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Abstract
We consider several game versions of the cardinal invariants t, u and a. We show
that the standard proof that parametrized diamond principles prove that the cardinal
invariants are small actually shows that their game counterparts are small. On the
other hand we show that t < tBuilder and u < uBuilder are both relatively consistent
with ZFC, where tBuilder and uBuilder are the principal game versions of t and u,
respectively. The corresponding question for a remains open.
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944 J. Brendle et al.

1 Introduction

The main purpose of this paper is to propose a measure of robustness of transfinite
constructions. The general question is whether a transfinite recursive construction of
an object A with a property ϕ can survive outside interference. This is formulated in
terms of a transfinite game where two players, the Builder and the Spoiler, take turns
in constructing the object A. The Builder tries to make sure the resulting object has
property ϕ and the Spoiler wins if the resulting object does not satisfy the property ϕ.
The construction envisioned by the Builder is robust if it produces a winning strategy
in the game.

Even though the natural scope of such research is much wider, we have restricted
ourselves to the case of cardinal invariants of the continuum, and constructions of
length ω1. For the vast majority of cardinal invariants such considerations are moot as
the invariants are super-robust in the sense that the existence of a winning strategy for
the Builder is equivalent to the cardinal invariant in question being ℵ1. The winning
strategy for the Builder would be described by simply taking a witness and playing
its elements one by one independently of the moves of the Spoiler. This is the case
for instance of all Borel cardinal invariants in the sense of [15]. There are, however,
a few cardinal invariants with structure for which such a simplistic strategy fails, e.g.
the almost disjointness number a, the tower number t, and the ultrafilter number u. In
these games the Builder and the Spoiler agree that they construct an almost disjoint
family (resp. decreasing chain) of infinite subsets of ω of size (length) ω1, and hence
cannot ignore each other’s moves, the distinguishing property ϕ being maximality for
a and t, and being a reaping1 family for u.

The starting point for our investigations is the observation that recursive construc-
tions of length ω1 produced by the (parametrized) ♦ principles tend to be robust in
this sense.

We first review briefly the genesis of the relevant ♦-like principles. Jensen’s Dia-
mond principle ♦ [11] holds if there is a sequence of functions 〈 fα : α < ω1〉 such
that fα ∈ 2α for every α ∈ ω1, and such that for every f ∈ 2ω1 , the set

{α < ω1 : f �α= fα}

is stationary.
Devlin and Shelah’s weak diamond principle � (see [8]) asserts that for every

F : 2<ω1 → 2, there is g : ω1 → 2 such that for every f : ω1 → 2, the set

{α < ω1 : F ( f �α) �= g(α)}

is stationary.
Devlin and Shelah showed that � is equivalent to 2ℵ0 < 2ℵ1 , and suffices for some

of the weak consequences of ♦. On the other hand,

1 Recall that a family R ⊆ [ω]ω is reaping if for every A ⊆ ω there is an R ∈ R such that R ⊆ A or
A ∩ R = ∅.
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Construction with opposition: cardinal invariants and games 945

Proposition 1.1 (folklore) If ♦ holds and R ⊆ A× B is a relation with dom(R) = A,
then for every F : 2<ω1 → A, there is a function g : ω1 → B such that for every
f ∈ 2ω1 , the set

{α < ω1 : F( f �α)Rg(α)}

is stationary.

Proof Let 〈 fα : α < ω1〉 be a diamond sequence. For F : 2<ω1 → A, let g(α) be any
b ∈ B such that F( fα)Rb. This is the desired g. �

Following [15], we say that a triple (A, B, R) is an invariant if

1. A and B are sets of cardinality at most c,
2. R ⊆ A × B,
3. for every a ∈ A, there is b ∈ B such that (a, b) ∈ R,
4. for every b ∈ B, there is a ∈ A such that (a, b) /∈ R,

and its evaluation 〈A, B, R〉 is given by

〈A, B, R〉 = min{|X | : X ⊆ B and ∀a ∈ A∃b ∈ X(aRb)}.

Finally, an invariant (A, B, R) is Borel if A, B and R are Borel subsets of some Polish
spaces. Given a Borel subset A of some Polish space, a map F : 2<ω1 → A is Borel
if for every δ < ω1, the restriction of F to 2δ is a Borel function.

Definition 1.1 [15] Let (A, B, R) a Borel invariant. ♦ (A, B, R) denotes the state-
ment: for every Borel map F : 2<ω1 → A, there is g : ω1 → B such that for every
f : ω1 → 2, the set

{α ∈ ω1 : F ( f �α) Rg(α)}

is stationary.

Note that ♦ is equivalent to ♦(2ω, 2ω,=). The main point for introducing these
principles is that for many standard cardinal invariants of the continuum j, there are
Borel invariants (A, B, R) such that j = 〈A, B, R〉, and the use of ♦ can be measured
by the parametrized ♦-principles much in the same way as the use of CH can be
measured by the cardinal invariants of the continuum. When a cardinal invariant has
a natural representation as an evaluation of a Borel invariant, we abuse the notation
and identify the invariant with its evaluation. In particular,

• the unbounding number b = 〈ωω,ωω, �∗〉, where f ≥∗ g if {n ∈ ω : f (n) <

g(n)} is finite, and
• the reaping number r = 〈[ω]ω, [ω]ω,R〉, where ARB if B ⊆∗ A or A∩ B =∗ ∅2.

In general, we write ♦ (A, R) instead of ♦ (A, A, R) and, in particular, ♦ (2, �=)

instead of ♦ (2, 2, �=).

2 Here B ⊆∗ A means that B \ A is finite, and A ∩ B =∗ ∅ says that A ∩ B is finite.
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946 J. Brendle et al.

A sequence 〈Xα : α < δ〉 of infinite subsets of ω is a tower if

1. Xα ⊆∗ Xβ for all β < α < δ, and
2. for every X ∈ [ω]ω there is α < δ such that X �∗ Xα .

A family {Aα : α < δ} of infinite subsets of ω is a maximal almost disjoint (MAD)
family if

1. Aα ∩ Aβ is finite for all β < α < δ, and
2. for every X ∈ [ω]ω there is α < δ such that X ∩ Aα is infinite.

The first condition in both definitions defines the structurewemention above, while
the second condition is the requirement of maximality. We denote by a the minimal
size of an infinite MAD family, and by t the minimal length of a tower. Finally u
denotes the minimal character of a non-principal ultrafilter on ω. For more on cardinal
invariants of the continuum see e.g. [5].

It is well known (see [15]) that:

• Assuming ♦(2, �=) there is a tower of length ω1, i.e. t = ω1.
• Assuming ♦(b) there is a MAD family of size ω1, i.e. a = ω1.
• Assuming ♦(r) there is an ω1-generated ultrafilter, i.e. u = ω1.

We have already mentioned that these and similar constructions are robust in the
above mentioned sense—the existence of a winning strategy for the Builder in the
corresponding game, as we shall see in what follows. Then we shall consider the
question of whether the cardinal invariant being ω1 is sufficient for the existence of a
winning strategy for the Builder.

We fix the following notation for the rest of the paper: Given an infinite countable
ordinal δ, we fix a bijection eδ : ω → δ. We denote by pair(ω1) the countable ordinals
of the form β + 2k, with β limit and k ∈ ω, and let odd(ω1) = ω1\pair(ω1).

Let us make a simple yet important remark concerning the parametrized ♦-
principles here: The definition of the function F : 2<ω1 → A almost always requires
some simple coding. It has to do with the domain of the function. We shall say that the
domain consists of pairs (s, X) where X is a subset of ω (usually infinite) and s is a
sequence of subsets of ω of length some countable ordinal α with some structure (e.g.
consisting of infinite sets which are almost disjoint or⊆∗-decreasing) which constitute
an approximation to an object we want to construct. The coding can be described as
follows: Given such a pair (X , s), where s = 〈sξ : ξ < α〉 let σ(s,X) : ω · (1+α) → 2
defined by

σ(s,X)(n) = 1 if and only if n ∈ X , and

σ(s,X)(ω · (1 + ξ) + n) = 1 if and only if n ∈ sξ .

For any given α < ω1, the set of such σ(s,X)’s is easily seen to be Borel, and as
the values of F outside of this Borel set are irrelevant for our constructions, we can
let F outside this set be constant. As guessing happens on a stationary set, we can
also ignore the value of F at heights which are not irreducible (i.e. not of the form
α = ω · α).
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Construction with opposition: cardinal invariants and games 947

2 The tower number game

Consider the tower game Gt of length ω1 played as follows: Players Builder and
Spoiler take turns playing a ⊆∗-decreasing transfinite sequence 〈Yα : α < ω1〉 of
infinite sets of ω, the Builder playing at even stages pair(ω1), and the Spoiler playing
at odd stages odd(ω1).

Builder Y0 · · · Yα · · ·
Spoiler Y1 · · · Yα+1 · · ·

The Builder wins the match if 〈Yα : α < ω1〉 is a tower; otherwise, the Spoiler
wins.

The first instance of the phenomenon discussed in the introduction is the following:

Proposition 2.1 Assuming ♦(2, �=), the Builder has a winning strategy in the game
Gt.

Proof Given an infinite ⊆∗-decreasing sequence s = {Y s
ξ : ξ < δ(s)} with δ(s) limit,

we will define a strictly increasing sequence {lsi : i ∈ ω} of natural numbers. Fix an
increasing sequence {δi : i ∈ ω} ⊆ δ(s) converging to δ(s). Let

ls0 = min
(
Y s

δo

)
,

and

lsi+1 = min

⎛

⎝
⋂

j≤i+1

Y s
δ j

\(lsi + 1)

⎞

⎠ .

We will define F : 2<ω1 → 2 using the above described coding. For a decreasing
⊆∗-sequence s = {Y s

ξ : ξ < δ(s)} of length an infinite limit ordinal and X ⊆ ω

infinite, define F(s, X) as follows:

F(s, X) =
{
0 if X ⊆∗ {

ls2i : i ∈ ω
}
,

1 otherwise.

As the function is defined only using countable intersections and complements using
only the fixed sequence {δi : i ∈ ω} ⊆ δ(s) as a parameter, and since its domain is
Borel, it is Borel.

Let g : ω1 → 2 be a ♦(2, �=)-sequence for F . We are going to use g to define a
winning strategy for the Builder.

Suppose s = {Y s
ξ : ξ < δ(s)} is a partial play of the game with δ(s) an infinite

limit ordinal. The Builder is going to choose Yδ(s) as follows:

Yδ(s) =
{ {ls2i : i ∈ ω} if g(δ(s)) = 0,

{ls2i+1 : i ∈ ω} otherwise.
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948 J. Brendle et al.

Let s = {Y s
ξ : ξ < ω1} be a complete match played by the Builder according to

the strategy described above. Let X ⊆ ω. Then if δ is an infinite limit ordinal such
that F(s �δ, X) �= g(δ), it is straightforward to see that X �∗ Yδ = Y s

δ (note that
δ(s�δ) = δ). �

The previous Proposition has non-trivial content as we shall see next.

Theorem 2.1 It is consistent with ZFC that t = ω1 and the Builder does not have a
winning strategy in Gt.

Before embarking on the proof, let us do some preparation.
LetF be a filter on ω. The Laver-Prikry forcing associated withF , denoted by LF

consists of subtrees T ⊆ ω<ω which have a stem σ ∈ T , denoted by stem(T ), such
that for every τ ∈ T , either τ ⊆ σ or τ ⊇ σ . Besides, for every τ ∈ T extending σ ,
the set {n ∈ ω : τ�〈n〉 ∈ T } belongs to F . The order on LF is given by inclusion.

Assume CH. Let Y = (Yα : α < ω1) be a tower. Let ( fα : α < ω1) list all
partial functions from ω → ω with infinite range. Construct (Aα : α < ω1) and
(Bα : α < ω1) so that for all α < ω1,

• Aα ⊆∗ Bα ⊆∗ Aβ for β < α,
• Bα is chosen according to a given rule (= a strategy that we want to “kill”), and 3

• if ran( fα�Bα ) is infinite, then ran( fα�Aα ) is almost disjoint from some Yβα .

To choose Aα note that there is βα < ω1 such that ran( fα �Bα )\Yβα is infinite
because Y is a tower. Now let Aα = Bα ∩ f −1

α

(
ran

(
fα�Bα

) \Yβα

)
. This is as required.

Let F be the filter generated by the sequence {Aα : α < ω1}. Consider Laver forcing
LF with F .

The following lemma is based on ideas of Baumgartner and Dordal [4]. A similar
argument appears elsewhere, see e.g. [6, Lemma 41].

Lemma 2.1 LF preserves Y as a tower.

Proof Let Ẋ be a name for an infinite subset of ω. Without loss of generality, we may
assume its increasing enumeration (also denoted by Ẋ ) dominates the generic Laver
real. Fix n ∈ ω. Say that σ ∈ ω<ω favours Ẋ(n) = k if given any T ∈ LF with
stem(T ) = σ , there is S ≤ T such that S � Ẋ(n) = k (alternatively, no T ∈ LF
with stem(T ) = σ forces Ẋ(n) �= k). Note that if σ favours Ẋ(n) = k, then |σ | > n.
Define the rank rkn by recursion as follows:

• rkn(σ ) = 0 if σ favours Ẋ(n) = k for some k ∈ ω,
• for α > 0, rkn(σ ) = α if ¬(rkn(σ ) < α) and {i : rkn(σ�i) < α} ∈ F+.

Claim 2.1 For all σ and n, rkn(σ ) is defined.

Proof Suppose rkn(σ ) is undefined. Build a tree T ∈ LF with stem(T ) = σ such that
rkn(τ ) is undefined for all τ ∈ T with τ ⊇ σ. Let S ≤ T be such that S decides Ẋ(n),
say S � Ẋ(n) = k. Let τ = stem(S). Then rkn (τ ) = 0 because τ favours Ẋ(n) = k,
a contradiction. �
3 What the given rule is, is irrelevant at this point, and will be specified in the forthcoming text.
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Construction with opposition: cardinal invariants and games 949

Fix a pair n, σ such that rkn (σ ) = 1. So σ does not favour Ẋ(n) = k for any k
but {i : σ�i favours Ẋ(n) = k for some k} belongs to F+. Define a partial function
f : ω → ω as follows: dom( f ) = {i : σ�i favours Ẋ(n) = k for some k} and, for
i ∈ dom( f ), let f (i) be some k such that σ�i favours Ẋ(n) = k. Note that since
rkn (σ ) �= 0, f −1({k}) /∈ F+ for all k ∈ ω. There is α = α(n, σ ) such that f = fα .
Let β be larger than all the βα(n,σ ).

Claim 2.2 � Ẋ �∗ Yβ .

Proof Fix m ∈ ω and T ∈ LF . It suffices to find k > m, k /∈ Yβ , and S ≤ T such that
S � k ∈ Ẋ . Let σ = stem(T ) and n > max{m, |σ |}. In particular, rkn (σ ) > 0. By
extending σ if necessary, wemay assume rkn (σ ) = 1.By construction, there is F ∈ F
such that ran

(
fα(n,σ )�F

)
is almost disjoint from Yβ. Since f −1

α(n,σ )({k}) /∈ F+ for all

k ∈ ω and dom
(
fα(n,σ )

) ∩ F ∩ succT (σ ) ∈ F+, we may find i ∈ dom
(
fα(n,σ )

) ∩
F ∩ succT (σ ) and k ∈ ω such that fα(n,σ )(i) = k and k /∈ Yβ. Hence σ�i favours
Ẋ(n) = k, and there is S ≤ T with stem(S) ⊇ σ�i such that S � Ẋ(n) = k. Clearly
k ≥ n > m, and we are done. �
This finishes the proof of the lemma. �

Recall yet another version of ♦. For a given uncountable regular cardinal κ and
a stationary set E ⊆ κ , we say that the principle ♦E holds if there is a sequence
〈dγ : γ ∈ E〉 such that for every X ⊆ κ , the set {γ ∈ E : X ∩ γ = dγ } is stationary.
Now we are ready to prove the theorem:

Proof of Theorem 2.1 Assume♦E
ω2
ω1

and CH. Fix a towerY = (Yα : α < ω1) as above.

Construct a finite support iteration
(
Pγ , Q̇γ : γ < ω2

)
, where the initial segments of

the iteration have size at most ℵ1. Use the diamond to guess (initial segments of)
names of strategies for the Builder. This is a standard argument which has been used a
lot, e.g. in [16]; for the reader’s convenience we present an outline, following roughly
the one in [7, proof of Theorem 8].

Think of the diamond sequence as acting on the product ω2 × Pω2 , that is, there is
a sequence 〈Sγ ⊆ γ × Pγ : γ ∈ Eω2

ω1 〉 such that for all T ⊆ ω2 × Pω2 , the set {γ ∈
Eω2

ω1 : T ∩(γ ×Pγ ) = Sγ } is stationary. This can be done, because the initial segments
Pγ of the iteration have size ω1, by building up a bijection F : ω2 → Pω2 recursively
along the definition of the iteration, such that F �γ : γ → γ × Pγ is a bijection for
all γ ∈ Eω2

ω1 . Next, again along the definition of the iteration, we produce a name
ḟ ∈ V Pω2 for a bijection between ω2 and ([ω]ω)<ω1 ×[ω]ω such that for all γ ∈ Eω2

ω1 ,
ḟ �γ ∈ V Pγ is a name for a bijection between γ and (([ω]ω)<ω1 × [ω]ω) ∩ V Pγ . (Note
that a strategy � : ([ω]ω)<ω1 → [ω]ω is a subset of ([ω]ω)<ω1 × [ω]ω.)

At stage γ ∈ Eω2
ω1 such that Sγ is a Pγ -name for a subset of γ and ḟ [Sγ ] ∈ V Pγ

is a strategy for Builder, we force with Q̇γ = LḞ where Ḟ is constructed from Ȧα

and Ḃα as above and the Ḃα are obtained from the Ȧβ, Ḃβ, β < α, using the strategy
ḟ [Sγ ]. In all other cases we let Q̇γ be Cohen forcing. Force with Pω2 .

Since towers are preserved in limit steps of finite support iterations (see e.g. [3,4,9]),
the lemma implies that Y is still a tower in V Pω2 . In particular t = ω1.
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950 J. Brendle et al.

On the other hand, for each strategy� = ḟ [T ] of the Builder in V Pω2 , where T is a
Pω2 -name for a subset of ω2, there is γ ∈ Eω2

ω1 such that ��V Pγ = ḟ [T ∩ (γ × Pγ )] =
ḟ [Sγ ] is a strategy in V Pγ and was used to construct the filter Ḟ . Hence there is a
game according to � which the Builder looses, as witnessed by the LḞ -generic set
added in V Pγ+1 . �

Consider the longer version of the tower game Gδ
t of length δ played as follows:

Players Builder and Spoiler take turns playing a ⊆∗-decreasing transfinite sequence
〈Yα : α < δ〉 of infinite subsets of ω, the Builder playing at even stages pair(δ), and
the Spoiler playing at odd stages odd(δ).

Builder Y0 · · · Yα · · ·
Spoiler Y1 · · · Yα+1 · · ·

The Spoiler wins the match if 〈Yα : α < δ〉 is not a tower; otherwise, the Builder
wins.

Given the previous theorem, it is natural to define tBuilder as the least ordinal δ

such that the Builder has a winning strategy in the game Gδ
t . The previous result then

says t < tBuilder is consistent. The following is a special case of a result of Vojtáš [17,
Theorem 7]; we include the short proof for the sake of completeness.

Lemma 2.2 tBuilder is a regular cardinal.

Proof Let α be minimal such that the Builder has a strategy � that makes her win in
at most α moves. Let {γξ : ξ < c f (α)} be a club subset of α such that for even ξ , γξ

is also even and γξ+1 = γξ + 1. We construct a strategy �′ for the Builder that makes
her win in at most c f (α) steps such that for each run Ā = {Aη : η < ξ} according to
�′ of length an even ξ , there is a run B̄ = {Bγ : γ < δξ } according to � of length δξ

such that Bγη = Aη for all η < ξ and

δξ =
{

γξ if ξ is limit
γζ + 1 if ξ = ζ + 1 is even successor.

Suppose we are at step ξ . If ξ is a limit ordinal, then either Ā has no pseudointer-
section and the Builder already won or, since Ā is a cofinal subsequence of B̄, we can
let �′( Ā) be �(B̄). If ξ is an even successor, say ζ + 1, consider the corresponding
game B̄ whose final move is Bγζ = Aζ . Notice that since there is no strategy which
makes the Builder win in less than α steps, � cannot make the Builder win below the
set Aζ in less than α steps. In particular, there must be a game according to � and
extending B̄ which still has a move, with the Builder following �, at stage γξ . Let B̄ ′
be this extension of length γξ and let �′( Ā) be this move �(B̄ ′).

This describes the strategy �′. It is clear that the Builder must win after at most
c f (α) steps. �

We may also define tSpoiler as the supremum of all ordinals δ such that the Spoiler
has a winning strategy in the game Gδ

t . It is easy to see that the Spoiler has no winning
strategy in Gδ

t for δ = tSpoiler moves (for otherwise the game could be continued
one further move and would still be winning for the Spoiler). Hence, tSpoiler can be
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Construction with opposition: cardinal invariants and games 951

characterized as the least δ such that the Spoiler has no winning strategy in the game
Gδ

t . Again we see (this is a special case of [17, Theorem 6]):

Lemma 2.3 tSpoiler is a regular cardinal.

Proof Suppose tSpoiler = α is minimal such that no strategy of the Spoiler of the
game with α moves is winning. Let � be a strategy of the Spoiler of the game with
c f (α) moves. We need to see that � is not winning. As in the previous proof, let
{γξ : ξ < c f (α)} be a club subset of α such that for even ξ , γξ is also even and
γξ+1 = γξ + 1. We shall build a strategy �′ of the Spoiler with α moves such that for
every run B̄ = {Bγ : γ < α} according to �′ there is a run Ā = {Aη : η < c f (α)}
according to � such that Aη = Bγη . Since �′ is not winning, one such run B̄ is won
by the Builder. But then the Builder also wins the corresponding run Ā according to
�, as required.

As in the previous proof, let

δξ =
{

γξ if ξ is limit
γζ + 1 if ξ = ζ + 1 is even successor

for even ξ .
Now suppose ξ is even and �′ has been constructed for a run B̄ = {Bγ : γ < δξ }.

Let Ā = {Aη : η < ξ} be the corresponding run according to �. If ξ is limit, consider
the move Bγξ of the Builder. Let Aξ = Bγξ be the corresponding move of the Builder
in the other game. Then let Bγξ+1 = �′(B̄ ∪ {Bγξ }) = �( Ā ∪ {Aξ }) = Aξ+1, that
is, the Spoiler plays in �′ what � tells her to play in the other game. If ξ = ζ + 1
is successor, the last move of the Spoiler was Bγζ . Note that δξ ≤ γξ are both even
ordinals. So, let εξ be such that δξ + εξ = γξ . Since εξ < α, the Spoiler has a winning
strategy of length εξ below the set Bγζ (i.e with Bγζ as the first move). Let �′ in
the interval [δξ , γξ ) be this strategy. Let B̄ ′ = {Bγ : γ < γξ } be an extension of B̄
following this strategy. Now continue as in the limit case: let Bγξ be the next move
of the Builder (such a move exists because the strategy of the Spoiler was winning so
far); let Aξ = Bγξ and let Bγξ+1 = �′(B̄ ∪ {Bγξ }) = �( Ā ∪ {Aξ }) = Aξ+1. Clearly
this works. �

By modifying the proof of Theorem 2.1 a little we see:

Theorem 2.2 It is consistent that t = tSpoiler = ω1 < tBuilder = ω2 = c.

Proof We first observe:

Lemma 2.4 Assume CH and let � be a strategy of the Builder (of length ω1). Also
assume there are towers (Yβ : β < ω1). Then there is a filter F containing a run of
the game according to � such that LF preserves all Yβ .

Proof To see this simply redo the construction before Lemma 2.1 by diagonalizing
against ω1 towers instead of just one. More explicitly, let Yβ = (Y β

α : α < ω1) for
β < ω1. Let (Sβ : β < ω1) partition ω1 into sets of size ω1. Let {γ β

α : α < ω1} be
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952 J. Brendle et al.

the enumeration of Sβ . Let ( fα : α < ω1) list all partial functions from ω to ω with
infinite range. Then construct (Aα : α < ω1) and (Bα : α < ω1) recursively such that
for all α, β < ω1,

• Aα ⊆∗ Bα ⊆∗ Aα′ for α′ < α,
• Bα = �(Aα′ : α′ < α) for even α, Bα is arbitrary for odd α, and
• if ran( fα�B

γ
β
α

) is infinite, the ran( fα�A
γ
β
α

) is almost disjoint from some Y β
βα
.

Clearly this can be done. LetF be the filter generated by the sequence {Aα : α < ω1}.
Fix β < ω1. Preservation of Yβ by LF is immediate by Lemma 2.1. �

Now, as in the proof of Theorem 2.1, assume ♦E
ω2
ω1

and CH. Use the diamond to

guess (initial segments of) names of strategies for both the Builder and the Spoiler.
Simultaneously construct a finite support iteration

(
Pγ , Q̇γ : γ < ω2

)
and a sequence

of (names of) towers
(
Ẏβ : β < ω2

)
such that

(
Ẏβ : β ≤ γ

) ∈ V Pγ . At stage γ first
consider the (name of the) strategy of the Spoiler handed down by♦E

ω2
ω1
. Since CH still

holds while there are 2ω1 many games following the strategy, one of these games must
be winning for the Builder, that is, there is a tower Ẏγ ∈ V Pγ that is a run according
to the strategy. Now, as in the proof of Theorem 2.1, use the lemma to get a filter Ḟ
containing a run of the game according to the (name of the) Builder’s strategy handed
down by ♦E

ω2
ω1

such that Q̇γ = LḞ preserves all Ẏβ , β ≤ γ .

By the argument of Theorem 2.1, a strategy of the Builder of length ω1 cannot be
winning. Similarly, if � is a strategy of the Spoiler of length ω1, there is γ < ω2 such
that � �V Pγ is a strategy in V Pγ and was guessed by the diamond. This means that
the tower Yγ is preserved as a run of the game according to � which is won by the
Builder. �

However we do not know:

Open question 2.1 Is t < tSpoiler consistent?

On the other hand, tBuilder ≤ h, where h = min{height(T ) : T ⊆([ω]ω, ∗⊇)
is a base tree}4 is the distributivity number of P(ω)/fin.5 To see this note

that the Builder can simply make sure to play along a branch of the base tree T which,
of course, produces a winning strategy. In particular, h = ω1 is sufficient for the
existence of a winning strategy for the Builder in the game Gt (of length ω1).

This proof actually gives a little more. Note that in general the Builder has a distinct
advantage over the Spoiler in that her moves appear on a closed unbounded subset

4 A base tree is a set T ⊆ [ω]ω which is a tree when ordered by ⊇∗ and is such that every element of [ω]ω
contains an element of T . The existence of such a tree was proved by Balcar, Pelant and Simon in [2], see
also [1].
5 Remember that 〈[ω]ω,⊆∗〉 is a preorder. Therefore, the set of its classes of equivalence, P(ω)/fin,
defined by X ≡fin Y if and only if X ⊆∗ Y and Y ⊆∗ X , defines a partial order 〈P(ω)/fin, ≤fin〉, where
[X ]fin ≤fin [Y ]fin if and only if X ⊆∗ Y . Given a partial order 〈P, ≤〉, we say that a set D ⊆ P is dense
if for every p ∈ P , there is q ∈ D such that q ≤ p. A subset set D ⊆ P is open if whenever p ∈ D and
q ≤ p, then q ∈ D. As usual, we refer only to P as the partial order if the order is clear from the context. For
a partial order P , we define its distributivity number h(P) as the minimum α such that for some collection
{Dξ : ξ < α} of open dense sets, its intersection ⋂

ξ<α Dξ is not dense.
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Construction with opposition: cardinal invariants and games 953

of ω1 (pair(ω1) ∈ Club(ω1), while odd(ω1) is not stationary). Let G∗
t be the game

in which the players switch places, that is, the Builder plays at odd steps while the
Spoiler plays at even steps. It is obvious that a winning strategy of the Builder in G∗

t
gives her a winning strategy in Gt as well, while the implication goes the other way
round for the Spoiler. Furthermore, the winning strategy described here from h = ω1
is robust in the sense that it is irrelevant in which order the players play; that is, the
latter hypothesis implies a winning strategy for the Builder even in G∗

t . We shall see
below (Corollary 2.2) that ♦(2, �=) is not sufficient for this.

Define t∗Builder and t∗Spoiler similarly as the unstarred versions. The four cardinal
numbers tBuilder , tSpoiler , t∗Builder and t∗Spoiler are due to Vojtáš [17] in a more general
context, where he also showed they are regular cardinals [17, Theorem 6 and Theo-
rem 7]. Also

h ≥ t∗Builder ≥ max{t∗Spoiler , tBuilder } ≥ min{t∗Spoiler , tBuilder } ≥ tSpoiler ≥ t

is obvious. A straightforward modification of the proof of Theorem 2.2 actually shows
the consistency of tBuilder > t∗Spoiler . As in Question 2.1, we do not know whether
t∗Spoiler > t is consistent.

The following lemma is a special case of a result by Foreman [10].

Lemma 2.5 t∗Builder = h.

Proof This is immediate using [10, Theorem on page 718] and realizing that given a
cardinal λ, the Builder has a winning strategy in λ steps in the game G∗

t if and only if
I has a winning strategy in the game GI I

λ+ played in P(ω)/fin described in [10]. �
By the above discussion, both♦(2, �=) and h = ω1 imply the existence of a winning

strategy for the Builder in the game Gt in ω1 many steps. Both are consequences of
CH. The two statements are independent, however: in the Mathias model, ♦(2, �=)

holds [15, Theorem 6.6] and h > ω1, while in a model of Judah and Shelah [13],
h = ω1 and ♦(2, �=) fails6. In particular we have:

Corollary 2.1 The Builder having a winning strategy in Gt does not imply ♦(2, �=).

Corollary 2.2 It is consistent that ♦(2, �=) holds and the Builder has no winning strat-
egy in G∗

t . In particular it is consistent that t
∗
Builder > tBuilder .

Proof As remarked ♦(2, �=) and h = c = ω2 hold in the Mathias model. By Proposi-
tion 2.1 and Lemma 2.5, tBuilder = ω1 and t∗Builder = ω2 follow. �

Another classical upper bound of t is the additivity add(M) of the meager ideal
M, that is, the least κ such that there is a family of κ many meager sets whose union
is not meager. Since, as observed in the Introduction, cardinals like add(M) are equal
to their game versions, one might conjecture that tBuilder ≤ add(M) holds in ZFC.
However, this is not what the proof of t ≤ add(M) gives for the latter uses towers of
dense sets of rationals and not just of arbitrary sets of natural numbers. And, in fact,
we show the following:

6 They prove, in fact, that it is consistent there is a Q-set of reals while the null ideal has a basis of size ω1.
The latter implies h = ω1 while by Theorem 6.16 in [15], ♦(2, �=) implies there are no Q-sets.
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Theorem 2.3 tBuilder = c = ω2 > add(M) = ω1 is consistent.

Before starting with the proof we review some notions and some facts. Recall that
a non-principal ultrafilter U on ω is Ramsey if for every partition {An : n ∈ ω} of ω

such that An /∈ U for all n ∈ ω, there is X ∈ U such that X ∩ An has one element
for all n ∈ ω. Say a function ϕ : ω → [ω]<ω is a slalom if |ϕ(n)| ≤ n + 1 for all
n ∈ ω. A forcing notion P has the Laver property if given any condition p ∈ P, any
function h ∈ ωω and any P-name ḟ for a function bounded by h, there are q ≤ p
and a slalom ϕ such that q � ∀n ( ḟ (n) ∈ ϕ(n)). A forcing with the Laver property
does not add Cohen reals (see Lemma 7.2.3 in [3]) and thus in particular preserves the
additivity of the meager ideal, that is, if add(M) = ω1 holds in the ground model, it
still holds in the generic extension. Like standard Mathias forcing (Lemma 7.2.2 and
Corollary 7.4.7 in [3]) used in the proof of the previous theorem, Mathias forcing with
a Ramsey ultrafilter U , which is forcing equivalent to Laver forcing LU with U (see
e.g. Theorem 1.20 in [12]), has the Laver property. Furthermore, the Laver property
is preserved in countable support iterations (Theorem 6.3.34 in [3]).

Proof of Theorem 2.3 As in the proof of Theorem 2.1 we assume ♦E
ω2
ω1

and CH. Con-

struct a countable support iteration
(
Pγ , Q̇γ : γ < ω2

)
. We use the diamond again to

guess (initial segments of) names of strategies for the Builder. Again this can be done,
exactly like in the proof of Theorem 2.1, because the initial steps Pγ of the iteration
have (a dense subset of) size ω1. At stage γ consider (the name of) Builder’s strategy
�̇ handed down by ♦E

ω2
ω1

. As in the argument before Lemma 2.1, we can construct, in

V Pγ , a run of the game according to �̇ such that the ω1-sequence of the sets played
generates a Ramsey ultrafilter U̇ . Now let Q̇γ = LU̇ . Force with Pω2 .

By the discussion in the paragraph preceding the proof, the whole iteration has the
Laver property, and add(M) = ω1 thus follows.

To see tBuilder = ω2, assume � is a strategy of Builder for a game of length ω1.
By ♦E

ω2
ω1

there is γ < ω2 such that ��V Pγ is a strategy and was used to construct the

ultrafilterU . Hence there is a game following� which the Builder looses, as witnessed
by the LU -generic set added in V Pγ+1 . �

Note that this gives an alternative proof of Theorem 2.1. However, the original
argument is more direct in that it uses less black-boxed forcing theory. Also, in The-
orem 2.1, we additionally have the consistency of t < tBuilder = add(M).

The order relationship between the cardinals we considered in this section can be
summarized in the following diagram.

t

tSpoiler

tBuilder t∗Spoiler add(M)

t∗Builder = h

b

��

�� ��

�
�

�
�

�� �� �
�

�
���
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3 The ultrafilter number game

Recall that a filterF on ω is a P-filter if for each countable collection {Yn : n ∈ ω} ⊆
F there is a Y ∈ F such that Y ⊆∗ Yn for every n ∈ ω. A non-principal ultrafilter
F on ω is called a P-point if it is a P-filter.

The ultrafilter game Gu is played as before, the Builder and the Spoiler taking
turns constructing a ⊆∗-decreasing sequence 〈Uα : α < ω1〉 (the Builder playing at
pair(ω1)-stages, while the Spoiler plays at odd(ω1)-stages).

Builder U0 · · · Uα · · ·
Spoiler U1 · · · Uα+1 · · ·

The difference is in how we declare a winner. The Builder now has a harder task as
she wins the match if the filter generated by {Uα : α < ω1} is an ultrafilter; otherwise,
the Spoiler wins.

Again, the proof of the following result mimicks closely the proof of Theorem 7.8
in [15]. We include it for the benefit of the reader.

Proposition 3.1 ♦ (r) implies the Builder has a winning strategy in the game Gu.

Proof For a ⊆∗-decreasing infinite sequence s = {Us
ξ : ξ < δ(s)}, we define the

strictly increasing sequence {ksi : i ∈ ω} ⊆ ⋃
ξ<δ(s) U

s
ξ as follows: Remember that

we have fixed a bijective function eδ : ω → δ for every infinite ordinal δ < ω. Let

ks0 = min
(
Us
eδ(s)(0)

)
,

and

ksi+1 = min

⎛

⎝
⋂

j≤i+1

Us
eδ(s)( j)

\(ksi + 1)

⎞

⎠ .

Given C ⊆ ω and an infinite ⊆∗-decreasing sequence s, we define a Borel map F
as follows: F(s,C) = {i ∈ ω : ksi ∈ C} if {i ∈ ω : ksi ∈ C} is infinite, and
F(s,C) = {i ∈ ω : ksi /∈ C} otherwise.

The function F uses the coding described at the end of the introduction, and is
Borel since its domain is Borel and it is defined by countable boolean operations using
eδ as a parameter.

Let g be the respective ♦(r)-guessing function for F . We will show that g defines
a winning strategy for the Builder as follows: If s = {Us

ξ : ξ < δ(s)} is a partial
match with δ(s) even, let Uδ(s) = {ksi : i ∈ g(δ(s))}. It is not difficult to see that
any complete match s = {Us

ξ : ξ < ω1} according to the strategy defined by g is a
⊆∗-decreasing sequence. It is also straightforward to show that the set Fs = {X ∈
[ω]ω : ∃δ < ω1(Us

δ ⊆∗ X)} is a filter. We are done ifFs is an ultrafilter.
Let C ⊆ ω. Since g is a ♦(r)-sequence, we can find δ < ω1 such that either

|g(δ) ∩ F(s�δ,C)| < ℵ0 or |g(δ)\F(s�δ,C)| < ℵ0.
We will show that either Uδ ⊆∗ C or Uδ ⊆∗ ω\C where Uδ = Us

δ (note that
δ(s�δ) = δ).
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Case 1: |g(δ) ∩ F(s�δ,C)| < ℵ0. Let j ∈ ω such that g(δ) ∩ F(s�δ,C) ⊆ j . Then

Uδ\ks�δj ⊆ C if {i ∈ ω : ks�δi ∈ C} is finite, and Uδ\ks�δj ⊆ ω\C otherwise.
Case 2: |g(δ)\F(s�δ,C)| < ℵ0. Let j ∈ ω such that g(δ)\ j ⊆ F(s �δ,C). Then

Uδ\ks�δj ⊆ C if {i ∈ ω : ks�δi ∈ C} is infinite, and Uδ\ks�δj ⊆ ω\C otherwise. �
Note that it was enough that the set of guesses of the diamond sequence was just

non-empty. It is a simple exercise left to the reader to show that

Lemma 3.1 CH implies that the Builder has a winning strategy in Gu.

In fact, the stronger statement that the Builder has a winning strategy also in the
game G∗

u where the Builder and the Spoiler switch places easily follows from CH.
Since CH does not imply ♦(r) by Proposition 8.2 and Theorem 8.3 in [15], we have
the following:

Corollary 3.1 The Builder having a winning strategy in Gu does not imply ♦(r).

Again, we will show that all of this is not gratuitous.

Theorem 3.1 u = ω1 does not imply that the Builder has a winning strategy in the
game Gu.

Rather than constructing an ad hoc forcing model for this, we show that this holds
in a model constructed by Shelah in [16, Chapter XVIII, Section 4]. We shall review
some standard facts about ultrafilters first. Given two ultrafilters U ,V on ω, we recall
the Rudin-Keisler order ≤RK defined as follows: U ≤RK V if and only if there is a
function f : ω → ω such that U = {X ∈ ω : ∃Y ∈ V( f [Y ] ⊆ X)}, and they are
RK -equivalent, denoted by U ≡RK V if such f exists which is, moreover, bijective.
We recall the following fact, which shows that Ramsey ultrafilters are ≤RK -minimal:

Fact 3.1 LetU andU ′ be two ultrafilters withU Ramsey andU ′ ≤RK U . ThenU ′ ≡RK

U .

Proof of Theorem 3.1 Let V |� CH + 2ω1 = ω2, let Pω2 be the countable support
iteration used by Shelah to construct a model with a unique P-point ([16, Chap-
ter XVIII, Theorem 4.1]), and let G be Pω2 -generic.

We shall show that V [G] is the model we need. We will be able to deduce this from
the following three facts which hold there:

1. In V there is a Ramsey ultrafilterU0 such thatU0 still generates a Ramsey ultrafilter
in V [G], and thus V [G] |� u = ω1 (see [16, Chapter XVIII, Remark 4.1A]).

2. Every P-point of V [G] is RK-equivalent to U0.
3. The forcing Pω2 is ωω-bounding.

We shall show that in V [G], the Builder does not have a winning strategy. Suppose
that � is a winning strategy for the Builder in V [G]. Then by a standard reflection
argument, there is α < ω2 such that�0 = � ∩V [Gα] is a winning strategy in V [Gα].

Now as V [Gα] |� CH, we may list all strictly increasing functions in ωω of V [Gα]
as {Fξ : ξ < ω1}. Next, for ξ < ω1, define a function Gξ ∈ ωω such that whenever
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Fξ (m) ≤ n < Fξ (m + 1), then Gξ (n) = m. Note that we have Gξ (n) ≤ n ≤ Fξ (n)

for every n. Since U0 generates a Ramsey ultrafilter in V [Gα] by (1), for each ξ there
is Aξ ∈ U0 such that the intervals [Gξ (n), Fξ (n)) for n ∈ Aξ are pairwise disjoint.
(Indeed, define an interval partition (Ik : k ∈ ω) of ω such that whenever Gξ (n) ∈ Ik
then Fξ (n) ∈ Ik ∪ Ik+1. Since U0 is Ramsey, there is A ∈ U0 such that |A ∩ Ik | ≤ 1
for all k ∈ ω. By further pruning A to Aξ , we may assume it intersects either only
intervals Ik such that k ≡ 0 mod 3 or k ≡ 1 mod 3 or k ≡ 2 mod 3. It is easy to
see Aξ is as required.)

Now, still in V [Gα], play a game (Uξ : ξ < ω1) in which Builder follows the
strategy �0 while Spoiler plays sets U2·ξ+1 such that

{n ∈ ω : [Gξ (n), Fξ (n)) ∩U2·ξ+1 �= ∅} /∈ U0. (�)

To see this is possible fix ξ < ω1. If U2·ξ meets only finitely many of the intervals
[Gξ (n), Fξ (n)) where n ∈ Aξ , we may let U2·ξ+1 = U2·ξ . So suppose {n ∈ Aξ :
[Gξ (n), Fξ (n)) ∩U2·ξ �= ∅} is infinite. Since U0 is an ultrafilter, there is B ∈ U0 with
B ⊆ Aξ such that

{n ∈ Aξ \ B : [Gξ (n), Fξ (n)) ∩U2·ξ �= ∅}
is still infinite. We then let

U2·ξ+1 =
⋃

{[Gξ (n), Fξ (n)) ∩U2·ξ : n ∈ Aξ \ B}.

This completes the construction.
As the strategy �0 is winning in V [Gα], the sequence of Uξ ’s produces a P-point

V in V [Gα]. It suffices to show that V does no longer generate a P-point in V [G].7
For if this is the case, the sequence of Uξ ’s will remain a �-legal play in V [G], but
Spoiler will win the game, a contradiction.

By (2), all P-points are RK-equivalent to U0 in V [G]. Hence it suffices to show
that V cannot be RK-equivalent to U0 in V [G]. Suppose it were, and f : ω → ω is
the bijection witnessing this. Since, by (3), the extension V [G] is ωω-bounding over
V [Gα], there is ξ such that both f and f −1 are everywhere dominated by Fξ , more
explicitly, f (n) < Fξ (n) and f −1(n) < Fξ (n) for all n. Note that the latter implies
that f (n) ≥ Gξ (n) for all n, that is, f (n) ∈ [Gξ (n), Fξ (n)) for all n. It then follows
by (�) that f −1[U2·ξ+1] = {n ∈ ω : f (n) ∈ U2·ξ+1} does not belong to U0, and f
cannot witness RK-equivalence, the final contradiction. �

Let us state the following here explicitly:

Open question 3.1 Does the Builder have a winning strategy in the game Gu if and
only if she has a winning strategy in the game G∗

u?

It would be tempting to define now cardinals uBuilder and uSpoiler as we did in
Section 2 for the generalized tower game. This, however, is problematic, for the fol-
lowing reason. Consider the Cohen model, that is, the model obtained by adding at

7 Actually, it would be even enough to show that V does not generate an ultrafilter, since an ultrafilter
witnessing a victory must be a P-point.
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least ω2 Cohen reals over a model of CH. In this model, all ⊆∗-decreasing sequences
have length some ordinal γ < ω2 while on the other hand u = c ≥ ω2. This means
that the gameGu is always won by the Spoiler, no matter what its length is. The reason
for this problem is that a win of the Builder in Gu produces a P-point generated by a
decreasing chain and not just an arbitrary ultrafilter.

So let us consider the modified ultrafilter game G ′
u in which the Builder and the

Spoiler take turns in building a filter base {Uα : α < ω1}, with the Builder playing
at even steps. The Builder wins again if the filter generated by {Uα : α < ω1} is
an ultrafilter; otherwise the Spoiler wins. G ′∗

u is defined similarly, with the players
switching places. It turns out that for plays of length ω1 these games are equivalent to
the original ones, in the following sense.

Lemma 3.2 1. The Builder has a winning strategy in Gu if and only if she has a
winning strategy in G ′

u.
2. The Builder has a winning strategy in G∗

u if and only if she has a winning strategy
in G ′∗

u .

Proof 1. First assume � is a winning strategy of the Builder in Gu. We construct a
strategy�′ of theBuilder inG ′

u by associatingwith each game Ā = {Aξ : ξ < ω1}
according to �′ a game C̄ = {Cξ : ξ < ω1} according to � with Aξ = Cξ for
even ξ . This means that if the Builder wins C̄ then she also wins Ā and, thus, �′
is a winning strategy.
If ξ = ζ + 1 is odd, we let Cξ := Aξ ∩ Cζ and note that this set must be infinite
becauseCζ = Aζ and the players build a filter base in G ′

u. AlsoCξ is a legal move
of the Spoiler in Gu. For even ξ , simply let Aξ = �′( Ā) := �(C̄) = Cξ . Again
this is clearly a legal move of the Builder in G ′

u.
Now assume �′ is a winning strategy of the Builder in G ′

u. Construct a strategy �

of the Builder in Gu by associating with each run C̄ = {Cξ : ξ < ω1} according
to � a run Ā = {Aξ : ξ < ω1} according to �′ with Aξ = Cξ for odd ξ .
If ξ is odd, let Aξ := Cξ and note this is a legalmove for the Spoiler inG ′

u. For even
ξ let Cξ = �(C̄) be a pseudointersection of the Cζ for ζ < ξ and Aξ = �′( Ā).
Such a pseudointersection exists because these sets form a countable filter base.
Clearly, if the Builder wins Ā, she also wins C̄ .

2. Similar. �
This lemma should be thought of as saying that producing anω1-generated ultrafilter

by a game is equally difficult as producing a P-point generated by a ⊆∗-decreasing
ω1-chain. It is unknown, however, whether u = ω1 implies the existence of an ω1-
generated P-point.8

Now consider the gameG ′
u of arbitrary length and define uBuilder and uSpoiler as in

the previous section: the former is the least ordinalα such that theBuilder has a strategy

8 One may also consider the same games in the context of the previous section: declare the Builder the
winner if the sequence {Uα : α < ω1} has no pseudointersection. Since these games are naturally related
to the pseudointersection number p, denote them by Gp and G∗

p. The analogue of Lemma 3.2 obviously
holds: the Builder has a winning strategy in Gp iff she has a winning strategy in Gt, and similarly for the
starred games. This can be seen as the game-theoretic version of the classical result stating that p = ω1 iff
t = ω1 (see e.g. Theorem 6.25 in [5]). The much deeper p = t was proved by Malliaris and Shelah [14].
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that makes her win in G ′
u in at most α many steps, while the latter is the supremum

of all ordinals α such that the Spoiler has a winning strategy in the game G ′
u with α

moves. Clearly u ≤ uSpoiler ≤ uBuilder and Theorem 3.1 says that u < uBuilder is
consistent. Apart from that we know little:

Open question 3.2 1. Is u < uSpoiler consistent? Is uSpoiler < uBuilder consistent?
2. Are uBuilder and uSpoiler cardinals?

Finally note that if we also consider G ′∗
u of arbitrary length and the corresponding

ordinals, we still have:

Fact 3.2 uBuilder ≤ u∗
Builder and uSpoiler ≤ u∗

Spoiler .

Proof To see for example the former, let � be a winning strategy of the Builder of
length α = u∗

Builder in G ′∗
u . We produce a winning strategy �′ of the same length in

G ′
u such that whenever {Aγ : γ < α} is a run according to �′ then {Bγ : γ < α} is

a run according to � with Bγ+2 = Aγ+1 for all γ and Bγ+1 ∩ Bγ = Aγ for limit γ .
Clearly this works. �

4 Themaximal almost disjoint number game

The last example we consider here is the maximal almost disjoint game Ga, which is
played as follows. To avoid trivialities, it starts by fixing a partition {An : n ∈ ω} of ω

into infinite pieces, and then the Builder and the Spoiler take turns extending it to an
AD family {Aα : α ≤ β} (the Builder playing at stages in pair(ω1), while the Spoiler
plays at ordinals in odd(ω1)).

Builder A0 · · · Aα · · ·
Spoiler A1 · · · Aα+1 · · ·

The Builder wins the match if the family {Aα : α < ω1} is a maximal almost
disjoint family; otherwise, the Spoiler wins.

We could also consider the game G∗
a played according to the same rules but the

Spoiler playing at pair(ω1), while the Builder plays at odd(ω1). However, in this case
it is easy to see that the two games are equivalent:

Lemma 4.1 The Builder has a winning strategy in the game Ga if and only if she has
a winning strategy in the game G∗

a.

Proof First assume� is awinning strategyof theBuilder inGa.Weconstruct a strategy
�′ of the Builder in G∗

a by associating with each game Ā = {Aξ : ξ < ω1} according
to �′ a game B̄ = {Bξ : ξ < ω1} according to � such that Aξ ∪ Aξ+1 = Bξ ∪ Bξ+1
for all even ordinals ξ . Thus, since the Builder wins B̄, she must also win Ā, and the
strategy �′ is winning.

At even ξ , let Bξ = �(B̄�ξ ) be the move of the Builder according to �. Let Aξ be
an arbitrary move of the Spoiler in G∗

a. Next choose Aξ+1 almost disjoint from Ā�ξ+1
such that Bξ ⊆ Aξ ∪ Aξ+1 and (Aξ ∪ Aξ+1) \ Bξ is infinite. This is clearly possible
by the inductive assumption on the sequences Ā�ξ and B̄�ξ . Let �′( Ā�ξ+1) = Aξ+1
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and put Bξ+1 = (Aξ ∪ Aξ+1) \ Bξ . Note that this is a legal move of the Spoiler in Ga.
This clearly works.

Now assume � is winning for the Builder in G∗
a and construct �′ winning for

her in Ga. This is almost the same except that this time, when associating with the
�′-game Ā = {Aξ : ξ < ω1} the �-game B̄ = {Bξ : ξ < ω1}, we guarantee that
Aξ ∪ Aξ+1 = Bξ ∪ Bξ+1 for all odd ordinals ξ and Aξ = Bξ for all limit ordinals ξ .
Details are left to the reader. �
Proposition 4.1 ♦ (b) implies the Builder has a winning strategy in Ga.

Proof Let F be the Borel function into ωω defined in Theorem 7.2 in [15] which we
reproduce here. For every infinite countable ordinal, consider the bijective function
eδ : ω → δ. The domain of F is the set of all pairs (s, B) such that:

1. s = {As
ξ : ξ < δ(s)} with δ = δ(s) an infinite countable ordinal,

2. the collection s ∪ {B} is an almost disjoint family of infinite subsets of ω,

3. the set I (s, B) =
{

i ∈ ω : B ∩ As
eδ(i)

\ ⋃

j<i
As
eδ( j)

�= ∅
}

is infinite.

Choose an increasing enumeration I (s, B) = {i s,Bk : k ∈ ω} and define F as
follows:

F(s, B)(k) = min

⎛

⎜
⎝B ∩ As

eδ
(
i s,Bk

)\
⋃

j<i s,Bk

As
eδ( j)

⎞

⎟
⎠ .

Let g : ω1 → ωω be a ♦(b)-sequence for F . Without loss of generality, g(δ) is a
strictly increasing function for every δ < ω1.

We show that g allows us to construct a winning strategy for the Builder as follows:
Let s = {As

ξ : ξ < δ(s)} be a partial match of the game Ga with δ = δ(s) ∈ pair(ω1).
The Builder plays As

δ as follows: if

A = ω\
⋃

i∈ω

⎛

⎝As
eδ(i)

\
⎛

⎝
⋃

j<i

As
eδ( j)

∪ g(δ)(i)

⎞

⎠

⎞

⎠

is infinite, we let As
δ = A. Otherwise As

δ is an arbitrary infinite set almost disjoint
from the members of s.

We will see that {As
ξ : ξ ≤ δ} is an almost disjoint family. Observe first that the set

As
eδ(i)

∩
⎛

⎝g(δ)(i) ∪
⋃

j<i

As
eδ( j)

⎞

⎠ =
(
As
eδ(i)

∩ g(δ)(i)
)

∪
⎛

⎝As
eδ(i)

∩
⋃

j<i

As
eδ( j)

⎞

⎠

is finite for every i ∈ ω. Therefore for i ∈ ω, the intersection As
eδ(i)

∩ A ⊆ As
eδ(i)

∩
(

g(δ)(i) ∪ ⋃

j<i
As
eδ( j)

)

is finite.
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We show that this is a winning strategy. Let s = {As
ξ : ξ < ω1} be a complete

match where the Builder played according to the strategy defined by g. We show that
s is maximal. Let B ∈ [ω]ω. Consider f ∈ 2ω1 coding (B, s), i.e. f (n) = 1 iff n ∈ B,
and f (ω · (1 + ξ) + n) = 1 iff n ∈ As

ξ .
We should find δ < ω1 such that B ∩ As

δ is infinite.
Aiming towards a contradiction assume that it is not the case, that is {B}∪{As

ξ : ξ <

ω1} is anAD family, and for every indecomposable ordinal δ (1)–(3) are satisfied. Let δ
be an indecomposable ordinalwhere g(δ) guesses f , so in particular, F(s, B) �∗ g(δ).

Let {ik = i s�δ,Bk : k ∈ ω} be the increasing enumeration of I (s, B). For k ∈ ω, let
lk = F(s, B)(k), i.e.

lk = min

⎛

⎝B ∩ As
eδ(ik )

\
⋃

j<ik

As
eδ( j)

⎞

⎠ .

Observe that the family {As
eδ(i)

\ ⋃

j<i
As
eδ( j)

: i ∈ ω} is disjoint, so the application

k �→ lk is injective. Since we have F(s, B) �∗ g(δ), the set

X = {lk : g(δ)(k) > F(s, B)(k)}

is infinite. It is enough to show X ⊆ As
δ . Indeed let lk ∈ X . Then lk < g(δ)(k) ≤

g(δ)(ik) and so

lk /∈ As
eδ(ik )

\
⎛

⎝
⋃

j<ik

As
eδ( j)

∪ g(δ)(ik)

⎞

⎠ .

Since g(δ) is increasing we see that for all i ≥ ik ,

lk /∈ As
eδ(i)

\
⎛

⎝
⋃

j<i

As
eδ( j)

∪ g(δ)(i)

⎞

⎠ .

This implies that lk ∈ A. In particular, A is infinite and As
δ = A. Hence X ⊆ As

δ

follows. �
An even simpler task is to show that

Lemma 4.2 If CH holds, then the Builder has a winning strategy in Ga.

Proof Let {Xα : α ∈ odd(ω1)} be an enumeration of [ω]ω.
Fact 4.1 Any infinite countable almost disjoint sequence can be extended.

If 〈Aξ : ξ < α〉 is a partial match for α an infinite limit ordinal, using Fact 4.1 let
the Builder play any infinite set Aα extending the sequence.
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Let 〈Aξ : ξ ≤ α〉 be a partial match of infinite length, where the Spoiler has played
Aα with α ∈ odd(ω1). If there is ξ ≤ α such that Aξ ∩ Xα is infinite, then let the
Builder play any Aα+1 almost disjoint from the previous ones using again Fact 4.1.
Otherwise, let Aα+1 = Xα . It is clear now that any complete match 〈Aξ : ξ < ω1〉
defines a maximal almost disjoint family. �

Since CH does not imply♦(b) by Proposition 8.2 and Theorem 8.3 in [15], we have
the following:

Corollary 4.1 The Builder having a winning strategy in Ga does not imply ♦(b).

We have still the following open question:

Open question 4.1 Does a = ω1 imply the Builder has a winning strategy in Ga?

As in the preceding sections, we may now consider longer games and the corre-
sponding ordinals aBuilder and aSpoiler . Obviously a ≤ aSpoiler ≤ aBuilder , and a
more general version of the preceding question asks whether these three numbers are
equal. As for u, we even do not know whether aBuilder and aSpoiler necessarily are
cardinals.

Also, ifwe define tNoSpoiler as theminimumordinalwhere the Spoiler does not have
a winning strategy in the game Gt of length α, we have mentioned in Section 2 that
tNoSpoiler = tSpoiler . With similar definitions, we do not know whether uNoSpoiler =
uSpoiler or aNoSpoiler = aSpoiler hold.
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