
Archive for Mathematical Logic (2020) 59:335–365
https://doi.org/10.1007/s00153-019-00692-9 Mathematical Logic

Weaker variants of infinite time Turing machines

Matteo Bianchetti1

Received: 3 June 2017 / Accepted: 6 July 2019 / Published online: 13 September 2019
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer Nature 2019

Abstract
Infinite time Turing machines represent a model of computability that extends the
operations of Turing machines to transfinite ordinal time by defining the content of
each cell at limit steps to be the lim sup of the sequences of previous contents of that
cell. In this paper, we study a computational model obtained by replacing the lim sup
rule with an ‘eventually constant’ rule: at each limit step, the value of each cell is
defined if and only if the content of that cell has stabilized before that limit step and
is then equal to this constant value. We call these machines weak infinite time Turing
machines (wITTMs). We study different variants of wITTMs adding multiple tapes,
heads, or bidimensional tapes. We show that some of these models are equivalent to
each other concerning their computational strength. We show that wITTMs decide
exactly the arithmetic relations on natural numbers.

Keywords Ordinal computability · Infinite time Turing machine · Transfinite
computation · Supertask · Arithmetic hierarchy · Real arithmetic

Mathematics Subject Classification 03D10 · 03D60 · 03D78 · 68Q01

Contents

1 Introduction . 336
2 Weak infinite time Turing machines . 336
3 Variants of wITTMs . 344
4 Arithmetic hierarchy and computational strength . 358
5 Conclusion . 364
References . 365

B Matteo Bianchetti
matteobianchetti@gmail.com

1 Department of Philosophy, University of Notre Dame, 100 Malloy Hall, Notre Dame, IN 46556, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-019-00692-9&domain=pdf
http://orcid.org/0000-0002-3253-4387

336 M. Bianchetti

1 Introduction

Hamkins and Lewis suggested a new theoretical computing device that they called infi-
nite time Turing machine (for short: ITTM). They first described machines of this type
in [5]. One can roughly describe ITTMs as Turing machines that can halt and provide
a result after infinitely many steps. ITTMs are far more powerful than ordinary Turing
machines. The basic operations and relations over the reals are ITTM-computable,
and the halting set is ITTM-decidable. In fact, every Π1

1 set is ITTM-decidable. One
attractive feature of ITTMs is their resemblance to ordinary Turing machines, which
allows for “implementational” (although often lengthy) proofs of statements describ-
ing what ITTMs can and cannot do, i.e. proofs explaining the behavior of a machine
of this type attempting to carry out a specific computation.

In this paper, we investigate models of infinitary computation whose computational
power lies strictly between that of Turing machines and ITTMs. In particular, we
define four types of weak infinite time Turing machines, showing results about their
computational power. We prove that these machines can carry out basic operations
and decide basic relations over the reals, and their halting time is bounded above
by ω2. We also prove some results on the computational strength of these wITTMs
and their variants. Although one could provide shorter proofs, we will often exploit
the “mechanical” character of these models of computation and prove statements by
describing programs for these machines to carry out the relevant operations.

2 Weak infinite time Turingmachines

After briefly recalling the definition of ITTM, in this section we define a variant of
machines of this type. We call a machine of this new type weak infinite time Tur-
ing machine (wITTM). We prove some basic results about the halting time and the
computational power of wITTMs. Among other things, we prove that wITTMs are
computationally strictly more powerful than ordinary Turing machines, can carry out
basic operations and decide basic relations over the reals, and are computationally
strictly weaker than ITTMs.

2.1 Infinite time Turingmachines

An ITTM consists of three tapes, each having a leftmost cell and being infinitely
extended to the right. The three tapes are arranged as in Fig. 1. From top to bottom, we
will refer to these tapes, respectively, as the input tape, the scratch tape, and the output
tape. Each machine has a read–write head that, at each step of the computation, reads
the content of a vertical slice consisting of three cells (one on the input tape, the one
below it on the scratch tape, and the one below that one on the output tape), consults
the program associated with the machine, and carries out the relevant action (if any).
The tape symbols are 0 and 1. As in an ordinary Turing machine, the possible actions
are: printing a new tape symbol in a cell, moving left one cell, and moving right one
cell. At the beginning of the computation, the input (a sequence of 0s and 1s from 2ω)

123

Weaker variants of infinite time Turing machines 337

input tape
1010 1 0 0 1 0 0 1 1 1 1 1 0 0 0

H

scratch tape 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0

output tape
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 1 Infinite time Turing machine

is on the input tape, while the scratch tape and the output tape contain 0 everywhere,
as in Fig. 1. The output of a computation is the sequence of 0s and 1s on the output
tape when the machine halts (if at all).

The first notable difference between an ITTM and an ordinary Turing machine is
that the computation of an ITTM can converge after infinitely many steps. In other
words, an ITTM can halt and provide an answer at step α, where α can be an infinite
ordinal. At successor steps, i.e. at steps like 5 and ω + 2, an ITTM behaves like a
Turing machine. However, to ensure that the configuration of the machine is defined
at limit steps, i.e. at steps such as ω and ω2, we adopt the following rules:

(Head) At every limit step α the head is placed on the leftmost slice of cells, and
it enters a unique special state called the limit state.

(Lim Sup) For every limit step α, for every cell c, the content of c at α is the lim sup
of the values that have previously appeared in c.

According to Head, the machine is always in the same state at a limit step. At
that point, the machine will read the content of the leftmost vertical slice of cells and
consult the program for its next move. According to Lim Sup, at any limit step α, the
value of any cell c at α is always defined and univocally determined by the previous
values that have appeared in c. If the value in c stabilizes before α, then the value in c
at α is that constant value. If the value in c keeps on changing between 0 and 1 before
α, then the value in c at α is 1. Writing c[x] for the content of c at step x , we can then
write succinctly: for every limit step α,

c[α] =
{
1 if ∀β < α ∃γ ∈ (β, α) c[γ] = 1

0 otherwise.

2.2 Definition of weak infinite time Turingmachines

The rule Head (or something essentially equivalent to it) is necessary for machines
with the same hardware and programs of ITTMs to compute for infinitely many steps
and possibly eventually halt. However, one could meaningfully replace the rule Lim
Sup by some different stipulation. The following rule is a natural replacement of Lim
Sup:

123

338 M. Bianchetti

(Eventually Constant) For every limit step α, for every cell c, the content of c at α

is defined if and only if it has stabilized before α. In this case,
the content of c at α is that eventually constant value.

More formally, for every limit step α,

c[α] =

⎧⎪⎨
⎪⎩
1 if ∃β < α ∀γ ∈ (β, α) c[γ] = 1

0 if ∃β < α ∀γ ∈ (β, α) c[γ] = 0

↑ otherwise.

(1)

If the content in some cell c does not stabilize before α, then the configuration of
the machine at α is undefined, and the computation fails in the sense that it does not
converge to any output. In this case, if the computation is defined for every β < α,
we say that the machine hangs at α (although, strictly speaking, the machine never
reaches step α).1

It is useful to remark the following. Just as in the case of regular Turing machines,
one can replace the alphabet {0, 1} with any finite alphabet without modifying the
computational power of wITTMs and without changing the computational power of
any variant of wITTMs that we will consider later. One can code symbols using strings
of 0s and 1s and the rule Eventually Constant works as usual. We will use this fact to
simplify some proofs.

2.3 Halting time

It is useful to determine the halting time of wITTMs to discuss their computational
power. The following results show that wITTMs can halt at any time before step ω2

but not at step ω2 or after that.

Lemma 1 Let M be a wITTM and α either a limit step or the initial step. If the
configuration of M is defined at step α and M does not change the content of any cell
between step α and α + ω, then M will compute forever.

Proof Suppose that the configuration of M is defined at step α and that M does
not change the content of any cell between step α and step α + ω. Therefore, the
configuration of M at step α + ω is the same as the configuration of M at step α.
Thus, between step α + ω and step α + ω · 2, M will behave as it did between step α

and step α + ω, i.e. it will change the content of no cell. From this, it follows that the
configuration of M at any limit step after α is the same as the configuration of M at α.
Therefore, after each limit step,M will behave identically, i.e. it will change the content
of no cell before the next limit step. It follows that M will never change the content of
any cell after α. Since the configuration of M is defined at α, the configuration of M

1 After I gave a talk on wITTMs at the Computability in Europe 2015 meeting, Merlin Carl pointed out
to me that he and Joel D. Hamkins briefly discussed machines of this type in 2012 on MathOverflow (see
https://mathoverflow.net/questions/111902/transfinitely-iterated-limit-computability). In that discussion,
Hamkins stated the results that we here present as Theorems 2 and 26 and hinted briefly at their proofs.
Apparently, Hamkins did not publish anything on wITTMs. Carl discusses wITTMs in chapter 2 of his
forthcoming [3]. There Carl also presents a complete proof of Theorem 2, which he communicated to me.

123

https://mathoverflow.net/questions/111902/transfinitely-iterated-limit-computability

Weaker variants of infinite time Turing machines 339

is also defined at every limit step after α. Therefore, the machine will never stop and
will compute forever. ��
Theorem 2 (Hamkins) Let M be a wITTM. M cannot change the content of any of its
cells after step ω2.

Proof By Lemma 1, if M does not change the content of any cell between two suc-
cessive limit steps, then M will loop forever without changing the content of any cell.
So, it remains to consider whether M can change the content of a cell finitely many
steps after ω2. Suppose, toward a contradiction, that, for some k ∈ ω, the content of
cell c changes at step ω2 + k. Therefore, the configuration of the machine was defined
at step ω2. In particular, the content of no cell has changed unboundedly often before
step ω2. Let S be the finite set of the cell that the head inspects between step ω2 and
step k. Since the configuration of the machine is defined at step ω2, the content of
each cell in S has stabilized before ω2. Since S is finite, there is a least ordinal α < ω2

after which the content of no cell in S changes before ω2. Therefore, at step ω2, the
relevant initial portions of the tapes of M are identical to the same portions of these
tapes at every limit step β between α and ω2. Since, at every limit step, M is in the
limit state, for every limit step β ∈ (α, ω2), the content of cell c changed at step
β + k. Therefore, the content of cell c has changed unboundedly often before step ω2.
However, this means that the configuration of the machine is not defined at step ω2.
This is a contradiction. Therefore, no cell can change after step ω2. ��

From Theorem 2, it follows that the halting time for wITTMs is less than ω2.

Theorem 3 For every wITTM M, for every input f ∈ 2ω, if M halts on input f , then
it halts before step ω2.

One can further observe that a wITTM can hang exactly at step ω2.

Proposition 4 There is a wITTM M whose configuration is defined for every step
α < ω2 and that hangs at step ω2.

Proof Let M be a wITTM that, on any input, after step 0 and after each limit step
β < ω2, prints 1 and then 0 on the first cell c of the scratch tape. After that action,
M moves right without changing anything before the next limit step. At every step
α < ω2, the content of each cell has changed only finitely often. However, the content
of c changes unboundedly often before step ω2. Therefore, the machine hangs at step
ω2. ��

From Theorem 2 and Proposition 4, one obtains the following result.

Halting Time Theorem 5 ω2 is the set of all halting times of wITTMs.

A result analogous to Proposition 4 holds for loops in a computation.

Proposition 6 There is a wITTM M that begins looping exactly at step ω2.

123

340 M. Bianchetti

Proof Let M be a wITTM that, on any input, after step 0 and after each limit step α,
looks for the leftmost 0 on the scratch tape and replaces it with 1. After that action,
M moves right without changing the content of any cell before the next limit step.
For every limit steps α < ω2, the configuration of M at α is not the same as its
configuration at α+ω. However, for every limit step β ≥ ω2, M is always in the same
configuration and simply scans the scratch tape and moves right. ��

2.4 Computational power of weak infinite time Turingmachines

One can easily observe that wITTMs are more powerful than ordinary Turing
machines.

Proposition 7 There is a wITTM that computes the halting set K .

Proof On input e, such wITTM tries to compute ϕe(e). If the computation converges
before step ω, then the machine writes 1 on the leftmost cell of the output tape and
halts. If the computation does not converge before step ω, the machine enters the limit
state at step ω and then halts at step ω + 1. ��

In general, wITTMs can compute, in exactly ω + 1 steps, every function that is not
Turing computable but is limit computable. Therefore, for example, identifying reals
with sequences in 2ω, one can observe that wITTMs can carry out basic operations
over the reals (such as addition and multiplication) and decide basic relations on the
reals (such as identity and order).

One can also easily observe that ITTMs can compute everything that wITTMs
compute.Wewill see later that the opposite is not true and, therefore, the computational
power of wITTMs lies strictly between that of ordinary Turing machines and that of
ITTMs.

2.4.1 Real arithmetic

Though it is easy to show that basic operations and relations over the reals are wITTM-
computable, it is interesting to consider this fact more in-depth. Representing reals as
infinite strings of 0s and 1s, real arithmetic is not Turing computable. However, there
are algorithms to carry out addition and multiplication and to decide the order relation
on reals, if we represent reals using segments. For example, at the beginning of La
geometrie, René Descartes provides an algorithm for multiplying two positive reals
r0 and r1 represented as segments BC and BD, when r1 > 1 and a further unitary
segment AB is given, as in Fig. 2.2 The length of BC is r0 and the length of BD is
r1. First one joins A with C . Then one draws a parallel to AC trough D. In this way,
one determines the segment BE whose length is r0 · r1.

One can carry out such a construction using just an unmarked ruler and a collapsi-
ble compass, as Euclid showed in Elements I 1–3. One can find completely general
algorithms (but relying on a rigid compass and in the context of intuitionistic math-
ematics) in §8 of [1]. Let us now go back from geometric representations of reals to

2 See [4] p. 298.

123

Weaker variants of infinite time Turing machines 341

Fig. 2 Descartes’s method for
multiplying segments

B A D

C

E

their representations as binary sequences. It is instructive to examine which algorithm
one could give to a wITTM to compute basic operations and relations over the reals. In
this section, we will briefly describe how a wITTM could behave to carry out addition
and multiplication over the reals.

For the sake of simplicity, we concentrate on reals in the interval [0, 1). Given
f ∈ 2ω, we take it to represent the real

∞∑
i=0

f (i)2−i−1.

Since different sequences could represent the same real (like 10̄ and 01̄), we single
out a preferred representation, which we call normal form. A sequence f ∈ 2ω is in
normal form if and only if it does not end with a tail of 1s, i.e., for every n, for some
m > n, f (m) = 0. The following results hold.

Lemma 8 For some wITTM M, for every sequence f and g ∈ 2ω, M decides whether
f is in normal form.

Proof (Sketch.) A wITTM M starts by reading the input tape. Every time M finds a
cell i on the input tape that contains 0, M looks for the leftmost cell on the scratch
tape that contains 0 and prints 1 in that cell. Then M resumes examining the input
tape from cell i + 1. At step ω, M checks whether the scratch tape contains any 0. If
yes, M halts saying that f is not in normal form. If M reaches step ω2, it halts at step
ω2 + 1 saying that f is in normal form. ��
Lemma 9 For some wITTM M, for every sequence f ∈ 2ω that is not in normal form,
M replaces f with a sequence f ′ ∈ 2ω such that f ′ is in normal form and f and f ′
represent the same real.

Proof (Sketch.) A wITTM M starts by reading the input tape. Every time M finds a
cell i on the input tape such that i contains 0 and i + 1 contains 1, M prints 1 on cell
number i on the scratch tape and prints 0 everywhere on the scratch tape to the left of
i . Then M resumes reading the input tape from cell i + 2. At the limit step, M starts
copying the sequence given on the input tape to the output tape and also checks the
scratch tape. When M finds a cell c on the scratch tape that contains 1, M prints 1 on
the output tape right below c and halts. ��

123

342 M. Bianchetti

Lemmas 8 and 9 show that a wITTM can decide whether a sequence of 0s and 1s
is in normal form and, if not, it can replace it with an equivalent sequence that is in
normal form. Therefore, we will always assume that all sequences f ∈ 2ω that we
consider are in normal form.

Let us write r(f) for the real number represented by f ∈ 2ω. Equality and order
are wITTM-computable, as the following result states.

Proposition 10 For some wITTM M, for every sequence f and g ∈ 2ω, M decides
which of the following relations holds: r(f) = r(g), r(f) < r(g), or r(g) < r(f).

Moreover, addition over the reals is wITTM-computable. To avoid uninformative
complications, we describe a procedure to compute addition when the addends are
between 0 and 1

2 .

Proposition 11 For some wITTM M, for every sequence f and g ∈ 2ω such that r(f)
and r(g) ∈ [0, 1

2), M halts on output h such that r(h) = r(f) + r(g).

Let us write f + g to refer to such h. For simplicity, we assume that r(f) and
r(g) ∈ [0, 1

2). However, it will be clear, that a similar idea works for the gen-
eral case as well. The idea for the proof is to compute f + g as the limit of the
partial sums f|n + g|n , where f|n = f (0) f (1) . . . f (n) and similarly for g|n . To con-
sider f and g at the same time one could code them in a unique binary sequence
f (0)g(0) f (1)g(1) . . . f (n)g(n)3 Notice that, while for every n, an ordinary Tur-
ing machine can compute f|n + g|n , f + g is not Turing computable. Moreover, for
some f and g, (f +g)(n) is not Turing computable. For example, let f = 010101 . . .

and g = 0010101 At no step of its computation can a Turing machine decide
whether (f + g)(1) = 0.

In working with wITTMs, it is necessary to exercise caution so that the program
developed does not lead themachine to hang on a specific input. In the case of addition,
the machine will change the content of some cells on the output tape to take care of
carries. In other words, when the machine computes f|n + g|n , it will write the result
on the output tape. Then it computes f|n+1 + g|n+1 and writes the result on the output
tape, sometimes changing the content of cells on the output tape that it used before.
The following lemma addresses this point and is essential to complete the proof of
Proposition 11.

Lemma 12 For M as in Proposition 11, for every sequence f and g ∈ 2ω such that
r(f) and r(g) ∈ [0, 1

2), the content of every cell of M stabilizes before step ω.

Proof Let us suppose that M has written f|n + g|n on the output tape. To compute
f|n+1 + g|n+1, M first computes f (n + 1) + g(n + 1). If either f (n + 1) = 0
or g(n + 1) = 0, then there are no carries to consider. In this case, M simply writes
f (n+1)+g(n+1) on cell number n+1 of the output tape. If f (n+1) = g(n+1) = 1,
then M goes left until it finds 0 on the output tape. Let us say that it first finds 0 at
cell number m, for some 0 ≤ m ≤ n. Therefore, M writes 1 in cell number m on the

3 We will later show that one could also imagine to have two input tapes at disposal. Adding finitely many
input tapes does not alter the computational power of wITTMs. See, in particular, Equivalence Theorem 15.

123

Weaker variants of infinite time Turing machines 343

output tape and writes 0 in all the cells strictly between cell m and cell n + 1 on the
output tape. One observes that a cell like m containing 0 and strictly to the left of cell
number n + 1 on the output tape always exists: since r(f) and r(g) ∈ [0, 1

2),

f|n + g|n <

n∑
i=1

2−i ,

where the cells used to write down f|n + g|n are exactly those on the output tape
between cell 0 and cell n (cell 0 and cell n included). More explicitly, one observes,
first, that f|0 + g|0 = 0. Assume then that the required m exists for the computation
up to fn + g|n . If M performs a carry computing f|n+1 + g|n+1, then cell n + 1 on the
output tape will contain 0. If M does not perform a carry computing f|n+1 + g|n+1,
then the same cell m from before still contains 0. One observes that the rewriting
required for taking care of carries stops at the rightmost cell m on the output tape that
is to the left of cell n + 1 and that contains 0. In particular, the value in each cell can
change at most three times: first to write 1, then to write 0 taking care of a carry, and
finally to write 1 again taking care of another carry. ��

Now we briefly consider the case of multiplication, which is also wITTM-
computable.

Proposition 13 For some wITTM M, for every sequence f and g ∈ 2ω such that r(f)
and r(g) ∈ [0, 1), M halts on output h such that r(h) = r(f) · r(g).

Proof Let us write f g to refer to such h. For simplicity, we assume that r(f) and
r(g) ∈ [0, 1). However, an idea similar to the one that we are going to present works
in the general case. The idea for the proof is to compute f g as the limit of the partial
products f|ng|n . In particular, we can re-use the algorithm for addition to compute
multiplication, since we have

f g =
∞∑
i=0

∞∑
j=0

f (i)g(j)

2i+ j+2 .

In particular, assuming that we have already computed f|ng|n , we compute f|n+1g|n+1
as

f|ng|n +
n∑

i=0

f (i)g(n + 1)

2i+n+3 +
n+1∑
j=0

f (n + 1)g(j)

2n+ j+3 .

It remains to show that the content of no cell changes unboundedly often while we
compute these partial sums. We can reason as in Lemma 12, provided that we show
that, on tape t , where we record the output of the relevant sum, there is a cell c to the
left of the rightmost cell on t used to record that sum such that c contains 0. Since, for
every n,

123

344 M. Bianchetti

f|ng|n <

2n+2∑
i=1

2−i ,

there is a cell c with the desired property. ��

3 Variants of wITTMs

Weak infinite time Turing machines have exactly three tapes (input tape, scratch tape,
and output tape) and one read–write head. Describing the algorithms for carrying out
real arithmetic, we have hinted at the fact that one could add a finite number of extra
input tapes and scratch tapes to these machines without altering their computational
power. In this section, we clarify what this means and consider further modifications
of the original hardware of wITTMs. In particular, we consider machines that work
as wITTMs but the hardware of which are the following:

1. Weak infinite timeTuringmachineswith finitelymany extra input tapes and scratch
tapes and a single head (for short, wITTM<ω,<ω)

2. Weak infinite timeTuringmachineswithfinitelymany extra pairs of input tapes and
scratch tapes and a different read–write head for each pair (for short, wITTM<ω)

3. Weak infinite time Turing machines with a bidimensional input tape and a bidi-
mensional scratch tape (for short, wITTMω).

3.1 Finitely many tapes and single head

AwITTM<ω,<ω looks like the machine represented in Fig. 3, where i0, . . . , in are the
input tapes, s0, . . . , sm are the scratch tapes, and o the output tape. At successor steps,
a wITTM<ω,<ω reads a vertical slice of the tape, consults the program, and carries out
the required action (if any). At limit steps, a wITTM<ω,<ω behaves like a wITTM.
Every wITTM is also a wITTM<ω,<ω. Therefore, every function that is wITTM-p.c. is
also wITTM<ω,<ω-p.c.. The following theorem states that the reverse is also true, i.e.
every function that is wITTM<ω,<ω-p.c. is also wITTM-p.c. Let us write M(r) = s
to mean that the machine M on input r halts with output s. Let us also write M(N (r))
to mean that the machine M runs on the output of the machine N on input r .

Theorem 14 For every n ∈ ω, for some wITTM<ω,<ω N ′ with exactly n + 1 input
tapes, for every wITTM<ω,<ω N with exactly n + 1 input tapes, for some wITTM M,
for every r ∈ (2ω)n+1, N ′(r) ∈ 2ω and

1. if N (r) ↓, then M
(
N ′(r)

) = N (r) and
2. if N (r) ↑, then M

(
N ′(r)

) ↑.

Proof Given r = (r0, . . . , rn), we define

N ′(r) = r0(0)r1(0) . . . rn(0)r0(1)r1(1) . . . rn(1) . . . r0(m)r1(m) . . . rn(m)

123

Weaker variants of infinite time Turing machines 345

i0
0010 0 0 0 1 1 1 1 1 0 0 0 0 1 0

H

...

in
0110 1 0 0 0 1 1 1 1 0 1 0 0 1 0

s0
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

sm
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3 Weak infinite time Turing machine with finitely many extra input tapes and finitely many extra
scratch tapes

More formally, we define N ′(r)(x) = ri (j) such that x = j(n + 1) + i for some
0 ≤ i ≤ n and some j ∈ ω. By the Euclidean algorithm, such i and j exist and are
unique.

We now describe how M on input N ′(r) mimics the behavior of N on input r .
Let us write ik to refer to the input tape number k of N and I to refer to the input
tape of M . Similarly, we write sk for the scratch tape number k of N and S for the
scratch tape of M . We write o for the output tape of N and O for the output tape of
M . For the sake of simplicity, let us assume that N has exactly n+1-many input tapes
and m + 1-many scratch tapes. Without loss of generality, we can further assume that
n = m. At limit steps, both N and M behave in the same way. It remains to define the
behavior of M at successor steps and to ensure that, when M halts, the output tape of
M is identical to the output tape of N when N halts. We take care of these two points
with the following two subroutines.

Subroutine I At each successor step, N reads at once a slice of n + m + 3 cells,
replaces it with a new, equinumerous slice, and moves right or left to read a new slice.
With subroutine I, we explain how to create a portion of a program that allows M to
mimic the behavior of N . Suppose that, at a successor step α, for some k ∈ ω, N reads
the following slice of cells in the state q0:

Sl = (
i0(k), . . . , in(k), s0(k), . . . , sn(k), o(k)

)
.

Suppose that, after having read Sl, N replaces Sl with a new slice (M, q0)(Sl) and
then moves left or right to read, at step α + 1 and in state q1, the new slice:

Sl ′ = (
i0(p), . . . , in(p), s0(p), . . . , sn(p), o(p)

)
,

123

346 M. Bianchetti

where p = k ± 1. Since M starts with input N ′(r) and it has 0 everywhere on S and
on O , we can assume that at step β

1. for every 0 ≤ j ≤ n , the content of i j (k) appears in I (k(n + 1) + j)
2. for every 0 ≤ l ≤ n, the content of sl(k) appears on S(k(n + 1) + l)
3. the content of o(k) appears on O(k(n + 1)).

In other words, we can assume that, at step β, M reads the slice:

(
I (k(n + 1)), S(k(n + 1)), O(k(n + 1))

)
.

We now define a subroutine such that, for some u ∈ ω, at step β + u, M will read the
slice

(
I (p(n + 1)), S(p(n + 1)), O(p(n + 1))

)
and the content of i j (k)will appear in I (k(n+1)+ j), the content of sl(k)will appear
on S(k(n + 1) + l) and the content of o(k) will appears on O(k(n + 1)).

Let us now consider a slice of cells like Sl. We say that a sequence Q of n + 1
triples of cells (z j , x j , y j) is equivalent to Sl if

1. for every 0 ≤ j ≤ n, z j = i j (k)
2. for every 0 ≤ j ≤ n, x j = s j (k)
3. y0 = o(k)
4. for every 1 ≤ j ≤ n, y j = 0.

To mimic the behavior of N at step α, M will do the following:

1. First, M reads the sequence of slices

(
I (j(n + 1)), S(j(n + 1)), O(j(n + 1))

)(
I (j(n + 1) + 1), S(j(n + 1) + 1), 0

)
...(

I (j(n + 1) + n), S(j(n + 1) + n), 0
)
.

which is equivalent to Sl. In this way, in n + 1-many steps, M acquires the same
amount of information that N receives in a single step.

2. Then, M replaces this sequence of slices with a new sequence of slices equivalent
to (M, q0)(Sl).

3. Finally, M moves left or right n + 1-many cells to read the sequence of slices
equivalent to Sl ′.
The details of the procedure are as follows. At step α, N carries out an instruction

like the following

I = (qi , <z0, . . . , zn, x0, . . . , xn, y>, <z′0, . . . , z′n, x ′
0, . . . , x

′
n, y

′>, R, q j),

which means: if in the state qi you see the sequence of cells <z0, . . . , zn, x0, . . . ,
xn, y>, then print <z′0, . . . , z′n, x ′

0, . . . , x
′
n, y

′>, move right one cell, and enter state
q j . We choose new states qs , . . . , qs+3n−1 and we write the following instructions:

123

Weaker variants of infinite time Turing machines 347

1. (qi ,<z0, x0, y>,<z0, x0, y>, R, qs)
2. (qs,<z1, x1, 0>,<z1, x1, 0>, R, qs+1)

3. (qs+1,<z2, x2, 0>,<z2, x2, 0>, R, qs+2)
...

4. (qs+n−1,<zn, xn, 0>,<zn, xn, 0>, L, qs+n)

5. (qs+n,<zn−1, xn−1, 0>,<zn−1, xn−1, 0>, L, qs+n+1)
...

6. (qs+2n−1,<z0, x0, y>,<z′0, x ′
0, y

′>, R, qs+2n)

7. (qs+2n,<z1, x1, 0>,<z′1, x ′
1, 0>, R, qs+2n+1)

...

8. (qs+3n−1,<zn, xn, 0>,<z′n, x ′
n, 0>, R, q j).

This list of instructions says that, if M finds a sequence of triples of cells that is
equivalent to <z0, . . . , zn, x0, . . . , xm, y>, then M goes back to the beginning of
the sequence and replaces it with a new sequence of slices that is equivalent to
<z′0, . . . , z′n, x ′

0, . . . , x
′
m, y′>.

Subroutine II After completing subroutine I, the output tape O of M is such that, for
every x ∈ ω, O((n + 1)x) = o(x) and, for every 0 < i ≤ n, O((n + 1)x + i) = 0.
We define subroutine II to shift the content of O((n + 1)x) leftward so that, when M
halts, its output tape is identical to the output tape of N when N halts. First, we print 0
everywhere on the scratch tape S of M . Then we give the following list of instructions
to M :

1. Print 1 on S(0).
2. Move right n + 1 cells and read the triple (z, x, y). (Note that n is fixed, so we

have enough states to implement this.)
3. Print (z, 1, y).
4. If y = 0, then

(5.i) move left until you see 1 on the scratch tape
(5.ii) print 0 on the scratch tape
(5.iii) move right one cell
(5.iv) print 1 on the scratch tape
(5.v) print 0 on the input tape
(5.vi) move right until you find 1 on the scratch tape
(5.vii) print 0 on the scratch tape
(5.viii) move right n + 1 cells
(5.ix) go to instruction 3

5. If y = 1, then

(6.i) print 0 on the output tape
(6.ii) move left until you see 1 on the scratch tape
(6.iii) print 0 on the scratch tape
(6.iv) move right one cell
(6.v) print 1 on the scratch tape
(6.vi) print 1 on the input tape

123

348 M. Bianchetti

(6.vii) move right until you find 1 on the scratch tape
(6.viii) print 0 on the scratch tape
(6.ix) move right n + 1 cells
(6.x) go to instruction 3

In other words, the above list of instructions tells M to check the content of every cell
O((n + 1)x) and to shift that content to cell O(x). We use the scratch tape to keep
track of the cells O((n + 1)x) that have already been examined and of the cell on the
output tape that one should use to record the content of O((n + 1)x). ��

FromTheorem 14 and from the observation that a wITTM<ω,<ω can compute every
function that a wITTM can compute, it follows that, modulo coding, the wITTM-
p.c. functions are exactly the wITTM<ω,<ω-p.c. functions. We record this piece of
information in the following theorem.

Equivalence Theorem 15 Modulo coding, the wITTM-p.c. functions are exactly the
functions that are wITTM<ω,<ω-p.c.

We can also show that, for every function f , the computation of f by a
wITTM<ω,<ω is not significantly faster than the computation of f (modulo coding)
by a wITTM. We make this observation precise in the following theorem.

Theorem 16 Let r , N , and N ′ as in Theorem 14. Suppose that N (r) halts at step α.
Then the following statements are true:

1. If α is a limit ordinal, then, for some wITTM M, M(N ′(r)) halts at step α.
2. If α is either 0 or a successor ordinal, then, for some wITTM M, for some k ∈ ω,

M(N ′(r)) halts at step α + k.

Before proving this statement, it is useful to consider once again the behavior of M
as defined in the proof of Theorem 14. For every successor step of N , M carries out
a greater, but finite number of steps to produce a sequence of triples equivalent to the
slice produced by N and to reach the right position for continuing the computation.
After having done this, M cleans the scratch tape (which requires ω-many steps) and
then shifts the content of the output tape to the left (which requires ω-many more
steps). One can interleave the operation of cleaning the scratch tape and the operation
of shifting the content on the output tape to the left so thatM completes both operations
in just ω-many steps. Therefore, if α is a successor ordinal, then M stops in α + ω

steps. One can see that the same is true if α is 0 or a limit ordinal. In the following
proof of Theorem 16, we define a different program for M so that Theorem 16 holds.

Proof We define M so that it carries out the following operations:

1. M replaces the input N ′(r) with the following sequence

r0(0)r1(0) . . . rn(0)Ar0(1)r1(1) . . . rn(1)Ar0(2) . . . r0(m)r1(m) . . . rn(m)A . . . ,

where A is a new tape symbol different from 0 and 1. In other words, we insert
the symbol A between each rn(j) and r0(j + 1) in N ′(r). We call this process
subroutine III.

123

Weaker variants of infinite time Turing machines 349

2. In the proof of Theorem 14, M represented a slice like Sl of N by a series of
triples

(
I (k(n + 1)), S(k(n + 1)), O(k(n + 1))

)(
I (k(n + 1) + 1), S(k(n + 1) + 1), 0

)
...(

I (k(n + 1) + n), S(k(n + 1) + n), 0
)
.

This is the type of representation of slices of cells that we used in the proof of
Theorem 14. We refer to these representations as representations of type 1. We
now define a new way to represent the same slice Sl of M by the following series
of triples:

(
I (k(n + 2)), S(k(n + 2)), 0

)(
I (k(n + 2) + 1), S(k(n + 2) + 1), 0

)
...(

I (k(n + 2) + n), S(k(n + 2) + n), 0
)
.(

A, S(k(n + 2) + n + 1), 0
)
,

where S(k(n + 2) + n + 1) is defined to contain the same value that o(k) of N
contains. We say that representations of this new type are representations of type
2. Series of both types can be used to acquire the same information that N acquires
at once by reading the slice Sl. Concerning the content that is relevant here, Sl,
its representation of type 1, and its representation of type 2 are all informationally
equivalent.

3. As explained in the proof of Theorem 14, using subroutine I, M acquired the
information that N received from Sl by reading a series of triples of type 1.
Moreover, M recorded the information that N recorded in Sl ′ by printing a new
series of triples of type 1. Now, we modify subroutine I, so that M acquires the
information that N receives from Sl by a series of triples of type 2. Then, M
produces a new series of triples to record the same information that N records by
printing the slice Sl ′ by printing a series of triples of type 2. In other words, when
N carries out an instruction likeI in the proof of Theorem 14, now M first reads
a series of triples of type 2 acquiring the same information that N received. Then,
if required, M prints a series of triples of type 2 that contains the same information
that N produced.

4. We then define a new process, which we call subroutine IV. Once M has mimicked
the behavior of N carrying out an instruction like I , before mimicking what N
does next, M copies the content in S(k(n + 2) + n + 1) to O(k). To copy the
content in S(k(n + 2) + n + 1) to O(k), M works in the following way:

(a) Let us suppose to have at disposal the already mentioned symbols 0, 1, and A
and the new tape symbols B, C , D, E , and F all different from one another.

123

350 M. Bianchetti

(b) Let us call J the instruction that N carries out immediately before carrying
out I . We assume that, mimicking N that carries out J , M has done the
following:
i. M printed the symbol B on cellO(k±1) if N , carryingoutJ immediately

before I printed 0 on o(k ± 1) and then moved right.
ii. M printed the symbolC on cellO(k±1) if N , carryingoutJ immediately

before I printed 0 on o(k ± 1) and then moved left.
iii. M printed the symbol D on cell O(k ± 1) if N , carrying outJ immedi-

ately before I printed 1 on o(k ± 1) and then moved right.
iv. M printed the symbol E on cellO(k±1) if N , carryingoutJ immediately

before I printed 1 on o(k ± 1) and then moved left.
(c) Now, M , being over S(k(n + 2) + n + 1), prints F on I (k(n + 2) + n + 1).
(d) Then, M looks for one among the symbols B, C , D, or E . To find it, first M

goes left. If it does not find one of these symbols, M goes right until it finds it.
(e) When M sees either B or C , M replaces it with 0 and, when M sees either D

or E , M replaces it with 1.
(f) Then, M moves right one cell (if it sees either B or D) or left once cell (if it

sees either C or E) and does the following:
i. M prints B if I requires N to print 0 and move right;
ii. M prints C if I requires N to print 0 and move left;
iii. M prints D if I requires N to print 1 and move right;
iv. M prints E if I requires N to print 1 and move left.

(g) Then, M looks for F on the input tape and moves right one cell or left 2n + 3
cells as required to mimic the next step of N ’s computation (if any).

One observes that the content of no cell of M changes infinitely often if the content
of no cell of N does so.

In plainer words, using subroutine III, M first re-arranges the content on the input
tape so that there is an extra cell at the end of each sequence r0(k), . . . , rn(k) on
the input tape. Then M uses the modified subroutine I to mimic the behavior of N
at a certain successor step. In the proof of Theorem 14, M first finished simulating
the computation of N and then prepared its output tape so that it became identical to
the output tape of N . Now, using subroutine IV, M takes care of arranging the output
tape appropriately before simulating what N does at the next step. We no longer use
subroutine II, which we defined in the proof of Theorem 14. Subroutine III is used
only between step 0 and step ω. By interleaving the three subroutines, M can prepare
enough of the input tape, simulate the behavior of N at the proper step, and record the
result on the appropriate cell on the output tape in finitely many steps. ��

Finally, one can observe that the results on the halting time of wITTMs proved in
Sect. 2.3 also hold for wITTM<ω,<ωs.

3.2 Finitely many tapes and heads

In this section, we define a new variant of wITTMs. In the previous section, we
considered wITTMs with possibly finitely many extra input and scratch tapes, but

123

Weaker variants of infinite time Turing machines 351

Fig. 4 Weak infinite time Turing
machine with finitely many extra
input tapes, scratch tapes, and
read–write heads

i0
0110 0 0 0 0 0 0

h0

s0
0000 0 0 0 0 0 0

...

in
0111 0 0 0 0 0 0

h1

sn
0000 0 0 0 0 0 0

o
0000 0 0 0 0 0 0

always with a single read–write head. Nowwe consider wITTMswith possibly finitely
many extra input and scratch tapes and also read–write heads. More precisely, we
consider machines that look like the one represented in Fig. 4. Let us write wITTM<ω

to refer to a machine of this type. Each wITTM<ω consists of n-many pairs (i j , s j) of
input and scratch tape. Each pair has its read–write head h j . At each step, h j reads the
triple of cells (i j (k), s j (k), o(k)) and, as required by the program, prints a new triple,
moves right or left, or stops. Each head starts at the same instant 0. However, different
heads can have different programs and can halt at different times. The computation of
a wITTM<ω ends when (and if) every head has halted.

Different heads read and print on different input and scratch tapes. However, they
all read and print on the same output tape. Different heads can print different symbols
at the same time on different cells of the output tape. They can also print the same
symbol at the same time on the same cell of the output tape. However, they cannot print
different symbols at the same time on the same cell of the output tape. If the program
requires them to do so, the machine hangs: the computation does not proceed, and no
output is given. We consider wITTM<ωs to compute functions f : (2ω)<ω → 2ω.
Given an input r = (r0, . . . , rn), where each r j ∈ 2ω, and a wITTM<ω N with
exactly n + 1 heads, we write r j on i j .

Figure 4 provides an example of a machine of this type. Let us call this machine
N . N has two heads, h0 and h1. Let us suppose that the program for h0 contains the
following instructions:

1.
(
q0, <0, 0, 0>, <0, 1, 0>, R, q0

)
2.

(
q0, <1, 0, 0>, <1, 1, 0>, R, q0

)
.

Then, let us suppose that the program for h1 contains the following two instructions:

1.
(
q0, <1, 0, 0>, <1, 1, 0>, R, q1

)
2.

(
q1, <1, 0, 0>, <0, 1, 0>, L, q0

)
.

123

352 M. Bianchetti

Fig. 5 The wITTM<ω N at
step 1

i0
0110 0 0 0 0 0 0

h0

s0
0001 0 0 0 0 0 0

i1
0111 0 0 0 0 0 0

h1

s1
0001 0 0 0 0 0 0

o 0000 0 0 0 0 0 0

Fig. 6 The wITTM<ω N at
step 2

i0
0110 0 0 0 0 0 0

h0

s0
0011 0 0 0 0 0 0

i1
0101 0 0 0 0 0 0

h1

s1
0011 0 0 0 0 0 0

o 0000 0 0 0 0 0 0

Let us take q0 as the initial state of both heads. Figures 4, 5 and 6 represent the first
three steps of the computation of N .

One can regard wITTM<ω,<ωs as a particular type of wITTM<ωs, i.e those
wITTM<ωs whose heads are all always in the same state, move in the same direction,
and print the same symbol on the output tape. With a little abuse of notation, one can
write

wITTM ⊆ wITTM<ω,<ω ⊆ wITTM<ω.

123

Weaker variants of infinite time Turing machines 353

Fig. 7 Weak infinite time Turing
machine with bidimensional
input and scratch tapes input tape

0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
...
...
...
...
...
. . .

scratch tape

0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
...
...
...
...
...
. . .

output tape 0 0 0 0 0 · · ·

We have seen already that wITTMs and wITTM<ω,<ωs have the same com-
putational power. The above containment relation, shows that everything that is
wITTM<ω,<ω-computable is also wITTM<ω-computable.

3.3 Bidimensional tapes and single head

The last variant of weak infinite time Turing machines that we consider comprises
machines each of which has a bidimensional input tape, a bidimensional scratch tape,
and a one-dimensional output tape, as in Fig. 7. We consider the head of a machine
of this type to consist of three parts, each reading one cell on, respectively, the input
tape, the scratch tape, and the output tape. The part on the input tape and the part on
the scratch tape can move left, right, up, and down one cell. At the beginning of the
computation they read the top left cell of their respective tape. During the computation
each head-part canmove independently of the other parts. The following is an example
of an instruction for such a machine:

(
q, <x, y, z>, <x ′, y′, z′>, <U , R, L>, p

)
,

which says: if the machine is in state q and sees < x, y, z >, then

– the machine writes <x ′, y′, z′>
– the head-part on the input tape moves up one cell
– the head-part on the scratch tape moves right one cell
– the head-part on the output tape moves left one cell
– the machine enters into state p.

At limit steps, the head-parts go back to their initial positions. We refer to a machine
of this type as wITTMω,ω.

We write ik to refer to the row number k on the input tape. At the beginning of a
computation, every ik has a real written on it. All the other cells contain 0s. Given
a sequence of reals (rk)k∈ω, we say that a computation starts on input (rk)k∈ω if rk

123

354 M. Bianchetti

appears on ik at step 0. We prove that, in the sense specified by Theorem 17 and
Lemma 19, wITTMω,ωs and wITTM<ωs are computationally equivalent. Given a
finite sequence of reals r = (r0, . . . , rn), we say that r ′ = (r ′

k)k∈ω is a completion of
r if, for 0 ≤ j ≤ n, r j = r ′

j and, for j > n, r ′
j = 0. As before, we write M(r) ↓ to

mean that the machine M converges on input r .

Theorem 17 For every n ∈ ω, for every wITTM<ω M, for some wITTMω,ω N, for
every r ∈ (2ω)n, if r ′ is a completion of r , then

1. if M(r) ↓, then N (r ′) = M(r) and
2. if M(r) ↑, then N (r ′) ↑.
Proof Suppose that M has exactly k + 1 pairs of input and scratch tapes. We write i j
for the row number j on the input tape of N and s j to refer to the row number j on the
scratch tape of N . At the beginning of N ’s computation, r ′

j is written on i j . Therefore,
for j > k, i j contains 0. We select a new tape symbol F . We write F everywhere on
ik+1. We do the same with sk+1. The idea is that, for 0 ≤ j ≤ k, we use i j and s j to
reproduce what M writes on its input tape and scratch tape number j respectively. For
j > k, we use the infinitely many rows i j and s j to keep track of the positions of the
various heads of M whose work we want to mimic, paying attention not to change the
content of any cell infinitely often.

Let us suppose, for simplicity, that M has exactly two pairs of input and scratch
tapes. Let A be the head reading the first pair and B the head reading the second pair.
Let us suppose that, at step t , A prints 1 on cell n of its input tape and moves right.
Moreover, let us suppose that B prints 0 on cell m of its input tape and moves left. We
use i0 to reproduce the content of input tape A of M and i1 to reproduce the content of
input tape B of M . The head-part h(i) of N on the input tape behaves in the following
way:

1. First, h(i) uses subroutine S1 (which we will define below) to find cell n on i0.
2. Then h(i) prints 1.
3. Then h(i) uses subroutine S2 (which we will define below) to record the next cell

that it wants to scan to mimic the behavior of A (i.e. it records that it wants to scan
cell n + 1 on i0).

4. Then h(i) uses subroutine S3 (which we will define below) to find the cell to be
scanned on i1 to mimic the behavior of B, i.e. it finds cell m on i1.

5. Then h(i) prints 0 on cell m of i1.
6. Then h(i) uses subroutine S4 to record which cell it wants to scan next on i1 to

mimic the behavior of B, i.e. it records that it wants to scan cell m − 1 on i1.
7. Then h(i) uses subroutine S1 to find the cell to be scanned on i0 to mimic the

behavior of A, i.e. it finds cell n + 1 on i0.

Repeating this procedure, h(i) updates the content of i0 and i1, as A and B update
the content of their respective input tapes. Now we define the subroutines mentioned
above.

Subroutine 1 h(i) uses this subroutine to determine which cell on i0 it should read to
mimic the behavior of the head A of M . To keep track of cell c on i0 that h(i) should
read at this point, we write a new tape symbol G on the same column where c is. We

123

Weaker variants of infinite time Turing machines 355

Fig. 8 Diagonal movements of
h(i) in subroutine S1

input tape

0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
F F F F F · · ·

0 · · ·
0 0 · · ·

0 0 0 · · ·
0 0 0 0 · · ·

...
...

...
...

...
. . .

use the fact that the input tape has infinitely many rows to avoid writing on the same
cell infinitely often. The procedure is as follows:

1. First, h(i) looks for the leftmost F on the input tape.
2. Then, h(i) scans the cell immediately under the leftmost F .
3. Then h(i) moves along increasingly long diagonals moving alternatively upward

and downward. Figure 8 shows how h(i) moves. We may imagine having an extra
symbol to keep track of which leftmost cell should be examined next.

4. When h(i) finds the new tape symbol G, it prints C .
5. Then h(i) reads the content of the cell in the first row and in the same column

where G was written.

Subroutine 2 we use this subroutine to record which cell on i0 we should later scan
when we resume mimicking the behavior of the head A of M . The procedure is as
follows:

1. When h(i) finishes working on i0, it searches for the first cell c that contains 0 that
is on the same column and below F .

2. Then, h(i) prints G on c.

Subroutine 3 similar to subroutine 1, but we use it to find the new tape symbol H that
indicates which cell on tape i1 we should now scan to mimic the behavior of the head
B of M .

Subroutine 4 similar to subroutine 2, but we use it to write the new tape symbol H
that indicates which cell on tape i1 we should scan when we resume mimicking the
behavior of the head B of M .

One then adds a similar procedure to mimic the behavior ofM on its various scratch
tapes using N ’s bidimensional scratch tape.

To complete the proof we now explain how h(o), the head reading and printing on
the output tape of N , mimics the behavior of A and B when they write on the output
tape of M . To find the cell that A reads and on which it possibly writes, h(o) behaves
as follows. When h(i) records the position of A on the output tape, h(i) and h(o) go to
the leftmost cell (h(i) does not change row). Then h(i) and h(o) move right together
until h(i) recognizes the cell on which A works at the step of the computation that N
is currently mimicking. Behaving similarly, h(o) finds the cell corresponding to the
cell that B reads and on which it possibly writes at that step of the computation.

Now,we explain how N understands ifM attempts to write two different symbols at
the same time on the same cell of the output tape. To do that, we describe the following
subroutine for N :

123

356 M. Bianchetti

1. Suppose that A print x (either 0 or 1) on the output tape of M on cell n. Then h(o)
will print X on its output tape if x = 0 and Y otherwise.

2. Then h(o) mimics the behavior of B. We can have the following two cases.

(a) Case 1 h(o), mimicking B, attempts to write either 0 or 1 on a cell containing
either 0 or 1.
i. In this case, h(o) completes its operation.
ii. Then, h(o) moves left and later, if needed, also right to look for either X

or Y . if h(o) finds X , it replaces it with 0. If h(o) finds Y , it replaces it
with 1.

iii. Then N resumemimicking the next step of the computation ofM applying
the procedures described above.

(b) Case 2 h(o) attempts to write 0 on a cell containing Y or 1 on a cell containing
X .
i. This means that, at the corresponding step in the computation of M , A

and B try to write two different symbols on the same cell of the output
tape of M . Therefore, M hangs at this step.

ii. To mimic the behavior of M , N has to hang. To do that, we suppose that
h(o) enters a loop in which it prints alternatively 0 and 1 on the same cell
without doing anything else. In this way, N hangs at the next limit step.

��
In the proof of Theorem 17we can interleave the process of writing F on ik+1 andG

on ok+1 with subroutines 1–4. One then notices that, when N mimics the computation
of M , N completes its computation using (a) the same number of limit steps as M if N
never attempts towrite different symbols on the same cell of the output tape at the same
time and (b) at most one extra limit step otherwise. Therefore, in the sense specified
by the following Lemma, the computation of N that mimics M is not significantly
slower than the computation that M carries out.

Lemma 18 Let r , r ′, M, and N as in Theorem 17. Suppose that M(r) halts at step α.
Then the following statements are true:

1. If α is a limit ordinal, then N (r ′) halts at step α.
2. If α is either 0 or a successor ordinal, then, N (r ′) halts at or before the next limit

step.

Proof The proof is clear from the procedure described in the proof of Theorem 17.
The only thing that one should change is the procedure for writing a row containing
F everywhere that separates the row used to reproduce the input tapes of M and the
rows used for subroutines 1–4. One interleaves the process of writing such a row with
the process of mimicking the computation of N to avoid taking one extra limit step to
complete the computation. ��
Lemma 19 For some wITTM<ω M, for some wITTMω,ω N ′, for every wITTMω,ω N,
for every sequence (rk)k∈ω of reals, N ′((rk)k∈ω

) ∈ 2ω and

1. if N (r) ↓, then M
(
N ′((rk)k∈ω)

) = N (r) and
2. if N (r) ↑, then M

(
N ′((rk)k∈ω)

) ↑.

123

Weaker variants of infinite time Turing machines 357

Proof Given a sequence (rk)k∈ω of reals, N ′ produces a new real f ∈ 2ω such that

r = r0(0)r0(1)r1(0)r0(2)r1(1)r2(0) . . .

where ri (j) is the digit number j in the real number i . In other words, we define the
usual pairing function p(x, y) = (x2 + 2xy + y2 + 3x + y)2−1 and the functions
p0(p(x, y)) = x and p1(p(x, y)) = y. We use these functions to describe the real
r(n) = rp0(n)(p1(n)), which codes the infinitely many reals in (rk)k∈ω. Then we
consider a wITTM<ω M with four pairs of input and scratch tapes, which we call A,
B, C , and D. We will refer to the input tape and the scratch tape of A as i A and sA
respectively and similarly for the tapes of B, C , and D. We put r on i A. The idea of
the proof is to use i A to keep track of the content of the input tape of N and sA to keep
track of the scratch tape of N . We use B, C , and D to keep track of the movement of
the three parts h(i), h(s), and h(o) of N ’s head. For example, suppose that M prints 0
on cell p(i, j) to mimic the behavior of N that, in the corresponding circumstances,
prints 0 on cell number j of row number i on the input tape. Suppose that, then, N
moves right one cell. Then M will use the head on B to compute p(i, j +1). To avoid
rewriting on the same cell infinitely often, B does the following:

1. It writes the number p(i, j + 1) as a string of p(i, j + 1) + 1 1s.
2. It prints a new tape symbol F immediately to the right of the last 1 printed according

to the previous instruction.

The next time B needs to compute the position to which A should go to mimic the
behavior of h(i), B does the following:

1. First, B looks for F , then replaces every 1 to the left of F with 0.
2. Then, B goes to the right of F and writes a new string of 1s as required.
3. Then, B writes F to the right of the new string of 1s.
4. Then, B goes left and replaces the old F with 0.

In this way, B always uses a new portion of the tape and never writes in the same cell
unboundedly often between one limit step (or the initial step) and the following limit
step. Moreover, at every limit step, the tapes in B have been cleaned completely (i.e.,
they contain 0 in every cell) and are ready for being used again in the way described
above. The only thing that still requires explanation is how A can find the right position
to work on the input tape once B has written the relevant string of 1s somewhere on its
input tape. The solution is that A and B can move at the same time while A starts from
the leftmost cell and B starts from the second 1 in the list. Once B reaches F , then A
knows that it has found the right cell. Similarly, we use C to compute the position on
A’s scratch tape to which A goes to mimic the behavior of h(s). We also use D in a
similar way to tell A which cell on the output tape it should scan at a particular step.

��
From Theorem 17 and Lemma 19, it follows that, modulo coding, the wITTM<ω-

p.c. functions are exactly the wITTMω,ω-p.c. functions. We record this piece of
information in the following theorem.

Equivalence Theorem 20 Modulo coding, the functions that are wITTM<ω-p.c. are
exactly the wITTMω,ω-p.c. functions.

123

358 M. Bianchetti

The next result follows from the proof of Lemma 19.

Theorem 21 Let (rk)k∈ω, M, N, and N , as in Lemma 19. Suppose that N (r) halts at
step α. Then the following statements are true:

1. If α is a limit ordinal, then M
(
N ′((rk)k∈ω)

)
halts at step α.

2. If α is either 0 or a successor ordinal, then, for some k ∈ ω, M
(
N ′(rk)k∈ω)

)
halts

at step α + k.

4 Arithmetic hierarchy and computational strength

We have now introduced weak infinite time Turing machines of four different types:
wITTMs, wITTM<ω,<ωs, wITTM<ωs, and wITTMω,ωs. In Sect. 2.3 we showed a
series of results on the halting time of wITTMs. All these results readily apply (with
the same proofs) to all the variants that we have considered. In particular, we note the
following piece of information.

Halting Time Theorem 22 ω2 is the set of all halting times of wITTMω,ωs.

In Equivalence Theorem 15, we showed that wITTMs and wITTM<ω,<ωs are com-
putationally equivalent: the wITTM-p.c. functions are exactly the wITTM<ω,<ω-p.c.
functions (modulo coding of the input). In Equivalence Theorem 20, we showed that
wITTM<ωs and wITTMω,ωs are also computationally equivalent. It is clear that a
wITTMω,ω can compute everything that a wITTM can compute. We also observed
that wITTMs are computationally more powerful than regular Turing machines. We
will later show that wITTMω,ωs are computationally weaker than regular infinite time
Turing machines. Introducing a new piece of notation, we summarize these observa-
tions as follows:

TM < wITTM ≡ wITTM<ω,<ω ≤ wITTM<ω ≡ wITTMω,ω < ITTM.

In sum, we have described four models of infinitary computation whose strength
lies strictly between Turing machines and ITTMs. As far as we have shown, these four
models individuate two classes of computable functions over the reals: the wITTM-
p.c. functions and the wITTMω,ω-p.c. functions. Are these two classes the same? In
other words, are wITTMs computationally equivalent to wITTMω,ωs? We are unable
to answer this question. However, in this section we provide further information about
the strength of these models of computation. In particular, we note the following:

1. We show that the wITTM-decidable relations on natural numbers and the
wITTMω,ω-decidable relations on natural numbers are exactly the arithmetic rela-
tions.

2. We define the arithmetical hierarchy of relations on natural and real numbers. We
show that there are relations on natural and real numbers that are both wITTM-
computable and non-arithmetical.

3. There are wITTM-semi-decidable sets that are not wITTM-decidable. Similarly,
there are wITTMω,ω-semi-decidable sets that are not wITTMω,ω-decidable.

4. The halting set for wITTMs and the halting set for wITTMω,ωs are ITTM-
decidable.

123

Weaker variants of infinite time Turing machines 359

4.1 Arithmetic relations

We define the arithmetical hierarchy of relations on real and natural numbers. Hartley
Rogers discussed a similar notion in greater detail in his book on computability (see
[6] §15.2), where he considers relations on natural numbers and functions over the
natural numbers. A brief presentation is the following. Let x1, x2, . . . be variables
for natural numbers and r1, r2, . . . be variables for reals in 2ω. We write x̄ for a finite
sequence of variables of the first type and r̄ for a finite sequence of variables of the
second type. A relation R(x̄, r̄) is Turing computable if and only if, for some Turing
program e, x1, . . . , x|x̄ | ∈ ω, for every r1, . . . , r|r̄ | ∈ 2ω,

ϕr̄
e (x̄) =

{
1 if R(x̄, r̄) holds

0 otherwise.

We say that a relation R(x̄, r̄) is Σ0
0 (= Π0

0) if and only if it is Turing computable.
Then we define:

– R(x̄, r̄) is Σ0
n+1 if and only if, for some relation P(x̄, y, r̄) ∈ Π0

n , R(x̄, r̄) ⇔
∃yP(x̄, y, r̄)

– R(x̄, r̄) is Π0
n+1 if and only if, for some relation P(x̄, y, r̄) ∈ Σ0

n , R(x̄, r̄) ⇔
∀yP(x̄, y, r̄).

Definition 23 Let R(x̄, r̄) be a relation of natural and real numbers. We say that R is
wITTM-writable if, for some wITTM M , starting with r̄ on the input tape, for every
x̄ , M halts with 1 on cell number p(x̄) of the output tape, where p(x̄) codes x̄ , and 0
everywhere else. We define wITTMω,ω-writable relations in an analogous way.

We can then prove Theorems 24 and 26.4

Theorem 24 If a relation of natural and real numbers is wITTMω,ω-writable, then it
is arithmetical relative to r̄ .

Proof Without loss of generality,we consider only relations R(x̄, r)of natural numbers
x̄ and one real r . We show that the content of the output tape of a wITTMω,ω M at
or before step ωk is Turing computable from r (k). This is true for k = 1, since a
wITTMω,ω-computation of length strictly less than ω is a regular Turing computation
and a wITTMω,ω-computation of length ω is a Turing computation in the limit. Then,
let us assume that the real c describes the configuration of the machine at step ωk. One
can describe the content of the output tape at step ω(k + 1) from c′ in the following
way. Define a program N such that, with oracle c, for every i and j ∈ ω, N (i, j) halts
if and only if the content of the cell i on the output tape of M does not change after step

4 In his forthcoming bookOrdinal computability. An introduction to infinitarymachines,Merlin Carl proves
the following statements:

1. If S ⊆ ω is wITTM-writable, then, for some n, S ≤T ∅(n).
2. For every S ⊆ ω, for some wITTM M , M on input S outputs S′.

Carl’s proofs of these statements essentially work also as proofs of, respectively, Theorems 24 and 26. We
slightly adapt Carl’s ideas to provide the proofs in this article.

123

360 M. Bianchetti

j . Such a j exists, otherwise the computation of M would be undefined. Therefore, to
know the content of cell i of M’s output tape at step ω(k + 1), it is enough to consider
the content of that cell at step ωk+ j of M’s computation. Given c′, we can determine
whether or not Nc(i, j) halts. Therefore, the content of the output tape of M at or
before step ω(k + 1) is Turing computable in c′. By the induction hypothesis, we
have c ≤T r (k). Therefore, c′ ≤T r (k+1). We conclude that the content of the output
tape of M at or before step ω(k + 1) is Turing computable in r (k+1) and, therefore,
arithmetical in r . ��

The above proof shows that, for each real r , there is a natural number k such that
the set {x̄ ∈ ω : R(x̄, r)} is computable from r (k). However, k might depend on r .
Instead of considering relations on real and natural numbers, let us consider for a
moment only relations on natural numbers. The above proof shows that every relation
on natural numbers that is wITTM<ω,<ω-writable is arithmetical. One can sharpen
these observations as follows.5

Theorem 25 For some relation of natural and real numbers R, R is wITTM<ω,<ω-
writable but it is not arithmetical.

Proof Let ϕs
e be a listing of all Σ0

n relations on real and natural numbers. Define the
relation R(x, r) such that, for all x ∈ ω, R(x, 0) = 0 and, if r begins with 0p(e, s)1,
then R(x, r) = 1 − ϕs

e(x, r). Notice that, for r = 0p(e, s)10∞, {x ∈ ω : R(x, r)} is
not Σ0

n relative to r , since R diagonalizes against all Σ0
n sets. We conclude that, for

every n ∈ ω, there is a real r such that {x ∈ ω : R(x, r)} is notΣ0
n relative to r . Thus,

R is not arithmetical. ��
Theorem 26 If a relation of natural and real numbers is arithmetical, then it is wITTM-
writable.

Proof Without loss of generality, let us consider only relations R(x̄, r) of natural
numbers x̄ and one real r . A Turing machine with oracle r (n) can decide every Σ0

n -
relation. The idea for the proof is to define a wITTM that, given an arithmetic relation
R(x̄, r), computes enough jumps of r so that it will then decide whether R(x̄, r) holds
as a regular Turing machine. After that, it will set o

(
p(x̄)

) = 1 if and only if R(x̄, r)
holds. We compute r (n+1) from r (n) starting from r . The only issue is to avoid writing
in the same cell infinitely often. The details are the following. Suppose that r (n) is on
the input tape. We organize the computation in phases.

1. At the beginning of phase number m the head will be on the unique triple of cells
whose intermediate cell (i.e. the one on the scratch tape) contains the symbol F .
The portion of the scratch tape immediately to the right of F contains the sequence
1m , representing the number m.

2. Using the portion of the scratch tape further to the right of 1m , we compute p0(m)

and p1(m), where p0 and p1 are as in the proof of Lemma 19. At the end of
this subroutine, the portion of the scratch tape to the right of F looks like this:
1mX1p0(m)Y1p1(m) where X and Y are new tape symbols.

5 In a personal conversation with me, Dan Turetsky communicated the following observation together with
its proof.

123

Weaker variants of infinite time Turing machines 361

3. Then we compute ϕr (n)
(p0(m)) for exactly p1(m) many steps. We can have two

cases.

(a) Suppose that ϕr (n)
(p0(m)) halts in exactly p1(m) many steps. In this case,

we use the sequence 1p0(m) between X and Y on the scratch tape to find cell
number p0(m) on the output tape and we print 1.

(b) Suppose that ϕr (n)
(p0(m)) does not halt in exactly p1(m) many steps. In this

case, we move to the next step.

4. Then we look for F on the scratch tape. We replace it by 0 and we move to the
right.Whenwe find 0, we print F , and wemove to phasem+1 of the computation.

Following this procedure, at the next limit step, r (n+1) is on the output tape. If we need
to compute more jumps, we can copy the content of the output tape onto the input
tape. Then we clean the scratch tape and the output tape and repeat the procedure
described above. Interleaving the various procedures, we obtain the desired r (n) using
exactly n many limit steps. Therefore, we do not change any content on the input tape
infinitely often. For the same reason, the same holds for the content on the output tape.
The process of using portions of the scratch tape that are more and more to the right
ensures that we do not change any content on the scratch tape infinitely often. Once
we obtain the desired r (n) we can decide R(x̄, r) as a regular Turing machine. Once
we have decided R(x̄, r), we set o

(
p(x̄)

) = 1 if and only if R(x̄, r) holds. ��
The next result follows from Theorems 24 and 26.

Theorem 27 The wITTMω,ω-writable relations on natural numbers are exactly the
wITTM-writable relations on natural numbers, i.e. the arithmetic relations.

In [5] (Theorem 2.6), Hamkins and Lewis showed that the sets of natural numbers
that are ITTM-decidable with time bound ω2 are exactly the arithmetic sets. From
Theorem 27, we can infer that the same is true for wITTM-decidable sets too. In
other words, the rule Lim Sup is unnecessary for deciding all and only the arithmetic
relations on natural numbers. The rule Eventually Constant is sufficient.

Theorem 28 ThewITTM-decidable relations on natural numbers are exactly the arith-
metic relations.

The rule Eventually Constant appears to be the minimal meaningful modification
necessary to extend Turing’s model of computation into transfinite ordinal time. In
this sense, as one takes Turing machines to characterize the Δ0

1 relations on natural
numbers because these are exactly the relations on natural numbers that are Turing
computable, one can take wITTMs to characterize the arithmetic relations on natural
numbers.

4.2 Halting sets

We state the following theorem.

Theorem 29 For every relation on natural numbers R, R is wITTM-decidable if and
only if R is wITTMω,ω-decidable.

123

362 M. Bianchetti

Proof We note that every relation on natural numbers is wITTM-decidable if and only
if it is wITTM-writable. Similarly, every relation on natural numbers is wITTMω,ω-
decidable if and only if it is wITTMω,ω-writable. Therefore, the result follows from
Theorem 27. ��

From Theorem 29, we infer the following result.

Theorem 30 For every function f : ω → ω, f is wITTM-total-computable if and only
if it is wITTMω,ω-total-computable.

Using the halting problem for wITTMs we can show that some sets are strictly
semi-decidable for wITTMs and similarly for wITTMω,ωs. Let h− be the halting set
for wITTMs, i.e. the set of all programs e ∈ ω such that, when implemented on a
wITTM M with input e, M concludes its computation. Let h−

ω,ω be the halting set for
wITTMω,ωs.

Proposition 31 h− is wITTM-semi-decidable but not wITTM-decidable.

Proposition 32 h−
ω,ω is wITTMω,ω-semi-decidable but not wITTMω,ω-decidable.

The classic proof of the undecidability of the halting set for Turing machines works
in these cases too. Suppose that h− is wITTM-decidable. Then define a program p
that checks whether e converges on input e. Define p such that, if e converges on
input e, then p diverges. Moreover, define p such that, if e diverges on input e, then
p converges. So, p on input p both diverges and converges, which is absurd. The
same holds for h−

ω,ω and wITTMω,ω. From Propositions 31 and 32, one derives the
following statement.

Corollary 33 Some sets are wITTM-semi-decidable but not wITTM-decidable. Simi-
larly, some sets are wITTMω,ω-semi-decidable but not wITTMω,ω-decidable.

Since ω2 is the set of all halting times of wITTMs (Halting Time Theorem 5), an
ITTM can simulate the behaviour of an wITTM and notice whether it halts or not on
a given input. Therefore, we can state the following proposition.

Proposition 34 h− is ITTM-computable.

Proof Define an ITTM M that, for every wITTM N and every f ∈ 2ω, understands
whether the computation of N on input r converges or not. Note that, if N diverges,
then it either hangs or it loops forever. Define M such that it both carries out the
computation of N and keeps track of

1. whether the content of a cell used to mimic N ’s computation changes infinitely
often

2. whether the content of every cell used to mimic N ’s computation never changes
between two successive limit steps.

In the first case, M discovers that N ’s computation hangs. In the second case, M
determines that N loops forever. In both cases, M realizes that N ’s computation
diverges. In this way, mimicking a wITTM implementing program e on input e, M

123

Weaker variants of infinite time Turing machines 363

understandswhether e is in h− or not. The details are the following.Withoutmodifying
its computational power,we assume thatM has five scratch tapes: s0, . . . , s4.Wedecide
that, on its input tape (i), first scratch tape (s0), and output tape (o), M does exactly
what N does on its input tape, scratch tape, and output tape. For every n ∈ ω,

1. We use s1(n) to check whether the content in i(n) changes infinitely often. Every
time that the content of i(n) changes, M changes the content of s1(n) to 1 and then
to 0. At the next limit step, s1(n) = 1 if and only if the content of i(n) has changed
infinitely often. If this is the case, M knows that N has hanged. Therefore M says
that e /∈ h−.

2. We use s2(n) to check whether the content in s0(n) changes infinitely often and
s3(n) to checkwhether the content in o(n) changes infinitely often. The procedures
are analogous to the one described above.

3. We use s4(0) to keep track of whether any cell on either i , s0, or o changes at least
once between two successive limit steps (or between the initial step and step ω).
The first time that the content of a cell on either i , s0, or o changes between step
0 and step ω, M put s4(0) = 1. After step ω, M checks whether s4(0) = 0. By
Lemma 1, s4(0) = 0 if and only if N will loop forever. Therefore, if s4(0) = 0,
then M knows that N ’s computation diverges and e /∈ h−. ��
It is useful to note that one cannot use the idea in the proof of Proposition 34 to show

that a wITTMω,ω can compute the halting set of wITTMs. As shown in Propositions 4
and 6, awITTMcan hang or start looping exactly at stepω2. Therefore, anywITTMω,ω

that simulates the behavior of a wITTMwill also arrive at stepω2, and its computation
will diverge.

Now we briefly describe how an ITTM can decide the halting set for wITTMω,ωs.
A simple way to do that is to observe that infinite time Turing machines with a bidi-
mensional input tape and a bidimensional scratch tape (ITTMω,ωs) are as powerful as
regular ITTMs. Then one can adapt the proof of Proposition 34 to show that an ITTM
with bidimensional tapes (and, given the equivalence, a regular ITTM) can compute
the halting set of wITTMω,ω.

We show that ITTMs and ITTMω,ωs are computationally equivalent. To do so,
we define variants of ITTMs analogous to those defined for wITTMs. We define
infinite time Turing machines with finitely many extra input and scratch tapes and
one head (ITTM<ω,<ωs) and infinite time Turing machines with finitely many extra
input and scratch tapes and corresponding heads (ITTM<ωs). One can readily adapt
the proofs of Equivalence Theorem 15 and Equivalence Theorem 20 to show that
ITTM ≡ ITTM<ω,<ω and ITTM<ω ≡ ITTMω,ω. The following proposition shows
that ITTM<ω,<ω ≡ ITTM<ω.

Proposition 35 ITTMs and ITTM<ωs are computationally equivalent.

Proof As noted above, ITTM ≡ ITTM<ω,<ω and ITTM<ω ≡ ITTMω,ω. Moreover,
one can readily observe that ITTM<ω,<ω ≤ ITTM<ω. Therefore, it remains to show
that ITTM<ω ≤ ITTM<ω,<ω. We show that, for every n ∈ ω, for some wITTM<ω,<ω

M , for every wITTM<ω N , for every sequence r ∈ (2ω)n+1,

1. if N (r) ↓, then M(r) = N (r) and

123

364 M. Bianchetti

2. if N (r) ↑, then M(r) ↑.
We take M to have n+1 input tapes and 2(n+1) scratch tapes. Let us refer to the input
tapes of M by i0, . . . , in , the scratch tapes of M by s0, . . . , s2n+1, and the output
tape of M by o. Let us refer to the input tapes of N by I0, . . . , In , the scratch tapes
of N by S0, . . . , Sn , and the output tape of N by O . We use the single head of M to
sequentially simulate the operations that the n many different heads of N carries out
simultaneously at a single step. We use ik and s2k to replicate the content of Ik and Sk ,
respectively. We use s2k+1 to keep track of which position was visited last on the tapes
ik and sk . Suppose, for example, that N has exactly two heads A and B. M first carries
out on (i0(k), s0(k), o(k)) what A does on (IA(k), SA(k), O(K)). Then M moves left
or right according to what N does at the corresponding step in its computation. Then
M writes 1 on s1(k) and replaces the 1 that it hadwritten previously on s1 by 0. ThenM
looks for the unique cell containing 1 on s3. Suppose that s3(k′) = 1. This is the signal
thatM needs to carry out on (i2(k′), s2(k′), o(k′))what, at the corresponding step in its
computation, N carries out on (IB(k′), SB(k′), O(k′)). Then M sets s3(k′) = 0. Then,
M prints 1 on s3(k′ + 1), if N moves right, and M prints 1 on s3(k′ − 1) otherwise.
Then M looks for the unique 1 on s1 and repeats the same procedure.

It remains to explain how M can understand whether two different heads of N try
to write two different symbols on the same cell of N ’s output tape at the same time.
One way is to introduce two new tape symbols X and Y . We then require M to print
X on its output tape if N prints 0 and Y if N prints 1. If N tries to write two different
symbols on the same cell at the same time, M will be in the situation in which it tries
either to write X on a cell containing Y or Y on a cell containing X . In this case,
we stipulate that M prints alternatively 0 and 1 on the same cell forever. Thus, the
computation of M will diverge. If this situation does not arise, before mimicking the
next step in N ’s computation, M scans the output tape and replaces every X with 0
and every Y with 1. ��

We observe that the idea in the proof of Proposition 35 cannot be used to
prove that wITTMs are computationally equivalent to wITTMω,ωs via showing that
wITTM<ω,<ωs are computationally equivalent to wITTM<ωs. The reason is that there
is no guarantee that every cell in every scratch tape used to keep track of the positions
of the various heads of a wITTM<ωs changes its value only finitely often.

From Proposition 35 and adapting the proof of Corollary 33, we can then prove the
following proposition.

Proposition 36 h−
ω,ω is ITTM-computable.

5 Conclusion

We studied infinite time Turing machines where we replaced Hamkins and Lewis’
Lim Sup rule with the rule Eventually Constant. Insofar as the notion of infinitary
computation is legitimate, wITTMs are a natural extension of classical computability
to infinite time computation. We showed that one can carry out real arithmetic with
these machines and much more, like deciding all the arithmetic sets. We studied

123

Weaker variants of infinite time Turing machines 365

hardware variants of these machines showing that they are all strictly less powerful
than regular infinite time Turing machines. We showed that all these weak models of
infinitary computations agree on the computable functions on natural numbers, i.e.
the functions on natural numbers that are computable according to each model of
computability are the same. However, the question of whether these models are all
computationally equivalent is still open.

Acknowledgements This work is largely a part of my master thesis [2] under the supervision of Julia F.
Knight. I am very grateful to Julia F. Knight for her skillful guidance and insightful comments at every stage
of the project. I would like to warmly thank Quinn Culver for numerous, extremely helpful discussions. I
am also grateful to Merlin Carl, Dan Turetsky, and Greg Igusa for useful discussions and to an anonymous
reviewer for valuable suggestions. I am also grateful to everyone that attended to presentations of earlier
versions of this work either at the Notre Dame Computability seminar or at the CiE 2015 meeting.

References

1. Beeson, M.: Constructive geometry and the parallel postulate. Bull. Symb. Log. 22(1), 1–104 (2016)
2. Bianchetti,M.: Infinite time computation: strong andweak infinite time turingmachines.Master’s thesis,

University of Notre Dame (2017)
3. Carl, M.: Ordinal computability. An introduction to infinitary machines (forthcoming)
4. Descartes, R.: Discours de la methode pour bien conduire sa raison, & chercher la verité dans les

sciences: plus la doptrique, les meteores, et la geometrie, qui sont des essais de cete methode. Maire,
Leiden (1637)

5. Hamkins, J.D., Lewis, A.: Infinite time turing machines. J. Symb. Log. 65(2), 567–604 (2000)
6. Rogers,H.: Theory foRecursive Functions andEffectiveComputability.McGraw-Hill,NewYork (1967)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Weaker variants of infinite time Turing machines
	Abstract
	1 Introduction
	2 Weak infinite time Turing machines
	3 Variants of wITTMs
	4 Arithmetic hierarchy and computational strength
	5 Conclusion
	Acknowledgements
	References

