p2k/q2k : k ∈ ω〉 is a strictly increasing sequence that converges to β

3. For even k, 1
qk (qk+qk+1)

< β − pk
qk

< 1
qkqk+1

Now it follows that − 1
q2k

< p2k − q2kβ < − 1
q2k+q2k+1

. This easily yields that
limk p2k − q2kβ = 0.
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