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Abstract
In this paper, we prove results concerning the existence of proper end extensions
of arbitrary models of fragments of Peano arithmetic (P A). In particular, we give
alternative proofs that concern (a) a result of Clote (Fundam Math 127(2):163–170,
1986); (Fundam Math 158(3):301–302, 1998), on the end extendability of arbitrary
models of�n-induction, for n≥2, and (b) the fact that everymodel of�1-induction has
a proper end extension satisfying �0-induction; although this fact was not explicitly
stated before, it follows by earlier results of Enayat and Wong (Ann Pure Appl Log
168:1247–1252, 2017) and Wong (Proc Am Math Soc 144:4021–4024, 2016).

Keywords Arithmetized completeness theorem · Fragments of Peano arithmetic ·
End extensions
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1 Introduction

We work with subsystems of Peano arithmetic (P A) in the usual first-order language
of arithmetic L A. As usual, for n ∈ N, I�n (respectively, I�n) denotes the induction
schema for �n (respectively, �n) formulas (plus the well-known base theory P A−),
B�n denotes I�0 plus the collection schema for �n formulas and exp denotes the
axiom expressing “exponentiation is total” (recall that there is a �0 formula repre-
senting the graph of the function 2x ). As usual, we will identify formulas, proofs etc.
with their Gödel numbers. For details, the reader can consult [11] or [12].
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Since the mid 1970’s, two of the main aims of research work on fragments of
P A have been (1) to study relationships among the various fragments and (2) to
produce miniaturizations of significant results concerning P A, such as the so-called
“MacDowell–Specker theorem”, i.e., the following result.

Theorem 1 [14] Every model of P A has a proper elementary end extension.

One of the first, ground-breaking papers devoted to these aims was [16]; the first
two of the main results contained in this paper can be summarized as follows.

Theorem 2

(a) For all n ∈ N,

I�n+1 ⇒ B�n+1 ⇒ I�n,

and the converse implications do not hold.
(b) For any n ≥ 2 and any countable structure M,

M |� B�n ⇔ M has a proper �n-elementary end extension K |� I�0.

Furthermore, for any M as above, if M has a proper �1-elementary end extension
satisfying I�0, then M |� B�2 (and hence M has a proper �2-elementary end
extension satisfying I�0).

Remarks 1

(1) In fact, part (a) of Theorem 2 was more comprehensive, in the sense that it
referred to relationships among many more than two fragments of P A, but we
have restricted our attention to the ones that are relevant to our subsequent work.

(2) As noted in [16], the proof of implication (⇐) in part (b) of Theorem 2 does not
rely on the countability of the model M .

In view of the fact that the MacDowell–Specker theorem holds for any model of
P A, it was natural to wonder whether Theorem 2(b) could be generalized. Indeed,
one reads in [3]:

TheKirby–Paris construction used very strongly the countability of themodel. In
view of the cardinality-free statement of the MacDowell–Specker Theorem, we
might expect the conclusion of Theorem 1 to hold for models of any cardinality.
Such a possibility was first suggested by A. Wilkie.

In [3], Clote claimed he had proved such a generalization, i.e., that he had proved the
implication ⇒ of Theorem 2(b) for arbitrary models of B�n , n ≥ 2, but it turned
out much later that his claim was incorrect. The correct result was stated by the same
author in [4] and is as follows.

Theorem 3 For any n ≥ 2, every model of I�n has a proper �n-elementary end
extension satisfying I�0.
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End extensions of models 819

Remark 2 The main tool used by Clote was the same as that used in [16], i.e., the
construction of a restricted ultrapower of the initial model M .

Given Theorem 3, one of the questions remaining to be answered was whether or
not this result holds for n = 0, 1. Let us consider first the case when n = 1, i.e. the
following question.

Question 1 Does every model of I�1 have a proper �1-elementary end extension
satisfying I�0?

It is easy to see that this problem has a negative solution. Indeed, if every model of
I�1 had a proper�1-elementary end extension satisfying I�0, then, by Theorem 2(b),
every model of I�1 would satisfy B�2, which is impossible, since, by Theorem 2(a),
there exists a model of I�1 + ¬B�2.

Given this negative answer to Question 1, let us become less ambitious and ask an
apparently “easier” question.

Question 2 Does every model of I�1 have a proper �0-elementary end extension
satisfying I�0?

Recalling that, for any structures M, K for L A, if M ⊂e K |� I�0, then M <0 K
(see Theorem 2.7, page 24, in [12]), the new problem can be equivalently stated in the
following form.

Problem 1 Does every model of I�1 have a proper end extension satisfying I�0?

Using Theorem 2(a), it is easy to see that the question whether Theorem 3 holds
for n = 0 has a negative answer, too. Indeed, suppose that every model of I�0
had a proper �0-elementary end extension satisfying I�0. Now recall that, for any
structures M, K for L A, if M ⊂e K |� I�0, then M |� B�1 (see, e.g., Theorem 1
in [18]). Hence, every model of I�0 would satisfy B�1, which is impossible, since,
by Theorem 2(a), there exists a model of I�0 + ¬B�1.

In Sect. 2 of the present paper, we provide an alternative proof of Clote’s result,
i.e., Theorem 3. By modifying this proof, in the third section, we show that Problem 1
has a positive solution. The final section of the paper is devoted to some remarks and
related problems.

Concerning the main result of Sect. 3, our attention has been recently called to the
fact that it was implicit in earlier work of A. Enayat and T.L. Wong. Indeed, this result
follows by either the proof of Theorem 1 in [19] or combining Corollary 4.2 in [8]
and Theorem 3.1 in [10]. Nevertheless, we feel our proof, which involves definable
elements, is worth presenting, as it could be of use in resolving related problems.

Before we proceed to the main part of the paper, we note that the guiding principle
for the proofs that will follow in the sequel has been to use a single argument (modulo
necessary modifications), whose essence can be described in short as follows:

(i) starting with a consistent theory T0 in a suitable extension of L A, we extend it
to a maximal consistent theory T , using a lemma concerning the possibility of
witnessing certain bounded existential quantifiers with appropriate constants, and
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(ii) taking as the required extension of the initial model M a structure K with universe
an appropriate set of elements definable in a model of the theory T .

For the proof of part (i), the main tool needed is a technical lemma, which concerns
the construction, via induction, of a suitable branch in an infinite tree in M (whose
nodes are appropriate formulas of the extended language). The proof of part (ii) essen-
tially relies on a combination of well-known facts concerning definable elements in
fragments of P A.

2 A proof of Clote’s result

Our main aim in this section is to expand our sketch in the last part of [7] to obtain a
full proof of Theorem 3. Our approach is reminiscent of the one taken for the proof
of the MacDowell–Specker theorem given by Gaifman in [9] (see also Section 8.2
in [12]). Let us now proceed to the proof.

Proof Let M be a model of I�n , n ≥ 2. L A(M) denotes the language obtained from
L A by adding a set of new constant symbols {ca : a ∈ M} and L A(M, c) the language
obtained from L A(M) by adding the new constant symbol c. For convenience, we
will often identify the structure M with the structure M∗ for L A(M) defined by
M∗ = 〈M, {a : a ∈ M}〉.

Let (θi (x, �v))i∈N be an enumeration of all�n−1 formulas. Note that wemay assume
each θi is of the form ∃y≤vk+1ηi (y, x, v1, . . . , vk+1) (indeed, we can use dummyvari-
ables to introduce an extra bounded existential quantifier at the front). We will need
the next lemma, in the proof of which, for every i ∈ N and w ∈ M , we will be
working with an enumeration in M , in increasing order, of all (codes of) L A(M) for-
mulas obtained from the L A formula θi (x, �v), if we replace the variables �v by constant
symbols from the set {ca : a ≤ w}. Clearly, we may assume that this enumeration
is made in a canonical manner, i.e., we first enumerate all formulas involving con-
stants from the set {c0}, then all formulas involving constants from the set {c0, c1},
at least one of which is c1, . . . and finally all formulas involving constants from the
set {c0, c1, . . . , cw}, at least one of which is cw; the idea is that, for each w ∈ M ,
the enumeration of formulas involving constants from {c0, . . . , cw} will be a “proper
initial segment” of the enumeration of all formulas involving the constant cw+1. For
each i ∈ N and w ∈ M , we call the sequence of L A(M) formulas enumerated as
above “canonical (i, w) sequence”.

To make the enumeration more intuitive, we give the following description: We
construct a countable sequence of “blocks”, corresponding to the formulas (θi )i∈N
mentioned above. For each i , the (i+1)-th block will consist of a sequence of “floors”,
corresponding to the elements of M that may be used to replace the variables �v appear-
ing in the formula θi . The canonicity of the enumeration can be depicted as in Fig. 1.

In the next lemma, given a canonical (i, w) sequence of formulas (θ
j

i ) j≤lh(i,w),
where lh(i, w) denotes the length of this sequence, we construct another sequence of
formulas (θ

j
i )∗, j ≤ lh(i, w), as follows: (θ j

i )∗ is either the ( j+1)-th formula of the
canonical (i, w) sequence, i.e., a formula of the form∃y ≤ cak+1ηi (y, x, ca1 , . . . , cak+1),
or the tautology 0=0.
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End extensions of models 821

cw θ0(x, {c0, . . . , cw}) θ1(x, {c0, . . . , cw}) · · · θi(x, {c0, . . . , cw})
...

c1 θ0(x, {c0, c1}) θ1(x, {c0, c1}) · · · θi(x, {c0, c1})
c0 θ0(x 0) θ1(x 0) · · · θi(x 0)

θ0(x 0) θ1( 1) · · · θi( i)

Fig. 1 Enumeration

Let us now proceed with the exact statement and proof of the lemma. ��

Lemma 4 For every k ∈ N,

M |� ∀w∃t0 . . . ∃tk∃s0 . . . ∃sk

{
k∧

i=0

lh(ti ) = lh(si ) ∧
k∧

i=0

“ti codes the

sequence of all formulas of the form θi (x, �c) with the indices of �c≤w′′ ∧
k∧

i=0

∀p<lh(si )

⎡
⎣[∀z∃x>zSatn−1(Si−1∧

p−1∧
j=0

(si ) j∧θ
p

i (x, �c), x) ∧ (si )p=θ
p

i (x, �c)]

∨[¬∀z∃x>zSatn−1(Si−1∧
p−1∧
j=0

(si ) j∧θ
p

i (x, �c), x) ∧ (si )p = (0=0)]
⎤
⎦

⎫⎬
⎭

where (i) Satn−1 denotes a complete �n−1 formula and (s)p denotes the p-th term

of (the sequence coded by) s and (ii) Si−1 denotes
∧i−1

m=0
∧lh(sm)−1

j=0 (sm) j , i.e. the
conjunction of the set of formulas obtained by having considered all the layers of all
blocks corresponding to the canonical (m, w) sequences, for 0≤ m ≤ i−1 (we note
also that, when i = 0, Si−1 denotes any tautology).

Proof We will use induction in the metalanguage. So, we suppose that all m<k have
the property and show that k also has the property; we may assume k �=0, since the
argument for the case k = 0 is essentially similar to the one that follows. In other
words, we suppose that

for all m< k, M |� ∀w∃t0 . . . ∃tm∃s0 . . . ∃sm

{
m∧

i=0

lh(ti ) = lh(si )∧
m∧

i=0

“ti codes the canonical (i, w) sequence” ∧
m∧

i=0

∀p<lh(si ) [[. . .] ∨ [. . .]]
}

(1)
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822 C. Dimitracopoulos, V. Paschalis

and prove that

M |� ∀w∃t0 . . . ∃tk∃s0 . . . ∃sk

{
k∧

i=0

lh(ti )=lh(si ) ∧
k∧

i=0

“ti codes

the canonical (i, w) sequence” ∧
k∧

i=0

∀p<lh(si ) [[. . .] ∨ [. . .]]
}

. (2)

Note that, for any i ∈ N and w ∈ M ,

(a) there exists a unique element ti of M coding, in increasing order, all formulas
obtained from θi as we described before. In fact, this element lies below an expo-
nential bound, depending on the Gödel number of θi and on w; for example, ti
can be bounded by (�θi�)w

2
.

(b) as in (a) above, a similar exponential bound can be put on si ; for simplicity, we
will use the same bound as for ti .

It follows that (2) is equivalent to

M |� ∀w∀b

[
b = (max{�θ0�, . . . , �θk�})w2

→ ∃t0 . . . ∃tk<b∃s0 . . . ∃sk<b

{
k∧

i=0

lh(ti ) = lh(si ) ∧
k∧

i=0

“ti codes

the canonical (i, w) sequence” ∧
k∧

i=0

∀p<lh(si ) [[. . .] ∨ [. . .]]
}]

. (3)

Now notice that ∀b [. . .] is a �0(�n) formula, since it has been constructed
by using connectives, bounded quantification and instances of the �n formula
∀z∃x>zSatn−1(. . .) (for the exact definition of the class �0(�n), see, e.g., Defini-
tion 2.2, page 62, of [11]). But it is well-known that I�n implies I�0(�n), for all
n ∈ N (see, e.g. Lemma 2.14, page 65, in [11]). Therefore, we may use induction in
M to prove (3) or, equivalently, (2).

Since the case w=0 is similar to the general inductive step, it suffices to show that,
for any a ∈ M , if a satisfies ∀b [. . .], then a+1 also satisfies this formula. So, assuming
that, for b=(max{�θ0�, . . . , �θk�})a2 ,

M |� ∃t0 . . . ∃tk<b∃s0 . . . ∃sk<b

{
k∧

i=0

lh(ti ) = lh(si ) ∧
k∧

i=0

“ti codes

the canonical (i, a) sequence” ∧
k∧

i=0

∀p<lh(si ) [[. . .] ∨ [. . .]]
}

, (4)
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we will show that, for B = (max{�θ0�, . . . , �θk�})(a+1)2 ,

M |� ∃t0 . . . ∃tk<B∃s0 . . . ∃sk<B

{
k∧

i=0

lh(ti ) = lh(si ) ∧
k∧

i=0

“ti codes

the canonical (i, a+1) sequence” ∧
k∧

i=0

∀p<lh(si ) [[. . .] ∨ [. . .]]
}

. (5)

In what follows, let �( j, w, t0, . . . , t j , s0, . . . , s j ) denote the formula

j∧
i=0

lh(ti ) = lh(si ) ∧
j∧

i=0

“ti codes the canonical

(i, w) sequence of formulas”∧
j∧

i=0

∀p<lh(si )[. . .].

By (1), there exist unique elements ta+1
0 , . . . , ta+1

k−1 , sa+1
0 , . . . , sa+1

k−1 of M such that

M |� �
(

k−1, a+1, ta+1
0 , . . . , ta+1

k−1 , sa+1
0 , . . . , sa+1

k−1

)
(6)

and, by (4), there exist unique elements ta
0 , . . . , ta

k , sa
0 , . . . , sa

k such that

M |� �
(
k, a, ta

0 , . . . , ta
k , sa

0 , . . . , sa
k

)
. (7)

Finally, it is clear that there exists a unique element ta+1
k of M coding the canonical

(k, a+1) sequence of formulas (obtained from θk).
Note that, by the canonicity of the construction of the ti ’s and the induced canonicity

of the construction of the si ’s, we have that

(i) for any 0≤i≤k, ta
i is an initial segment of ta+1

i

(ii) for any 0≤i≤k−1, sa
i is an initial segment of sa+1

i .

Now let θ0k , . . . , θ L
k be the formulas coded by ta+1

k , that is, the formulas (in increas-
ing order) in the (k + 1)-th block of L A(M) formulas described before the Lemma.
We claim that

M |� ∀l ≤ L∃S

⎧⎨
⎩lh(S)=l+1 ∧ ∀p ≤ l

⎡
⎣

⎡
⎣∀z∃x>zSatn−1

⎛
⎝k−1∧

i=0

sa+1
i ∧

p−1∧
j=0

(S) j ∧θ
p
k (x, �c), x

⎞
⎠ ∧ (S)p = θ

p
k (x, �c)

⎤
⎦ ∨

⎡
⎣¬∀z∃x>zSatn−1

⎛
⎝k−1∧

i=0

sa+1
i ∧

p−1∧
j=0

(S) j ∧ θ
p
k (x, �c), x

⎞
⎠ ∧(S)p = (0=0)

⎤
⎦

⎤
⎦

⎫⎬
⎭ ,

(8)
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824 C. Dimitracopoulos, V. Paschalis

where, for the sake of technical simplicity, we identify codes of sequences, e.g., sa+1
i ,

with the corresponding sequences of terms (i.e., formulas). Note that, for each i ≤ k−1,
sa+1

i is a sequence of formulas corresponding to the canonical (i, a+1) sequence of
formulas and S corresponds to a sequence of formulas obtained from the canonical
(k, a+1) sequence.

To prove (8), we use induction on l; note that the formula after ∀l≤L in (8) is
(equivalent to) a �0(�n) formula, so we may use induction in M as before. For
simplicity, we will deal with the case l = 0 only.

First note that, by the construction of the sequences sa+1
0 , . . . , sa+1

k−1 , we have that

M |� ∀z∃x>zSatn−1

(
k−1∧
i=0

sa+1
i

)
. (9)

Since, clearly,

M |� ∀z∃x>zSatn−1

(
k−1∧
i=0

sa+1
i ∧ θ0k (x, �c), x

)

∨¬∀z∃x>zSatn−1

(
k−1∧
i=0

sa+1
i ∧ θ0k (x, �c), x

)

and hence that M |� ∃S�(S), where �(S) denotes the formula in {. . .} in (8).
Having proved our claim, we let sa+1

k be the unique S satisfying the formula {. . .}
in (8) for l = L . It is not difficult to check that sa

k is a proper initial segment of sa+1
k

and that

M |� �(k, a+1, ta+1
0 , . . . , ta+1

k , sa+1
0 , . . . , sa+1

k ),

which finishes the proof of the Lemma. ��
We continue with a lemma, which concerns a nice property of the sequence (θ

j
i )∗,

j ≤ lh(i, w), constructed according to the procedure stated in Lemma 4. This prop-
erty can be named “witness property” and can be described in short as follows: if
a formula of the form ∃y ≤ cak+1η(y, x, ca1 , . . . , cak+1) becomes a member of the
sequence corresponding to ∃y ≤ vak+1η(y, x, �v), then there exists b≤ak+1 such that
the formula η(cb, x, ca1 , . . . , cak+1) becomes amember of the sequence corresponding
to the formula η(y, x, �v). The exact statement and proof of this fact are given below.

Lemma 5 Suppose that ∃y≤vk+1η(y, x, �v) and η(y, x, �v) appear as θm and θl , respec-
tively, in the enumeration (θi (x, �v))i∈N of �n−1 formulas, where m>l. Then, for any
elements �a of M,

M |� ∀w≥max(�a)∀t0 . . . ∀tm∀s0 . . . ∀sm

⎧⎨
⎩

m∧
i=0

lh(ti ) = lh(si ) ∧
m∧

i=0

“ti codes the

sequence of all formulas of the form θi (x, �c) with the indices of �c≤w” ∧
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m∧
i=0

∀p<lh(si )

⎡
⎣

⎡
⎣∀z∃x>zSatn−1

⎛
⎝Si−1∧

p−1∧
j=0

(si ) j ∧θ
p
i (x, �c), x

⎞
⎠ ∧ (si )p = θ

p
i (x, �c)

⎤
⎦

∨
⎡
⎣¬∀z∃x>zSatn−1

⎛
⎝Si−1∧

p−1∧
j=0

(si ) j ∧θ
p
i (x, �c), x

⎞
⎠ ∧ (si )p = (0 = 0))

⎤
⎦

⎤
⎦

∧∃r<lh(sm)[(sm)r = ∃y≤cak+1η(y, x, �c)] → ∃y≤ak+1∃q<lh(sl )[(sl )q=η(cy , x, �c)]
⎫⎬
⎭ .

(if l>m, a similar statement holds, which can be proved in the same way)

Proof Assume b≥�a, d0, . . . , dm, e0, . . . , em and f are elements of M such that the
formula

m∧
i=0

lh(ti )= lh(si ) ∧ . . . ∧ f <lh(sm) ∧ (sm) f =∃y≤cak+1η(y, x, �c)

is satisfied in M when we replace w by b, ti by di and si by ei , for all 0≤i≤m, and r
by f . It follows that

M |� ∀z∃x>zSatn−1(Sm−1 ∧
f −1∧
j=0

(sm) j ∧ ∃y≤cak+1η(y, x, �c), x).

By well-known properties of the formula Satn−1, we deduce that

M |� ∀z∃x>z∃y≤ak+1Satn−1

⎛
⎝Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cy, x, �c), x

⎞
⎠ . (10)

But this implies that

M |� ∃y≤ak+1∀z∃x>zSatn−1

⎛
⎝Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cy, x, �c), x

⎞
⎠ . (11)

Indeed, if (11) failed, then we would have

M |� ∀y≤ak+1∃z∀x>z¬Satn−1

⎛
⎝Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cy, x, �c), x

⎞
⎠ ,

which, by the fact that M satisfies �n collection, would give

M |� ∃t∀y≤ak+1∃z<t∀x>z¬Satn−1

⎛
⎝Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cy, x, �c), x

⎞
⎠ .

123



826 C. Dimitracopoulos, V. Paschalis

But then there exists T ∈M such that

M |� ∀y≤ak+1∀x>T ¬Satn−1

⎛
⎝Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cy, x, �c), x

⎞
⎠ ,

which contradicts (10).
Therefore, (11) holds and so there exists g∈M , g≤ak+1 such that

M |� ∀z∃x>zSatn−1

⎛
⎝Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cg, x, �c), x

⎞
⎠ . (12)

Let now h be an element of M such that M |� h<lh(tl) ∧ (tl)h = η(x, cg, �c). If
M |� (sl)h = (0 = 0), then it would be the case that

M |� ¬∀z∃x>zSatn−1

⎛
⎝Sl−1 ∧

h−1∧
j=0

(sl) j ∧ η(cg, x, �c), x

⎞
⎠ ,

which would contradict (12). It follows that M |� (sl)h = η(cg, x, �c), as required. ��
Let us now consider the following theory in the language L A(M, c)

T = T h(M) + c>M + �,

where T h(M) denotes, as usual, the elementary diagram of M , c>M denotes the set
{c>ca : a∈M} and � denotes the set

⋃
i∈N{(θ j

i )∗ : j ∈ M}, where (θ
j

i )∗ is the
formula θi (c, �c) or 0=0, depending on the term (si,w) j of (the sequence coded by)
si,w, for some w∈M , or, equivalently, for any w∈M such that the indices of �c are
below w; note that, once (θ

j
i )∗ enters the enumeration at a level, it will stay there “to

the end” (of the enumeration).
Observe that T is a consistent set of sentences of L A(M, c); indeed, every finite

subset T ′ of this set is satisfied in the structure for L A(M, c) obtained from M by
interpreting each constant ca as the corresponding element of M and c as a suitably
large element of M . Let J be a model of (a maximal consistent extension � of) T
and let K n−1(J ) be the substructure of J whose universe is the set of �n−1 definable
elements in J . Clearly, we may identify K n−1(J ) with the substructure K of J � L A
(i.e., the reduct of J to L A), whose universe is the set of elements �n−1 definable in
J�L A using parameters from the set {cJ

a : a∈M} ∪ {cJ } (for the precise definition,
see, e.g., p. 130 in [12]). To complete the proof of Theorem 3, it suffices to prove the
following result.

Lemma 6 M is (isomorphic to) a proper �n-elementary initial segment of K and
K |� I�0.
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Proof Let f : M → K be the function defined by f (a) = cJ
a , for each a∈M . Clearly,

f maps M isomorphically onto a substructure L of K and so it suffices to show that
K is a proper �n-elementary end extension of L .

First, note that K <n−1 J�L A, by Theorem 10.1, p. 131, in [12]. It follows that
K ∗ |� �n(M), where �n(M) denotes the set of �n sentences of L A(M) which are
true in M∗, i.e., the natural expansion of M to a structure for L A(M). Therefore,
L <n K .

Since, clearly, K is a proper extension of L , it remains to show that L ⊂e K . So
let a ∈ M and d ∈ K such that K |� d < cJ

a or, equivalently, J |� d < cJ
a . By the

definition of K , there exist a �n−1 formula ϕ(y, x, �v) and �a ∈ M such that ϕ(y, c, �c)
defines d in J . Then J |� ∃y≤cJ

a ϕ(y, c, �c) and hence ∃y≤caϕ(y, c, �c) ∈ T ; indeed,
if ∃y≤caϕ(y, c, �c) /∈ T held, we would have that M |� ∃z∀x>z¬∃y≤caϕ(y, x, �c),
i.e., M |� ∀x>ca∗∀y≤ca¬ϕ(y, x, �c) for some a∗∈M , which, given that c>ca∗∈T ,
would imply that J |� ∀y≤cJ

a ¬ϕ(y, c, �c). By Lemma 5, there exists b∈M such that
M |� b<a and ϕ(cb, c, �c)∈T . Therefore, J |� ϕ(cb, c, �c) and hence d = cJ

b , as
required.
Finally, note that K |� I�0, since K<n−1 J�L A and J�L A |� I�0. ��

The proof of Theorem 3 is now complete. ��
Remark 3 It is easy to see that, in Theorem 3, the model K obtained satisfies a theory
strictly stronger than I�0. Indeed, by Theorem 0.2 in [13], for n≥2, I�n ⇒ I�−

n ,
where I�−

n denotes the theory of induction for �n parameter free formulas. But,
clearly, I�−

n holds in M and I�−
n is a set of �n+1 sentences (recall Theorem 0.6

in [13]). Therefore, K |� I�−
n . Now recall that I�−

n is strictly stronger than I�0;
indeed, by Proposition 1.10 in [13], (B�1 and hence) I�0 does not prove I�−

1 . It is
probably known that the model K satisfies a theory strictly stronger than I�−

n , but
we will not pursue this question further, as it lies outside our area of interest in the
present paper.

3 End extendingmodels of 61-induction

In this section, we show that it is possible to modify the proof of Theorem 3 to prove
that Problem 1 has a positive solution, i.e. to prove the next result.

Theorem 7 Every model of I�1 has a proper end extension satisfying I�0.

The main difference between the proof of Theorem 3 in Section 2 and the modi-
fication we are about to use to prove Theorem 7 is that in the latter we have to use a
consistency statement instead of the formula concerning satisfiability of formulas that
was used in the former. Note that

(i) it would not be possible toworkwith formulas of the form ∀z∃x>z Sat0(. . .) here,
as this would require the use of I�2, while we only have that M |� I�1. So we
have to followan alternative approach, namely one that employs the use of a formal
consistency statement, by means of which the problematic quantifier complexity
induced by the expression ∀z∃x>z is “absorbed” within this statement; actually,
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828 C. Dimitracopoulos, V. Paschalis

the appearance of the expression ∀z∃x>z can be avoided altogether, since the
same role can be played, essentially, by the constant c, through including the
condition c>M in the theory whose consistency is being considered.

(ii) it is not necessary toworkwith a formula expressing semantic tableau consistency,
as we did in [6]. Indeed, in that paper, we had to work with the restricted notion
of consistency T abcon(. . .), since the model under consideration there satisfied
a theory strictly weaker than I�1; here I�1 is satisfied in the model and hence
the usual formula Con(. . .)may be employed - recall the well-known fact that the
notions of (usual) consistency and semantic tableau consistency are equivalent in
models in which superexponentiation is total and hence in models satisfying I�1.

Let us proceed now to proving Theorem 7.

Proof Let M be an arbitrary model of I�1 and L A(M), L A(M, c) be the extensions
of L A defined at the beginning of the proof of Theorem 3.

We first mention a result which is well-known, but we recall it for the sake of
completeness. ��
Lemma 8 M |� Con(I�0 + � + c>M), where � denotes the �0-diagram of M.

Proof This is essentially a variant of the proof of Lemma 8.10 in [17]. Note that
working with the formula Con(. . .) does not differ essentially from working with the
formula T abcon(. . .) in [17], since M satisfies I�1. ��
Now we proceed to a result similar to Lemma 4, in the proof of which we will be
working with (a) an enumeration (θi (c, �v))i∈N of all �1 formulas (as in the previous
section, we may assume that each θi is of the form ∃y≤vk+1ηi (y, c, v1, . . . , vk+1),
where ηi is a �1 formula) and (b) an enumeration in M , in increasing order, of the set
of all (codes of) L A(M, c) formulas obtained from the L A(c) formula θi (c, �v), if we
replace the variables �v by constant symbols from the set {ca : a≤w}. As before, we
will assume that this enumeration is made in a “canonical manner” (see explanation
before Lemma 4).

Lemma 9 For every k ∈ N,

M |� ∀w∃t0 . . . ∃tk∃s0 . . . ∃sk

{
k∧

i=0

lh(ti ) = lh(si ) ∧
k∧

i=0

“ti codes the

sequence of all formulas of the form θi (c, �c) with the indices of �c≤w” ∧
k∧

i=0

∀p<lh(si )

⎡
⎣

⎡
⎣Con(T0 ∧ Si−1 ∧

p−1∧
j=0

(si ) j ∧ θ
p

i (c, �c)) ∧ (si )p=θ
p

i (c, �c)
⎤
⎦

∨
⎡
⎣¬Con(T0 ∧ Si−1 ∧

p−1∧
j=0

(si ) j ∧ θ
p

i (c, �c)) ∧ (si )p=(0=0)

⎤
⎦

⎤
⎦

⎫⎬
⎭ ,

where T0 denotes I�0+�+c>M and Si−1 denotes
∧i−1

m=0
∧lh(sm)−1

j=0 (sm) j (note, as
before, that Si−1 denotes any tautology, when i = 0).
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Proof The proof is essentially identical with that of Lemma 4, the only difference
being that the formula Con(. . .) is used instead of the formula Satn−1(. . .) to extend
the initial theory T0. ��

Next comes a lemma concerning a witnessing property analogous to the one stated
in Lemma 5.

Lemma 10 Suppose that ∃y≤vk+1η(y, c, �v) and η(y, c, �v) appear as θm and θl ,
respectively, in the enumeration (θi (c, �v))i∈N of �1 formulas, where m>l. Then, for
any elements �a of M,

M |� ∀w≥max(�a)∀t0 . . . ∀tm∀s0 . . .∀sm

{
m∧

i=0

lh(ti ) = lh(si ) ∧
m∧

i=0

“ti codes the

sequence of all formulas of the form θi (c, �c) with the indices of �c≤w” ∧
m∧

i=0

∀p<lh(si )

⎡
⎣

⎡
⎣Con

⎛
⎝T0 ∧ Si−1 ∧

p−1∧
j=0

(si ) j ∧ θ
p

i (c, �c)
⎞
⎠ ∧ (si )p=θ

p
i (c, �c)

⎤
⎦

∨
⎡
⎣¬Con

⎛
⎝T0 ∧ Si−1∧

p−1∧
j=0

(si ) j ∧ θ
p

i (c, �c)
⎞
⎠ ∧ (si )p = (0=0)

⎤
⎦

⎤
⎦

∧∃r<lh(sm)[(sm)r=∃y≤cak+1η(y, c, �c)] → ∃y≤ak+1∃q<lh(sl)[(sl)q=η(cy, c, �c)]
}

.

(if l>m, a similar statement holds, which can be proved in the same way)

Proof Assume b≥�a, d0, . . . , dm, e0, . . . , em and f are elements of M such that the
formula

m∧
i=0

lh(ti ) = lh(si ) ∧ · · · ∧ r<lh(sm) ∧ (sm)r = ∃y≤cak+1η(y, c, �c)

is satisfied in M when we replace w by b, ti by di and si by ei , for all 0≤i≤m, and r
by f . It follows that

M |� Con

⎛
⎝T0 + Sm−1 ∧

f −1∧
j=0

(sm) j ∧ ∃y≤cak+1η(y, c, �c)
⎞
⎠ . (13)

We claim that

M |� ∃y≤ak+1Con

⎛
⎝T0+Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cy, c, �c)
⎞
⎠ . (14)
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Indeed, if (14) failed, then we would have

M |� ∀y≤ak+1¬Con

⎛
⎝T0 + Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cy, c, �c)
⎞
⎠ ,

that is,

M |� ∀y≤ak+1∃s“s is a proof of ⊥ from T0 + Sm−1 ∧
f −1∧
j=0

(sm) j ∧ η(cy, c, �c)”.

Recalling now that I�0 � ∀x∀y(x≤y↔x<y ∨ x=y) and that M |� I�1, we can
prove by induction that

M |� ∀z≤ak+1∃s“s is a proof of ⊥ from T0 + Sm−1 ∧
f −1∧
j=0

(sm) j ∧ ∃y≤czη(y, c, �c)”.

Therefore, (14) holds and so there exists g∈M , g≤ak+1 such that

M |� Con

⎛
⎝T0 ∧ Sm−1 ∧

f −1∧
j=0

(sm) j ∧ η(cg, c, �c)
⎞
⎠ . (15)

Let now h be an element of M such that M |� h<lh(tl) ∧ (tl)h = η(cg, x, �c). If
M |� (sl)h = (0 = 0), then it would be the case that

M |� ¬Con

⎛
⎝T0 ∧ Sl−1 ∧

h−1∧
j=0

(sl) j ∧ η(cg, c, �c)
⎞
⎠ ,

which would contradict (15). It follows that M |� (sl)h = η(cg, c, �c), as required. ��
We now consider the theory T = I�0+�+c>M+� in the language L A(M, c),

where � denotes the set
⋃

i∈N{(θ j
i )∗ : j ∈ M}, with (θ

j
i )∗ denoting the formula

θi (c, �c) or 0=0, depending on the term (si,w) j of (the sequence coded by) si,w, for
any w ∈ M large enough.

T is clearly consistent, so let J be a model of T and K denote the substructure of
J�L A whose universe is the set of elements �1 definable in J�L A using parameters
from the set {cJ

a : a ∈ M} ∪ {cJ }. To complete the proof of Theorem 7, it suffices to
prove the following result.

Lemma 11 M is (isomorphic to) a proper initial segment of K and K |� I�0.

Proof First, note that K |� I�0, since J |� I�0 and K<1 J � L A (recall Theorem
10.1 in [12]).
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Now let f : M → K be the function defined by f (a) = cJ
a , for any a∈M . Since T

contains the diagram of M , f maps M isomorphically onto a substructure L of K and
so it suffices to show that K is a proper end extension of L . Clearly, K is a proper
extension of L , so it remains to show that L ⊂e K . But this can be proved by an easy
modification of the second part of the proof of Lemma 6, using Lemma 10. ��

The proof of Theorem 7 is now complete. ��
Remark 4 Aswe have noted before, Theorem 7 follows from earlier work of A. Enayat
and T. L.Wong; indeed, this result follows by either the proof of Theorem 1 in [19] or a
combination of Corollary 4.2 in [8] and Theorem 3.1 in [10]. In fact, Theorem 1 in [19]
leads to a positive answer of the second part of Problem 1 in [15], i.e., the following
question: is every model M of I�1 properly end extendable to K |� I�1 such that
M |� I�∗

1 in K ? Note that I�∗
1 denotes the theory, in the second-order language

of arithmetic, which concerns induction for �∗
1 formulas, i.e., formulas of the form

∃ �x1∀ �x2 . . . ϕ( �x1, �x2, . . .), with n alternating blocks of similar first-order quantifiers
where the only quantifiers in ϕ are bounded first-order.

4 Concluding remarks

In viewof the negative answer toQuestion 1,Theorem7 is the best possible, concerning
the quantifier complexity of the formulas that are satisfied in M iff they are satisfied
in its end extension. Similarly, Clote’s result, i.e. Theorem 3, is the best possible,
in the sense that, for any n ≥ 2, there exists a model of I�n which has no proper
�n+1-elementary end extension satisfying I�0. Indeed, if there were no such model,
by implication ⇐ of Theorem 2(b), all models of I�n , n≥2, would satisfy B�n+1,
which is impossible, by Theorem 2(a), i.e., by the fact that I�n � B�n+1.

One can naturally wonder whether Theorem 3 holds if we consider the theory B�n

instead of the theory I�n .

Problem 2 Does every model of B�n , n≥2, have a proper �n-elementary end exten-
sion satisfying I�0?

Recalling that B�1 ⇔ B�0 and that I�0 is strictlyweaker than B�1, the following
problem also arises naturally.

Problem 3 Does every model of B�1 have a proper end extension satisfying I�0?

Both these problems remain open, with Problem 3 being considered to be of particular
interest (see “Fundamental problem F” in [5]).

Concerning Problem 2, it has a positive answer, if attention is restricted to countable
models (recall implication (⇒) of Theorem 2(b)).

It is easy to see that the answer to Problem 2 is also positive, if we demand that
the end extension is �n−1-elementary, for n ≥ 3; indeed, if M is a model of B�n ,
n ≥ 3, then M satisfies I�n−1 and hence, by Clote’s result, it has a proper �n−1-
elementary end extension satisfying I�0. In view of this observation, it remains to
see what happens in the case n = 2, i.e., to determine the answer to the following
question.
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Question 3 Does every model of B�2 have a proper �1-elementary end extension
satisfying I�0?

Amore general question worth considering, in view of Theorem 7 and the negative
answer to Question 1 (discussed in the first section) is as follows.

Question 4 Is there a theory T , with strength strictly between those of I�2 and I�1,
such that every model of T has a proper �1-elementary end extension satisfying I�0?

Problem 3 was studied extensively in [18]. In fact, Wilkie and Paris proved that it
has a positive answer, if (a) attention is restricted to countablemodels and (b) the initial
model satisfies an extra condition. Among the results proved in [18], the following is
perhaps the most interesting one.

Theorem 12 [18] Every countable model of B�1 + exp has a proper end extension
satisfying I�0.

Remarks 5

(1) Note that Problem 3 is considered especially interesting, since it is connected to
problems in computational complexity theory (for details, see, e.g., [5]).

(2) Problem 3 is known to have a negative answer, under an assumption concerning
the collapse of the �0 hierarchy. Indeed, in [18] it was proved that there exists a
countable model of B�1 which does not have a proper end extension satisfying
I�0, provided that the �0 hierarchy collapses provably in I�0, i.e., there exists
a fixed n such that, for any θ ∈ �0 there is η ∈ �0 in prenex normal form
with at most n alternations of bounded quantifiers such that I�0 � θ ↔ η (this
hypothesis is usually denoted by I�0 � ¬�0H ).

In view of the above results and comments, it is natural to wonder whether Theo-
rem 7 or Theorem 12 can be improved; in particular, it seems worthwhile to study the
following problem.

Problem 4 Does every model of B�1+exp have a proper end extension satisfying
I�0?

Among attempts made towards solving Problem 4, the one deserving special mention
is due to Z. Adamowicz, who extended in [1] Theorem 12 above, by proving that every
model of B�1 + exp that is cofinal with ω has a proper end extension satisfying I�0.

In connection with Problem 4, one can ask the following, apparently more difficult,
question.

Problem 5 Does every countable model of B�1 + �1 have a proper end extension
satisfying I�0?

Here, as usual, �1 denotes the axiom expressing that the function x |x | is total, where
|x | denotes the length of the logarithmic expansion of x – recall that the strength of
�1 was studied extensively in [17].

Let us end this section by noting that a very interesting study of Problem 5 was
carried out by Z. Adamowic in [2]. One of the main results of this specific paper
states that, under an assumption weaker than I�0 � ¬�0H , there exists a model of
B�1 + �1 which does not have a proper end extension satisfying I�0.
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