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Abstract
Working in subsystems of second order arithmetic, we formulate several represen-
tations for hypergraphs. We then prove the equivalence of various vertex coloring
theorems toWKL0, ACA0, and Π1

1 -CA0.
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1 Introduction

A hypergraph consists of a set of vertices together with a set of edges. While edges
in graphs always have exactly two vertices, hypergraphs may have edges of any car-
dinality, finite or infinite. Some authors exclude edges that are empty or have a single
vertex, but for this article, edges may be of any size.

In this article, we examine the logical strength of theorems about vertex colorings
of hypergraphs. We have several motivations for pursuing this topic. Unlike graphs,
there are many reasonable choices for the representations of edges in hypergraphs
and many definitions for types of vertex colorings. Our goal is to examine the robust-
ness of coloring theorems, that is, how changes in edge representations and coloring
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type affect the logical strength of the coloring theorems. Additionally, we found that
for hypergraphs with infinite edges, the existence of vertex colorings is not an arith-
metically definable property as it is for graphs. After considering alternatives for the
representations of edges, we will turn to results on the strength of theorems related to
three types of vertex colorings.

2 Representations of edges

The edges of hypergraphs can be presented in a variety of ways. If all the edges
are finite, each edge can be encoded by a single number. In this case, the edges
can be represented by a set of codes or by a sequence of codes. Finite edges and
infinite edges can both be represented by a sequence of characteristic functions. Some
changes in representation can be carried out in RCA0, while others require additional
set comprehension, as shown by the next four results.

Lemma 1 (RCA0) If H is a hypergraph with finite edges represented by a set of edges,
then there is a hypergraph H ′ with exactly the same edges represented by a sequence
of its edges, possibly with repetitions.

Proof We argue in RCA0. Suppose H = 〈V , E〉 is a hypergraph with finite edges,
where E is a set of integer codes for the edges of H . If E is empty, then V together
with the empty sequence is the desired H ′. If E is nonempty, let e0 be an integer code
for an edge of H . Define the function f : N → N by

f (n) =
{
n n ∈ E

e0 otherwise

Then the range of f is E , and V together with f represents H ′ using a sequence of
codes. ��
Lemma 2 (RCA0) If H is a hypergraph with finite edges represented by a sequence of
its edges, then there is a hypergraph H ′ with exactly the same edges represented by a
sequence of characteristic functions for its edges.

Proof We argue in RCA0. Suppose H = 〈V , E〉 is a hypergraph with finite edges,
where E is the sequences for the edges of H . Define the characteristic function χi by

χi (v j ) =
{
1 v j ∈ 〈ei 〉
0 otherwise

By recursive comprehension, the sequence of characteristic function 〈χi 〉i∈N exists.
The vertices V together with the sequence of characteristic functions for each edge
represent H ′. ��
Theorem 1 (RCA0) The following are equivalent:
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(1) ACA0.
(2) If H is a hypergraph with finite edges represented by a sequence of edges, then

H can be represented by a set of edges.

Proof Firstwewill prove that (1) implies (2).Reasoning inACA0, let H be ahypergraph
with finite edges represented by the sequence 〈ei 〉i∈N. Arithmetical comprehension can
prove the edge set {e | ∃i(e = ei )} exists.

To prove the converse, by Lemma III.1.3 of Simpson [8], it suffices to use item (2)
to prove the existence of the range of an injection. Let g : N → N be an injection.
Define the hypergraph H = 〈V , E〉 as follows. Let N be the set of vertices. Define a
sequence of edges 〈en〉n∈N by en = {0, g(n) + 1}. Note that m is in the range of g if
and only if the set {0,m + 1} is an edge of H . Given the set of edges of H , recursive
comprehension proves the existence of the range of g. ��
Theorem 2 (RCA0) The following are equivalent:

(1) ACA0.
(2) If H is a hypergraph with finite edges represented by a sequence of characteristic

functions, then H can be represented by a sequence of finite set codes for edges.

Proof We begin by proving that (1) implies (2). Reasoning in ACA0, let H be a hyper-
graph with finite edges represented by the sequence of characteristic functions 〈ei 〉i∈N.
Define si = { j | ei ( j) = 1} for i ∈ N. Then the sequence 〈si 〉i∈N is arithmetically
definable.

To prove the converse, it suffices to use statement (2) to prove the existence of a
range of an injection. Let g : N → N be that injection. We will define a hypergraph
H with vertex set N and edge set given by the sequence of characteristic functions
〈ei 〉i∈N. Informally, edge ei will contain the two even vertices 2i and 2i + 2, and will
contain an odd numbered vertex if and only if i is in the range of g. To be precise,
define ei (n) by:

ei (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 n = 2i ∨ n = 2i + 2

0 n = 2 j ∧ j /∈ {i, i + 1}
1 n = 2 j + 1 ∧ g( j) = i

0 n = 2 j + 1 ∧ g( j) �= i

The recursive comprehension axiomproves the existence of 〈ei 〉 using g as a parameter.
Applying the principle of statement 2, let 〈si 〉i∈N be a sequence of finite set codes for
the edges of H . Given any value y, successively examine the set codes until we locate
the unique si encoding a set containing 2y and 2y + 2. If this set contains only 2y and
2y + 2, then y is not in the range of g, but if the set also contains another element,
then y is in the range of g. Thus, recursive comprehension proves the existence of the
range of g. ��

In order to state compactness results for vertex colorings, we need to consider finite
substructures of hypergraphs. The following terminology is based on that of Berge
[1]. When constructing substructures of a hypergraph H , one can either require that
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all edges in the substructure are edges of H , or allow edges of the substructure to be
subsets of edges of H .

Definition 1 A partial hypergraph of a hypergraph H consists of a subset V of the
vertices of H and a subset E of the edges of H such that for every edge e ∈ E , e ⊂ V .

Definition 2 A partial subhypergraph of a hypergraph H consists of a subset V of the
vertices of H and a set E of subsets of V such that for every e ∈ E , there is an edge
e′ ∈ H such that e = e′ ∩ V .

3 Vertex colorings and finite edges

Avertex coloring is amap from the vertices of a hypergraph into a set of colors, usually
coded by a subset ofN. In the literature, most definitions for vertex colorings are stated
for finite hypergraphs, but those listed below extend naturally to infinite hypergraphs.
The definition for conflict-free colorings is based on that of Smorodinsky [9]. The
other definitions can be found in the book of Berge [1].

Definition 3 Suppose 〈V , E〉 is a hypergraph. Let χ : V → N be a coloring of the
vertices. We say:

(1) χ is a k-coloring if the range of χ is contained in {0, 1, . . . k − 1}.
(2) χ is proper if χ is non-constant on each edge that contains more than one vertex.
(3) χ is strong if χ is injective on each edge.
(4) χ is conflict-free [9] if each edge contains one vertex whose color matches no

other vertex in the edge. That is, ∀e∃ j |{v ∈ e | χ(v) = j}| = 1.

Theorem 3.4 of Hirst [5] states that WKL0 is equivalent to the statement that every
locally k-colorable graph has a k-coloring. The following result generalizes this theo-
rem to the hypergraph setting, for hypergraphs with sequences or sets of finite edges.
This result shows that for some colorings and edge representations, this basic vertex
coloring theorem is robust.

Theorem 3 (RCA0) For k ≥ 2, the following are equivalent:

(1) WKL0.
(2) Let H be a hypergraph with a sequence of finite edges. If every finite partial

hypergraph of H has a proper k-coloring, then H has a proper k-coloring.
(3) Statement (2) with “proper” replaced by “conflict-free”.
(4) Statement (2) with “sequence of edges” replaced by “set of edges.”
(5) Statement (3) with “sequence of edges” replaced by “set of edges.”

Proof To prove that (1) implies (2), assume WKL0 and let H be a hypergraph with
vertex set {v1, v2, . . .} such that every finite partial hypergraph of H has a proper
k-coloring. For every n, let mn be the least natural number such that mn > mn−1 and
if a vertex vi appears in one of the first n edges of H then i ≤ mn . Let Hn be the
finite partial hypergraph with vertex set {v1, v2, . . . , vmn } and the first n edges of H .
Let T be the tree consisting of those finite sequences σ in k<N such that whenever
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length(σ ) = mn , σ is a proper k-coloring of Hn . Since every finite partial hypergraph
of H has a proper k-coloring, T must contain infinitely many sequences. ByWKL0, T
has an infinite path. This path yields a proper k-coloring of H .

To prove that (1) implies (3), repeat the previous proof replacing every instance
of the word “proper” by “conflict-free.” Lemma 1 shows that (2) implies (4) and (3)
implies (5) It remains to show that both (4) and (5) imply (1). For graphs, that is, for
hypergraphs in which every edge has exactly two vertices, every coloring is proper if
and only if it is conflict-free. Thus, both (4) and (5) imply that if every finite subgraph of
a graph H is k-colorable, then H can be k-colored. This impliesWKL0 by Theorem 3.4
of Hirst [5]. ��

Proving the version of the previous theorem for graphs with edges represented by
sequences of characteristic functions requires additional set comprehension strength,
demonstrating that edge representation can affect the logical strength of theorems on
proper and conflict-free colorings.

Theorem 4 (RCA0) For any k ≥ 2, the following are equivalent.

(1) ACA0.
(2) Suppose H is a hypergraph with finite edges given by a sequence of characteristic

functions. If every finite partial hypergraph of H has a proper k-coloring then H
has a proper k-coloring.

(3) Statement (2) with “proper” replaced by “conflict-free.”

Proof To prove that (1) implies (2), fix k, assumeACA0, and suppose H is a hypergraph
with finite edges given by a sequence of characteristic functions. Further suppose that
every finite partial hypergraph of H can be properly k-colored. By Theorem 2, we can
find the sequence of edges for H . By Theorem 3 and the fact that ACA0 impliesWKL0,
H has a proper k-coloring.

The proof that (1) implies (3) is similar to the preceding argument, with proper
replaced by conflict-free.

For the reversals,we begin by considering the proof that (2) implies (1) for k = 2.By
Lemma III.1.3 of Simpson [8], it suffices to use RCA0 and (2) to prove the existence of
the range of an arbitrary injection f . Define the hypergraph H as follows. Let the vertex
set of H be V = {bi | i ∈ N} ∪ {vi, j | i, j ∈ N}. The edges of H will be represented
by characteristic functions for the following sets. For all n and i , pn,i = {vn,i , vn,i+1},
qn = {bn, bn+1}, rn = {b2n, v f (n),2n}, and sn = {vn,0, b2n+1} ∪ {b2i | f (i) = n}.
Note that b2i is in sn if and only if f (i) = n, so the characteristic function for sn is
uniformly computable from f . Via dovetailing, recursive comprehension suffices to
prove the existence of a sequence of characteristic functions for all these edges of H .
Note that edges of the form sn contain two vertices if n is not in the range of f and
three vertices if n is in the range. All other edges contain exactly two vertices.

We claim that every finite partial subhypergraph of H has a proper 2-coloring. Let
G be a partial subhypergraph. Let n0 be the maximum natural number such that b2n0
is in G. Define the coloring χ by χ(bn) = n mod 2 if n ≤ 2n0 + 1, χ(vn, j ) = j
mod 2 if ∀t ≤ n0( f (t) �= n), and χ(vn, j ) = j + 1 mod 2 if ∃t ≤ n0 ( f (t) = n).
The first clause guarantees that χ is a proper coloring with regard to every edge of the
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form qn , and the last two clauses ensure that χ is proper on edges of the forms pn,i ,
rn and sn restricted to the vertices of G.

Apply (2) to obtain a proper 2-coloring of H . If necessary, permute the colors so
that χ(b0) = 0. Fix n and suppose that f (t) = n. Then rt = {b2t , vn,2t } is in H ,
so χ(vn,0) = 1. If n is not in the range of f , then sn = {vn,0, b2n+1} is in H , so
χ(vn,0) = 0. Thus the range of f is defined by {n | χ(vn,0) = 1}, which exists by
recursive comprehension.

The proof that (2) implies (1) can be extended to values of k greater than 2 by adding
a complete graph on k − 2 vertices to H and connecting each vertex in the complete
graph to every vertex in the prior construction. Finally, for graphs with edges of size
at most 3, any coloring is conflict-free if and only if it is proper. Thus (3) implies
(1) can be proved by replacing all uses of “proper” in the preceding arguments with
“conflict-free.” ��

For strong colorings, edge representation does not affect the strength of the coloring
statements. Additionally, in some settings, finite colorability suffices to imply WKL0
over RCA0. This provides an interesting contrast to the case for graphs, as described
following the proof of the next result.

Theorem 5 (RCA0) The following are equivalent:

(1) WKL0.
(2) Let H be a hypergraph with any edge representation. If there is a k such that

every finite partial hypergraph of H has a strong k-coloring, then H has a strong
k-coloring.

(3) Let H be a hypergraph with a set of finite sets for edges. If every finite partial
hypergraph of H has a strong 3-coloring, then H has a strong k-coloring for some
k.

(4) Let H be a hypergraph with a sequence of finite sets for edges. If every finite
partial hypergraph of H has a strong 2-coloring, then H has a strong k-coloring
for some k.

Proof To prove that (1) implies (2), assume WKL0 and let H be a hypergraph. By
Lemmas 1 and 2, we may assume that the edges of H are given by a sequence of
characteristic functions. Fix k and suppose that for every n, the partial subhypergraph
given by the first n values of each of the the first n characteristic functions has a strong
k-coloring. Let T be the tree consisting of those finite sequences σ in k<N such that σ
is a strong k-coloring of the partial subhypergraph defined by the first length(σ )many
values of the first length(σ ) many edge characteristic functions. Because the finite
partial hypergraphs of H are colorable, T must contain infinitely many sequences. By
WKL0, T has an infinite path. This path yields a strong k-coloring of H .

Note that (3) follows immediately from (2) restricted to k = 3. To prove that (3)
implies (1), byLemma IV.4.4 of Simpson [8], it suffices to use (3) to separate the ranges
of injections with disjoint ranges. Fix injections f and g such that ∀m∀n( f (m) �=
g(n)) and construct a hypergraph H as follows. The vertices of H consist of the sets
U = {ui | i ∈ N} and V = {vi | i ∈ N}. For each triple i , j , and k, the edge {ui , u j , vk}
is in H if and only if i < k, j < k, ∃t < k f (t) = i , and ∃t < k g(t) = j . Note
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that each edge contains exactly three vertices and exactly one vertex from V . No edge
contains two vertices from U indexed by elements of the range of f , and similarly,
pairs of vertices from U indexed by elements of the range of g are forbidden within
an edge. Let H0 be a finite partial hypergraph consisting of vertices {ui0 , . . . uim } and
{v j0 , . . . v jn }, and some or all of the edges of H with vertices entirely contained in these
sets. The coloring that assigns color 0 to all vertices uik such that ∃t < jn f (t) = ik ,
color 1 to all vertices uik such that ∃t < jn g(t) = ik , and color 3 to all remaining
vertices is a strong 3-coloring of H0. Thus, every finite partial hypergraph of H has a
strong 3-coloring. Apply (3) to obtain a k-coloring of H . Note that if ∃t f (t) = i and
∃t g(t) = j , then ui and u j are included in an edge, and so ui and u j must have distinct
colors. By bounded Σ0

1 comprehension (which is provable in RCA0 by Theorem II.3.9
of Simpson [8]) the set C = {i < k | ∃t χ(u f (t)) = i} exists. RCA0 proves that the set
{ j ∈ N | χ(u j ) ∈ C} exists, contains the range of f , and is disjoint from the range
of g.

Item (4) also follows immediately from (2). As in the previous paragraph, to prove
that (4) implies WKL0, let f and g be injections with disjoint ranges. Construct H as
follows. The vertices of H are V = {vi | i ∈ N}. Using a bijective pair encoding,
for each i ∈ N, let i0 and i1 denote the components of the pair encoded by i . For
each i , define the edge ei = {v f (i0), vg(i1)}. Let E0 be any finite set of edges with
indices bounded by b, and let V0 be some set of vertices containing all the vertices in
edges in E0. The coloring which assigns color 0 to all vertices of the form v f (t) for
t < b and color 1 to all other vertices of V0 is a strong 2-coloring of the finite partial
hypergraph defined by E0 and V0. By (4), H has a strong coloring χ that uses k colors.
By bounded Σ0

1 comprehension, the set K = { j < k | ∃t χ(v f (t)) = j} exists. By
recursive comprehension, the set S = {n | χ(vn) ∈ K } exists. By the construction of
H , S contains all elements of the range of f and excludes all elements of the range
of g. ��

In the preceding theorem, if the number 3 is replaced by 2 in item (3), the result-
ing statement asserts that every locally 2-colorable graph has a finite coloring. This
statement is known to be equivalent to WKL0 over RCA0 plus Σ0

2 induction, but the
equivalence over RCA0 is one of many open questions listed in Section §5 of Dorais
et al. [4]. Item (4) shows that for graphs with edges presented as a sequence rather
than as a set, the statement that every locally 2-colorable graph has a finite coloring is
equivalent toWKL0 over RCA0.

4 Vertex colorings and infinite edges

Allowing hypergraphs with infinite edges significantly affects the nature of vertex
colorings. Clearly, any strong vertex coloring of a hypergraph with an infinite edge
must use infinitely many colors. Hypergraphs with infinite edges may or may not have
finite proper or conflict-free colorings. We will show that sorting those graphs with
finite colorings from thosewithout requiresΠ1

1 -CA0. If the existence of a finite coloring
could be defined by an arithmetical formula using the graph as a parameter, this sorting
theoremwould be provable inACA0. Thus Theorem 6 shows that the existence of these
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colorings is not an arithmetical property. In particular, there is no version of Theorem 3
that holds for hypergraphs with infinite edges. The next definition and theorem assist
in that proof.

Definition 4 If T is a tree, the set L of leaves of T consists of those sequences in T
which have no extensions in T . That is, L = {σ ∈ T | ∀n σ�n /∈ T }.
Lemma 3 (RCA0) The follow are equivalent.

(1) Π1
1 -CA0.

(2) If 〈Ti 〉i∈N is a sequence of trees in N<N, then there is a function f : N → 2 such
that f (i) = 1 if and only if Ti contains an infinite path.

(3) If 〈Ti 〉i∈N is a sequence of trees and 〈Li 〉i∈N is a sequence of sets such that for
each i , Li is the set of leaves of Ti , then there is a function f : N → 2 such that
f (i) = 1 if and only if Ti contains an infinite path.

Proof We work in RCA0. The equivalence of (1) and (2) is Lemma VI.1.1 of Simpson
[8]. Because (3) is a special case of (2), we need only prove that (3) implies (2).

Let 〈Ti 〉i∈N be a sequence of trees as in (2). For any sequence σ of positive integers,
let σ−1 denote the sequence of the same length as σ such that for all i , σ−1(i) =
σ(i) − 1. For each i , define the tree T̂i by letting τ ∈ T̂i if and only if either τ−1 ∈ Ti
or τ = σ�0 and σ−1 ∈ Ti . Intuitively, we build T̂i by adding 1 to each node label in
T and then appending a new child node with label 0 at each node. For each i , the leaf
set of T̂i consists precisely of those sequences of the form σ−1

�0 such that σ ∈ Ti .
RCA0 can prove that 〈T̂i 〉i∈N and 〈Li 〉i∈N exist. Note that p is an infinite path in T̂i if
and only if p−1 is an infinite path in T . Thus, the function f satisfying (3) for 〈T̂i 〉i∈N
also satisfies (2) for 〈Ti 〉i∈N. ��

The preceding result allows us to prove the reversal below in a single step, rather
than using (2) to prove ACA0 and then deducing Π1

1 -CA0 in a second step.

Theorem 6 (RCA0) For each k ≥ 2, the following are equivalent.

(1) Π1
1 -CA0.

(2) If 〈Hi 〉i∈N is a sequence of hypergraphs, then there is a function f : N → 2 such
that f (i) = 1 if and only if Hi has a proper k-coloring.

(3) Statement (2) with “proper” replaced by “conflict-free.”

Proof Assume RCA0. To prove that (1) implies (2), fix k ≥ 2 and suppose 〈Hi 〉i∈N
is a sequence of hypergraphs. Assuming that the vertices of H are a subset of N, the
statement “H has a proper k-coloring” asserts the existence of a function g : N → k
such that g is not constant on any edge. Thus, the set of indices i such that Hi has a
proper k-coloring is definable by a Σ1

1 formula. Applying Π1
1 -CA0, the complement

of this set of indices exists, so by recursive comprehension, the set of indices and its
characteristic function also exist. This function satisfies item (2) of the theorem. A
similar argument shows that (1) implies (3).

Next, wewill prove that (2) implies (1) for the case k = 2, indicating parenthetically
how to modify the argument for (3) implies (1). By Lemma 3, it suffices to use (2)
to determine which trees are well-founded in a list of trees with leaf sets. Let 〈Ti 〉i∈N
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be a sequence of trees in N
<N, and let 〈Li 〉i∈N be the corresponding leaf sets. Given

any tree T ⊂ N
N with leaf set L , define a hypergraph H as follows. The vertices of

H are {a0, a1, b0, b1, s} together with vertices labeled σ0 and σ1 for each nonempty
sequence σ in T . The edges of H consist of

• (a0, a1), (a1, s), (b0, b1), and (b1, s),
• (σ0, σ1) for every nonempty σ ∈ T ,
• (σ1, s) if σ is a leaf of T ,
• Eσ = {σ1} ∪ {τ0 | τ ∈ T ∧ ∃n τ = σ�n} if σ ∈ T is not a leaf, and
• E0 = {a0, b0} ∪ {σ0 | σ ∈ T ∧ length(σ ) = 1}.

Using T and L as parameters, RCA0 can prove the existence of H uniformly. Note that
E0 and Eσ may be infinite edges.

Suppose c : N → {red, blue} is any 2-coloring of the vertices of H . Swapping
colors if necessary, let s be blue. Assume c is proper. Then a1 and b1 are red and a0 and
b0 are blue. Also, for any σ ∈ T if σ0 is red, then σ1 is blue, so {σ1, s} is not an edge
and σ is not a leaf. Because σ1 is blue, by the definition of Eσ , for some immediate
successor τ of σ , τ0 must be red. Finally, to properly color E0, for some σ ∈ T of
length 1, σ0 is red. Let n be the least value such that for τ = σ�n, τ0 is red. Iterating
this process traces an infinite path in T . Summarizing, if c properly 2-colors H , then
T has an infinite path. (Every conflict-free coloring is proper, so if c is conflict-free
then T has an infinite path.)

Conversely, suppose that T has an infinite path p, and let σ 0 ⊂ σ 1 ⊂ σ 2 ⊂ · · ·
be the nonempty initial segments of p. Define c by c(s) = c(a0) = c(b0) = blue,
c(a1) = c(b1) = red, σ i

0 = red and σ 1
1 = blue for σ i in p, and τ0 = blue and τ1 = red

for τ ∈ T not in p. Treating the definitions of the edges of H as cases, one can verify
that c is a proper (conflict-free) 2 coloring of H . Summarizing the last two paragraphs,
H has a proper (conflict-free) 2-coloring if and only if T has an infinite path.

Carrying out the the construction uniformly for all the trees in 〈Ti 〉i∈N and applying
(2) of the theorem, we can find the characteristic function for the well-founded trees,
as desired. The parenthetical comments show that for k = 2, (3) implies (1).

For values of k > 2, modify the construction of the previous reversal by adding a
complete graph with k−2 vertices to H , connecting each vertex of the complete graph
to every vertex of H by an edge consisting of two vertices. The resulting hypergraph
has a proper (conflict-free) k-coloring if and only if T is not well-founded. ��

For graph coloring reversals, replacing “k-coloring” by “finite coloring” leads to
the open questions noted in Section §5 of Dorais et al. [4]. It would be interesting
to know if the preceding result on hypergraphs continues to hold if “k-coloring” is
replaced by “finite coloring.” Lemma 3 may prove useful in recasting the preceding
theorem as a result related to Σ1

1 completeness using many-one reducibility, or as a
result on Weihrauch reducibility.

Infinite edges can interfere with finite conflict-free colorings of hypergraphs. The
following graph illustrates this situation.

Definition 5 The M -graph (the Matryoshka graph) is the hypergraph with vertex set
N and edges {E j | j ∈ N} where E j = {k | j ≤ k}.
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Every finite partial subhypergraph of the M -graph has a conflict-free 2-coloring.
For example, given any finite collection of vertices, simply color the largest numbered
vertex red and all other vertices blue. On the other hand, the entire M -graph has no
finite conflict-free coloring. This can be proved directly by induction on Σ0

2 formulas,
or by using the following lemma.

Lemma 4 (RCA0) The following are equivalent.

(1) ERT (eventually repeating tails): If f : N → k for some k ∈ N, then there is a
b ∈ N such that for all x ≥ b there is a y ≥ b such that x �= y and f (x) = f (y).

(2) No finite coloring of the M -graph is conflict-free.

Proof We will work in RCA0. To prove that (1) implies (2), suppose that f : N → k is
a finite coloring of theM -graph. Apply ERT to find a number b such that for all x ≥ b
there is a y ≥ b such that y �= x and f (x) = f (y). Then every color appearing in Eb

appears at least twice. Thus f is not conflict-free.
To prove the converse, let f : N → k be any function. We can view f as a k-

coloring of theM -graph. By (2), f is not conflict-free. Thus there is an edge Eb such
that every color appearing in b appears at least twice. Thus b witnesses that ERT holds.

��
The principle ERT follows trivially from the principle ECT (eventually constant-

spectrum tails) which asserts that if f : N → k then there is a b such that for all
x ≥ b there are infinitely many values of y such that f (x) = f (y). By Theorem 6 of
Hirst [6], ECT is equivalent to Σ0

2 induction. Thus, IΣ0
2 suffices to prove that no finite

coloring of the M -graph is conflict-free.
We will show that this use of induction is not necessary by proving ERT from SRT22,

Ramsey’s theorem for pairs and two colors restricted to stable colorings. A coloring
f : N → k is called stable if for every x , the limit limy→∞ f (x, y) exists. By
Corollary 2.6 of Chong et al. [2], SRT22 cannot prove IΣ

0
2 , so neither can ERT.

Theorem 7 (RCA0) SRT22 implies ERT.

Proof Let f : N → k. Define g : [N]2 → 2 by g(a, b) = 1 if and only if for some
x ∈ [a, b), f (x) appears exactly once in the range of f restricted to [a, b). Because
the range of f is k, for fixed a and increasing x , the value of g(a, x) can only change
at most 2k times. Thus g is a stable coloring.

Apply SRT22 to g to obtain an infinite set H = {x0, x1, x2 . . . } that is monochromatic
for g. Suppose, by way of contradiction, that g([H ]2) ≡ 1, that is, that g assigns 1
to every pair of elements in H . Let H0 consist of the first 3 · 2k−1 elements of H .
The elements of H0 define 3 · 2k−1 − 1 consecutive half-open intervals. Because
g(x0, x3·2k−1) = 1, some value of f appears exactly once in [x0, x3·2k−1). Call this k0.
Either to the left or the right of k0, there must be a collection of 3 · 2k−2 consecutive
elements of H0. Call these H1. Note that the range of f on the intervals defined by H1
must omit k0. Thus, the range of f on these intervals contains at most k − 1 elements.
Iterating this construction, Hk−1 will consist of three consecutive elements of H0 such
that f is constant on the union of the two associated subintervals. No value of f
appears exactly once in the range of f on this union, contradicting the assumption that
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g applied to the endpoints yields 1. Thus g([H ]2) ≡ 0 and every value of f appearing
at or after x0 must appear again after x0. ��

It would be interesting to know how ERT compares in strength to other statements
that are weaker than IΣ0

2 , for example, those described by Kreuzer and Yokoyama
[7]. (Update: Since the submission of this paper, it has been shown that ERT is provable
in RCA0 [3], so RCA0 proves that no finite coloring of the M -graph is conflict-free.)
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