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Abstract
Tarski algebras, also known as implication algebras or semi-boolean algebras, are the
{→}-subreducts of Boolean algebras. In this paper we shall introduce and study the
complete and atomic Tarski algebras. We shall prove a duality between the complete
and atomic Tarski algebras and the class of covering Tarski sets, i.e., structures 〈X ,K〉,
where X is a non-empty set and K is non-empty family of subsets of X such that⋃

K = X . This duality is a generalization of the known duality between sets and
complete and atomic Boolean algebras. We shall also analize the case of complete and
atomic Tarski algebras endowed with a complete modal operator, and we will prove a
duality for these algebras.

Keywords Tarski algebras · Tarski sets · Representation theorem · Complete and
atomic Tarski algebras · Modal operator

Mathematics Subject Classification 03B45 · 03G25

1 Introduction

The variety of Tarski algebras, also know as implication algebras or semi-boolean
algebras, was introduced by Abbott [2] (see also [3,13]). These algebras are the alge-
braic counterpart of the {→}-fragment of the propositional classical calculus. It is
known that these algebras are also join semilattices with a last element. With the aim
of developing a representation for the finite Tarski algebras, the notion of the Tarski
set was introduced in [6]. A Tarski set is a pair 〈X ,K〉, where X is a non-empty set
andK is non-empty subfamily of the power algebraP(X). As was shown in [6], every
finite Tarski algebra A can be represented as a Tarski algebra of sets TK(X) ⊂ P(X),
for some finite Tarski set 〈X ,K〉. This representation is a generalization of the known
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Birkhoff’s representation theorem for finite Boolean algebras that assert that a finite
Boolean algebra A can be represented as the power set of its set of atoms At(A); each
element of the Boolean algebra corresponds to the set of atoms below it (the join of
which is the element). This power set representation can be constructedmore generally
for any complete atomic Boolean algebra (see for instance [10]). The main objective
of this paper is to introduce the class of complete and atomic Tarski algebras.We prove
that for any Tarski set 〈X ,K〉 such that

⋃
K = X (called a covering Tarski set) the

Tarski algebra of sets TK(X) is complete and atomic. Moreover, if A is a complete
and atomic Tarski algebra, then there exists a covering Tarski set 〈X ,K〉 such that
A ∼= TK(X). This bijection between covering Tarski sets and complete and atomic
Tarski algebras is indeed a categorical duality.

It is well known that eachKripke frame 〈X , R〉 has naturally associated an complete
and atomic Boolean algebra endowed with a completely additive operator. It was
proved by Thomason [14] (see also [12]) that the category of all completely additive
complete atomic modal algebras (CAMA) is dually equivalent to the category of all
generalized approximation spaces. In this paper we shall generalize this duality to
the setting of complete and atomic Tarski algebras endowed with a complete modal
operator.

The present paper is organized as follows. In Sect. 2 we shall provide all the needed
information on Tarski algebras, implicative filters and completely implicative filters,
to make the paper self-contained. In Sect. 3 we will introduce the notion of complete
and atomic Tarski algebras. In this section we will prove that the set of completely
implicative filters is isomorphic to the set of dual atoms of a Tarski algebra. In Sect. 4
we will prove the categorical duality between the categoryCTAwhose objects are the
complete and atomic Tarski algebras and whose morphisms are the complete Tarski
homomorphisms, and the category CTS whose objects are the covering Tarski sets
and whose morphism are the functions between sets satisfying a continuity condition.
In Sect. 5 we shall extended the above result to complete and atomic Tarski algebras
endowed with a complete modal operator. The results of this section extend those
given by Thomasson [14].

2 Tarski algebras

Wewill recall the definitions and some basic properties of Tarski algebras. For detailed
proofs of the results of this section see [2–4], and [13].

Definition 1 An algebra 〈A,→, 1〉 of type (2, 0) is a Tarski algebra if it satisfies the
following identities:

T1. 1 → a ≈ a,

T2. a → a ≈ 1,
T3. a → (b → c) ≈ (a → b) → (a → c) ,

T4. (a → b) → b ≈ (b → a) → a.

We note that the conditions T1 to T3 are an axiomatization of the variety of Hilbert
algebras (see [8]).We denote by T the variety of Tarski algebras and byB the variety of
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Complete and atomic Tarski algebras 901

Boolean algebras. Every Boolean algebra 〈A,∨,∧,¬, 0, 1〉 is a Tarski algebra where
the implication → is defined by a → b = ¬a ∨ b.

In a Tarski algebra Awe can define an order relation≤ by setting a ≤ b if and only if
a → b = 1. It iswell known that 〈A,≤〉 is an ordered set and that A is a join-semilattice
where the supremum of two elements a, b ∈ A is defined by a ∨ b = (a → b) → b
(see [3]). In [2,3] it was proved that there exists a bijective correspondence between
Tarski algebras and join-semilattices where each principal filter is a Boolean algebra.
If A is a Tarski algebra, then 〈[a) ,∨,∧a,¬a, a, 1〉 is a Boolean algebra, where [a) =
{b ∈ A : a ≤ b}, the negation of an element b ∈ [a) is defined as ¬ab = b → a, and
the infimun of two element b, c ∈ [a) is given by b ∧a c = (b → (c → a)) → a.
Conversely, if 〈A,∨, 1〉 is a join-semilattice such that [a) is a Boolean algebra for
each element a ∈ A, then one can define an implication → as x → y = ¬y(x ∨ y),
where ¬y is the Boolean negation in [y). So, 〈A,→, 1〉 is a Tarski algebra.

A non-empty subset F in a Tarski algebra A = 〈A,→, 1〉 is a called an implicative
filter, or filter, if 1 ∈ F, and for any a, b ∈ A, if a, a → b ∈ F, then b ∈ F . The set of
all filters of A is denoted by Fi (A). It is known that Fi (A) is a distributive lattice (see
[7] or [8]). A proper filter F ⊆ A is maximal if and only if for any H ∈ Fi (A) such
that F ⊆ H , we have F = H or H = A. The set of all maximal filters is denoted by
X(A). We recall that in a Tarski algebra A a filter P is maximal iff it is prime, i.e., for
all a, b ∈ A if a ∨ b ∈ P , then a ∈ P or b ∈ P.

Definition 2 Let A be a Tarski algebra. A filter F of A is complete, if for each D ⊆ F ,
if there exists the infimum

∧
D, then

∧
D ∈ F . A filter P of A is called a completely

prime if P is proper, and for each D ⊆ A, such that there exists
∨

D and
∨

D ∈ P ,
then D ∩ P �= ∅.
We denote by pt(A) the set of all completely prime filters of A. We note that every
completely prime filter is maximal, because it is prime, i.e., pt(A) ⊆ X(A).

Let A be a Tarski algebra. A subset I of A is called an ideal of A if b ∈ I and
a ≤ b, then a ∈ I , and a ∨ b ∈ I , for all a, b ∈ I . The following result can be found
in [5] for Hilbert algebras.

Theorem 3 Let A be a Tarski algebra. Let D ∈ Fi (A) and let I be an ideal of A such
that D ∩ I = ∅. Then there exists P ∈ X (A) such that D ⊆ P and P ∩ I = ∅.

From this Theorem we can give the following result.

Theorem 4 Let A be a Tarski algebra. Then

(1) For all a, b ∈ A, if a � b there exists P ∈ X (A) such that a ∈ P and b /∈ P.

(2) If P ∈ X (A) , then a → b /∈ P if and only if a ∈ P and b /∈ P.

3 Atomic and complete Tarski algebras

It is a known fact that every Boolean algebra is isomorphic to a field of sets (of
some set). But, if a Boolean algebra B is atomic and complete, then it is isomorphic to
powerset of some set with the usual set-theoretic operations of union, intersection, and
complement.Nowwewill introduce a class of Tarski algebraswhich is a generalization
of the atomic and complete Boolean algebras.
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902 S. A. Celani

Definition 5 Let A be a Tarski algebra. We shall say that a ∈ A − {1} is a dual atom,
if for all x ∈ A such that a ≤ x ≤ 1, then a = x or x = 1.

The set of all dual atoms of a Tarski algebra A will be denoted by Atd (A).

Lemma 6 Let A be a Tarski algebra. Then a is a dual atom iff for any b ∈ A, if b � a,
then b → a = a.

Proof Assume that a is a dual atom of A. As a ≤ b → a, and a is a dual atom,
and b � a, we have that a = b → a. Conversely. Let a ≤ b < 1. If b � a, then
b → a = a. So, b = a ∨ b = (b → a) → a = a → a = 1, which is a contradiction.
Thus, a = b, and consequently a is a dual atom. ��
Remark 7 We note that for all a, b, c ∈ A if b → a = a, and (b → c) → a = a, then
c → a = a. Otherwise, by Theorem 3, there exists P ∈ X(A) such that c → a ∈ P
and a /∈ P . Since P is maximal, then b ∈ P and b → c ∈ P , and as P is a filter,
a ∈ P , which is impossible. Thus, c → a = a.

Definition 8 A Tarski algebra A is complete if for each non-empty set D ⊆ A there
exists the supremum

∨
D.

We shall say that a complete Tarski algebra A is atomic if for each a �= 1, there
exists a set G ⊆ Atd(A) such that x = ∧

G. In other words, A is atomic iff each
element a �= 1 is infimum of the dual atoms.

Now let us give the most important examples of complete and atomic Tarski algebras.
Let X be a non-empty set. It is known that 〈P (X) ,⇒, X〉 is a Tarski algebra, where
the implication ⇒ is defined by

U ⇒ V = (X −U ) ∪ V ,

for U , V ∈ P(X).
It is known that for every finite Boolean algebra A there exists a finite set X such

that A ∼= P (X) (for example, the set X = X (A)). The converse is also valid: if X is a
finite non-empty set, then X ∼= X (P (X)). But in general, these good correspondences
are not held for Tarski algebras. Figure 1 shows a finite Tarski algebra A = B ∪{d} =
{a, b, c, d, 1}, where B = {a, b, c, 1} is the Boolean algebra with two atoms (with
implication denoted by →B), and the implication → is defined by:

Fig. 1 Finite Tarski 1

b c

a

d
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Fig. 2 Atomic Tarski

B

d

1

0

x → y =
⎧
⎨

⎩

x →B y i f x, y ∈ B
d i f x ∈ B and y = d
y i f y ∈ B and x = d

, (1)

for x, y ∈ A. It is easy to see that X (A) = {{c, d, 1} , {b, d, 1} , {a, b, c, 1}}, and A is
neither isomorphic to P(X(A)) nor to P(X(A)) − {∅}. We note Atd(A) = {b, c, d}.
This algebra is complete and atomic.

This example can be generalized. We can define a structure of Tarski algebra taking
as reduct a set B ∪ {d}, where B is the reduct of a complete and atomic Boolean
algebra, d /∈ B, d < 1, d is incomparable with the other elements of B − {1}, and the
implication → is defined as in (1) (see Fig. 2)

Theorem 9 Let A be a complete and atomic Tarski algebra. Then a filter P is com-
pletely prime if and only if there exists a ∈ Atd (A) such that P = A − (a] = (a]c .

Thus, the sets Atd(A) and pt(A) are isomorphic by means of the map

f : Atd(A) → pt(A)

given by

f (a) = (a]c ,

for each a ∈ Atd(A).

Proof Let P be a completely prime filter. Consider the set D = {b ∈ A : b /∈ P}. As
A is complete, there exists a = ∨ {d ∈ A : d /∈ P}. We prove that (a]c = P . If x ∈ P
but x ≤ a, then

∨ {d ∈ A : d /∈ P} ∈ P , and as P is completely prime, there exists
d ∈ D such that d ∈ P , which is impossible. Thus, P ⊆ (a]c. If x � a, but x /∈ P ,
then x ≤ ∨ {d ∈ A : d /∈ P} = a, which is impossible. Thus, P = (a]c.

We prove that a is a dual atom. Let b ∈ A such that b � a. So, b ∈ (a]c. If
b → a � a, we have b → a ∈ (a]c, as since (a]c is an implicative filter, a ∈ (a]c,
which is impossible. Thus, by Lemma 6 a is a dual atom.

Assume that a ∈ Atd (A). We prove that (a]c is filter. Let b, b → c ∈ (a]c .Then
b � a and b → c � a. By Lemma 6, b → a = a and (b → c) → a = a. By
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904 S. A. Celani

Remark 7, c → a = a. As a is a dual atom, a �= 1, i.e., c → a �= 1, and consequently
c ∈ (a]c . Then (a]c is a filter.

We prove that (a]c is completely prime. Let D ⊆ A such that
∨ {d ∈ A : d ∈ D} ∈

(a]c . If d /∈ (a]c ,for all d ∈ D, then d ≤ a, for all d ∈ D. So,
∨

d ≤ a, which is a
contradiction. Thus, there exist d ∈ D such that d ∈ (a]c.

Finally, it is clear that the map f : Atd(A) → pt(A) given by f (a) = (a]c is
bijective. ��
Lemma 10 Le A be a complete and atomic Tarski algebra. Then for all a, b ∈ A such
that a � b, there exists P ∈ pt(A) such that a ∈ P and b /∈ P.

Proof The proof is immediate taking into account Theorem 9 and the fact that A is
atomic. ��
Lemma 11 Let A be a complete and atomic Tarski algebra. Then

〈[a) ,∨,∧a,¬a, a, 1〉

is a complete and atomic Boolean algebra for each a ∈ A.

Proof Let D ⊆ [a). As A is complete there exists
∨

D. It is clear that
∨

D ∈ [a). We
prove that there exists the infimum of D in [a) and it is (

∨ ¬ad) → a = ∧
a D. We

note that (
∨ ¬ad) → a ≤ d, for all d ∈ D,otherwise there exists d0 ∈ D, and there

exists P ∈ pt(A) such that (
∨ ¬ad) → a ∈ P and d0 /∈ P . As a ≤ d0, a /∈ P . Since P

is an implicative filter,
∨ ¬ad /∈ P , and as P is completely prime,¬ad = d → a /∈ P ,

for all d ∈ D. In particular, d0 → a /∈ P , but P is maximal, we have d0 ∈ P , which
is impossible. Thus

∧
a D ≤ d, for all d ∈ D. Finally, if a ≤ x ≤ d, for all d ∈ D,

then
∨ ¬ad ≤ ¬ax . Thus, ¬a¬ax = x ≤ (

∨ ¬ad) → a = ∧
a D. ��

Definition 12 An implicative filter P of a complete and atomic Tarski algebra A is
complete iff for each D ⊆ P if there exists

∧
D, then

∧
D ∈ P .

Lemma 13 Let A be a complete and atomic Tarski algebra.

(1) Let {ai : i ∈ I } ⊆ A. For each x ∈ A, there exists
∧ {ai → x : i ∈ I } and∧ {ai → x : i ∈ I } = ∨ {ai : i ∈ I } → x.

(2) Let P be a filter. Then, P is a complete maximal filter iff it is completely prime.
(3) Let D ⊆ A such that there exists

∧
D. Then,

∨ {d → a : d ∈ D} =∧ {d : d ∈ D} → a, for all a ∈ A.

Proof (1) As ai ≤ ∨ {ai : i ∈ I }, we get c = ∨ {ai : i ∈ I } → x ≤ ai → x , for each
i ∈ I . So, {(ai → x : i ∈ I } ∈ [c), and as [c) is a completeBoolean algebra there exists
the infimum

∧ {(ai → x : i ∈ I }. Then, ∨ {ai : i ∈ I } → x ≤ ∧ {(a → x : i ∈ I }.
Since

∧ {(a → x : i ∈ I } ≤ ai → x , we have ai ≤ ∧ {(a → x : i ∈ I } →
x , for each i ∈ I . Then,

∨ {ai : i ∈ I } ≤ ∧ {(a → x : i ∈ I } → x , and
so

∧ {(a → x : i ∈ I } ≤ ∨ {ai : i ∈ I } → x . Thus,
∧ {(a → x : i ∈ I } =∨ {ai : i ∈ I } → x .

(2) Assume that P is a complete maximal filter. Let
∨ {ai : i ∈ I } ∈ P . Suppose

that ai /∈ P , for all i ∈ I . As P is proper, there exists x ∈ A such that x /∈ P . As P is
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Complete and atomic Tarski algebras 905

maximal, ai → x ∈ P , for each i ∈ I , by item (1) and taking into account that P is
complete,

∧ {(ai → x : i ∈ I } = ∨ {ai : i ∈ I } → x ∈ P . Then by modus ponens,
x ∈ P , which is a contradiction.Then there exists i ∈ I such that ai ∈ P .

Assume that P ∈ pt(A). Let D ⊆ P and we suppose that there exists
∧

D. Let
a = ∧

D. By Lemma 11 〈[a) ,∨,∧a,¬a, a, 1〉 is a complete and atomic Boolean
algebra. It is clear that

∧
D = ∧

a D. So, 1 = a → a = ∧
a D → a = ¬a

∧
D =∨

a {¬ad : d ∈ D} = ∨ {¬ad : d ∈ D} ∈ P . Then there exists d ∈ D, such that
¬ad = d → a ∈ P . As d ∈ P , we have a = ∧

D ∈ P . Thus, P is complete.
(3) Let a ∈ A, D ⊆ A and suppose that there exists

∧
D.We note that a ≤ ∧

D →
a and a ≤ ∨ {d → a : d ∈ D}. By Lemma 11 〈[a) ,∨,∧a,¬a, a, 1〉 is a complete
and atomic Boolean algebra. Thus,

∨ {d → a : d ∈ D} = ∧
D → a Suppose that∧

D → a �
∨ {d → a : d ∈ D}. By Lemma 10 there exists P ∈ pt(A) such that∧

D → a ∈ P and
∨ {d → a : d ∈ D} /∈ P . So, d → a /∈ P , for all d ∈ D. As P

is maximal, a /∈ P , and d ∈ P , for all d ∈ D. Then
∧

D ∈ P , because P is complete
by (2). As

∧
D → a ∈ P , we get that a ∈ P , which is a contradiction. ��

4 Representation and duality

In this section we shall prove the mentioned representation for complete and atomic
Tarski algebras. First, we define the objects that are duals of complete and atomic
Tarski algebras.

Definition 14 A Tarski set is a pair 〈X ,K〉 where X is a non-empty set and K is a
non-empty subset of P (X). We shall say that 〈X ,K〉 is a covering if for every x ∈ X
there exists W ∈ K such that x ∈ W , i.e.,

⋃
K = X .

The dual of a Tarski set 〈X ,K〉 is the subset TK (X) of P (X) defined by:

TK(X) = {
U ∈ P (X) : ∃W ∈ K& ∃S ⊆ W (U = Wc ∪ S)

}
.

Any subalgebra of Tarski algebra of the form TK(X) is called a Tarski algebra of sets.
We note that if X ∈ K,then TK(X) = P(X), because for any U ⊆ X , U = Xc ∪ U .
Thus, all results given for Tarski algebra of sets are valid for Boolean algebras of sets.

Theorem 15 Let 〈X ,K〉 be a covering Tarski set. Then 〈TK (X) ,⇒, X〉 is a complete
and atomic Tarski algebra and the map

εX : X → pt(TK(X))

given by

εX (x) = {U ∈ TK(X) : x ∈ U } ,

for each x ∈ X, is a bijection.
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906 S. A. Celani

Proof In [6] it was proved that TK(X) is a Tarski algebra. We prove that it is complete.
Let D ⊆ TK (X). Take any U ∈ D. Then there exists W ∈ K and S ⊆ W such that
U = Wc ∪ S. So,

Wc ∪
(
W ∩

(⋃
D

))
= (Wc ∪ W ) ∩

(
Wc ∪

⋃
D

)
=

⋃
D.

As W ∩ (⋃
D

) ⊆ W , we have that
⋃

D ∈ TK (X), i.e., TK(X) is complete.
To prove that TK(X) is atomic we prove first that

U ∈ Atd(TK(X)) iff ∃x ∈ X (U = {x}c).

LetU ∈ Atd(TK(X)). AsU �= X , then there exists x /∈ U . So,U ⊆ {x}c . Moreover,
asU ∈ TK (X), there exists W ∈ K and S ⊆ W such thatU = Wc ∪ S. Then, x ∈ W
and x /∈ S. Then S ∪ {x} ⊆ W . So, Ux = Wc ∪ S ∪ {x} = U ∪ {x} ∈ TK (X) . Since
U ⊂ Ux and U is a dual atom, Ux = X . Thus, for every y ∈ X such that y �= x, we
get y ∈ U , i.e., U = {x}c .

Let x ∈ X . As 〈X ,K〉 is a covering, there exists W ∈ K such that x ∈ W .

Let Sx = W − {x}. So, Sx ⊂ W and Wc ∪ Sx = {x}c ∈ TK (X). It is clear that
{x}c ∈ Atd(TK(X)). Moreover, ifU ∈ TK(X), for each x /∈ U , we getU ⊆ {x}c, and
thus

U =
⋂ {{x}c : x /∈ U

}
,

i.e., U is infimum of dual atoms. So, TK(X) is a complete and atomic Tarski algebra.
It is easy to see that εX (x) ∈ pt(TK(X)) for each x ∈ X (see Theorem 9). Then

the map ε is well-defined. We prove that εX is injective. Let x, y ∈ X . If x �= y, then
clearly {x}c ∈ εX (y), and {x}c /∈ εX (x). Thus, x �= y.

We prove that εX is onto. Let P ∈ pt(TK(X)). By Theorem 9, there exists U ∈
At(TK(X)) such that P = (U ]c. SinceU is a dual atom of TK(X), there exists x ∈ X
such that U = {x}c . Then it is easy to see that εX (x) = P , and thus εX is onto. ��
Remark 16 Let 〈X ,K〉 be a covering Tarski set. We note that for each x ∈ X and for
each U ∈ TK(X)) we have the following equivalences:

U ∈ εX (x) ⇔ x ∈ U ⇔ U ∩ {x} �= ∅
⇔ U ⊆ {x}c ⇔ U /∈ ({x}c]
⇔ U ∈ ({x}c]c

Thus, instead of the map εX : X → pt(TK(X)) we can use the map

λX : X → Atd(TK(X))

defined by

λX (x) = {x}c .
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Complete and atomic Tarski algebras 907

Let A be a complete and atomic Tarski algebra. Let us consider the mapping

ϕA : A → P(pt(A)),

defined by

ϕA(b) = {P ∈ pt(A) : b ∈ P} ,

for each b ∈ A. Let us consider the family of subsets KA = {ϕA(b)c : b ∈ A}. The
pair

〈pt(A),KA〉

is a Tarski set called the dual Tarski set of A or the associated Tarski set of A. As
Atd(A) ∼= pt(A), we have P(Atd(A)) ∼= P(pt(A)). Alternatively, we may consider
the map

φA : A → P(Atd(A))

define as

φA(b) = {
a ∈ Atd(A) : b � a

} = (b]c ∩ Atd(A).

Definition 17 Let A and B be two complete and atomic Tarski algebras. A complete
homomorphism between A and B is a Tarski homomorphism h : A → B such that
h(

∨ {d : d ∈ D} = ∨ {h(d) : d ∈ D}, for any non-empty set D ⊆ A.

Theorem 18 Let A be a complete and atomic Tarski algebra. Then, 〈pt(A),KA〉 is a
covering Tarski set, and the map ϕA is a complete isomorphism of Tarski algebras.

Proof We first note that for every a ∈ A, ϕA (a) ∈ TKA(pt(A)), because ϕA (a) =
ϕA (a) ∪ ∅. Let a, b ∈ A and P ∈ pt(A). Taking into account that P is a maximal
implicative filter, we have a → b /∈ P iff a ∈ P and b /∈ P iff P ∈ ϕA(a) and P /∈
ϕA(b) iff P /∈ ϕA(a)c ∪ϕA(b) = ϕA(a) ⇒ ϕA(b). So, ϕA is a Tarski homomorphism.
Suppose that a � b. As A is atomic, there exists p ∈ Atd(A) such that a � p and
b ≤ p. So, (p]c ∈ ϕA(a) and (p]c /∈ ϕA(b), i.e.,ϕA(a) � ϕA(b). Thus,ϕA is injective.
As each P ∈ pt(A) is proper, then there exists b ∈ A such that b /∈ P , i.e., P ∈ ϕA(b)c.
So, 〈pt(A),KA〉 is covering.

We prove that ϕA is onto. Let U ∈ TKA (pt(A)). Then there exists ϕ(a)c ∈ KA and
S ⊆ ϕ(a)c such thatU = ϕA(a)∪S. For each P ∈ S there exists a unique b ∈ Atd(A)

such that P = (b]c. Then

S =
⋃

{{P} : P ∈ S} =
⋃ {{

(b]c
} : (b]c ∈ S

} =
⋃ {

ϕA(b)c : (b]c ∈ S
}
.

Consider the set B = {
b : (b]c ∈ S

}
. As S ⊆ ϕA(a)c, we get a ≤ b for all b ∈

B. Since A is complete, [a) is a complete Boolean algebra. So there exists c =∧ {b : b ∈ B}. Thus, a ≤ c, and
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S =
⋃{

ϕA(b)c : (b]c ∈ S
} = (

⋂
{ϕA(b) : b ∈ B})c = ϕA(c)c.

Then U = ϕA(a) ∪ ϕA(c)c = ϕA(c → a). So, ϕA is onto, and thus ϕA [A] =
TKA(pt(A)). ��
By Theorems 18 and 15 we can identify a complete atomic Tarski algebra A with
the Tarski algebra TKA (pt(A)). This means we need no longer to consider abstract
complete atomic Tarski algebras, but only those of the form TK(X) for a covering
Tarski set 〈X ,K〉. This correspondence can be extended to a categorical duality.

The following result characterizes the complete homomorphisms in term of com-
pletely prime filters.

Lemma 19 Let A and B be two complete and atomic Tarski algebras. A Tarski homo-
morphism h : A → B is complete iff h−1(P) ∈ pt(A) for each P ∈ pt(B).

Proof ⇒) Assume that h is a complete homomorphism. Let P ∈ pt(B). If∨ {d : d ∈ D} ∈ h−1(P), then h(
∨ {d : d ∈ D}) = ∨

({h(d) : d ∈ D} ∈ P , and
so h(d) ∈ P , for some d ∈ D. So, d ∈ h−1(P), for some d ∈ P . Thus, h−1(P) is
completely prime.

⇐) We note that h is monotonic, because it is a Tarski homomorphism. So,∨
({h(d) : d ∈ D} ≤ h(

∨ {d : d ∈ D}).
Suppose that h(

∨ {d : d ∈ D}) �
∨

({h(d) : d ∈ D}. As B is atomic, there exist
b ∈ Atd(B) such that h(

∨ {d : d ∈ D} � b and
∨

({h(d) : d ∈ D} ≤ b. Then
h(

∨ {d : d ∈ D} ∈ (b]c and
∨

({h(d) : d ∈ D} /∈ (b]c. As (b]c is completely prime,
h−1((b]c) is completely prime. Then there exists d ∈ D such that d ∈ h−1((b]c) i.e.,
h(d) ∈ (b]c. So, h(d) � b, which is impossible. Thus, h is complete. ��
Definition 20 Let 〈X1,K1〉 and 〈X2,K2〉 be two covering Tarski sets. A map f :
X1 → X2 is a Tarski map iff f −1(U ) ∈ K1, for each U ∈ K2.

Lemma 21 Let 〈X1,K1〉 and 〈X2,K2〉 be two covering Tarski sets. If f : X1 → X2
is a Tarski map then the map

S( f ) : TK2(X2) → TK1(X1)

defined by

S( f )(U ) = f −1(U ),

for each U ∈ TK2(X2), is a complete homomorphism.

Proof Assume that f : X1 → X2 is aTarskimap. IfU ∈ TK2(X2). So there existsW ∈
K2 and S ⊆ W such that U = Wc ∪ S. So S( f )(U ) = f −1(U ) = f −1(Wc ∪ S) =
f −1(Wc)∪ f −1(S) ∈ TK1(X1), because f −1(W ) ∈ K1 and f −1(S) ⊆ f −1(W ). So,
S( f ) is well-defined. Moreover, it is clear that S( f )(X2) = X1 and that

S( f )
(⋃ {

Ui : Ui ∈ D ⊆ TK2(X2)
} =

⋃ {
S( f )(Ui ) : Ui ∈ TK2(X2)

}
,
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for any D ⊆ TK2(X2). If U , V ∈ TK2(X2), then S( f )(U ⇒ V ) = S( f )(U ) ⇒
S( f )(V ), for all U , V ∈ TK2(X2). Thus, S( f ) is a complete homomorphism. ��
Lemma 22 Let A and B be two complete and atomic Tarski algebras. If h : A → B
is a complete homomorphism, then the function

T(h) : pt(B) → pt(A),

defined by

T(h)(P) = h−1(P),

for each P ∈ pt(B), is a Tarski map.

Proof By Lemma 19 T(h)(P) = h−1(P) is a completely prime filter of A, for each
P ∈ pt(B). So, T(h) is well-defined. Let a ∈ A. Then P ∈ T(h)−1(ϕA(a)c) iff
T(h)(P) = h−1(P) /∈ ϕA(a) iff a /∈ h−1(P) iff h(a) /∈ P iff P ∈ ϕA(h(a))c. So,
T(h)−1(ϕA(a)c) = ϕB(h(a)). Thus, T(h) is a Tarski map. ��
Let CTA be the category whose objects are the complete and atomic Tarski algebras
and the arrows of it are all complete homomorphisms between complete and atomic
Tarski algebras. Let CTS be the category whose objects are the covering Tarski sets
and the arrows are the Tarski maps between covering Tarski sets.

We define a contravariant funtor S : CTA → CTS as follows. For each Tarski
algebra A we consider the covering Tarski set

S(A) = 〈pt(A),KA〉 ,

and for each morphism of CTA h : A → B we consider the Tarski map

S(h) : S(B) → S(A)

defined by S(h)(P) = h−1(P), for each P ∈ pt(B).
We define a contravariant funtor T : CTS → CTA as follows. For each covering

Tarski set 〈X ,K〉 we consider the Tarski algebra of set

T(X) = 〈TK(X),⇒, X〉 ,

and for each morphism of CTS f : X1 → X2, where 〈X1,K1〉 and 〈X2,K2〉 are
covering Tarski sets, we consider the complete homomorphism

T( f ) : T(X2) → T(X1)

defined by

T ( f )(U ) = f −1(U ),

for each U ∈ TK(X2).
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If A is a Tarski algebra, then by Theorem 18, ϕA : A → T(S(A)) is a complete
isomorphism of Tarski algebras. Thus, ϕ is a natural transformation from IdCTA to
T ◦ S.

Lemma 23 Let 〈X ,K〉 be a covering Tarski set. Then the map εX : X → pt(TK(X))

defined by εX (x) = {U ∈ TK(X) : x ∈ U } is a Tarski map.
Proof We prove that ε−1(H) ∈ K, for each H ∈ KTK(X). Indeed. If H ∈ KTK(X),
then there exists U ∈ TK(X) such that H = ϕTK(X)(U )c. As U ∈ TK(X) there exists
W ∈ K and S ⊆ W such that U = Wc ∪ S. So, we have the folllowing equivalence:

x ∈ ε−1(H) iff ε(x) ∈ H
iff ε(x) /∈ ϕTK(X)(U )

iff U /∈ ε(x)
iff x /∈ U = Wc ∪ S
iff x ∈ W .

��
By Theorem 15 and Lemma 23, the map ε : X → S(T(X)) is a natural transformation
from IdCTS to S ◦ T. Therefore we can formulate the following result.

Theorem 24 The categories CTA and CTS are dually equivalent.

5 Complete Modal Tarski algebras

A modal operator ♦ defined in a Boolean algebra A is completely additive if it dis-
tributes over the join of every subset of the algebra. Dually, the modal operator �
defined by �a = ¬♦¬a, distributes over the meet of every subset of the algebra. It
was proved by Thomason that the category of all completely additive complete atomic
modal algebras (CAMA) is dually equivalent to the category of all Kripke frames
[14] (see also [9,11,12]). In this section we are going to extend this representation to
the class of algebras that correspond to the {�,→}-reduct of complete atomic modal
algebras.

Definition 25 Amodal Tarski algebra is an algebra 〈A,�〉where A is a Tarski algebra
and � is a unary operator defined in A such that it verifies the following conditions:

MT1 �1 = 1,
MT2 � (a → b) ≤ �a → �b, for all a, b ∈ A.

Modal Tarski algebras were studied in [6] as a generalization of the modal algebras.
The particular case of monadic Tarski algebras was studied in [1]. The class of modal
Tarski algebras is a variety denoted by MT .

A relational frame or frame is a pair 〈X , R〉 where X is a set and R is a binary
relation defined in X . Given a frame 〈X , R〉, define a modal operator

�R : P(X) → P(X)
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by

�R(U ) = {x ∈ X : R (x) ⊆ U } .

Then 〈P (X) ,�R,⇒, X〉 is a modal Tarski algebra. Now we define proper modal
Tarski algebras, i.e, not Boolean algebras, by means of Tarski sets endowed with a
relation.

Definition 26 A relational Tarski set is a triple 〈X ,K, R〉 such that 〈X ,K〉 is a Tarski
set and R is a binary relation of X such that �R(U ) ∈ TK(X), for each U ∈ TK(X).

Lemma 27 If 〈X ,K, R〉 is relational Tarski set, then 〈TK(X),�R,⇒, X〉 is a modal
Tarski algebra.

Proof It is obvious. ��
Let 〈X ,K, R〉 be a relational Tarski set. Any modal subalgebra of a modal Tarski
algebra of the form 〈TK(X),�R〉 = 〈TK(X),�R,⇒, X〉 will be called a modal
Tarski algebra of sets.

Suppose that D ⊆ TK(X) such that
⋂

D ∈ TK(X). So, it is easy to see that

�R

(⋂
D

)
=

⋂
{�R(U ) : U ∈ D} ∈ TK(X).

This fact motivates the following definition.

Definition 28 A complete and atomic modal Tarski algebra is a modal Tarski algebra
〈A,�〉 such that A is complete, and atomic, and � is complete modal operator, i.e.,
�(

∧
D) = ∧ {�d : d ∈ D}, for any set D ⊆ A such that there exists

∧
D.

The category of complete and atomicmodal Tarski algebraswewill denoted byCMTA.

Definition 29 A relational Tarski set 〈X ,K, R〉 is complete if 〈TK(X),�R〉 ∈ CMTA.

Now we shall study the representation of modal Tarski algebras.
Let 〈A,�〉 ∈ CMTA. Let us define a binary relation RA ⊆ pt(A) × pt(A) by:

(P, Q) ∈ RA ⇔ �−1 (P) ⊆ Q,

where �−1 (P) = {a ∈ A : �a ∈ P}. Since there exists a bijective correspondence
between pt(A) and Atd(A), we have that for P, Q ∈ pt(A) there exist p, q ∈ Atd(A)

such that P = (p]c and Q = (q]c. So,

�−1 (P) ⊆ Q ⇔ �−1
(
(p]c

) ⊆ (q]c

⇔ ∀x ∈ A (�x ∈ (p]c ⇒ x ∈ (q]c)
⇔ ∀x ∈ A (�x � p ⇒ x � q)

⇔ ∀x ∈ A (x ≤ q ⇒ �x ≤ p)
⇔ �q ≤ p.
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Therefore, instead of the relation RA given in pt(A) we can define a relation

SA ⊆ Atd(A) × Atd(A)

as

(p, q) ∈ RA ⇔ �q ≤ p.

The structure

〈pt(A), RA,KA〉 ,

is called the relational Tarski frame associated to A.

Remark 30 Let 〈A,�〉 ∈ CMTA. For each P ∈ pt(A), �−1(P) is a complete filter.
Indeed. Let D ⊆ �−1(P) and we suppose that there exists

∧
D. So, �d ∈ P , for all

d ∈ D. By Lemma 13, P is complete. Then,
∧ {�d : d ∈ D} = �(

∧
D) ∈ P , i.e.,∧

D ∈ �−1(P). Thus, �−1(P) is a complete filter.

Lemma 31 Let 〈A,�〉 ∈ CMTA. Let P ∈ pt (A) and x ∈ A. Then, �x /∈ P if and
only if there exists Q ∈ pt (A) such that (P, Q) ∈ RA and x /∈ Q.

Proof Let us suppose that �x /∈ P. By Theorem 9, there exists a ∈ Atd(A) such
that P = (a]c . Then, �x ≤ a. As x �= 1, x = ∧

[x) ∩ Atd(A). We prove that there
exists b ∈ [x) ∩ Atd(A) such that �b ≤ a. Suppose the contrary. Then by Lemma 6,
�b → a = a, for each b ∈ [x) ∩ Atd(A). So

∨ {�b → a : b ∈ [x) ∩ Atd(A)} = a.
By Lemma 13,

∧
�b → a = �x → a = a, i.e., �x � a, which is impossible. Thus,

there exists b ∈ [x)∩Atd(A) such that �b ≤ a. So, x /∈ (b]c = Q and �−1(P) ⊆ Q.
The other direction is immediate. ��

Let 〈X1,K1, R1〉 and 〈X2,K2, R2〉 be two relational Tarski sets. A relational iso-
morphism is a bijective Tarski map f : X1 → X2 such that

(x, y) ∈ R1 iff ( f (x), f (y)) ∈ R2,

for all x, y ∈ X1.

Theorem 32 Let 〈X ,K, R〉 be a complete and covering relational Tarski set. Then
〈TK (X) ,�R〉 is a complete Tarski modal algebra and the map εX : X → pt(TK(X)),
given by εX (x) = {U ∈ TK(X) : x ∈ U }, is a relational isomorphism.
Proof By Theorem 15, TK (X) is a complete and atomic Tarski algebra and the map
εX is a bijection. By Lemma 23 εX is a Tarski map. Let RK = RTK(X). We recall that
U ∈ εX (x) iffU ∈ ({x}c]c. We note that for any x, y ∈ X the following equivalences
are valid:

(εX (x), εX (y)) ∈ RK ⇔ �−1
R (εX (x)) ⊆ εX (y) ⇔ �−1

R (
({x}c]c) ⊆ ({y}c]c

⇔ �R({y}c) ⊆ {x}c ⇔ �R({y}c) ∩ {x} = ∅
⇔ x /∈ �R({y}c) ⇔ R(x) � {y}c
⇔ R(x) ∩ {y} �= ∅ ⇔ (x, y) ∈ R.
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Thus, εX is a relational isomorphism. ��
Theorem 33 Let 〈A,�〉 ∈ CMTA. Then, 〈pt(A),KA, RA〉 is a covering relational
Tarski set and the map ϕA : A → TK(pt(A)) is an isomorphism.

Proof By Theorem 18, 〈pt(A),KA〉 is a covering Tarski set and ϕA is an isomorphism
of Tarski algebras. Let a ∈ A, and let P ∈ pt(A). Then �a /∈ P iff there exists
Q ∈ X(A) such that (P, Q) ∈ RA and a /∈ Q. Thus, ϕA(�a) = �RA(ϕ(a)). So, ϕA

is a modal homomorphism. ��
A map f : X1 → X2 between two relational Tarski sets 〈X1,K1, R1〉 and
〈X2,K2, R2〉 is a bounded morphism if f satisfies the following conditions:

(TMO) f is a Tarski map,
(MF1) If (x, y) ∈ R1, then ( f (x), f (y)) ∈ R2,
(MF2) If ( f (x), z) ∈ R2, then there exists y ∈ X1 such that (x, y) ∈ R1 and

f (y) = z.

Let 〈A,�〉 and 〈B,�〉 be two complete modal Tarski algebras. A complete modal
homomorphism between 〈A,�〉 and 〈B,�〉 is a complete homomorphism h : A → B
such that h(�a) = �h(a), for any a ∈ A.

Theorem 34 Let 〈X1,K1, R1〉 and 〈X2,K2, R2〉 be relational covering Tarski sets. If
f : X1 → X2 is a bounded morphism, then the map T( f ) : TK2(X2) → TK1(X1)

defined by T(U ) = f −1(U ), for each U ∈ TK2(X2), is a complete modal homomor-
phism.

Proof It is clear that T is a complete Tarski homomorphism. By condition (MF1), it
is easy to see that f −1(�R2(U )) ⊆ �R1( f

−1(U )), and by condition (MF2) we can
prove that �R1( f

−1(U )) ⊆ f −1(�R2(U )), for each U ∈ TK2(X2). ��
Theorem 35 Let 〈A,�〉 and 〈B,�〉 be two complete modal Tarski algebras. If h :
A → B is a complete modal homomorphism, then the function S : pt(B) → pt(A)

defined by S(P) = h−1(P), for each P ∈ pt(B), is a bounded morphism.

Proof Condition (MF1) can be simply checked. We prove the condition (MF2). Let
(h−1(P), Q) ∈ RA, i.e., �−1(h−1(P)) ⊆ Q. We recall that the filter �−1(P) is
complete. Moreover, (h(Qc)

] = {b ∈ B : ∃x /∈ Q (b ≤ h(x)} is an ideal of B. It is
easy to see that �−1(P) ∩ (h(Qc)

] = ∅. So, by Lemma 13, there exists a completely
prime filter D of A such that �−1(P) ⊆ D and (h(Qc)

] ∩ D = ∅. As D is maximal,
h−1(D) = Q. Thus, S is a bounded morphism. ��
Let CTMA be the category whose objects are the complete and atomic modal Tarski
algebras and the arrows of it are all complete modal homomorphisms between com-
plete and atomic modal Tarski algebras. Let CTMS be the category whose objects
are the relational covering Tarski sets and the arrows are bounded morphism between
relational covering Tarski sets. Taking into account Theorem 24 we can prove the
following result.

Theorem 36 The categories CTMA and CTMS are dually equivalent.
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