
Archive for Mathematical Logic (2021) 60:301–315
https://doi.org/10.1007/s00153-020-00745-4 Mathematical Logic

Learning theory in the arithmetic hierarchy II

Achilles A. Beros1 · Konstantinos A. Beros2 · Daniel Flores1 · Umar Gaffar1 ·
David J. Webb1 · Soowhan Yoon1

Received: 10 April 2018 / Accepted: 20 July 2020 / Published online: 26 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The present work determines the arithmetic complexity of the index sets of u.c.e. fam-
ilies which are learnable according to various criteria of algorithmic learning.
Specifically, we prove that the index set of codes for families that are TxtFexab-
learnable is �0

4-complete and that the index set of TxtFex∗∗-learnable and the index
set of TxtFext∗∗-learnable families are both �0

5-complete.

Keywords Algorithmic learning theory · Computability theory · Recursion theory

Mathematics Subject Classification 03D15

1 Introduction

At its heart, the goal of algorithmic learning theory is a formalization of the intuitive
concept of learning. Specifically, algorithmic learning theory aims to formalize the
process of extrapolation. As a rudimentary example of extrapolation, if one is given
the finite sequence

2, 4, 6, 8

a natural conclusion is that the sequence represents an initial segment of the infinite
sequence of all even numbers. The process of extrapolating a generative algorithm

B Achilles A. Beros
beros@math.hawaii.edu

Konstantinos A. Beros
berosk@miamioh.edu

1 Department of Mathematics, University of Hawaii at Manoa, 2565 McCarthy Mall, Keller Hall
401A, Honolulu, HI 96822, USA

2 Department of Mathematics, Miami University, 123 Bachelor Hall, 301 S. Patterson Ave., Oxford,
OH 45056, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-020-00745-4&domain=pdf


302 A. A. Beros et al.

from given finite data is modeled in a number of different ways in algorithmic learn-
ing theory. The standard model of learning – introduced in Gold [8] – is explanatory
learning or EX-learning. A computable function M : 2<ω → ω EX-learns a com-
putably enumerable (c.e.) set A ⊆ ω iff, for any enumeration f : ω→ ω of A,

(∃e)(We = A ∧ (∀∞n)(M( f � n) = e)
)

Recall that We is the c.e. set with Turing code e. The topic of learning families of
c.e. sets has been studied extensively (for example, see [1,10]. A computable machine
M EX-learns a uniformly c.e. (u.c.e.) family F if it EX-learns every A ∈ F . While a
family consisting of a single c.e. set can always be learned by an appropriate M , there
are many families which are not EX-learnable. For instance, the family consisting
of the finite sets {0, . . . , n} together with ω cannot be EX-learned. In this case, any
learning machine which identifies the finite sets in this family will fail to identify ω

from suitably chosen enumerations.
With this in mind, it is natural to ask which u.c.e. subsets ofP(ω) are EX-learnable.

In [3], author A. Beros took up this question from the point of view of definable
complexity. Specifically, A. Beros showed that the set of Turing codes for u.r.e families
which are EX-learnable is �0

4-complete. The lower bound was achieved by a finite
injury priority construction which reduced an arbitrary �0

4 predicate the set EXL of
Turing codes for EX-learnable u.c.e. families. The upper bound (i.e., the statement
that EXL is�0

4) relied upon a result of Blum–Blum [4] to the effect that a u.c.e. family
is EX-learnable if it is EX-learnable from computable enumerations. Whereas the
definition of an EX-learnable family is apparently �1

1, the theorem of Blum–Blum
guarantees that the initial universal quantifier can be restricted to only those functions
f : ω→ ω which are computable.
There are a number of learning criteria besides EX-learning which differ according

to what type of convergence is required from the learning machine M [5,6] as well as
the types of errors M is permitted to make [7] and the use of oracles [11]. For instance,
a machine M BC-learns a set A if, given any enumeration f of A,

(∀∞n)(WM( f �n) = A).

In other words, although M( f � n) is allowed to change infinitely many times as
n increases, M( f � n) must be a Turing code for A for cofinitely many n. In [3],
A. Beros showed that the set of all codes for u.c.e. families which BCL-learnable is
�0

5-complete. In this case, the upper bound required a BC-learning analogue of Blum–
Blum’s theorem: if a family is BC-learnable from�0

2 enumerations, it is BC-learnable
from arbitrary enumerations.

Vacillatory learningmodels strike a compomise between the infinitelymany distinct
hypotheses of BC-learning and the discrete convergence of EX-learning. Specifically,
the learning machine is permitted to change its output infinitely many times (or vac-
illate) between finitely many distinct codes for the set to be learned, i.e.,

{M( f � n) : n ∈ ω}

123



Learning theory in the arithmetic hierarchy II 303

must be a finite set.
There are further learning criteria whereby the learning machine is permitted to

output codes for sets which are merely equal to the set to be learned modulo finite
sets. For instance, a computable function M : 2<ω → ω TxtFex∗∗-learns a c.e. set A
if, given any enumeration f : ω→ ω of A, there is a finite set F such that

• (∀∞n)(M( f � n) ∈ F) and
• (∀e ∈ F)(We and A have finite symmetric difference).

TxtFex∗∗-learning is therefore a criterion which permits both vacillation and errors.
Placing fixed bounds on the number of vacillations and/or the number of errors permit-
ted yields an infinite number of distinct learning criteria. If the symmetric difference
We
A is permitted to have cardinality at most a and only b many vacillations are
allowed, the resulting learning criterion is denoted TxtFexab . If a ∈ ω, a family is
TxtFexa∗-learnable if only a many errors, but arbitrarily many vacillations are permit-
ted. Details of these definitions are given in the next section.

The results in the present work cover a variety of different vacillatory learning
criteria and establish definable complexity results in each case.

Theorem 3.5

For a ∈ ω and b ∈ ω ∪ {∗}, the set of Turing codes for u.c.e. families which are
TxtFexab-learnable is �0

4-complete.

Theorem 4.2

The set of Turing codes for u.c.e. families which are TxtFex∗∗-learnable is�0
5-complete.

This latter result usesmachinery developed by author A. Beros in his doctoral thesis
and published in [3].

2 Preliminaries and notation

2.1 Fundamental notions

For the most part, the terminology of this paper is standard. For reference, this section
contains a summary of the relevant notation. We refer the reader to [12] for more on
computability theory and to [9] for learning theory.

For e ∈ ω, let ϕe be the Turing machine coded by e. The domain of ϕe is denoted
by We. If M is any computable function, M(α) ↓ indicates that M converges on
input α. The notation M(α) ↓t indicates that M has converged on input α within t
computation stages. Similarly, M(α) ↑ indicates that M never halts on input α and
M(α) ↑t indicates that M has not yet converged on input α after t stages.

Let |A| denote the cardinality of A. For sets A, B ⊆ ω, let A
B denote the
symmetric difference of A and B. Let A =∗ B indicate that A and B are equal mod
finite, i.e., |A
B| <∞. If |A
B| ≤ a for some fixed a ∈ ω, write A =a B.

If f : ω → ω is any function, let f � n denote the restriction of f to the set
{0, . . . , n − 1}.

123



304 A. A. Beros et al.

For A ⊆ ω, let A<ω denote the set of finite strings of elements of A. If σ, τ ∈ A<ω,
write σ � τ to indicate that σ is a prefix of τ . Likewise, if f : ω → A, let σ ≺ f
indicate that σ is a prefix of f .

2.2 Vacillatory learning preliminaries

The present paper focuses on the following family of vacillatory learning criteria.

Definition 2.1 Let a, b ∈ ω ∪ {∗}. A partial computable function M : ω<ω → ω

TxtFexab -identifies a c.e. set A ⊆ ω iff, for any f : ω → A which enumerates A,
there is a set F ⊆ ω such that

• F is finite if b = ∗ and |F | ≤ b if b ∈ ω \ {0},
• (∀∞n)(M( f � n) ↓ & M( f � n) ∈ F) and
• (∀e ∈ F)(We =a A).

When a = ∗, the only requirement in the final clause is thatWe equal A modulo finite
sets.

The function M TxtFexab-learns a u.c.e. family F ⊆ P(ω) iff it identifies each
A ∈ F . Finally, a u.c.e. family is TxtFexab-learnable iff there exists a machine M
which learns F .

Theorem 4.2 below concerns another form of vacillatory learning.

Definition 2.2 A computable function on strings TxtFext∗∗-identifies a c.e. set A iff it
TxtFex∗∗-identifies A and the finite set F in the definition above has the additional
property that

(∀e1, e2 ∈ F)(We1 = We2).

The definitions of “TxtFext∗∗-learning” and “TxtFext∗∗-learnable” are analogous to the
ones above in the TxtFex∗∗ case.

The following is a useful observation.

Proposition 2.3 If M TxtFexab-identifies or TxtFext
∗∗-identifies a c.e. set A ⊆ ω, there

is a string σ ∈ A<ω such that, for every τ ∈ A<ω,

M(σ�τ) ∈ {M(α) : α � σ }.

Proof Suppose otherwise. This implies that everyσ ∈ A<ω has an extensionσ ′ ∈ A<ω

such that

M(σ ′) /∈ {M(α) : α � σ }.

In other words, the set

X = {σ ∈ A<ω : (∃σ ′ � σ)(M(σ ′) /∈ {M(α) : α � σ })}

123



Learning theory in the arithmetic hierarchy II 305

is dense in A<ω. It is therefore possible to inductively define an enumeration f of A
such that

{M( f � n) : n ∈ ω}

is infinite. In particular, M does not identify A from f . This is a contradiction. Note
that, since X is c.e., f can be made recursive. ��

What follows is a powerful result due to John Case, reproduced for the reader’s
convenience. This result is a cornerstone of the complexity upper bounds obtained in
the present paper.

Theorem 2.4 (Case [6], Theorem 5.5) Let a, b ∈ ω ∪ {∗}. If M TxtFexab-learns a
familyF ⊆ P(ω) from computable enumerations, then there exists a total computable
M̂ : ω<ω → ω which TxtFexab-learns F from arbitrary enumerations.

Remark 2.5 A routine modification of Case’s proof establishes the same result for
TxtFext∗∗-learning.

3 Vacilation with bounded error

Definition 3.1 For a ∈ ω ∪ {∗} and b ∈ ω ∪ {∗}, let FEXLa
b denote the index set of

natural numbers coding u.c.e. families which are TxtFexab-learnable.

Theorem 3.2 For a ∈ ω and b ∈ ω ∪ {∗}, the index set FEXLab has a �0
4 description.

First, a lemma.

Lemma 3.3 {〈y, z〉 : m ≤ |Wy
Wz | ≤ n} is �0
3 for all m, n ∈ ω.

Proof Fix m, n ∈ ω and let A = {〈y, z〉 : m ≤ |Wy
Wz | ≤ n}.

〈y, z〉 ∈ A ⇐⇒ |Wy
Wz | ≤ n ∧ |Wy
Wz | ≥ m.

In other words,

(∃x0, . . . , xm−1, s)(∀t)
[
(∀i, j ≤ m)

(
i �= j �⇒ xi �= x j

)∧
∧

i≤m−1
(xi ∈ Wy,s ∧ xi /∈ Wz,t ) ∨ (xi ∈ Wz,s ∧ xi /∈ Wy,t )

]

∧ (∀x0, . . . , xn)
[
(∀i, j ≤ n)

(
i �= j �⇒ xi �= x j

) �⇒
∨

i≤n
(xi ∈ Wy ∩Wz) ∨ (xi /∈ Wy ∪Wz)

]

which is the conjunction of a �0
2 statement with a �0

2 statement. ��

123



306 A. A. Beros et al.

Proof (Proof of Theorem 3.2) For each e ∈ ω, let Le denote the u.c.e. family coded
by e. For each i , let

Le[i] = { j : 〈i, j〉 ∈ Le}.

That is, Le[i] is the i th set in the family Le. For each p ∈ ω, let

Mp : 2<ω → ω

be the learning machine coded by p.
First of all, if a family Le is learnable, say by M , there is a total learner M̂ which

also learns Le. Indeed, let M̂ be defined by

M̂(σ ) =

⎧
⎪⎨

⎪⎩

M(σ � n) where nis largest such that M(σ � n)

converges in |σ | computation stages,

0 otherwise.

The learner M̂ learns every subset of ω that M learns. To see this, suppose that M
learns a set A ⊆ ω. Let f : ω → ω be any enumeration of A. Let n0 be large
enough that WM( f �n) =a A for each n ≥ n0. Let n1 ≥ n0 be large enough that
M( f � n0) ↓ within n1 computation stages. It follows that, if σ ≺ f and |σ | ≥ n1,
then M̂(σ ) = M( f � n) for some n ≥ n0. Hence, WM̂(σ ) =a A. This shows that M̂
learns A.

Next, by Case’s Theorem (Theorem 2.4), it follows that a family is learnable iff it is
learnable from computable enumerations. Therefore, a familyLe is TxtFexab learnable
iff there exists p ∈ ω such that, for all x, i ∈ ω,

(1) Mp is total and,
(2) if ϕx is total and enumerates Le[i], then
(a) there exists a finite set D ⊆ ω such that
(i) |D| ≤ b (if b �= ∗) and
(ii) (∀∞n)(∀t)(Mp(ϕx � n) ↓t �⇒ Mp(ϕx � n) ∈ D)

(b) and (∀ j)(|Wj
Le[i]| > a �⇒ (∀∞n)(∀t)(Mp(ϕx � n) ↓t �⇒ Mp(ϕx �
n) �= j)).

Note that, in the case of b = ∗, condition (i) above is removed. Condition (b) says that if
j is an incorrect code forLe[i], there are cofinitely many n such that Mp(ϕx � n) �= j .
To see that the predicate “Le is learnable” is �0

4 , observe first that condition (1)
above is �0

2 . Next, notice that condition (i) is computable and condition (ii) is �0
2 .

Finally, condition (b) is �0
3 by Lemma 3.3. It follows that condition (2) is �0

3 and
therefore, “Le is learnable” is �0

4 . ��
The next objective is to show that TxtFexab is �0

4-hard. This is established by
Theorem 3.5 below. The following example serves the basic building block in the
proof of this theorem.

Example 3.4 For each e ∈ ω, define a family Le of c.e. sets as follows:

123



Learning theory in the arithmetic hierarchy II 307

• if e ∈ INF, i.e., We is infinite, let Le = {[e,∞)}
• if e ∈ FIN, i.e., We is finite, let Le = {[e, e + i + |We|] : i ∈ ω}

Now let F =⋃
e Le.

In the first place, F is u.c.e. To see this, observe that F is the collection of all sets
of the form

Le,i = {x : (∃s)(e ≤ x ≤ e + i + |We,s |)}.

Note that, if e ∈ INF, then Le,i = [e,∞) for each i ∈ ω.
The key attribute of F is that it is not TxtFexab-learnable for any a ∈ ω and b ∈

ω ∪ {∗}. To prove this, it will suffice to show that F is not TxtFexa∗-learnable for any
a ∈ ω. To this end, suppose that the contrary is true. Say M TxtFexa∗-learns F . By
Case’s Theorem (Theorem 2.4 above), it is no loss to assume that M is total. Consider
the �0

2 predicate Q given by

Q(e) ⇐⇒ (∃σ ∈ [e,∞)<ω)(∀τ ∈ [e,∞)<ω)(M(σ�τ) ∈ {M(α) : α � σ }).

Since INF is�0
2-complete, a contradiction will be obtained by showing that INF = Q.

Suppose e ∈ INF. As M identifies Le,i = [e,∞), it follows from Proposition 2.3
that there is a string σ ∈ [e,∞) with

M(σ�τ) ∈ {M(α) : α � σ }

for all τ ∈ [e,∞)<ω. In other words, Q(e) holds.
For e ∈ FIN, the machine M identifies each

Le,i = [e, e + i + |We|].

Given σ ∈ [e,∞)<ω, let i > max(content(σ )) be large enough that, for all α � σ ,

WM(α) �=a [e, e + i + |We|].

Since M identifies [e, e + i + |We|], there exists τ ∈ [e,∞)<ω such that

WM(σ�τ) =a [e, e + i + |We|].

In particular, M(σ�τ) /∈ {M(α) : α � σ }. Thus, ¬Q(e) holds. This yields a contra-
diction since it shows that INF = Q and Q is �0

2 .

In the proof that follows, Lx and F are as in Example 3.4. The proof is based on
ideas which arose from correspondence between the first author and Frank Stephan.

Theorem 3.5 For a ∈ ω and b ∈ ω ∪ {∗}, the index set FEXLab is �0
4 -hard.

123



308 A. A. Beros et al.

Proof In what follows, “learnable” means “TxtFexab-learnable” for fixed a ∈ ω and
b ∈ ω ∪ {∗}. No distinction need be made as the argument is identical for all such a
and b.

Fix a �0
4 predicate P and a total computable function f : ω2 → ω such that for

each n ∈ ω,

P(n) �⇒ (∀∞x)( f (n, x) ∈ COINF)

and

¬P(n) �⇒ (∀x)( f (n, x) ∈ COF).

Also, assume that f is strictly increasing in the second coordinate, i.e.,

f (n, 0) < f (n, 1) < . . .

for all n ∈ ω.
Fix n ∈ ω. Given x, e, i, p ∈ ω, define Rn

x,e,i,p ⊆ ω as follows. First of all, assume
p ∈ W f (n,x); otherwise, Rn

x,e,i,p will be undefined. Let Ip,s be the largest interval
contained in W f (n,x),s with p ∈ Ip,s .

Rn
x,e,i,p =

{
x : (∃s)(e ≤ x ≤ e + i +min{|Ip,s |, |We,s |}

}

Further, define Rn
x,e,p = {Rn

x,e,i,p : (∃s)(i ≤ |Ip,s |)}. Now let

Fn =
⋃{

Rn
x,e,p : x ∈ ω ∧ f (n, x) ≤ e < f (n, x + 1) ∧ p ∈ W f (n,x)

}
.

SinceFn is u.c.e., the proofwill therefore be completed by showing thatFn is learnable
iff P(n).

Recall now the families Le = {Le,i : i ∈ ω} from Example 3.4 above. Also, let
An,x,e be the set of those members of Fn whose minimum element is e. Although the
dependence ofAn,x,e on x is redundant, including it makes some formulas simpler to
write.

Claim 1. If f (n, x) ≤ e < f (n, x + 1), i ∈ ω and W f (n,x) is cofinite, then Rn
x,e,i,p =

Le,i for all but finitely many p ∈ W f (n,x).
To see why this is so, fix p ∈ W f (n,x) such that p is contained in an infinite interval

ofW f (n,x). Note that all but finitelymany p ∈ W f (n,x) are contained in such an infinite
interval. For such p, it follows from the definition of Rn

x,e,i,p that

Rn
x,e,i,p = [e, e + i + |We|] = Le,i

if We is finite, and

Rn
x,e,i,p = [e,∞) = Le,i

123



Learning theory in the arithmetic hierarchy II 309

if We is infinite. This establishes the claim.

Claim 2. If W f (n,x) is coinfinite, Rn
x,e,i,p is finite for all e, i, p.

This follows from the fact that the minimum in the definition of Rn
x,e,i,p will be

bounded by the length of the interval in W f (n,x) which contains p.

Claim 3. IfWe is infinite andW f (n,x) is cofinite, thenAn,x,e is a finite - hence learnable
- family.

Indeed, in this case, claim 1 implies that, for all but finitely many p ∈ W f (n,x),

Rn
x,e,i,p = Le,i = [e,∞).

HenceAn,x,e consists of the infinite set [e,∞) together with finitely many finite sets.
Towards the end of showing that Fn is learnable iff P(n), suppose first that P(n)

holds. It follows from the choice of f thatW f (n,x) is coinfinite for all but finitely many
x , i.e.,

H = {x ∈ ω : W f (n,x) is cofinite}

is a finite set. Consequently, the set

G = {〈x, e〉 : x ∈ H ∧ e ∈ INF}

is also finite. Let

B =
⋃
{An,x,e : 〈x, e〉 ∈ G}

Since H is finite, claim 3 implies that B is a finite set as well. Hence, B is learnable,
say by a total machine M . It follows from the definition of Fn that

Fn ⊆ B ∪ C.

where C is a collection of finite sets. Therefore, if N is a total machine which learns
all finite sets, Fn is learned by the machine M̂ with

M̂(σ ) =
{
M(σ ) if (∃x ∈ H)

(〈x,min(content(σ ))〉 ∈ G
)
,

N (σ ) otherwise.

for each string σ ∈ ω<ω.
Finally, suppose that ¬P(n). In this case, W f (n,x) is cofinite for every x ∈ ω

and hence, for each pair e, i , Rn
x,e,i,p = Le,i all but finitely many p. It follows that

Fn contains the non-learnable family F from Example 3.4. In particular, Fn is not
learnable. This complete the proof. ��

123



310 A. A. Beros et al.

4 Unbounded vacilation and error

4.1 Upper bounds

An upper bound for FEXT L∗∗ is obtained in a manner similar to FEXT La
b . The

only distinction between the descriptions is We = We′ has a �0
2 description whereas

We =∗ We′ has a �0
3 description. The defining arithmetic formula for FEXT L∗∗ is as

follows.

(∃a)(∀k, i)
(
(Ma is total) ∧ (φk is total) ∧ (φk enumerates Li )→ ψ(k, a, i)

)
(1)

where we define ψ(k, a, i) to be

(∃s, c)(∀t ≥ s)
(
Ma(φk � t) ∈ Dc ∧ ∀x, y ∈ Dc(Wx = Wy)

)
∧ (∀n)

(
WMa(φk�n) =∗ Li

∨ (∃m)(∀u ≥ m)
(
Ma(φk � m) �= Ma(φk � n)

))
.

The last formula is�0
4. Thus, (1) is�0

5 and characterizes TxtFex-learning because, for
any family coded by a number e which satisfies formula (1), there is a learner whose
hypotheses converge to correct hypotheses on every computable enumeration and if e
fails to satisfy formula (1), every learner must fail for some set in the family.

We have, therefore, exhibited a�0
5 description of FEXT L∗∗. Notice the weakening

of FEXT L∗∗ to FEXL∗∗ must also have a �0
5 description. It is meaningful to study

both FEXT L∗∗ and FEXL∗∗ as FEXT L∗∗ �= FEXL∗∗, a result due to the first author
that appears in [2].

4.2 Lower bounds

Lemma 4.1 Let M = Mm be a computable learning machine and We a c.e. set. There
is a family Fm,e, uniformly computable in both m and e, such that:

(1) If We is coinfinite, then Fm,e is not TxtFex∗∗-learnable by M, but the family is
TxtFext∗∗-learnable.

(2) If We is cofinite, then Fm,e is uniformly TxtFext∗∗-learnable in both m and e.

Proof Fix a machine M = Mm and a c.e. set We. We will construct a family

Fm,e =
{
A, F0

0 , . . . , F0
k0 , F

1
0 , . . . , F1

k1 , . . .
}

in stages. Each set in Fm,e will have two columns ({〈0, x〉 : x ∈ ω} and {〈1, x〉 : x ∈
ω}) reserved for markers. Every set in Fm,e contains 〈0, 〈m, 0〉〉 and 〈0, 〈e, 1〉〉 and A
contains the marker 〈0, 〈0, 3〉〉 as well. Unless otherwise indicated, any action during
the construction is performed on the complement of the reserved columns.We identify
this complement with ω as it is a computable copy. At any stage of the construction,

123



Learning theory in the arithmetic hierarchy II 311

there will be at most one n ∈ ω for which the sets Fn
0 , . . . , Fn

kn
will be actively

involved in the construction. When there is such a value n, we call Fn
0 , . . . , Fn

kn
the

active sets and n the active index. We also maintain an associated function rn which
stores information about that those sets.

Stage 0: Search for the least string σ on which M outputs a hypothesis. Set σ0 equal
to σ and enumerate content(σ0) into A.

Stage s+1: Let σ0 ≺ . . . ≺ σs be the sequence of strings passed to the current
stage from stage s. If there is a currently active index n with active sets Fn

0 , . . . , Fn
kn
,

then for j ∈ We,s+1, we enumerate rn( j), . . . , rn( j) + kn into all of the active sets.
We then consider four cases depending on the status of two parameters. First, the
existence of an active index. Second, the availability, within computational bounds,
of an extension α � σs on which M outputs a hypothesis different from all the
hypothesis it has output on prefixes of σs . We only consider the finite set of strings
S = {σs�τ : (|τ | < s + 1) ∧ (content(τ ) ⊂ s + 1)} in our search for α.

Case 1:Suppose there is no active index, but there is an extensionα ∈ S, of σs such that
M(α) /∈ {M(τ ) : τ � σs}. We pick the least such α. Set σs+1 = α�β, where β is an
increasing enumeration of {x : x ≤ max(content(α))}, and enumerate content(σs+1)
into A.

Case 2: Next, consider the case where there is neither an active index nor an α ∈ S
such that M(α) /∈ {M(τ ) : τ � σs}. Let n ∈ ω be least such that n has never been
the active index before, set kn = |{M(τ ) : τ � σs}| and set Fn

0 , . . . , Fn
kn

to be the
active sets. Set σs+1 = σs and enumerate content(σs+1) into each of Fn

0 , . . . , Fn
kn
.

Pick the least q ∈ ω such that no number greater than (kn + 1)q has appeared in the
construction so far. Enumerate (kn + 1)q + i into Fn

i for each i ≤ kn .

Case 3: Let n be the active index and Fn
0 , . . . , Fn

kn
be the active sets. Also, suppose

α ∈ S is least such that M(α) /∈ {M(τ ) : τ � σs}. Set σs+1 = α�β, where β is an
increasing enumeration of {x : x ≤ max(content(α))}, and enumerate content(σs+1)
into A. Next, we “cancel” the active index and active sets. Specifically, we enumerate
the marker element 〈1, 〈n, i〉〉 into Fn

i for each i ≤ kn and mark the sets as inactive.

Case 4: Finally, assume there is a currently active index n and active sets Fn
0 , . . . , Fn

kn
,

but no α ∈ S such that M(α) /∈ {M(τ ) : τ � σs}. Pick the least q ∈ ω such that
no number greater than (kn + 1)q has appeared in the construction so far. Enumerate
(kn + 1)q + i into Fn

i for each i ≤ kn and set rn(i + 1) = (kn + 1)q, where i is the
greatest value for which rn(i) is defined.

To verify that the above construction produces a family with the desired properties,
we must verify three statements:

(1) Fm,e is TxtFext∗∗-learnable for all M and e.
(2) If We is coinfinite, then M does not TxtFex∗∗-learn Fm,e.
(3) IfWe is cofinite, then there is a machine, computable fromm and e, that TxtFext∗∗-

learns Fm,e.

If a natural number remains the active index cofinitely, then Fm,e is a finite family.
If no such number exists, then every finite set has a unique marker by which it can be

123



312 A. A. Beros et al.

identified and the only infinite set is A. In either case, the family is learnable and we
conclude that the first statement is true.

To prove the second statement, we must again consider two cases. Suppose We

is coinfinite. If n ∈ ω remains the active index cofinitely, then M outputs the same
hypothesis on all extensions of a finite partial enumeration whose content is con-
tained in each of Fn

0 , . . . , Fn
kn
. Thus, there are kn + 1 enumerations, one for each of

Fn
0 , . . . , Fn

kn
, on which M converges to the same hypothesis. The pairwise symmet-

ric difference of any two active sets, however, is infinite. If no pair remains active
infinitely, then there must be an infinite number of stages during the construction at
which σ0 ≺ σ1 ≺ . . . are found such that M(σs+1) /∈ M(α) /∈ {M(τ ) : τ � σs} and
A is enumerated by f (n) = σn(n). In either case, M fails to TxtFex∗∗-learn Fm,e.

Finally, we must exhibit a machine that can TxtFext∗∗-learn all possible families
Fm,e where e ∈ COF. In particular, a machine that can TxtFex∗∗-learn the following
possibly non-u.c.e. family as well as every subfamily:

G =
⋃

e∈COF,m∈ω
Fm,e .

SinceWe is cofinite for all the families under consideration, observe thatFm,e con-
sists of a (possibly infinite) number of finite sets and a finite number (A or Fn

0 , . . . , Fn
kn
)

that are cofinite in the complement of the marker columns. Fix codes a0, a1 and am,e

such that Wa0 = ∅, Wa1 = ω \ {〈x, y〉 : (x = 0 ∨ x = 1) ∧ y ∈ ω} and Wam,e is the
set A ∈ Fm,e. For notational ease, let C(k) = {〈k, x〉 : x ∈ ω}. Define Nm,e by

Nm,e(σ ) =

⎧
⎪⎨

⎪⎩

a0 if content(σ ) ∩ C(1) �= ∅,
am,e if 〈0, 〈0, 3〉〉 ∈ content(σ ),

a1 otherwise.

Further, define a machine N by

N (σ ) =
{
Nm,e if 〈0, 〈m, 0〉〉, 〈0, 〈e, 1〉〉 ∈ content(σ ),

0 otherwise.

To prove that N learns G, select an arbitrary D ∈ G. Let e and m be the codes such
that D ∈ Fm,e for cofinite We.

Case 1: Suppose that, during the construction ofFm,e, no natural number is the active
index cofinitely. In this case, every member of Fm,e is marked, either with a marker
in C(1) or with 〈0, 〈0, 3〉〉. Thus, N succeeds in TxtFex∗∗-learning Fm,e.

Case 2: Suppose, on the other hand, that n remains active cofinitely during the con-
struction. Let Fn

0 , . . . , Fn
kn

be the sets that are active cofinitely. If D = A, then
〈0, 〈0, 3〉〉 ∈ D and cofinitely often Nm,e hypothesizes am,e. Every other finite set
contains a unique marker and is hence TxtEx∗-learnable by Nm,e. Finally, if D is one
of the active sets, then D =∗ ω \ (C(0) ∪ C(1)). No initial segment of any enumera-

123



Learning theory in the arithmetic hierarchy II 313

tion of D contains either a marker in C(1) or the marker 〈0, 〈0, 3〉〉. Thus, Nm,e again
succeeds in TxtFex∗∗-learning the set. ��
Theorem 4.2 FEXL∗∗ and FEXTL∗∗ are both �0

5 -hard

Proof We wish to reduce an arbitrary �0
5 predicate P(e) to FEXL∗∗ and FEXTL∗∗.

For an arbitrary �0
4 predicate Q(e), there is a �0

2 predicate, R(e, x, y), such that the
following representation can be made:

Q(e)↔ (∃a)(∀b)(R(e, a, b))

↔ (∃〈a, s〉)[((∀b)(R(e, a, b))) ∧ ((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′)))
∧ ((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))]

↔ (∃!〈a, s〉)[((∀b)(R(e, a, b))) ∧ ((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′)))
∧ ((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))].

Since the predicate

((∀b)(R(e, a, b))) ∧ ((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′)))
∧((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))

is �0
3, for a suitable computable function g,

Q(e)→ (∃!x)(g(e, x) ∈ COINF)

and

¬Q(e)→ (∀x)(g(e, x) ∈ COF).

Applying the above to P(e), the arbitrary �0
5 predicate under consideration, we

may define a computable function f such that

P(e)→ (∃x)[(∀x ′ > x)(∀y)( f (e, x ′, y) ∈ COF)

∧ (∀x ′ ≤ x)(∃≤1y)( f (e, x ′, y) ∈ COINF)]

and

¬P(e)→ (∀x)[(∃!y)( f (e, x, y) ∈ COINF)].

We will now define a family Ge from e such that Ge will be learnable if and only if
P(e). Define

Ge =
⋃

x,y∈ω
Fx, f (e,x,y).

123



314 A. A. Beros et al.

Case 1: Suppose¬P(e). Then for every x , there is a y for which f (e, x, y) ∈ COINF.
From this we conclude that for each computable learner, M coded by m, there is a y
such that f (e,m, y) ∈ COINF. Ge contains a subfamily, Fm, f (e,m,y), that M cannot
TxtFex∗∗-learn. Thus, Ge is not TxtBC-learnable.
Case 2: Suppose P(e) and let x0 be such that (∀x ≥ x0)(∀y)( f (e, x, y) ∈ COF). Let
a0, a1, . . . , ak enumerate the numbers less than x0 such that, for unique corresponding
b0, b1, . . . , bk , we have f (e, ai , bi ) ∈ COINF and let Ki be a computable machine
that learnsFai , f (e,a,bi ). The existence of such a machine is guaranteed by Lemma 4.1.
Using the machine N from the proof of Lemma 4.1, define a computable machine M
on input string σ by

M(σ ) =
{
Ki (σ ) if 〈1, 〈0, ai 〉〉, 〈1, 〈1, bi 〉〉 ∈ content(σ ) for i ≤ k,

N (σ ) otherwise.

If an enumeration of a set in the subfamilyFai , f (e,ai ,bi ) is fed toM , then eventually a
tag in the 1st -columnwill appear identifying it as such.Cofinitely often, the appropriate
Ki will be used to learn the enumeration. If the enumeration is for a set fromFx, f (e,x,y)

with either x �= ai or y �= bi for any i ≤ k, then N will be used. From Lemma 4.1,
it is known that N is capable of TxtFext∗∗-learning Fx, f (x,y) for any x provided that
y ∈ COF.

We conclude that both FEXL∗∗ and FEXTL∗∗ are �0
5-hard. ��

Note that because the family described above is in fact TxtEx∗-learnable in the �0
5

case, meaning that this result has a result from [3] as a corollary.

5 Conclusion

With these results, the arithmetic complexity of the core models of vacillatory learning
have been established.

The effort to classify the arithmetic complexity of learning criteria was initiated
by the first author as an attempt to distinguish TxtFex∗∗ and TxtFext∗∗, a problem the
first author answered in [2]. As is clear from these results, although the two learning
models are distinct, their complexities do not distinguish them.

Acknowledgements The authors would like to thank the anonymous referee for dilligent readings of the
paper and thoughtful comments.

References

1. Baliga, G.R., Case, J., Jain, S.: The synthesis of language learners. Inf. Comput. 152(1), 16–43 (1999)
2. Beros, A.A.: Anomalous vacillatory learning. J. Symb. Logic 78(04), 1183–1188 (2013)
3. Beros, A.A.: Learning theory in the arithmetic hierarchy. J. Symb. Logic 79(03), 908–927 (2014)
4. Blum, L., Blum,M.: Toward a mathematical theory of inductive inference. Inf. Control 28(2), 125–155

(1975)
5. Carlucci, L., Case, J., Jain, S., Stephan, F.:NonU-shaped vacillatory and team learning. In: International

Conference on Algorithmic Learning Theory, pp. 241–255. Springer, Berlin (2005)

123



Learning theory in the arithmetic hierarchy II 315

6. Case, J.: The power of vacillation in language learning. SIAM J. Comput. 28(6), 1941–1969 (1999)
7. Case, J., Jain, S., Sharma, A.: Anomalous learning helps succinctness. Theor. Comput. Sci. 164(1–2),

13–28 (1996)
8. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
9. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn: An Introduction to learning

Theory. MIT Press, Cambridge (1999)
10. Kapur, S., Bilardi, G.: On uniform learnability of language families. Inf. Process. Lett. 44(1), 35–38

(1992)
11. Kummer, M., Stephan, F.: On the structure of degrees of inferability. J. Comput. Syst. Sci. 52(2),

214–238 (1996)
12. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Com-

putably Generated Sets. Springer, Berlin (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Learning theory in the arithmetic hierarchy II
	Abstract
	1 Introduction
	2 Preliminaries and notation
	2.1 Fundamental notions
	2.2 Vacillatory learning preliminaries

	3 Vacilation with bounded error
	4 Unbounded vacilation and error
	4.1 Upper bounds
	4.2 Lower bounds

	5 Conclusion
	Acknowledgements
	References




