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Abstract
The interplay between ultrafilters and unbounded subsets of ωω with the order <∗
of strict eventual domination is studied. Among the tools are special kinds of non-
principal (“free”) ultrafilters on ω. These include simple P-points; that is, ultrafilters
with a base that is well-ordered with respect to the reverse of the order ⊂∗ of almost
inclusion. It is shown that the cofinality of such a base must be either b, the least cardi-
nality of<∗-unbounded (“undominated”) set, or d, the least cardinality of a<∗-cofinal
(“dominating”) set. The small uncountable cardinal πp is introduced. Consequences
of b < πp and of r < d are explored; in particular, both imply b < d. Here r is the
reaping number, and is also the least cardinality of a π -base for a free ultrafilter. Both
of these inequalities are shown to occur if there exist simple P-points of different cofi-
nalities (in other words, if b < d and there exist simple Pb-points and Pd-points), but
this is a long-standing open problem. Six axioms on nonprincipal ultrafilters on ω and
the relationships between them are discussed along with various models of set theory
in which one or more are known to hold (or are known to fail). The strongest of these,
Axiom 1, is that for every free ultrafilter U and for every <∗-unbounded <∗-chain
C of increasing functions in ωω, C is also unbounded in the ultraproduct ωω,<U .
The other axioms replace one or both quantifiers with “there exists.” The negation of
Axiom 3 in a model provides a family of normal sequentially compact spaces whose
product is not countably compact. The question of whether such a family exists in
ZFC, even with “normal” weakened to “regular”, is a famous unsolved problem of
set-theoretic topology, known as the Scarborough–Stone problem.
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1010 P. Nyikos

There is an extensive literature on the subject of special ultrafilters on a denumerable
set, usually the set ω unless circumstances suggest a different underlying set. Some
kinds of ultrafilters, such as the ZFC-independent Ramsey ultrafilters, have a strong
interplay with the structure of the set ωω of sequences σ : ω → ω under the order <∗
of eventual domination.

This paper is an expansion of a set of privately circulated notes from the mid-80’s,
cited in [13,28] inter alia. It focuses on a number of other classes of ultrafilters that
have strong interplay with ωω. One is the class of simple P-points. These are the free
(“non-principal”) ultrafilters with bases that are totally ordered by the order ⊂∗ of
almost inclusion.

It is ZFC-independent whether simple P-points exist, but if they do, then the cofi-
nality of a base, with respect to the reverse of ⊂∗, must be either b or d. Here b is
the least cardinality of a <∗-unbounded (“undominated”) family in ωω and d is the
least cardinality of a cofinal (“dominating”) family in ωω. In 1983, the author asked
Saharon Shelah whether there could be a model of b < d with both simple Pb and
simple Pd points. A model believed to be of this sort was published in 1987 [9], but
a flaw in the proof was found about a decade and a half ago by Alan Dow. There
is a ongoing project by Heike Mildenberger and Saharon Shelah to construct a valid
model, but so far there is no assurance of success. We even seem to lack a model of
b < dwhere there are simple Pd-points (see Problem 1 in Sect. 1). On the other hand,
there do exist models of b < d where there are simple Pb-points; see Sect. 2.

In Sects. 2 and 3, we describe generalizations of these two kinds of simple P-points.
They are, respectively, ultrafilters with a π -base of cardinality < d, and pseudo-Pκ -
points where κ > b. The presence of either kind entails b < d, along with most of
the conclusions that follow from the existence of the kind of models described in the
preceding paragraph.

In Sects. 4 through 6, we draw on the information in the earlier sections in analyzing
six main axioms, and several auxiliary ones, and various combinations of them and
their negations. The main axioms pertain to whether <∗-unbounded chains are also
<U -unbounded for some or all free ultrafilters U . Although some combinations are
known to be consistent and others impossible, many open problems remain. The final
section deals with generalizations, especially the substitution of directed subsets of
ωω for chains.

1 Preliminaries

Among the mathematical objects influenced by the ultrafilters studied here are some
standard “small uncountable cardinals” [29,30]. All cardinals in the following list are
easily shown to be uncountable, and are obviously ≤ c = 2ω.

d = min{|F | : F is a “dominating” (cofinal) subset of (ωω,<∗)}
b = min{|F | : F is an “undominated” (unbounded) subset of (ωω,<∗)}
[π ]u = min{|B| : B is a [π -]base for a free (“non-principal”) ultrafilter on ω}
s = min{|S| : S is a splitting family of subsets of ω}
r = min{|R| : R is a refining family of subsets of ω}
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Special ultrafilters and cofinal subsets of (ωω,<∗) 1011

Here,<∗ refers to eventual strict domination: f <∗ g means that there exists k ∈ ω

such that f (n) < g(n) for all n ≥ k. A set S is said to split a set A if A\S and A ∩ S
are both infinite, and a family S is splitting if for each A ∈ [ω]ω there exists S ∈ S
such that S splits A. As usual, [ω]ω refers to the family of infinite subsets of ω.

A set S is said to reap a collection A ⊂ [ω]ω if S splits every member of A. A
collection R ⊂ [ω]ω is said to be refining if for every A ∈ [ω]ω there exists R ∈ R
such that either R ⊂∗ A or R ⊂∗ (ω\A). It is easy to see that a refining family cannot
be reaped, or as some say, it is “unsplittable,” and, conversely, ifR cannot be reaped,
it is a refining family. The symbol r, originally suggested by the author to Erik van
Douwen for different reasons, now has these natural mnemonics provided for it.

A collection B ⊂ [ω]ω is a π -base for an ultrafilter U if for each A ∈ U there is
B ∈ B such that B ⊂ A. Unlike for bases, there is no requirement that B ∈ U , and
the same collection could be a π -base for many different ultrafilters; in fact, [ω]ω is
a π -base for every free ultrafilter on ω. It is easy to see that r ≤ πu, and Balcar [3,
Proposition 1.6] showed that, in fact, r = πu.

Already when [29] was written, it was known that b ≤ d, s ≤ d, and b ≤ r ≤ u. It
has long been known that no other inequalities hold between these cardinals in ZFC.
However, the existence of simple P-points gives rise to others.

Definition 1.1 Let κ be a regular cardinal. A free ultrafilter on ω is a simple Pκ -point
if it has a totally ordered base under the order ⊂∗ (where A ⊂∗ B means that A\B is
finite and B\A is infinite), of cofinality κ in the reverse order of ⊂∗. A simple P-point
is a simple Pκ -point for some (necessarily unique, and uncountable) cardinal κ .

Obviously, if there is a simple Pκ -point, then u ≤ κ; also, κ ≤ s. This latter
inequality extends to pseudo-Pκ -points.

Definition 1.2 Let κ be a cardinal number. An ultrafilter U on ω is a pseudo-Pκ -point
if, given anyA ⊂ U , such that |A| < κ , there exists an infinite pseudo-intersection of
A; that is, there exists B ∈ [ω]ω such that B ⊂∗ A for all A ∈ A.

Lemma 1.3 If there is a pseudo-Pκ -point, then κ ≤ s.

Proof Suppose κ > s, and let S = {Sα : α < s} be splitting. Let U be a free ultrafilter
on ω. For each α < s, let Uα ∈ U be whichever of {Sα, ω\Sα} is in U . If U is a
pseudo-Pκ -point, let B be a pseudo-intersection of {Sα : α < s}; then B is not split
by any S ∈ S, a contradiction. 	


Later [Theorem 2.3] we will see that there are only two possibilities for a simple
Pκ -point: κ = b and κ = d. In the former case, r = u = b while in the latter case,
s = d. So in any model of b < d where there are simple Pb-points and simple Pd-
points, s and d are strictly greater than all of b, r, and u. These inequalities have been
long known to be consistent, but here we have an easy unified way of seeing this, if
the existence of such a pair of simple P-points is consistent.

Problem 1 (a) Is there a model of ZFC with simple P-points of different cofinalities
with respect to the reverse⊂∗ order? (b) Is there a model of ZFCwith a simple P-point
of cofinality > b?
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1012 P. Nyikos

Fortunately, several inequalities follow just from the existence of an ultrafilter with
a π -base of cardinality < d, and also from that of a pseudo-Pb+ -point.

Pseudo-Pκ -points have also been called “almost Pκ -points” by Alan Dow. They
were introduced in [21,22] gave some information about pseudo-Pb-points in various
models.

Notation 1.4 Let U be a free ultrafilter on ω.

πp(U) = min{|A| : A ⊂ U and ¬∃B ∈ [ω]ω(∀A ∈ A(B ⊂∗ A))}

and

πp = sup{πp(U) : U is a free ultrafilter on ω}.

Obviously, πp(U) = sup{κ : U is a pseudo-Pκ -point}. Problem (4) of [13] asked
whether πp(U) could consistently be singular for some free ultrafilter U . As far as the
author knows, this is still unsolved.

If we can always take B to be in U in Definition 1.2, then we have the definition
of a Pκ -point. The two concepts are not equivalent: although the existence of a Pω1 -
point (in other words, of a P-point) is ZFC-independent, every free ultrafilter on ω is
a pseudo-Pω1 -point [31, 3.27]. Moreover:

Lemma 1.5 The cardinal p is the greatest cardinal κ for which every free ultrafilter is
a pseudo-Pκ -point.

Proof The usual definition of p is that it is the least cardinal κ for which there is B ⊂
[ω]ω such that B has no infinite pseudo-intersection, yet |⋂A| = ω for every A ∈
[B]<ω}.

IfU is a free ultrafilter onω, then |⋂A| = ω for every A ∈ [U]<ω, soπp(U) ≥ p;1

in other words, U is a pseudo-Pp-point. On the other hand, if B is as in the definition
of p, and U is a free ultrafilter extendingB, then πp(U) ≤ |B|. The case where |B| = p
then gives a free ultrafilter that is not a pseudo-Pp+ point. 	


The following is immediate from Lemmas 1.5 and 1.3.

Theorem 1.6 p ≤ πp ≤ s.

Both inequalities can be (consistently) strict. As implied earlier, there are even
models where b < πp. [As is well known, p ≤ b.] In [13], Joerg Brendle and Saharon
Shelah showed that, for all regular cardinals κ , it is consistent that πp = κ while
s = c = κ+. Brendle has shown [private communication] that the models involved
also satisfy h = κ+. But the following problem is open:

Problem 2 (a) Is h ≤ (πp)+ true in ZFC? (b) Is s ≤ (πp)+ true in ZFC?

The cardinal h is especially attractive in this context because it is intimately related
to ultrafilters:

1 It is an accident of notation that πp ≥ p while πu ≤ u, and both inequalities can be strict: see the note
after Theorem 1.6.
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Special ultrafilters and cofinal subsets of (ωω,<∗) 1013

Definition 1.7 h is the minimum height of a tree π -base for the free ultrafilters on ω

with respect to the reverse ⊂∗ order. [In other words, the tree includes a π -base for
each free ultrafilter.]

The cardinal h was introduced in [2], where it is shown that p ≤ h ≤ s and h ≤ b,
and that h is the distributivity of the poset ([ω]ω,⊂∗). Other early information on h
may be found in [30]. A recent characterization is that it is the least cardinality of a
topological space which is countably compact but not sequentially compact [8].

Now we introduce a class of inequalities that will play a central role in what is to
come.

Notation 1.8 If U is a free ultrafilter on ω, and f , g ∈ ωω, then f <U g means that
f < g in the ultrapower ωω/U . That is, {n : f (n) < g(n)} ∈ U . We write f =U g if
{n : f (n) = g(n)} ∈ U .

It is obvious that =U is an equivalence relation, that f <U g <∗ h and
f <∗ g ≤U h both imply f <U h, and that <U induces a strict total order on
the equivalence classes modulo U . It is also easy to show that f <∗ g iff f <U g
for every free ultrafilter U on ω. Therefore, a <∗-cofinal (“dominating”) family in ωω

will also be <U -cofinal [henceforth written simply as “U-cofinal”] for every U , while
every U-cofinal (equivalently, U-unbounded) family will in turn be <∗-unbounded.
In particular, b ≤ c f (ωω/U) ≤ d for all free ultrafilters U on ω. On the other hand,
it is consistent that there is a <∗-unbounded family of cardinality ℵ1, while every U-
unbounded family is of cardinality ≥ ℵ2 for all free ultrafilters U on ω. This happens,
for example, in any model of NCF (Near Coherence of Filters); see Sect. 2.

Notation 1.9 Given an infinite subset A ofω, its enumeration function (i.e., the unique
order-preserving bijection from ω to A) will be designated ψA.

The following lemma is reminiscent of the way, given a subgroup H of G, all the
elements of G can be obtained by multiplying elements of H by elements in a set that
meets each left coset modulo H .

Lemma 1.10 Let U be a free ultrafilter on ω with π -base B, and let F ⊂ ωω be a
U-unbounded (equivalently, U-cofinal) family of nowhere decreasing functions. Then
(ωω,<∗) has a dominating family which is an order-preserving image of (F,<∗
) × (B,⊃∗) [where ⊃∗ denotes the reverse of ⊂∗].

Proof The family { f ◦ ψB : B ∈ B, f ∈ F} behaves as desired. Indeed, given any
nowhere decreasing g ∈ ωω, pick f ∈ F such that g <U f and pick B ∈ B such that
B ⊂ {n ∈ ω : g(n) < f (n). Since f and g are nowhere decreasing, “the leftward
shift of f by B,” f ◦ ψB , satisfies g(n) < f ◦ ψB(n) for all n. 	


The following is implicit in the proof of [27, Theorem 2], so we only outline the
proof.

Lemma 1.11 If B is a π -base for a free ultrafilter on ω, then {ψB : B ∈ B} is
unbounded in (ωω,<∗).
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1014 P. Nyikos

Outline of proof SinceB clearly cannot be reaped, we can argue as follows. Suppose
there exists g such that ψB <∗ g for all B ∈ B. We may assume g(n) > n for all
n ∈ ω. Let g(n) denote the n-fold composition of g with itself. Then g(n)(0) <

ψB(g(n)(0)) < g(n+1)(0) for all but finitely many n, so
⋃∞

n=1[g(2n−1)(0), g(2n)(0))
splits every member of B, a contradiction. 	


A slight variation on this argument gives the ZFC inequality s ≤ d [29].

2 Consequences of r < d

This section studies ultrafilters with “small” π -bases, where “small” means “having
< d elements.” [The section title uses the fact [3, Proposition 1.6.] that r = πu.] These
occur in any model of NCF. In fact, the following is equivalent to NCF [5,6]:

For every free ultrafilter U on ω, there is a finite-to-one mapping f : ω → ω such
that f (U) is generated by fewer than d sets.

Here, f (U) is the (free) ultrafilter generated by the set of all images f [A] such that
A ∈ U . f (U) is a P-point, as is any ultrafilter with a base of cardinality< d. The proof
of this latter fact is a trivial modification of the one for the case when d = c [19], [26,
pp. 40–41].

In all known models of NCF, 2ℵ0 = d = ℵ2, and so u = ℵ1 there, and a simple
induction shows that, if f is as above, then f (U) is a simple Pω1 -point.

There are also models where r and d can be “arbitrarily far apart” and “there may
be many different π -characters below d” [13, Corollary 5.6]. In fact, given any regular
κ and regular λ > κ , there is a forcing extension preserving cardinals where κ = u
and d = λ [10].

Lemmas 1.10 and 1.11 do much of the work of establishing:

Theorem 2.1 If V is a free ultrafilter on ω with a π -base B of cardinality κ < d, then:

(i) (ωω,<V ) has cofinality d. In particular, d is regular.
(ii) b < d.
(iii) Every <∗-chain of cofinality < d is V-bounded.
(iv) If V is a simple P-point, then it is a simple Pb-point, so r = u = b ≤ s.
(v) Every <∗-unbounded <∗-chain which consists of non-decreasing functions and

is of cofinality > κ is V-unbounded, hence of cofinality d.
(vi) If there is a<∗-unbounded<∗-chain of cofinality> κ , and V is a simple P-point,

then (ωω,<∗) has a cofinal family of order type b × d.
(vii) V is not a semi-Q-point.2 In other words, {ψA : A ∈ V} is not cofinal in (ωω,<∗).

Proof (i) and (ii) follow easily from Lemmas 1.10 and 1.11, and the fact, noted earlier,
that c f (≤U ) ≤ d for all free ultrafilters U . Now (iii) is immediate from (i). The proof
of (iv) is deferred to the next section.

If a chain C as in (v) were V-bounded, say f <V g for all f ∈ C , then for each
f ∈ C there would exist B f ∈ B such that f (n) < g(n) for all n ∈ B f . From
c f (C) > κ , it follows that { f : B f = B} is cofinal in C for some B ∈ B. But then
f (n) < g ◦ ψB(n) for all n and all f such that B f = B, because each f in C is

2 Semi-Q-points are also referred to as rapid ultrafilters.
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Special ultrafilters and cofinal subsets of (ωω,<∗) 1015

nowhere decreasing. Hence f <∗ g ◦ ψB for all f ∈ C , and C is <∗-bounded. The
last phrase of (v) follows from (i) and from the rest of (v).

To show (vi), we first replace a given <∗-unbounded <∗-chain C with one that
consists of increasing functions, by replacing each f in C with f , defined by f (n) =
n+max{ f (i) : i ≤ n}. It is easy to check that f is increasing and that this replacement
is a <∗-unbounded <∗-chain. By (v) we can now assume that this replacement is
{ fα : α < d} where fα <∗ fβ whenever α < β.

Next, let B = {Bξ : ξ < κ} be a ⊂∗-decreasing base for V , where κ is regular.
If ψξ is the enumeration function of Bξ , then {ψξ : ξ < κ} is a <∗-increasing,
<∗-unbounded chain in ωω.

We thus obtain the d×κ array { fα◦ψξ : α < d, ξ < κ}, inwhich fα◦ψξ <∗ fβ◦ψη

if either α ≤ β and ξ < η or α < β and ξ ≤ η. It is a routine matter, using κ < d,
to cut this array down so that if neither condition holds, fα ◦ ψξ <∗ fβ ◦ ψη fails.
First we throw out a column if cofinally many members are dominated by members of
earlier columns, beginning with the preceding column that was not thrown out. Since
the columns have greater cofinality than the rows, and each row is <∗-unbounded, κ
columnswill remain. For eachβ < κ , there is thus amember fα◦ψβ of the (reindexed)
βth column which is not dominated by any member of any earlier column. If we throw
out all the rows below the supremum of these α’s, this will leave us with an array
of <∗-order type d × κ which is cofinal in (ωω,<∗) by Lemma 1.10. Thus every
<∗-chain of cofinality < κ is bounded, and κ = b.

Finally, (vii) is easy: if A ∈ V , then ψA is dominated by some ψβ , and
β < κ < d. 	

Remarks 2.2 (1) The following is immediate from (i): If d is singular, then r ≥ d.

(2) Blass [5] showed (i) in the special case where V has a base of cardinality < d.
This was enough to conclude that u ≥ d when d is singular.

(3) In (iv), b = s and b < s are both possible. In the NCF model of [9], b = ℵ1
and s = ℵ2, [13] but in the u < g model of [6,11], b = s = ℵ1.

(4)According toHeikeMildenberger [private communication], it is possible to have
models of NCF where all <∗-unbounded <∗-chains are of cofinality b (and hence the
hypothesis of (vi) is false and so is the conclusion) and other models of NCF where
there exist <∗-unbounded <∗-chains of cofinality d.

(5) The following is related to (vii) and note (2): Canjar [15] showed that if an
ultrafilter V has a base of cardinality < d, then V is not even above a semi-Q-point in
the Rudin–Keisler order.

Problem 3 Can a free ultrafilter have a π -base of cardinality < d, yet be above a
semi-Q-point in the Rudin–Keisler order?

Theorem 2.3 If there exist simple Pκ -points and simple Pλ-points and κ < λ, then
κ = b and λ = d.

Proof A totally ordered base for a Pλ-point gives a <∗-unbounded chain of cofinality
λ, so clearly λ ≤ d, and so κ < d. But then by (v) of Theorem 2.1, λ = d. And now
(vi) gives κ = b. 	

Corollary 2.4 There cannot exist simple Pκ -points for more than two distinct κ .
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1016 P. Nyikos

3 Pseudo-Pb+ points

Ultrafilters in this section have no overlapwith the ones studied in the previous section.
(See the last part of Theorem 3.1 below.) They may even seem to be unrelated to those
of the preceding section, yet they exert a peculiarly “dual” influence on ωω, and most
of the arguments will be similar.

Dow has noted [private communication] that in the r = κ , d = λ > κ model of
[10], one could easily turn the κ ×λ array of intermediate models used in the iteration
on its side to give a forcing extension where b = κ and πp = λ—in particular, there
is a pseudo-Pb+ point. Dow notes that the same forcing results if one substitutes the
Blass–Shelah posets at each step of the iteration in [12] for the actual posets used
there.

In the following theorem, (iv) and (vi) may be vacuous: see Problem 1.

Theorem 3.1 IfW is a pseudo-Pλ-point and λ > b, then:

(i) (ωω,<W ) has cofinality b.
(ii) b < λ ≤ s(≤ d).
(iii) Every <∗-chain of cofinality > b isW-bounded.
(iv) If W is a simple P-point, then it is a simple Pd-point, so r ≤ s = d, and d is

regular.
(v) Every <∗-unbounded <∗-chain which consists of nowhere decreasing functions

and is of cofinality < λ isW-unbounded, hence of cofinality b.
(vi) IfW is a simple P-point, then (ωω,<∗) has a cofinal family of order type b× d.
(vii) W is not a semi-Q-point.
(viii) Every π -base for W is of cardinality ≥ d.

Proof Part (ii) is a restatement of Lemma 1.3.
Next we show (v). If such a chainC wereW-bounded, there would exist g such that

for each f ∈ ωω, the set S( f , g) = {n : f (n) < g(n)} is inW . But then there would
be B ⊂∗ S( f , g) for all f ∈ C , whence f <∗ g ◦ ψB for all f ∈ C , contradicting
<∗-unboundedness.

To show (i), recall that ZFC is enough to give a <∗-unbounded <∗-well ordered
family of order type b in ωω, consisting of increasing functions. Now use (v).

Part (iii) follows immediately from (i). To show (viii), use (iii) and the definition
of b to show that any W-unbounded <∗-chain of nowhere decreasing functions is of
cofinality b. Now use Lemma 1.10 and the definition of d.

Next we show (vii). Let { fα : α ∈ b} be <∗-unbounded. If {ψA : A ∈ W} were
cofinal in (ωω,<∗), we could build a family of b functions ψAα by induction, with
fα <∗ ψAα and ψAβ <∗ ψAα for all β < α. But then an infinite pseudo-intersection
B of {Aα : α < b} would give a ψB dominating all the fα , a contradiction.

The proof of (vi) is the same as that for (vi) of Theorem 2.1, except that we use an
unbounded chain of cofinality b for the rows, and the ψB from a totally ordered base
B of W for the columns.

Finally, we show (iv) and use it to show (iv) of Theorem 2.1.
If W is a simple P-point, (viii) implies that it is a Pd-point, and now we can use

s ≤ d and r ≤ λ ≤ s [see Lemma 1.3] to conclude that W is a simple Pd-point. [A
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Special ultrafilters and cofinal subsets of (ωω,<∗) 1017

peculiarity of our terminology is that a simple Pλ-point is a Pκ -point for all κ < λ,
but is not a simple Pκ -point if κ < λ, because every base must be of cardinality ≥ λ.
So we do need the extra information about s here.]

Theorem 2.1 (iv) now follows: if V is a simple Pκ -point and κ < d, the preceding
paragraph shows that V cannot be a pseudo-Pλ-point for any λ > b; on the other hand,
b ≤ u, so V cannot be generated by fewer than b members; thus κ = b. 	


We now obtain a sharpening of Theorem 2.3.

Corollary 3.2 If there is a simple Pκ -point, then either κ = b or κ = d. If κ = b, then
u = r = b ≤ s, while if κ = d, then s = d.

Proof Since u ≥ b, κ ≥ b. If κ > b, use Theorem 3.1 (iv) to conclude that κ = d. The
rest follows from the ZFC inequalities b ≤ r ≤ u and s ≤ d and from Lemma 1.3 and
Theorem 2.1 (iv). 	

Remark 3.3 In [13, Corollary 1.2], (viii) was paraphrased: For any ultrafilter U , we
have either πp(U) ≤ b or πχ(U) ≥ d. This suggests the following weakening of
Problem 1.

Problem 4 Is it consistent to have both r < d and πp > b? In other words, is it
consistent to have an ultrafilter V with a π -base of cardinality < d and also a pseudo-
Pb+ point W?

Problem 5 If there is a pseudo-Pb+ point, is there a<∗-unbounded chain of cofinality
> b? what if there is a Pb+ point?

Of course, ifW is a simple Pb+ point, and B is a ⊂∗-descending-well-ordered base
for W , then {ψB : B ∈ B} is a <∗-unbounded chain of cofinality d > b; but we still
do not know whether the existence of such W is consistent; see Problem 1(b).

Another corollary of Theorem 3.1 has to do with more general ultrafilters.

Corollary 3.4 If U is an ultrafilter that satisfies c f (ωω,<U ) < λ, and there is a
pseudo-Pλ point, then c f (ωω,<U ) = b.

Proof As shown in [7], there can be at most one κ < s such that c f (ωω,<U ) = κ

for some free ultrafilter U , and so by Theorem 3.1 (i), there is one where κ = b, and
λ ≤ s by Lemma 1.3. 	


4 Six axioms on unbounded chains

The behavior of <∗-unbounded chains modulo ultrafilters in general is the topic of
this section, where we survey six axioms and various combinations of them and their
negations.

In the following axiom schema, C always stands for a <∗-unbounded, <∗-well-
ordered family of increasing functions, U stands for a free ultrafilter on ω, and “U-
unbounded” means that the chain C is unbounded (equivalently, cofinal) in the order
<U .
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1. ∀C(∀U(C is U-unbounded))
2. ∃C(∀U(C is U-unbounded))
3. ∃U(∀C(C is U-unbounded))
4. ∀U(∃C(C is U-unbounded))
5. ∀C(∃U(C is U-unbounded))
6. ∃C(∃U(C is U-unbounded))
Abstract logic gives 1 �⇒ 2 �⇒ 4 �⇒ 6 and 1 �⇒ 3 �⇒ 5 �⇒ 6.

In addition, Juris Steprans showed [28] 2 �⇒ 5. This has recently been improved
by Dow [17] to 2 �⇒ 3, so that 1 �⇒ 2 �⇒ 3 �⇒ 5 �⇒ 6. Except for the
following outstanding problem, there are no other implications between these axioms
in ZFC.

Problem 6 Does Axiom 5 imply Axiom 3?

The answer would be negative if Problem 1(b) has an affirmative answer (i.e., there
is a model with a simple Pb+ -point), as will be seen later (Corollary 5.7).

The following problem is also of special interest:

Problem 7 Do Axiom 3 and Axiom 4 together imply Axiom 2?

Neither of these axioms is sufficient by itself; see Theorem 4.5 below and the
comments at the end of Sect. 6. We will return to Problem 7 in Sect. 5. In particular,
a negative answer to Problem 7 can only be in a model where d is singular: see the
comment after Theorem 5.4.

Axioms 1 and 2 have easy equivalents: Axiom 2 is equivalent the existence of a
scale: a well-ordered cofinal family in (ωω,<∗). Indeed, any C that witnesses Axiom
2 will be a scale, because if g is not dominated by some member of C , then the sets of
the form D( f , g) = {n : f (n) ≤ g(n)} as f ranges over C form a filter, and if U is
an ultrafilter extending this, then C is U-bounded. Conversely, as remarked in Sect. 1,
any dominating <∗-chain is U-cofinal. By this same argument, Axiom 1 is equivalent
to every <∗-unbounded chain of increasing functions being a scale. Models of Axiom
1 include the “dominating reals” model [4], the Laver model for the Borel Conjecture
[22], and Peter Dordal’s factored Mathias forcing models [16].

As is well known, the existence of a scale is equivalent to b = d, and Martin’s
Axiom (MA) implies p = c = b and thus Axiom 2—but not Axiom 1, which implies
p < d [4,16].

Axiom 3 shares the following property with Axioms 1 and 2.

Lemma 4.1 Axiom 3 implies that all <∗-unbounded <∗-chains are of cofinality b.

Proof An elementary cofinality argument shows that Axiom 3 implies that all <∗-
unbounded <∗-chains are of the same cofinality. Now use the well known fact that
ZFC implies the existence of a <∗-unbounded <∗-chain of increasing functions, of
cofinality b.

In [1], an argument like that for Axiom 2 implying the existence of a scale is used
to cover ω∗ = βω−ω by nowhere dense simple P-sets in models where there are <∗-
unbounded <∗-chains of different cofinalities—in other words, where Axiom 3 fails.
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The argument goes: for each free ultrafilter U have C range over a <∗-unbounded
chain of increasing functions which is U-bounded by gC . The filter one obtains as
above associates naturally with a nowhere dense simple P-set containing U .

In [24], ultrafilters like the above are called T-points because each nowhere dense
simple P-set in ω∗ comes from a complete tower in [ω]ω.
Definition 4.2 A tower is a ⊂∗-descending well-ordered sequence in [ω]ω. A tower is
complete if it has no infinite pseudo-intersection. An ultrafilter U on ω is a T-point if
there is a complete tower T ⊂ U .

For convenience, we introduce:

Axiom 4.3 Axiom T: Every ultrafilter on ω is a T-point.

As explained above, ¬3 implies Axiom T. The converse fails as Alan Dow and
his then-student Geta Techanie showed a number of years back (unpublished): they
showed that the following model even satisfies Axiom 1 + Axiom T.

Example 4.4 Let P be the forcing poset for the countable support iteration of lengthω2
in which the poset for a Miller real is added at limit ordinals of cofinality ω1 while the
poset for a Laver real is added at successor stages and stages of countable cofinality.
Adding a generic subset G of P to the ground model produces a forcing extension in
which Axiom 1 and Axiom T both hold.

Dow has recently shown [17] that Axiom T holds also in the usual Laver model,
which has long been known to satisfy Axiom 1. In other words, the interweaving of
Miller forcing can be dispensed with. In particular, this shows that ω∗ can be covered
by nowhere dense P-sets in Laver’s model. This answers a question posed in [22],
where it was shown that if ω∗ can be covered by nowhere dense P-sets in this model,
then it can be covered by nowhere dense simple P-sets.

Models of Axiom T have an additional topological significance. In them, there is a
family of sequentially compact regular (in fact, normal) spaces whose product is not
countably compact [24]. It is not known whether the existence of such a family can be
deduced from ZFC. If “regular” is weakened to “Hausdorff,” the answer is Yes [25].

Now, Axiom T fails under CH [1, 1.9.3]. However, CH and (more generally) b = c
provide alternative methods of constructing such families of regular spaces [29, 13.1].
These examples cannot be normal under the PFA, though [23].

A consequence of Theorem 2.1 (i), (ii), (iii) and (v) is that a model with a free
ultrafilter with a π -base of cardinality < d either satisfies ¬ 4 (if there is no <∗-chain
of cofinality d) or ¬ 3 (if there is one, but then (v) also shows that Axiom 6 holds).
The following result is related.

Theorem 4.5 If (ωω,<∗) has a cofinal family of order type κ × λ, c f (κ) ≤ c f (λ),
then c f (κ) = b, c f (λ) = |λ| = d, and Axiom 4 holds. (And if b �= d then Axioms 2
and 3 fail.)

Proof If b = d, then Axiom 2 and hence Axiom 4 hold. Otherwise, Axiom 2 obviously
fails, and the existence of a<∗-unbounded<∗-chain of order typeb ensures c f (κ) = b,

123



1020 P. Nyikos

and then c f (λ) = d = |λ| by cofinality in ωω. So there is a cofinal family { fα,ν : α <

b, ν < d}, with each fα,ν increasing. With U fixed, suppose each row { fα,ν : α < b}
is U-bounded, say by fβν,ην . There must exist β such that β = βν for d-many distinct
ν < d. Thus the βth column is U-unbounded, since any U-bound would U-dominate
the whole array, negating cofinality in (ωω,<∗). So Axiom 4 holds, but Axiom 3 fails
due to c f (λ) = d > b in this second case. 	


This argument routinely extends to models (which may be constructed by the tech-
nique of [18]) where (ωω,<∗) has a cofinal family of order type λ1 × · · · × λn . Of
course, b is the smallest and d is the greatest of the c f (λi ).

It is now easy to show that amodel with simple P-points of two different cofinalities
satisfies 4+ 5+¬2+¬3. Later we will show [Corollary 5.7] that a simple Pb+ point
is enough for this. Even a pseudo-Pb+ point is enough to imply Axiom 6, by Theorem
3.1 (v), while 3.1 (iii) shows that Axiom 2 fails.

5 Threemore axioms, and another look at models of NCF

To further analyze the axioms of the preceding section, we introduce three more
axioms, and recall the following theorem of Mike Canjar:

Theorem 5.1 [14] There is an ultrafilter U such that c f (ωω,<U ) = c f (d).

We continue to follow the format of Axioms 1 through 6:
Axiom 5.5. ∃U such that c f (ωω,<U ) = b.
Axiom 6.5 ∃U∃C such that c f (ωω,<U ) = c f (C).

Axiom D. ∃C such that c f (C) = d.
Clearly, Axiom 6 implies Axiom 6.5. Also, as the numbering suggests,

Lemma 5.2 Axiom 5 �⇒ Axiom 5.5 �⇒ Axiom 6.

Proof The first implication follows from the existence of a<∗-unbounded<∗-chain of
increasing functions of cofinality b, and a simple cofinality argument. For the second
implication, let U be such that c f (ωω,<U ) = b, and replace a U-cofinal set of order
type b with an unbounded <∗-chain of increasing functions by a simple transfinite
induction so that each function in the <∗-chain dominates all “earlier” functions there
and all “earlier” functions in the U-cofinal set.

Corollary 5.3 Axiom 4 implies “Axiom D holds if and only if d is regular”.

Proof If d is regular, use Theorem 5.1 to get U such that c f (ωω,<U ) = d, and apply
Axiom 4. The “only if” part does not need Axiom 4, inasmuch as Axiom D trivially
implies d is regular. 	

Problem 8 (a) Does Axiom 4 imply d is regular? Equivalently, does Axiom 4 imply
Axiom D? Conversely,
(b) Does Axiom D imply Axiom 4?

An affirmative answer to Problem 8(a) would imply one to Problem 7 (“Do Axiom
3 and Axiom 4 together imply Axiom 2?”), because of:

123



Special ultrafilters and cofinal subsets of (ωω,<∗) 1021

Theorem 5.4 Axiom 2 is equivalent to Axiom 3 + Axiom D.

Proof Axiom 2 clearly implies Axiom D; in fact, it implies that c f (ωω,<U ) = b = d
for all free ultrafilters U . And, as stated earlier, it implies Axiom 3. The converse
follows from Lemma 4.1. 	


Because of this theorem and Corollary 5.3, a negative answer to Problem 7 would
have to come in a model with singular d.

Problem 9 Is Axiom 2 equivalent to the statement that c f (ωω,<U ) = b for all free
ultrafilters U?

By Theorem 5.1, the statement does imply that b = c f (d). So here, too, the answer
could be negative only in a model where d is singular.

The following lemma was used in [28] to show that Axiom 2 implies Axiom 5.

Lemma 5.5 If there is a <∗-unbounded <∗-chain C of cofinality d, such that {c � A :
c ∈ C} is <∗-unbounded for all A ∈ [ω]ω, then ∃U(C is U-unbounded).
Corollary 5.6 Axiom D implies Axiom 6.

Proof If C is a witness for Axiom D, then C is U-unbounded for some free ultrafilter
U . This is because of the Lemma 5.5 and the elementary fact that a<∗-unbounded<∗-
chain of increasing functions traces a <∗-unbounded family on every infinite subset
of ω. 	


Here is a (possibly vacuous!—see Problem 1) application of Lemma 5.5.

Corollary 5.7 If there is a simple Pb+ point, then 4 + 5 + D + ¬ 3 + ¬ 2.

Proof It follows from Theorem 3.1 (vi) and Theorem 4.5 that 4+¬ 3+¬ 2 is satisfied.
To show Axiom 5, letW be a simple Pb+ point. Theorem 3.1 (vi) implies every C as
in the axiom schema is of cofinality either b or d. In the first case, use Theorem 3.1
(v). In the second case, use Lemma 5.5.

To show Axiom D, use Theorem 3.1 (iv) and the fact that the functions ψB from a
totally ordered base ofW form a <∗-unbounded <∗-chain of increasing functions, of
cofinality d. 	


Shelah and Steprans showed [28] that ¬ 6 is consistent, and that 4 + ¬ 5.5 (hence
also 6 + ¬ 5.5 and 6 + ¬ 5) are also consistent. On the other hand, 5.5 + ¬ 4 is also
consistent, as will be seen in Sect. 6. This leaves us with the following questions
(in addition to Problem 6) where direct implications between numbered axioms are
concerned:

Problem 10 Is 6.5 + ¬ 6 consistent? What about 5.5 + ¬ 5?

A model of 6.5 + ¬ 6 would have to satisfy d > ℵ2. Indeed, if Axiom 6 (or even
Axiom 5.5) fails, then c f (ωω,<U ) ≥ ℵ2 for all U . Then if d = ℵ2, Axiom 6.5 implies
Axiom D and hence Axiom 6.

The various models of NCF cannot serve for either part of Problem 8, or either
part of Problem 10, but they do show the consistency of 4 + D + ¬5.5 and hence of
4 + D + ¬5 and 4 + D + ¬3. The demonstration begins with a simple lemma and
corollary.
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Lemma 5.8 Let f : ω → ω be finite-to-one. Let {gα : α < κ} be cofinal and well-
ordered with respect to< f (U), whereU is a free ultrafilter onω. Then {gα ◦ f : α < κ}
is cofinal and well-ordered with respect to <U .

Proof If the functions gα ◦ f are not U-cofinal, then there is a function g that is above
gα ◦ f on Aα ∈ U for all α. Let h(n) = max{g(k) : k ∈ f −1{0, . . . , n}}. Then on
f [Aα] ∈ f (U), h is above gα . This contradicts f (U)-cofinality of {gα : α < κ}. The
second conclusion is even easier to show. 	

Corollary 5.9 If f : ω → ω is finite-to-one, then c f (ωω,<U ) = c f (ωω,< f (U)) for
every free ultrafilter U on ω,

Indeed, ≤ is immediate from Lemma 5.8, where we may assume κ is regular, so
that {gα ◦ f : α < κ} cannot have a cofinal subset of strictly smaller cardinality, and
neither can any other U-unbounded chain.

Theorem 5.10 NCF implies that (a) c f (ωω,<U ) = d > b for all free ultrafilters U
on ω. Therefore (b) it implies ¬5.5.

Proof Use the characterization of NCF at the beginning of Sect. 2; Theorem 2.1 (i)
and (ii); and Corollary 5.9. 	


In contrast, Theorem 3.1 (i) says that any pseudo-Pb+ point is a witness for Axiom
5.5.

Theorem 5.11 If NCF holds, then (a) d is regular, and (b) Axiom 4, Axiom D, and
Axiom 6.5 are all equivalent.

Proof Regularity of d is immediate from Theorems 5.1 and 5.10.
We do not need NCF to show Axiom 4 and Axiom D both imply Axiom 6 and

hence Axiom 6.5: for Axiom 4, abstract logic suffices, and for Axiom D, Corollary
5.6 works. To show Axiom 6.5 shows the other two axioms, we use regularity of d to
make Axioms 4 and D equivalent (see Corollary 5.3) and then Theorem 5.10, part (a),
together with the definitions of Axioms 6.5 and Axiom D, do the job. 	


It now follows from Theorems 5.10 and 5.11 and Remarks 2.2(4) that 4+D+¬5.5
is consistent.

All ZFC implications between Axiom D and numbered axioms have been settled
except for the two parts of Problem 8. [A model of 3 + ¬D will be given in the
next section.] However, there is quite an assortment of combinations of axioms and
their negations whose consistency is still an open problem. These include the various
augmentations of 5 + ¬3 (Problem 6) and of 5.5 + ¬5 (Problem 10) with any subset
of {4, D} or of {¬4, D} (Problem 8(b)) or of {4,¬D} (Problem 8(a)) or of {¬4,¬D}.
They also include anything from 6.5 + ¬5 + ¬4 to 6 + D + ¬5.5 + ¬4.

6 Some applications of Cohen forcing

In this section, we analyze the effect of addingmutually Cohen reals, obtaining various
models of 5.5+¬4. As is well known, this kind of forcing cannot add<∗-well-ordered
chains of cofinality > ω1, so Axiom D will fail in all but exceptional cases.
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In what follows, CTM will be shorthand for “countable transitive model of a suffi-
ciently large fragment of ZFC”.

Lemma 6.1 Let M be CTM, and let A ⊂ ω be Cohen over M. If B ∈ M is a filterbase
on ω, then in M[A], B extends to a filterbase B′ such that D( f , ψA) ∈ B′ for all
f ∈ ωω∩ M. Moreover, if U ∈ M[A] is an ultrafilter on ω extending B′, then ωω∩ M
is U-dominated by ψA.

Proof Recall that D( f , g) = {n ∈ ω : f (n) ≤ g(n)}. The partial order P for adding
A to M is

⋃{n2 : n ∈ ω}. For each finite subset F of ωω ∩ M and each B ∈ B, and
each m ∈ ω, the following is dense in P:

D(F, B,m) = {p ∈ P : ∃k ∈ B\m(the kth element in spt(p) exceeds f (k) for all f ∈ F)}.

[In this definition, it is implicit that there is a kth element in spt(p); of course, the
support could be of cardinality < k, in which case p /∈ D(F, B,m).]

Let G be a P-generic such that A = spt(
⋃

G). LetD be the collection of all finite
intersections of the sets D( f , ψA) (= {n : f (n) ≤ the (n + 1)st element of A), as f
ranges over ωω ∩ M . Then each B ∈ B meets every member of D, and the common
refinement of B and D satisfies the description of B′. 	

Theorem 6.2 If uncountably many mutually Cohen reals are added to a CTM M, the
resulting model satisfies Axiom 5.5. If M has a <∗-well-ordered unbounded family
of cofinality > ω1, then Axiom 3 fails. Also, if κ is a regular cardinal > ω1 in M
for which there is no <∗-unbounded chain of cofinality κ in M, and if ≥ κ mutually
Cohen reals are added, then Axiom 4 fails.

Proof The theorem refers to the usual poset for adding λ Cohen reals side by side,
Fn(λ, 2). This is equivalent to adding them iteratively with finite supports. Notation
and justification of comments in this paragraph and the next can be found in [20,
Ch VII, Section 2].

If λ is uncountable, we can separate out exactly ℵ1 of the mutually Cohen reals,
listing their enumeration functions as {ψα : α < ω1}, and adding the others first to
produce a model N to which we add the ψα iteratively, with finite supports, to arrive
at our final model, characterized as N [{ψα : α < ω1}] =: N ′.

At the αth stage of the iteration, we use Lemma 6.1 to obtain an ultrafilter Uα such
that ψα bounds all functions in N [{ψβ : β < α}] ∩ ωω modulo Uα . This is done so
that Uα extends the earlier Uβ . Then in the final model N ′, the union U of all the Uα

is an ultrafilter since all subsets of ω appear at some initial stage.
Also in N ′, the ψα form a U-unbounded family which can be replaced by a <∗-

unbounded <∗-chain by the usual diagonal argument. Hence N ′ � Axiom 5.5∧ b =
ω1. [The latter property is well known to be satisfied when forcing with Fn(λ, 2)
where λ is uncountable, and we have just given a proof for it.] Hence if M has a
<∗-well-ordered unbounded family of cofinality > ω1, then Axiom 3 fails by Lemma
4.1.

This construction generalizes to any uncountable regular κ not exceeding the num-
ber of Cohen reals added, giving us an ultrafilter V such that the functions ψα(α < κ)
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form aV-cofinal family, with eachψα toV-dominate all functions in N [{ψβ : β < α}].
On the other hand, no unbounded chain in (ωω,<∗) that occurred in earlier stages
is <∗-dominated [1, 2.5]. Now V gives a witness of ¬ 4: no <∗-unbounded chain
in (ωω,<∗) that occurred in earlier stages is <∗-dominated, and so there are no
unbounded <∗-chains of cofinality κ in N ′. 	

Remark 6.3 There is a superscript on d in the following corollary, because d can be
raised by Cohen forcing.

Corollary 6.4 If M is a CTM, and more than dM Cohen reals are added, then Axiom
4 fails and so does Axiom D.

Proof If κ > dM , then there is no <∗-unbounded <∗-chain of cofinality κ in N ′, but
d ≥ κ in the final model, so Axiom D fails. Moreover, if V is as above, it is a witness
for ¬ 4. 	

Corollary 6.5 If M is a CTM in which all <∗-unbounded chains are of cofinality ω1,
and more than ω1 mutually Cohen reals are added, then Axiom 4 fails and so does
Axiom D.

Back when the notes of the mid-80’s were circulated, the author had a copy of a
preprint by the late James Baumgartner which had the following theorem: if exactlyℵ2
Cohen reals are added to a model of CH, then Axiom 3 holds in the forcing extension.
Unfortunately, the author has been unable to find this preprint or a reconstruction of
the proof. However, Alan Dow showed this theorem to be true if one also assumes
�ℵ1 holds in the ground model [17]. By Corollary 6.5, this gives a model of Axiom 3
+¬ Axiom 4 +¬ Axiom D, and shows that Axiom 3 does not imply Axiom 2 in ZFC.

7 Some generalizations

Shelah and Steprans [28] have varied the axiom schema used in the preceding sections
by letting C range over chains of increasing functions and also chains of arbitrary
functions, and replacing <∗ with the order ≤∗ given by

f ≤∗ g if there exists n such that f (i) ≤ g(i) for all i ≥ n.

What keeps this from leading to an unmanageable proliferation of axioms is that,
as explained in [28], in many cases it makes no difference which order or family
of functions is involved, and in some other cases the axioms are simply false. For
example, it makes no difference whether increasing or nowhere decreasing functions
are used: Axiom n holds in a model if, and only if, its variant for strictly increasing
functions is true. This is also true if ≤∗ is substituted for <∗, and each <∗-axiom is
equivalent to the corresponding ≤∗-axiom.

It also makes no difference to Axioms 2, 4, 6, and 6.5 whether C consists of
increasing or arbitrary functions, or whether one uses <∗ or ≤∗. On the other hand,
the modifications of Axioms 1 and 3 are simply false if arbirary functions are used,
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while Axiom 5 becomes much stronger, and no longer follows from Axiom 2 or even
from CH; but OCA suffices for both the <∗ version and the (possibly still stronger)
≤∗ version [28].

Another generalization, with very different changes, comes when one replaces
unbounded chains (denotedC in the axiom schema) with unbounded upwards directed
subsets, denoted D below. Let Axiom nD stand for Axiom n with this modification.
Then Axiom 2D is simply true (in ZFC), because we can put a dominating family for
D, and it remains dominating in (ωω,<U ) for any free ultrafilter U . And so Axioms
4D and 6D are true, and it is easy to see that DD and 6.5D are also true.

The situation is quite different for the odd-numbered axioms, because ∀D is more
demanding than ∀C . So Axioms 1D, 3D, and 5D imply Axioms 1, 3, and 5 respec-
tively, but the converses are open problems. We have a more fundamental problem
with the first two:

Problem 11 Is Axiom 1D or Axiom 3D consistent?

We do have:

Theorem 7.1 Axiom 2 �⇒ Axiom 5D �⇒ Axiom 5.

Proof The proof in [28] that Axiom 2 implies Axiom 5 is essentially a proof that
Axiom 2 implies Axiom 5D. This is because the proof of Lemma 5.5 in [28] makes
no use of the fact that C is a <∗-chain, only that it is a family of functions whose
restriction to each A ∈ [ω]ω is <∗-unbounded, and that no <∗-unbounded family in
ωω can be of cardinality< d. This last stipulation holds because Axiom 2 is equivalent
to b = d, and Axiom 5D follows. The fact that 5D �⇒ 5 is a matter of elementary
logic. 	

Problem 13 Is Axiom 5 equivalent to Axiom 5D?

As remarked above, one could put 1 (or 3) in place of both 5’s, but Problem 11
takes precedence.
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