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Abstract
We introduce the notion of positive local combinatorial dividing-lines in model the-
ory. We show these are equivalently characterized by indecomposable algebraically
trivial Fraïssé classes and by complete prime filter classes. We exhibit the relationship
between this and collapse-of-indiscernibles dividing-lines. We examine several test
cases, including those arising from various classes of hypergraphs.
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Complexity · Hierarchies
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1 Introduction

A model-theoretic dividing-line is a partitioning of the class of all complete theories
into two parts—a tame part and a wild part. In some way, theories that lie in the wild
part are much harder to analyze than those in the tame part, and by identifying the
dividing-line explicitly, we hope to understand exactly what makes the qualitative
divergence occur. Ofttimes, we also seem to prefer that a dividing-line is associated
with some partial ordering ≤ of the class of theories, so that T1 ≤ T2 implies that
T2 is more complex than T1.1 Thus, the wild part of a dividing-line should be a filter
C—closed upwards relative to the associated ordering ≤—while the tame part NC
should be just the complementary ideal to C. In this introduction, we will first try

1 Actually, we want a pre-ordering, since in practice, we must allow distinct theories to be equivalent
modulo the ordering.
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to provide some context for our work, hopefully demonstrating how the viewpoint
developed here differs meaningfully from some others and captures quite different
tameness/wildness separations.

The demand for a partial ordering ≤ on theories is relaxed in what we will here call
“geometric” dividing-lines. The collection of geometric dividing-lines would include,
say, the super-simple theories within the class of simple theories and the super-rosy
theories within the class of rosy theories. These seem to be determined by the behavior
of a geometry formulated in terms of an abstract independence relation (as in Adler
[1,2] and Cassanovas [5]). In particular, they don’t seem to be well explained in terms
of formula-by-formula or local combinatorial analyses. In this paper, we will have
nothing more to say about geometric dividing-lines.

The saturation-of-ultrapowers program of Malliaris and Shelah, carried out in [17–
19] and several other papers, is local in nature in that (as shown in [16]) the underlying
Keisler ordering≤k compares theories on a formula-by-formula basis. The saturation-
of-ultrapowers program has at least that much in common with the framework that we
propose and study here. Like that program, we also base our work on an ordering �
that compares two theories on a formula-by-formula basis. Speaking roughly, we take
T1 � T2 to mean that, up to matching formulas of T1 to formulas of T2, “every” finite
configuration that appears in a model of T1 also appears in a model of T2. (We write
“every” because we will conscientiously avoid involving algebraic configurations.)
Our formulation of � is almost immediately linked to the idea of a family of Fraïssé
classes involved in a theory.

The work in this paper originated in an attempt to build a general framework for
the collapse-of-indiscernibles dividing-lines addressed in [7,23]. In connection with
collapse-of-indiscernibles, an immediate question is, “Which�-dividing-lines C have
a single characteristic Fraïssé class (if not a Ramsey class)?” Since there may be
dividing-lines that require several characteristic Fraïssé classes, a second question
might be, “What are the ‘irreducible’ �-dividing-lines, and what does it mean for C
to be irreducible?” Addressing the second part of the second question, we try (and
hopefully succeed) to capture irreducibility in the notion of a complete prime filter
class. We prove (Theorem 2.17) that the complete prime filter classes are precisely the
classes of theories that have a single characteristic indecomposable Fraïssé class. It
follows that if F is the family of all complete prime filter classes—i.e., the class of
all irreducible �-dividing-lines—then |F | ≤ 2ℵ0 .

We also carry out a detailed analysis of the Fraïssé classesHr of r -hypergraphs (for
each 2 ≤ r < ω) in the context of �. These are all indecomposable Fraïssé classes,
and one result of this analysis is the finding that F is infinite; in fact, it contains
an infinite strictly-nested chain (cf. [19]). We also find that excluding/forbidding a
k-clique (k > r , obtaining another Fraïssé class Hr ,k) has no effect on the associated
dividing-line. Somewhat surprisingly, adding an order toHr in an unconstrained way,
obtaining the class H<

r of ordered r -hypergraphs, also has no effect on the associated
dividing-line. This is a special case of a general phenomenon: we prove that for a
Fraïssé class K, if the generic theory TK is unstable, then K and K< yield the same
dividing-line. We also find that adding additional symmetric irreflexive relations does
not change the associated dividing-line; that is to say, for a Fraïssé class S of societies
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(in the terminology of [22]), S characterizes the same dividing-line as doesHr , where
r is the maximum arity of a relation symbol in the language of S.

The attempt to build a general framework for collapse-of-indiscernibles dividing-
lines specifically seems to have failed for the moment because, as far as we know
at present, an indecomposable Fraïssé class need not be Ramsey or even Ramsey-
expandable.2 However, we do manage to prove that any dividing-line arising from
an unstable Ramsey-expandable Fraïssé class is a collapse-of-indiscernibles dividing-
line. Since all of the Hr ’s are unstable Ramsey-expandable Fraïssé classes, it follows
that there is an infinite strict chain of collapse-of-indiscernibles dividing-lines, all of
which are irreducible.

1.1 Outline of the paper

Section 1: In the remainder of this section, we introduce some notation, basic
definitions, and conventions that are used throughout the rest of the paper.
Section 2: We introduce the infrastructure both for discussing the (positive) local
combinatorics of a first-order theory and for comparing two theories based on
their local combinatorics, arriving at the ordering �. Around this ordering, we
define precisely what is meant by a “complete prime filter class” after discussing
at some length why, we believe, this formulation captures the idea of an irreducible
dividing-line. We also state and prove Theorem 2.17, showing that the irreducible
dividing-lines are precisely the ones characterized by a single indecomposable
Fraïssé class. In all of our definitions to this point, we will have used only one-
sorted languages for Fraïssé classes, and to conclude this section, we show that
there would be, in fact, nothing gained by allowing multiple sorts.
Section 3: In this section, we reconnect with the collapse-of-indiscernibles
dividing-lines that impelled this project to begin with. It is a fact that the generic
model of an algebraically trivial Fraïssé class admits a generic linear ordering. It
is also a fact that the generic model of a Ramsey class carries a 0-definable linear
ordering, and many of the best-known Ramsey classes are obtained just by adding
a linear order “freely” to a Fraïssé class whose generic model is NSOP (as in the
passage from the classG of finite graphs to the classG< of finite ordered graphs).
We examine in detail whether or not the generic order-expansion of a Fraïssé class
induces a different dividing-line from its precursor’s, showing that if the precur-
sor’s generic theory is unstable, then the additional ordering adds nothing. This
allows us to show that if K is a Ramsey-expandable Fraïssé classes with unstable
generic theory, then CK is a collapse-of-indiscernibles dividing-line.
Section 4:Bywayof some case studies,we examine the structure of the�-ordering
and the set of irreducible dividing-lines. To start, we identify some theories that
are maximum under �. We then examine the classes Hr (0 < r < ω) of hyper-
graphs, verifying that they are all indecomposable and that they induce a strict
chain of irreducible dividing-lines. Along the way, we also show that certain natu-

2 Here, a classK is “Ramsey-expandable” if the classK< obtained by adding an order in an unconstrained
way is a Ramsey class. This definition is not standard.
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ral perturbations of hypergraphs—excluding cliques, adding additional irreflexive
symmetric relations—do not have any effect on the associated dividing-lines.
Section 5: To conclude the paper, we discuss some open questions about the struc-
ture of the �-ordering and the irreducible classes generated by this ordering. We
also explore questions around the relationship between these classes and collapse-
of-indiscernibles dividing-lines.

1.2 Notation and conventions

Definition 1.1 We write T for the class of all complete theories with infinite models
that eliminate imaginaries. If left unspecified, the language of a theory T ∈ T is LT ,
which may be, and usually is, many-sorted.

Convention When a theory T arises that may not eliminate imaginaries, we freely
identify T with T eq, which of course eliminates imaginaries.

Definition 1.2 LetL be a finite relational language (meaning that its signature sig(L )

consists of finitely many relation symbols and no function symbols or constant sym-
bols). Fin(L ) denotes the class of all finite L -structures. A Fraïssé class in L is a
sub-class K ⊆ Fin(L ) satisfying the following:

Heredity (HP): For all A, B ∈ Fin(L ), if A ≤ B and B ∈ K, then A ∈ K.
Joint-embedding (JEP): For any two B1, B2 ∈ K, there are C ∈ K and embed-
dings B1 → C and B2 → C .
Amalgamation (AP): For any A, B1, B2 ∈ K and any embeddings fi : A → Bi

(i = 1, 2), there are C ∈ K and embeddings f ′
i : Bi → C (i = 1, 2) such that

f ′
1◦ f1 = f ′

2◦ f2.

According to [9], a Fraïssé classK has a generic model (or Fraïssé limit)A satisfying
the following properties:

• K-universality: For every B ∈ K, there is an embedding B → A.
• K-closedness: For every finite X ⊂ A, the induced substructure A�X is in K.
• Ultrahomogeneity (orK-homogeneity): For every X ⊂fin A and every embedding

f : A�X → A, there is an automorphism g ∈ Aut(A) extending f .

Since we are working with only finite relational languages (for Fraïssé classes), the
generic theory TK = Th(A) ofK is always ℵ0-categorical and eliminates quantifiers.

In general, a theory T is algebraically trivial if aclM(A) = A whenever M � T
and A ⊆ M . A Fraïssé class K is called algebraically trivial just in case TK is alge-
braically trivial, and this condition can be characterized by strengthened amalgamation
conditions:

Disjoint-JEP: For any two B1, B2 ∈ K, there are C ∈ K and embeddings f1 :
B1 → C and f2 : B2 → C such that f1B1 ∩ f2B2 = ∅.
Disjoint-AP:For any A, B1, B2 ∈ K and any embeddings fi : A → Bi (i = 1, 2),
there areC ∈ K and embeddings f ′

i : Bi → C (i = 1, 2) such that f ′
1◦ f1 = f ′

2◦ f2
and f ′

1B1 ∩ f ′
2B1 = f ′

1 f1A = f ′
2 f2A.
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That is, a Fraïssé class K is algebraically trivial if and only if it has disjoint-JEP and
disjoint-AP (see [3,4]).

Convention For Fraïssé classes, we allow only finite relational signatures.

Definition 1.3 Let K0, . . . ,Kn−1 be algebraically trivial Fraïssé classes in languages
L0, . . . ,Ln−1, respectively, such that sig(Li ) ∩ sig(L j ) = ∅ whenever i < j < n.
Let A0, . . . ,An−1 be the generic models of K0, . . . ,Kn−1, respectively. Let �iLi

be the language with signature
⋃

i sig(Li ). We define �iKi to be the class of finite
�iLi -structures of the form B = B0×· · ·×Bn−1, where B0 ∈ K0,…,Bn−1 ∈ Kn−1,
with interpretations

RB =
{
(a0, . . . , ar−1) ∈ Br : (a0,i , . . . , ar−1,i ) ∈ RBi

}

for each i < n and R(r) ∈ sig(Li ).

In general,�iKi is not a Fraïssé class because it need not have HP, but it is not hard
to verify that it does haveAP and JEP. (To see that�iKi need not haveHP, consider the
case whereK0,K1 are two copies of the class of all finite linear orders with signatures
{<0}, {<1}, respectively. Given, say, A0 = {0 <0 1} ∈ K0 and A1 = {0 <1 1} ∈ K1,
the induced substructure of A0 × A1 on the subset {(0, 0), (0, 1), (1, 0)} is not in
K0 × K1.) Since �iKi has AP and JEP, it does have a well-defined generic model,
and one can show that this generic model is ℵ0-categorical (by a result of [15]) and
algebraically trivial.

We have yet to define the ordering �, but with the reader’s indulgence, we use it
now to define indecomposability for algebraically trivial Fraïssé classes.

Definition 1.4 Given an arbitrary algebraically trivial Fraïssé class K in L with
generic modelA, a factorization of K is a list (K0, . . . ,Kn−1) of algebraically trivial
Fraïssé classes K0, . . . ,Kn−1 (n > 1) for which there is an injection u : A → B,
where B is the generic model of �iKi , such that for all k and a, a′ ∈ Ak ,

qftpA(a) = qftpA(a′) ⇔ tpB(ua) = tpB(ua′).

We then say that K is indecomposable if for any factorization (K0, . . . ,Kn−1) of K,
there is an i < n such that TK � TKi (see Definition 2.7).

2 Comparing the local combinatorics of theories

In this section, we develop and formalize the idea of (positive) local combinatorics of
first-order theories, showing that the local combinatorics of a theory on the finite level
is captured by Fraïssé classes “embedded” in models of that theory.

Convention For all of this section, we fix a countably infinite set A. It will serve as
the universe of generic models of Fraïssé classes involved in various theories T ∈ T.
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2.1 Infrastructure

We will understand the local combinatorics of a theory T as a collection of functions
from finite subsets of A into models of T—see Definition 2.1. (In order to avoid the
“geometric” behavior of T , we will require that these functions have strong algebraic-
triviality properties.) Such a function and a list of formulas of the language of T will
induce a structure on the domain of the function, and really, it is this structure that
encodes some of the combinatorics of T—see Definition 2.2.

Definition 2.1 Let T ∈ T.

• We define F(T ) to be the set of injections f : B → ‖M‖ where:

– B ⊂fin A and M � T .
– For all a, b ∈ B, f (a) and f (b) are in the same sort of M.
– For every B0 � B, tp( f (B)/ f (B0)) is non-algebraic.

• F(T ) is the set of functions F : A → ‖M‖, for some M � T , such that F�B ∈
F(T ) for all B ⊂fin A.

Convention Let T ∈ T. Consider a sequence

ϕ = (ϕ0(x0, . . . , xn0−1), . . . , ϕN−1(x0, . . . , xnN−1−1))

of LT -formulas. Whenever we speak of sequences of formulas, we understand that
the sequence is finite and all of the free variables range over a single common sort
which we call the sort of ϕ. Associated with ϕ, we have a languageLϕ with signature{

R(n0)
0 , . . . , R(nN−1)

N−1

}
. If ϕ1 and ϕ2 have the same length and coordinate-wise have

the same arities, then the signatures ofLϕ1 andLϕ2 are identical, so we identifyLϕ1

and Lϕ2 to compare structures in these languages.

Definition 2.2 Let T ∈ T, and ϕ be a sequence of formulas of LT .

• Fϕ(T ) is the set of all f ∈ F(T ) such that for each a ∈ dom( f ), f (a) is in the
sort of ϕ. We define Fϕ(T ) similarly. In both cases, f ∈ Fϕ(T ) or F ∈ Fϕ(T ) is
said to be compatible with ϕ.

• Let f : B → ‖M‖ be in Fϕ(T ) (for some B ⊂fin A andM � T ). Then, we write
Bϕ( f ) for theLϕ-structure with universe B and interpretations

R
Bϕ( f )

i = {
a ∈ Bni : M � ϕi ( f a)

}
.

We then define Ageϕ(T ) = {
Bϕ( f ) : f ∈ Fϕ(T )

}
up to isomorphism.

• For F ∈ Fϕ(T ), we define anLϕ-structure Aϕ(F) with universe A and interpre-
tations

R
Aϕ(F)

i = {
a ∈ Ani : M � ϕi ( f a)

}
.

We then define Ageϕ(F) = Age(Aϕ(F)).
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• Let F ∈ Fϕ(T ). We say that F is ϕ-resolved if for any B � B ′ ⊂fin A, there
are B ′

0, . . . , B ′
i , . . . ,⊂fin A, such that B ′

i ∩ B ′
j = B whenever i < j < ω, and

tpϕ(F(B ′
i )/F(B)) = tpϕ(F(B ′)/F(B)) for all i < ω.

• Finally, we define Sϕ(T ) = {Aϕ(F) : F ∈ Fϕ(T ),ϕ-resolved
}
.

We have now defined the various objects that encode the positive local combina-
torics of a theory T . In the proposition below, we show that all of this is, essentially,
explicable on the level of algebraically trivial Fraïssé classes “embedded” in models
of T as Aϕ(F)’s.

Proposition 2.3 Let T ∈ T, and let ϕ = (ϕ0(x0, . . . , xn0−1), . . . , ϕN−1(x0, . . . ,
xnN−1−1)) be a sequence of LT -formulas. Let F ∈ Fϕ(T ).

1. There is a ϕ-resolved F ′ ∈ Fϕ(T ) such that Ageϕ(F) ⊆ Ageϕ(F ′).
2. If F is ϕ-resolved, then Ageϕ(F) is an algebraically trivial Fraïssé class and

Aϕ(F) is the Fraïssé limit of Ageϕ(F).

Proof For Item 1, let F be given. Let ∼ be the equivalence relation on Fϕ(T ) given
by

F1 ∼ F2 ⇔ (∀B ⊂fin A)
[
Bϕ(F1�B) = Bϕ(F2�B)

]
.

Let X = Fϕ(T )/∼. For f ∈ Fϕ(T ), we define [ f ] to be the set of classes F ′/∼ such
that Bϕ( f ) = Bϕ(F ′�dom( f )); then τ0 = {[ f ] : f ∈ Fϕ(T )

}
may be viewed as a

base of clopen sets for a Stone topology on X (τ0 generates a boolean algebra and X

is homeomorphic to its Stone space). We define two families of subsets of Fϕ(T ) as
follows:

• Let B0, B ∈ Ageϕ(F), f0, u0 be such that B0 ≤ B, and let f0 ∈ Fϕ(T ) such that
u0 : B0 ∼= Bϕ( f0).
Then, f ∈ Rn(B, u0, f0) iff the following holds:
If f0 ⊆ f and f is compatible with ϕ, then there are f0 ⊆ f1, . . . , fn ⊆ f
and u0 ⊆ u1, . . . , un such that ui : B ∼= Bϕ( fi ) for each 1 ≤ i ≤ n and
img( fi ) ∩ img( f j ) = img( f0) for all 1 ≤ i < j ≤ n.

• Let B ∈ Ageϕ(F). Then f ∈ RF (B) iff f is compatible with ϕ and there is some
f0 ⊆ f such that Bϕ( f0) ∼= B

By the definition of Fϕ(T ) and non-algebraicity, it is not difficult to check that

�F = {[ f ] : f ∈ RF (B) for some B} ∪
× {[ f ] : f ∈ Rn(B, u0, f0) for some n, B, u0, f0

}

is a countable family of dense-open sets, so as X has the Baire property (because it is
compact Hausdorff), the intersection

⋂
�F is non-empty. For any F ′/∼ in

⋂
�F , F ′

satisfies the requirements of Item 1.
For Item 2: First, we observe that for any F ′ ∈ Fϕ(T ),Ageϕ(F ′) has HP.Moreover,

if F is ϕ-resolved, then by definition, Ageϕ(F) has disjoint-JEP and disjoint-AP—so
Ageϕ(F) is an algebraically trivial Fraïssé class. Since F is ϕ-resolved,Aϕ(F) is the
generic model of Ageϕ(F). ��
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Corollary 2.4 Let T ∈ T, and let ϕ be a sequence of LT -formulas. Then, for any
f ∈ Fϕ(T ), there is a ϕ-resolved F ∈ Fϕ(T ) such that Bϕ( f ) ∈ Ageϕ(F).

Proof Given f ∈ Fϕ(T ), we choose any F0 ∈ Fϕ(T ) such that f ⊂ F0. Apply-
ing Proposition 2.3, we then obtain a ϕ-resolved F ∈ Fϕ(T ) such that Bϕ( f ) ∈
Ageϕ(F0) ⊆ Ageϕ(F). ��
Observation 2.5 Let T ∈ T, and let ϕ be a sequence of LT -formulas. Let
F0, . . . , Fn, . . . ∈ Fϕ(T ). Then, there are a partition {An}n<ω of A into infinite
classes, injections un : A → An , and an F ∈ Fϕ(T ) such that for each n < ω,
Aϕ(Fn) = Aϕ(F ◦ un).

Proof Let F0, F1, . . . , Fn, . . . ∈ Fϕ(T ). By compactness and the definition of
Fϕ(T ), we may assume that, for i < ω, pairwise distinct j0, . . . , jn−1 < ω,
B, C0, . . . , Cn−1 ⊂fin A:

• If i /∈ { j0, . . . , jn−1}, then tp
(
Fi (B)

/
Fi0(C0) ∪ . . . ∪ Fin−1(Cn−1)

)
is non-

algebraic
• If i = j0, then tp

(
Fi (B\C0)

/
Fi0(C0) ∪ . . . ∪ Fin−1(Cn−1)

)
is non-algebraic.

Now, we arbitrarily choose a partition {An}n of A in which each An is infinite, and for
each n, we choose a bijection vn : An → A. Then, we define F ∈ Fϕ(T ) by setting
F(a) = Fn(vn(a)) whenever a ∈ An . For each n, F ◦ v−1

n = Fn , and it is clear that
Aϕ(Fn) = Aϕ(F ◦ v−1

n ). ��
Observation 2.6 The space Xϕ(T ) (denoted X) in the proof of Proposition 2.3 has a
countable dense subset Wϕ(T ) such that F is ϕ-resolved for each F/∼ in Wϕ(T ).

2.2 The ordering� (and somemore infrastructure)

We have discussed and formalized our notion of local combinatorics of first-order
theories, and now, we use these ideas to formulate an ordering � of T that will allow
us to compare theories based on their local combinatorics. Initially, we present a
definition in which T1 and T2 are compared by way of finite structures, Bϕ( f )’s, but
in Proposition 2.9, we demonstrate (unsurprisingly, given Proposition 2.3) that this is
equivalent to comparing T1 and T2 based on (generic models of) algebraically trivial
Fraïssé classes.

Definition 2.7 Let T1, T2 ∈ T. Then we assert T1 � T2 if for every finite sequence
ϕ1 = (ϕ1

0 , . . . , ϕ
1
N−1) of LT1 -formulas, there is ϕ2 = (ϕ2

0 , . . . , ϕ
2
N−1) in LT2 ,

coordinate-wise of the same arities, such that Ageϕ1(T1) ⊆ Ageϕ2(T2).

Observation 2.8 Let T1, T2 ∈ T. If T1 is interpretable in T2, then T1 � T2.

Proposition 2.9 Let T1, T2 ∈ T. The following are equivalent:

1. T1 � T2.
2. For every finite sequence ϕ1 = (ϕ1

0 , . . . , ϕ
1
N−1) of LT1 -formulas, there is ϕ2 =

(ϕ2
0 , . . . , ϕ

2
N−1) inLT2 , coordinate-wise of the same arities, such that for every ϕ1-

resolved F1 ∈ Fϕ1(T1), there is a ϕ2-resolved F2 ∈ Fϕ2(T2) such that Aϕ1(F1) =
Aϕ2(F2).
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3. For every finite sequence ϕ1 = (ϕ1
0 , . . . , ϕ

1
N−1) of LT1 -formulas, there is ϕ2 =

(ϕ2
0 , . . . , ϕ

2
N−1) in LT2 , coordinate-wise of the same arities, such that Sϕ1(T1) ⊆

Sϕ2(T2).

Proof 2⇔3 is by definition of Sϕ(T ). Let us write T1 �′ T2 to mean that the condition
expressed in item 2 holds.

On the one hand, suppose T1 �′ T2, and let ϕ1 = (ϕ1
0 , . . . , ϕ

1
N−1), a sequence

of LT1 -formulas, be given. Since T1 �′ T2, let ϕ2 be the promised sequence of
LT2 -formulas. To show that Ageϕ1(T1) ⊆ Ageϕ2(T2), let f1 ∈ Fϕ1(T1) be given. By
Corollary 2.4, we obtain a ϕ1-resolved F1 ∈ Fϕ1(T1) such that Bϕ1( f1) ∈ Ageϕ1(F1).
By our choice of ϕ2, then, there is a ϕ2-resolved F2 ∈ Fϕ2(T2) such that Aϕ1(F1) =
Aϕ2

(F2).We have Bϕ1( f1) ∈ Ageϕ2(F2) ⊆ Ageϕ2(T2).We have shown that T1 � T2,
which proves 2, 3 ⇒ 1.

For 1 ⇒ 2, 3, suppose T1 � T2. Again, let ϕ1 = (ϕ1
0 , . . . , ϕ

1
N−1), a sequence

of LT1 -formulas, be given. Let ϕ2 be the sequence of LT2 -formulas promised by
T1 � T2. Suppose F1 ∈ Fϕ1(T1) is ϕ1-resolved.

Let a0, a1, . . . , an, . . . be an enumeration of A, and for each n < ω, let fn =
F1� {a0, . . . , an−1}. Since T1 � T2, for each n, we obtain f ′

n ∈ Fϕ2(T2) with domain
{a0, . . . , an−1} such that Bϕ1( fn) = Bϕ2( f ′

n). By definition of Fϕ2(T2) and non-
algebraicity, we can also ensure that f ′

n ⊂ f ′
n+1 for all n < ω, so F2 = ⋃

n f ′
n is in

Fϕ2(T2). It is not difficult to verify that F2 isϕ2-resolved and thatAϕ1(F1) = Aϕ2(F2).
Thus, T1 �′ T2—as desired. ��

Of course, generic models and generic theories of algebraically trivial Fraïssé
classes will play a key role in our work later in this paper. We make one more con-
venient definition and two observations about � as it pertains to generic theories of
Fraïssé classes. These two observations—2.11 and 2.12—will be used repeatedly in
the sequel, often without comment.

Definition 2.10 For each theory T ∈ T, we define

QT =
{

Th(Aϕ(F))eq : ϕ = (ϕ0, . . . , ϕN−1) inLT ,
F ∈ Fϕ(T ) ϕ-resolved,

}

Later on, it will also be convenient to work with the following sub-class of theories:

T̃ := {
T eq
K : K is an algebraically trivial Fraïssé class

}
.

Observation 2.11 In the definition of QT , each F is ϕ-resolved, so by Proposition 2.3,
Aϕ(F) is the Fraïssé limit of Ageϕ(F), an algebraically trivial Fraïssé class. Hence,

QT ⊆ T̃. Notice further that T0 � T for all T0 ∈ QT .

Observation 2.12 Let K be an algebraically trivial Fraïssé class in a finite relational
languageL . Then, for any complete 1-sorted theory T , the following are equivalent:
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1. TK � T .
2. There are 0 < m < ω, formulas ϕR(x0, . . . , xr−1) ∈ LT for each R(r) ∈ sig(L )

(where each x j is a non-repeating m-tuple of variables), and F ∈ Fϕ(T ) such that
K = Ageϕ(F).

(The number m is then said to witness TK � T .) In particular, for algebraically trivial
Fraïssé classesK1,K2 in languagesL1,L2,with genericmodelsA1,A2, respectively,
the following are equivalent:

1. TK1 � TK2 .
2. There are 0 < m < ω, an injection u : A1 → Am

2 , and quantifier-free formulas
θR(x0, . . . , xr−1) of L2 (|xi | = m, R(r) ∈ sig(L1)) such that for all R(r) ∈
sig(L1) and a0, . . . , ar−1 ∈ A1,

A1 � R(a0, . . . , ar−1) ⇔ A2 � θR(u(a0), . . . , u(ar−1)).

2.3 Irreducible model-theoretic dividing-lines

2.3.1 Discussion: What is an “irreducible” dividing-line?

Aswe have already discussed at some length, a model-theoretic dividing-line amounts
to a partition of T into two sub-classes—a sub-class C of “wild” theories (unstable, IP,
unsimple,…) and a complementary class NC := T\C of “tame” theories. Althoughwe
prefer to work with theories from NC in practice, we can characterize a dividing-line
purely in terms of the “wild” classC. In principle,C could be any sub-class ofT, but we
have to demandmore fromC if NC is to have any practical value. This already suggests
the most primitive requirement we make on irreducible dividing-lines (relative to any
ordering ≤ of T):

1. Existence: C is not empty.
2. Upward-closure: If T1 ≤ T2 and T1 ∈ C, then T2 ∈ C.

If we are to call C an irreducible dividing-line, there are several “indivisibility” or
“non-transience” requirements that seem unavoidable:

3. Consider a theory T obtained as a “disjoint union” of a family of theories {Ti }i∈I ;
say, T has a family of sorts for each Ti , and these sorts are orthogonal in T . For
the sake of irreducibility, if T ∈ C, then we should expect that at least one of the
Ti ’s is in C. Otherwise membership in C would appear to depend on two or more
phenomena that occur (or not) independently of each other.
That is to say, C should be prime.

4. Consider a finite family of theories T0, . . . , Tn−1 ∈ C. It would be very strange to
require that every theory T that lies ≤-below each of T0, . . . , Tn−1 to be in C; if ≤
is in any way natural, this would presumably place the theory of an infinite set inC.
However, for the sake of irreducibility, we should expect the fact that T0, . . . , Tn−1
are all in C to have a single common explanation. That is, there should be some T
in C and that lies ≤-below each of T0, . . . , Tn−1.
Thus, C should have some sort of “finite intersection property”.
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5. Consider a descending chain T0 ≥ T1 ≥ T2 ≥ · · · of members of C. Again,
we should expect the fact that T0, T1, . . . are all in C to have a single common
explanation, not infinitely many different explanations that, for no particular rea-
son, happened upon a ≤-chain. Thus, we expect that this common explanation is
witnessed through ≤ by a theory—that is, there should be some T ∈ C that lives
≤-below all Ti ’s.
Therefore, C should have some sort of “completeness” property.

If we accept these strictures for a definition of “irreducible” dividing-line relative to an
ordering ≤ of T, then our definition in the next subsection is forced on us. If we settle
on this (or any) definition of irreducible dividing-line, then it is reasonably natural to
ask if irreducible dividing-lines admit “characterizing objects”, and we address this
question in Theorem 2.17.

2.3.2 Irreducibles: complete prime filter classes

Based on our discussion in Sect. 2.3.1, we now formalize the notion of an irreducible
dividing-line relative to our ordering � of T; this formalization is given in Defini-
tion 2.14 below. (Definition 2.13, which precedes it, just establishes some helpful
notation.) Given the definition of �, it is probably not surprising that classes CK ⊂ T,
defined from Fraïssé classes K, will play an important role in the development, so
we make these CK’s formal in Definition 2.16. Finally, in Theorem 2.17, we state
the main result of this section, identifying irreducible dividing-lines with classes of
theories defined from indecomposable Fraïssé classes.

Definition 2.13 For a set S ⊂ T, we define

↓S = {T ∈ T : (∀T1 ∈ S) T � T1}
↑S = {T ∈ T : (∀T0 ∈ S) T0 � T }

which are the lower- and upper-cones of S.

Definition 2.14 Let C ⊆ T. We say that C is irreducible (or less succinctly, is a
complete prime filter class) if the following hold:

• (Existence) C is non-empty.
• (Filter properties)

– If T0 ∈ C, T ∈ T, and T0 � T , then T ∈ C.
– If T0, T1, . . . , Tn−1 ∈ C, then C ∩ ↓{T0, . . . , Tn−1} �= ∅.

• (Completeness) If (Ti )i∈I is a non-empty�-chain of theories in C (i.e., I = (I ,<)

is a non-empty linear order, and for all i, j ∈ I , i < j ⇒ Ti � Tj ), then
C ∩ ↓ {Ti }i∈I �= ∅.

• (Primality) For any set S ⊂ T, if ↑S ⊆ C, then C ∩ S �= ∅.
Remark 2.15 Our completeness axiom is definitely stronger than required: In fact,
the following (2ℵ0)+-completeness condition would suffice to obtain Theorem 2.17
below:
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For any positive ordinal α < (2ℵ0)+, for any descending �-chain (Ti )i<α (i.e.,
i < j < α ⇒ Tj � Ti ) of members of C of length α, C ∩ ↓ {Ti }i<α �= ∅.

We conjecture that even this (2ℵ0)+-completeness condition is stronger than necessary
to prove Theorem 2.17.

Definition 2.16 Let K be an algebraically trivial Fraïssé class. Then CK is the
class of theories T ∈ T for which there are a sequence of formulas ϕ =
(ϕR(x0, . . . , xr−1))R(r)∈sig(LK) in LT and a ϕ-resolved F ∈ Fϕ(T ) such that
Ageϕ(F) = K. In other words,

CK = {T ∈ T : TK � T }.

We note that if K1 and K2 are two algebraically trivial Fraïssé classes, then

TK1 � TK2 ⇔ CK2 ⊆ CK1 .

Aspromised,we now state themain result of this section,which says that irreducible
dividing-lines (relative to �) have fairly concrete “characterizing objects”, namely
indecomposable Fraïssé classes, and that any class defined fromone of these is, indeed,
the “wild” class of an irreducible dividing-line. Of course, this reduces the project to
identifying the indecomposable Fraïssé classes, and we take small steps in this project
in the ensuing sections of the paper. The proof of Theorem 2.17 is given in the next
subsection.

Theorem 2.17 Let C be a non-empty class of theories. The following are equivalent:

1. C is irreducible.
2. C = CK for some indecomposable algebraically trivial Fraïssé class K.

To conclude this subsection, we observe that the identification of irreducible
dividing-lines with certain kinds of Fraïssé classes yields an easy upper bound on
the number of such dividing-lines.

Corollary 2.18 There are no more than 2ℵ0 indecomposable algebraically trivial
Fraïssé classes (in finite relational languages). So by Theorem 2.17, if F denotes the
family of all irreducible dividing-lines (complete prime filter classes), then

∣
∣F

∣
∣ ≤ 2ℵ0 .

Proof Let S be the set of functions s : ω → ω of finite support. For each s ∈ S, let
sig(Ls) be the signature with relation symbols R(s(i))

i for each i ∈ supp(s), and letKs

be the set of all algebraically trivial Fraïssé classes of finiteLs-structures. We define
K ∗

s to be the set of all indecomposable algebraically trivial Fraïssé classes of finite
Ls-structures. Then

∣
∣F

∣
∣ ≤

∣
∣
∣
⋃

s∈S
K ∗

s

∣
∣
∣ ≤ ℵ0 · 2ℵ0 = 2ℵ0 .

��
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2.4 Proof of Theorem 2.17

We now turn to the proof of Theorem 2.17, which of course has two directions. The
proof of 2 ⇒ 1 in Theorem 2.17 is quite short, so we give it immediately in the form
of Proposition 2.19. The proof of 1 ⇒ 2 (Proposition 2.20, below) is somewhat more
involved.

Proposition 2.19 Let K be an indecomposable algebraically trivial Fraïssé class of
finite hen CK is irreducible.

Proof Let L be the language of K, say sig(L ) =
{

R(r0)
0 , . . . , R(rk−1)

k−1

}
. Only the

primality of CK is not altogether obvious. To prove primality, let S ⊂ T be a set of
theories. Without loss of generality, we assume that for each T ∈ S, LT is purely
relational. We define a language LS as follows:

• For each T ∈ S, for each sort X of LT ,LS has a sort YT :X
• For each T ∈ S, for each relation symbol R ⊆ X0 × · · · × Xn−1 ofLT ,LS has a
relation symbol RT ⊆ YT :X0 × · · · × YT :Xn−1

For anLS-structureM, we takeMT to denote the restriction/reduct ofM to the sorts
YT :X and symbols RT associatedwith T .We define TS to be the theory ofLS-structures
M such that MT � T for every T ∈ S. For S0 ⊆ S, we define MS0 similarly.

It is not hard to see that TS ∈ ↑S. It is routine to verify that TS is complete, that up
to the obvious translations of formulas,

⋃
T ∈S LT is an elimination set of TS , and that

TS eliminates imaginaries (so TS ∈ T). Finally, we observe that for pairwise distinct
T0, . . . , Tn−1 ∈ S andM � TS ,MT0 , . . . ,MTn−1 are orthogonal in the sense that any
0-definable set D of M{Ti }i is equal to a union of sets of the form D0 × · · · × Dn−1,
where Di is a 0-definable set of MTi for each i < n.

Now, suppose that ↑S ⊆ CK—so of course, TS ∈ CK. We must show that there
is some T ∈ S such that T ∈ CK. Since TS ∈ CK, there are 0 < m < ω, formulas
ϕi (x0, . . . , xri −1) ∈ LS for each i < k (where each x j is a non-repeating m-tuple
of variables, say in the sort YT0:X0 . . . YTm−1:Xm−1 ), and F ∈ Fϕ(TS) such that K =
Ageϕ(F). For each j < m and i < k, let ϕ

j
i be the reduct of ϕi to YTj :X j , let Fj be

the restriction of F to YTj :X j , and let K j = Ageϕ j (Fj ). Then, (K0, . . . ,Km−1) is a
factorization of K. As K is indecomposable, it follows that TK � TK j � Tj for some
j < m, and then Tj ∈ CK—as required. ��
Proposition 2.20 If C is irreducible, then there is an indecomposable algebraically
trivial Fraïssé class K such that C = CK.

For the rest of this subsection (the proof of Proposition 2.20), we fix a complete
prime filter class C.

The first important step in the proof of Proposition 2.20 is to identify the role of the
Fraïssé class K in C in terms of �. Unsurprisingly, we find that K is chosen so that
TK is the �-minimum element of C̃ = T̃∩C, and we then demonstrate (Lemma 2.22)
being minimum for an irreducible class C is sufficient for indecomposability.

Observation 2.21 Let K0, . . . ,Kn−1 be algebraically trivial Fraïssé classes, and let B
be the generic model of�iKi . For T ∈ T, if TKi � T for each i < n, then Th(B) � T .
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Lemma 2.22 LetK be an algebraically trivial Fraïssé class such that TK is�-minimum
in C̃ = T̃ ∩ C. Then K is indecomposable.

Proof Let A be the generic model of K. Suppose (K0, . . . ,Kn−1) is a factorization
of K via an injection u : A → B, where B is the generic model of �iKi . Obviously,
TK � Th(B).

Let S = {
TKi

}
i<n . We have observed that if TKi � T for each i < n, then

Th(B) � T . Thus, for any T ∈ ↑S, we have TK � Th(B) � T , so ↑S ⊆ C. Since C
is prime, it follows that TKi ∈ C for some i < n. Since TK is �-minimum in C̃, we
find that TK � TKi—as required. ��

ByLemma 2.22, we nowknow that in order to prove Proposition 2.20, it is sufficient
just to prove that C̃ has a �-minimum element, and that is what we do in the rest of
the proof. This amounts to demonstrating, first, that a �-minimal element of C̃ is
already �-minimum, and second, that C̃ must indeed have �-minimal element. The
first project accounts for Lemmas 2.23, 2.24, and 2.25. The second part accounts for
Lemma 2.27 and Corollary 2.28.

Lemma 2.23 For any T ∈ T, T ∈ C if and only if QT ∩ C �= ∅.

Proof Clearly, if QT ∩ C is non-empty, then T ∈ C, so we just need to deal with the
converse. Suppose T ∈ C.

Let ϕ be a sequence ofLT -formulas. By Observation 2.6, Xϕ(T ), the space repre-
senting Fϕ(T ) up to “isomorphism” from the proof of Proposition 2.3, has a countable
dense subset Wϕ(T ) such that F is ϕ-resolved whenever F/∼ ∈ Wϕ(T ). By Obser-
vation 2.5 and Proposition 2.3, there is a ϕ-resolved Fϕ ∈ Fϕ(T ) such that for every
F/∼ ∈ Wϕ(T ),Aϕ(F) embeds intoAϕ(Fϕ). One easily verifies, then, that for every
ϕ-resolved F ∈ Fϕ(T ), Aϕ(F) embeds into Aϕ(Fϕ). Now, we observe that for an
arbitrary theory T ′ ∈ T,

T ′ ∈ ↑QT �⇒ (∀ϕ ofLT ) T h(Aϕ(Fϕ)) � T ′ �⇒ T � T ′ �⇒ T ′ ∈ C.

More succinctly, we have shown that ↑QT ⊆ C. Since C is prime, QT ∩ C �= ∅, as
desired. ��
Lemma 2.24 The sub-class C̃ = C ∩ T̃ is a complete filter class (but not necessarily
prime) relative to T̃.

Proof Since C is non-empty, we may choose T ∈ C. Clearly, QT ∩ C ⊆ C̃, so as
QT ∩ C is non-empty, C̃ �= ∅ as well.

For the first filter requirement, let T1, T2 ∈ T̃, and suppose that T1 ∈ C̃ and T1 � T2.
Since C is a filter class, T2 ∈ C, so T2 ∈ C∩ T̃ = C̃. For the second filter requirement,
let T0, . . . , Tn−1 ∈ C̃. We claim that C̃ ∩ ↓ {T0, . . . , Tn−1} is non-empty. Since C is a
filter class, let T ′ ∈ C∩ ↓ {T0, . . . , Tn−1}. By Lemma 2.23, QT ′ ∩C is non-empty, so
let T ′

0 ∈ QT ′ ∩ C. Since QT ′ ⊆ T̃, we have T ′
0 ∈ C̃ ∩ ↓ {T0, . . . , Tn−1}, as required.

For the completeness of C̃, let κ be a positive ordinal, and let (Ti )i<κ be a descending
�-chain of members of C̃. By the completeness of C, there is a theory T ∈ C that is
�-below all of the Ti ’s (i < κ). By Lemma 2.23 again, QT ∩C is non-empty, and any
T ∗ ∈ QT ∩ C is in C̃ and also �-below all of the Ti ’s. ��
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Lemma 2.25 If C̃ has at least one �-minimal element, then it has a �-minimum
element.

Proof Let K0 be an algebraically trivial Fraïssé class such that TK0 is a �-minimal
element of C̃. If K0 is not �-minimum, then there is some K1 such that TK1 ∈ C̃

such that TK0 �� TK1 . Since C̃ is a filter class (specifically, the second requirement),
there is an algebraically trivial Fraïssé classK∗ such that TK∗ is in C̃, TK∗ � TK0 , and
TK∗ � TK1 . Since TK0 is �-minimal, we have TK0 � TK∗ � TK1 – a contradiction.
Thus, TK0 is in fact a �-minimum element of C̃. ��

We have verified that a �-minimal element of C̃ is already �-minimum, and now
we need to show that C̃ does indeed have �-minimal element. The proof of this fact
goes through showing that the lack of a �-minimal element implies the existence of
long descending chains in C̃, which violates the following easy observation.

Observation 2.26 Since there are, at most, 2ℵ0 -many algebraically trivial Fraïssé
classes (see the proof of Corollary 2.18), |T̃| ≤ 2ℵ0 . Therefore, T̃ contains no strictly
descending �-chains of length greater than 2ℵ0 .

Lemma 2.27 If C̃ does not have a �-minimal element, then it contains a strictly
descending �-chain of length (2ℵ0)+.

Proof At each stage s < (2ℵ0)+ of the following process, we will have a strictly
descending �-chain, so that

k < 
 ≤ s ⇒ TKk � TK

.

• Choose K0 arbitrarily subject to TK0 ∈ C̃.
• At a successor stage i + 1, since C̃ does not have any �-minimal elements, TKi is
not�-minimal in C̃, andwemay chooseKi+1 such that TKi+1�TKi and TKi+1 ∈ C̃.

• At a limit stage 
, we are faced with a chain

TK0 � · · · � TKi � TKi+1 � · · ·

in C̃. Since C̃ is complete, we may choose K
 such that TK

∈ C̃ and TK


� TKi

for all i < 
. We observe that if TKi � TK

for some i < 
, then we would find

TKi � TK

� TKi+1 � TKi

which is impossible; hence TK

� TKi for all i < 
.

��
Corollary 2.28 C̃ has a �-minimum element.

Proof By Observation 2.26 and Lemma 2.27, C̃ has a �-minimal element, say TK,
and by Lemma 2.25, TK is �-minimum in C̃. ��
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Proof of Proposition 2.20 Let K be the algebraically trivial Fraïssé class such that TK
is �-minimum in C̃. Fix any T ∈ C. Fix T0 ∈ QT ∩ C ⊆ C̃. Then, TK � T0 � T , so
T ∈ CK. Conversely, fix T ∈ CK. Then, TK � T and C is upward closed, so T ∈ C.
Therefore, C = CK. ��

This completes the proof of Theorem 2.17.

2.5 Reduction to one sort

So far, the classesK considered are always Fraïssé classes in languages with one sort.
One might ask, “what if we allowed K to have several (but finitely many) sorts?” In
this subsection, we show that allowing K to have multiple sorts actually produces no
additional generality with regards to dividing lines. We remark that the number of
sorts of target theories is not at issue—we assume those theories have elimination of
imaginaries and carry however many sorts are required for that (perhaps uncountably
many).

Theorem 2.29 Let K be an algebraically trivial Fraïssé class in a p-sorted language
L (sorts S0, . . . , Sp−1) with generic model B, and let T ∈ T. Then there is an
algebraically trivial Fraïssé class K̃ in a 1-sorted language such that the following
are equivalent:

1. There are saturated M � T , X0, . . . , X p−1 definable sets of M, fi : Si (B) → Xi

injections (i < p), and for each R ⊆ Si0 × · · · × Sir−1 in sig(L ), a formula
ϕR(x0, . . . , xr−1) of LT such that

B � R(b0, . . . , br−1) ⇔ M � ϕR( fi0(b0), . . . , fir−1(br−1)).

2. T ∈ CK̃.

The proof of Theorem 2.29, of course, requires that we define a Fraïssé class K̃
and determine how it is related to K itself. Lemma 2.31 is a transfer result matching
members of K directly with members of K̃

Definition 2.30 LetL be a p-sorted finite relational languagewith sorts S0, . . . , Sp−1,
and let K be a Fraïssé class of finite L -structures. Then, let LK be the one-sorted
language with relation symbols R(r)

q for each irreflexive quantifier-free-complete type

q ∈ Sqf
r (TK), r ≤ ari(L ).

• For each B ∈ K, we define an LK-structure AB and a family of maps u B
i :

Si (B) → AB as follows:

– AB = ⋃
i<p

({i}×Si (B)
)
as a set.

– For each i < p, u B
i : Si (B) → AB is given by u B

i (b) = (i, b).

– R AB
q = {(

(i0, b0), . . . , (ir−1, br−1)
) : qftpB(b0, . . . , br−1) = q

}
for each

irreflexive q ∈ Sqf
r (TK), r ≤ ari(L ).

• We define K̃ to be the isomorphism-closure of {C : C ≤ AB, B ∈ K}.
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• For each C ∈ K̃, we define an L -structure BC and a family of partial maps
vC

i : C⇀Si (BC ) as follows:

– For q ∈ Sqf
1 (TK), let iq < p be the index such that q � Siq .

– For each i < p, let Si (BC ) = ⋃ {
RC

q : q ∈ Sqf
1 (TK), iq = i

}
and let vC

i be

the identity mapping.

– For R ⊆ Si0 ×· · ·×Sir−1 in sig(L ), let Q R =
{

q ∈ Sqf
r (TK) : q � R(x0, . . . ,

xr−1)
}
and let RBC = ⋃ {

RC
q : q ∈ Q R

}
.

• For an LK-structureM such that Age(M) ⊆ K̃, we define BM similarly.

Lemma 2.31 Let K be an algebraically trivial Fraïssé class in a p-sorted language
L . Then:

1. If B ∈ K, then B ∼= B AB via b �→ (ib, b) where i• : b �→ ib is such that b ∈ Sib (B)

for each b.
2. If C ∈ K̃, then C ∼= ABC via c �→ (iqftp(c), c).

Proof The proofs of the two items of the lemma are very similar, so we will just
prove item 1. Let B ∈ K be given. The map f : b �→ (ib, b) is actually the union
f = ⋃

i<p(v
AB
i ◦ u B

i ), and it is clear that f is a bijection between B and B AB . To see
that f is an isomorphism, let R ⊆ Si0 × · · · × Sir−1 be in sig(L ), and let b j ∈ Si j (B)

for each j < r . Let q = qftpB(b0, . . . , br−1), so that b ∈ R AB
q by definition. Then

B � R(b0, . . . , br−1) ⇔ R(x0, . . . , xr−1) ∈ q

⇔ q ∈ Q R

⇔ R AB
q ⊆ RB AB

and it follows that B � R(b) ⇔ B AB � R( f b). This completes the proof. ��
Corollary 2.32 Let K be an algebraically trivial Fraïssé class in a p-sorted language
L .

1. If C ∈ K̃, then BC ∈ K.
2. K̃ is an algebraically trivial Fraïssé class.

3. K is the isomorphism-closure of
{

BC : C ∈ K̃
}

Proof For Item 1: Given C ∈ K̃, by definition, there is some B0 ∈ K such that
C ≤ AB0 . One easily verifies that BC ≤ B AB0 ∼= B0, so as K is a Fraïssé class, we
find that BC ∈ K. For Item 2: HP for K̃ is built in to its definition, and for JEP and
AP, one simply transfers the discussion from K̃ toK via C �→ BC , applies JEP or AP
there, and transfers it back to K̃ via B �→ AB . Item 3 is immediate from Lemma 2.31.

��
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The remainder of the proof of Theorem2.29 is encoded in the following proposition,
which extends to the transfer between the two Fraïssé classes K and K̃ to the level of
their generic models.

Proposition 2.33 LetK be an algebraically trivial Fraïssé class in a p-sorted language
L . LetB be the generic model ofK, and letMbe generic model of K̃. Then BM ∼= M.

It follows that there are injections ui : Si (B) → M (i < p) and a surjective
mapping i• : Sqf

1 (TK̃) → p : q �→ iq such that:

• M = ⋃̇
i<pimg(ui ), and img(ui ) = ⋃ {

q(M) : iq = i
}

for each i < p.

• For each irreflexive q ∈ Sqf
r (TK), r ≤ ari(L ), if q � Si0 × · · · × Sir−1 and

(b0, . . . , br−1) ∈ ∏
j<r Si j (B)

B � q(b0, . . . , br−1) ⇔ M � Rq(ui0(b0), . . . , uir−1(br−1)).

Proof One verifies that BM is K-universal and K-homogeneous, and that A ∈ K
whenever A is a finite subset of BM. It follows that BM ∼= B by the uniqueness of
the generic model of an amalgamation class. ��

3 Linear orderings and the connection to collapse-of-indiscernibles
dividing-lines

The starting point for the research in this paper was an attempt to generalize the
collapse-of-indiscernible dividing-lines results from [7,23]. These results are them-
selves a generalization of Shelah’s classification of stable theories in terms of
indiscernible sequences:A theory is stable if and only if every indiscernible sequence is
an indiscernible set [24]. In this section, we connect our discussion with this concept
and explore the relationship between positive-local-combinatorial and collapse-of-
indiscernible dividing-lines.

3.1 Definitions and previously known facts

We begin our discussion by recalling definitions around generalized indiscernibles.
This starts with the definition of a Ramsey class; as it turns out these are exactly the
classes which produce well-behaved indiscernibles (i.e., ones that have the Patterning
property). From there,we discuss (un-collapsed) indiscernible pictures.We then define
the Patterning property, and recall a theorem from [7], stating that the Patterning
property is equivalent to the Ramsey property.

Definition 3.1 (Ramsey property, Ramsey class) Let K be a Fraïssé class.

• For A ∈ K, we say that K has the A-Ramsey property if, for any 0 < k < ω

and any B ∈ K, there is some C = C(A, B, k) ∈ K such that, for any coloring
ξ : Emb(A, C) → k, there is an embedding u : B → C such that ξ is constant on
Emb(A, u B).
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• K is said to have the Ramsey property if it has the A-Ramsey property for every
A ∈ K. When K has the Ramsey property, then we also say that K is a Ramsey
class.

Definition 3.2 Let K be a Fraïssé class with generic model A. Let M be an infinite
L -structure for some language L .

• A picture of A in M, γ : A → M, is a just an injective mapping of A into (a
single sort of)M.

• A picture γ : A → M of A in M is indiscernible if for all n ∈ N, a0, . . . , an−1
and b0, . . . , bn−1 in A,

qftpA(a) = qftpA(b) ⇒ tpM(γ a) = tpM(γ b).

(For � ⊆ L , �-indiscernible pictures are defined similarly.)
• An indiscernible picture γ : A → M is called un-collapsed if for all n ∈ N,

a0, . . . , an−1 and b0, . . . , bn−1 in A,

tpM(γ a) = tpM(γ b) ⇒ qftpA(a) = qftpA(b).

Of course, we say that γ collapses if it is not un-collapsed.

Usually, we will denote indiscernible pictures with the letters I or J instead of γ .

Definition 3.3 (Patterning property) Let K be a Fraïssé class with generic model A.
Let M be an infiniteL -structure for some language L .

Let γ : A → M be a picture, and let I : A → M be an indiscernible picture. We
say that I is patterned on γ if for every� ⊂fin L , every n ∈ N, and all a0, . . . , an−1 ∈
A, there is an embedding f = f�,a : A�a → A such that

tpM� (I a) = tpM� (γ f a).

Now, we say that K has the Patterning property if for every picture γ : A → M,
there is an indiscernible picture I : A → M of A patterned on γ .

The existence of indiscernible sequences is usually stated (as in [20]) with less
precision than is actually required in practice. The existence statement in full precision,
but generalized to objects richer than pure linear orders, is the following theorem due
to [23].

Theorem 3.4 K has the Ramsey property if and only if it has the Patterning property.

Thus, if we wish to consider Fraïssé classes that produce a coherent theory of
indiscernibles, we are compelled to look at Ramsey classes. Furthermore, as the next
theoremwill show, looking at Ramsey classes forces us to consider algebraically trivial
classes which carry a 0-definable linear order. Therefore, in this section, we will be
primarily interested in studying algebraically trivial Fraïssé classes that, when one
adds a generic linear order, become Ramsey classes.
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Theorem 3.5 Let K be a Fraïssé class with disjoint-JEP, and let A be the generic
model of K. If K has the Ramsey property, then:

• ([21]) K is algebraically trivial.
• ([13]) A carries a 0-definable linear ordering.

Definition 3.6 LetK be an algebraically trivial Fraïssé class in the languageLK, and
assume that |S1(TK)| = 1. Let L <

K be the language obtained by adding one new
binary relation < to the signature of LK, and let K< be the class of all finite L <

K -
structures B such that B�LK ∈ K and <B is a linear ordering of B. Then K< is also
an algebraically trivial Fraïssé class with |S1(TK<)| = 1, and if B is its generic model,
then <B is a dense linear ordering of B without endpoints (see, for example, [3,4]).

The class K< is the generic order-expansion of K. We will say that the original
class K is simply Ramsey-expandable if K< has the Ramsey property. (A more gen-
eral notion of Ramsey-expandable would allow arbitrary expansions by finitely many
relation symbols; this topic is addressed in, for example, [10,11], under the name of
“having a Ramsey-lift”.)

3.2 Order-expansions

A priori, adding a generic linear order to an algebraically trivial Fraïssé class could
undermine the project of classifying dividing-lines by changing the corresponding
class of theories. Luckily, that seems not to be the case.Wewill show, inCorollary 3.10,
that, given any algebraically trivial Fraïssé class K, if TK has the order property, then
K and K< correspond to the same dividing-line. Therefore, as long as the generic
model of K is unstable, we need not worry about adding a generic order to K.

We begin with the definition of “coding orders”, which is precisely what is needed
to show that adding a generic order will have no effect on the corresponding dividing-
line. Then, we show that a class codes orders if and only if its generic model has the
order property.

Definition 3.7 Let K be an algebraically trivial Fraïssé class of L -structures. We
say that K codes orders if there are 0 < n < ω, quantifier-free formulas
θR(x0, . . . , xr−1)(R(r) ∈ sig(L ), |xi | = n), and a quantifier-free formula θ<(x, y)

such that for every B ∈ K<, there are C ∈ K and an injection f : B → Cn such that

B � R(b0, . . . , br−1) ⇔ C � θR( f (b0), . . . , f (br−1))

for each R(r) ∈ sig(L ) and all b0, . . . , br−1 ∈ B, and

b <B b′ ⇔ C � θ<( f (b), f (b′))

for all b, b′ ∈ B.

Observation 3.8 Let K be an algebraically trivial Fraïssé class that codes orders, and
let A< = (A,<) be the generic model of K<. Then there are 0 < n < ω, quantifier-
free formulas θR(x0, . . . , xr−1) (R(r) ∈ sig(L ), |xi | = n), a quantifier-free formula
θ<(x, y), and an injection u : A → An such that
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A � R(a0, . . . , ar−1) ⇔ A � θR(u(a0), . . . , u(ar−1))

for each R(r) ∈ sig(L ) and all a0, . . . , ar−1 ∈ A, and

a < a′ ⇔ A � θ<(u(b), u(b′))

for all a, a′ ∈ A.

Proposition 3.9 Let K be an algebraically trivial Fraïssé class. Then, K codes orders
if and only if TK has the order property.

Proof Obviously, ifK codes orders, θ<(x, y) as in the definition of coding orders has
the order property in TK.

Conversely, suppose TK has the order property, and letA � TK be the genericmodel.
SinceA has the order property and TK eliminates quantifiers, there is a quantifier-free
L -formula ψ(x; y), |x | = |y| = m, such that for every n, there is a sequence (ai )i<n

of m-tuples from A such that, for all i, j < n,

A � ψ(ai ; a j ) ⇔ i < j .

Let θ<(x ′x, y′y) = ψ(x, y), and for each R(r) ∈ sig(L ), let

θR(x ′
0x0, x ′

1x1, . . . , x ′
r−1xr−1) = R(x ′

0, . . . , x ′
r−1)

Now, let B ∈ K< be given—and say, n = |B| and B = {b0 <B · · · <B bn−1}.
Since A is the generic model of K, we can choose a sequence (ai )i<n of m-tuples
from A such that A � ψ(ai ; a j ) ⇔ i < j for all i, j < n, and an embedding
u0 : B�L → A. We define f : B → Am+1 by setting f (bi ) = (u0(bi ), ai ) for each
i < n, and we take C to be the induced substructure ofA on u0B ∪⋃

i ai . It is routine
to verify that C and f meet the requirements of coding orders for B ∈ K<. As B was
arbitrary, K indeed codes orders. ��

These are the ingredients needed to prove the main result of this subsection: For an
algebraically trivial Fraïssé class whose generic model is unstable, adding a generic
linear order does not change the corresponding dividing-line.

Corollary 3.10 Let K be an algebraically trivial Fraïssé class with generic model A
and generic order-expansion K< (whose generic model is A< = (A,<)). If TK is
unstable, then CK = CK< .

Proof CK< ⊆ CK is trivial because A< is an expansion of A. To show CK ⊆ CK< ,
let T ∈ CK, M � T saturated, and let ϕ = (ϕ0, . . . , ϕm−1) and F : A → M
be a ϕ-resolved member of Fϕ(T ) such that Aϕ(F) = A up to an identification of
relation symbols. Also, let 0 < n < ω, θR , θ<, and u : A → An be as described in
Observation 3.8. It is not hard to see that TK< ∈ QT via
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F ′ = (F, . . . , F
︸ ︷︷ ︸

n times

)◦u

so T ∈ CK< . ��

We can apply this result to the Fraïssé class of finite sets with k independent linear
orders. These classes were studied, for example, in Section 3 of [7] in the classification
of op-dimension. It turns out that the dividing-line corresponding to k independent
linear orders is the same as the dividing line corresponding to one linear order.

Definition 3.11 For 0 < k < ω, let Lk be the language whose signature consists of
binary relation symbols<0, . . . , <k−1. LetMOk be the class of all finiteLk-structures
B such that <B

i is a linear ordering of B for each i < k. Members ofMOk are called
k-multi-orders, and it is not difficult to verify that MOk is an algebraically trivial
Fraïssé class. Clearly,MO1 is just the class LO of all finite linear orders.

Proposition 3.12 For every 0 < k < ω, MOk+1 is the generic order-expansion of
MOk:MOk+1 = MO<

k . Since eachMOk is unstable, we find thatCMOk+1 = CMO<
k

=
CMOk . Thus, CMOk = CLO for every k > 0.

This is, perhaps, not surprising. As noted in Section 3 of [7], MOk relates to op-
dimension ≥ k, and a theory T has sorts of arbitrarily high op-dimension if and only
if T is unstable (i.e., T ∈ CLO).

Observation 3.13 LO is indecomposable.

The proof of this observation is similar to the proof of Proposition 4.9 below (in the
setup of that proof, for a0 < a1 fromA, tpB(ua0a1) �= tpB(ua1a0), so it is witnessed
in a reduct of B toLi0 for some i0 < n).

3.3 Collapse of indiscernibles

In this subsection, wemake explicit the connection between positive-local-combinato-
rial and collapse-of-indiscernible dividing-lines. In Theorem 3.14, we show that the
dividing-line corresponding to an algebraically trivial Fraïssé class with the Ramsey
property is characterized by the existence of an un-collapsed indiscernible picture. In
Theorem 3.15, we generalize this to simply Ramsey-expandable classes. This partially
captures a generalization of the standard collapse-of-indiscernible results found in the
literature [6,7,23].

Theorem 3.14 Let K be an algebraically trivial Fraïssé class with generic model A
in a language L . If K is a Ramsey class, then for every T ∈ T, the following are
equivalent:

1. T ∈ CK
2. There is an un-collapsed indiscernible picture of A in a model of T .
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Proof 2 ⇒ 1 is trivial. For 1 ⇒ 2, let T ∈ T, M � T saturated, and let ϕ =
(ϕ0, . . . , ϕm−1) and F : A → M be a ϕ-resolved member of Fϕ(T ) such that
Aϕ(F) = A up to an identification of relation symbols.

Let I : A → M be an indiscernible picture of A patterned on F . We claim
that I is un-collapsed. Towards a contradiction, suppose there are 0 < k < ω and
a, a′ ∈ Ak such that qftpA(a) �= qftpA(a′) but tpM(I a) = tpM(I a′). Since ϕ is
finite and I is patterned on F , there is an L -embedding u : aa′ → A such that
tpMϕ (I aa′) = tpMϕ (Fuaa′), and it follows that

tpMϕ (Fua) = tpMϕ (I a) = tpMϕ (I a′) = tpMϕ (Fua′).

SinceA = Aϕ(F), we find that qftpA(ua) = qftpA(ua′), and since u is an embedding
and A = Aϕ(F), we find that qftpA(a) = qftpA(a′)—a contradiction. Thus, I must
be un-collapsed. ��

Though Theorem 3.14 is certainly an interesting result in its own right, it does
not match the flavor of collapse-of-indiscernible results discovered thus far (in, say,
[6,7,23]). “Natural” dividing-lines typically do not involve linear orders. For example,
the independence property naturally corresponds to the Fraïssé class of finite graphs
(and not finite ordered graphs). However, in light of Corollary 3.10, adding generic
linear orders has no effect on the dividing-line. Therefore, we get a stronger result,
more in the spirit of typical collapse-of-indiscernibles results.

Theorem 3.15 Let K be an algebraically trivial Fraïssé class. If TK is unstable and
K is simply Ramsey-expandable, then the following are equivalent:

1. T ∈ CK
2. There is an un-collapsed indiscernible picture of A< in a model of T , where A<

is the generic model of K<.

Proof By Theorem 3.14 and Corollary 3.10. ��
Theorem 3.15 is, in spirit, a generalization of the collapse-of-indiscernible results

from [6,7,23]. The following example explores this connection.

Example 3.16 By choosing the appropriate K, we obtain the following corollaries of
Theorem 3.15:

1. If K = Hr+1 is the class of finite (r + 1)-hypergraphs, then CK is the class of
theories with r -IP (see Proposition 4.31). Therefore, T has r -IP if and only if
there is an un-collapsed indiscernible picture of a model of the generic ordered
(r + 1)-hypergraph in a model of T . This is analogous to Theorem 5.4 in [6].

2. In particular, consider r = 1. Then, T has IP if and only if there is an un-collapsed
indiscernible picture of a model of the generic ordered graph in a model of T . This
is analogous to the main result of [23].

One thing missing from the discussion here is precisely how these indiscernibles
resist collapse. The results from [6,7], and [23] all provide a more precise reason for
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the lack of collapse. For example, in [23], we see that a theory has NIP if and only
if all ordered graph indiscernibles collapse to ordered indiscernibles. It is precisely
the collapse of the edge relation that determines whether or not a theory has NIP. In
future work, it would be interesting to explore exactly what reducts ofA< characterize
whether or not a theory belongs to CK (in Theorem 3.15).

4 Case studies

In this section, to get a better feel for the quasi-ordering �, we study some examples
of classes in the �-ordering.

4.1 The top of the�-order

In some sense, the top of the �-order is not surprising. If this is a sensible ordering
on the local complexity of theories, the maximal class must include the theory of true
arithmetic. Moreover, the top class must also include the theory of hereditarily finite
sets since these two theories are bi-interpretable. We show that every algebraically
trivial Fraïssé class is subordinate to this theory, and we conclude from this that all
theories lie �-below it. Finally, we give an example of a theory in the top class which
interprets neither hereditarily finite sets nor true arithmetic.

Definition 4.1 Let L0 be the language of set theory, with signature {∈}. We define
H = (H ,∈H), the hereditarily finite sets, as follows:

• H0 = ∅, and for each n < ω, Hn+1 = Hn ∪ P(Hn)

• Then H = ⋃
n Hn , and ∈H is the usual membership relation.

We write Tfs for the complete theory of H—the theory of finite sets.

Proposition 4.2 TK � Tfs for every algebraically trivial Fraïssé class K, and the
sequence of formulas involved depends only on the signature of K, not on K itself.
Thus, T � Tfs for every T ∈ T.

Proof Let K be an algebraically trivial Fraïssé class in a language L with signature
sig(L ) = {R0, . . . , Rn−1}, and let A be its generic model. Let m = n + 1, and for
each i < n, if r = ari(Ri ), then let θi (x0, . . . , xr−1), where |xi | = m, be the formula
asserting

(x0,0, . . . , xr−1,0) ∈ x0,i+1.

Now, if B ∈ K, we define a certain injection u : B → H . First, let u0 : B → H be
any injection at all, and then define u : B → H by

u(b) =
(

u0(b), u0

(
RB
0

)
, . . . , u0

(
RB

n−1

))
.
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We observe that for each i < n, for all b0, . . . , br−1 ∈ A where r = ari(Ri ),

B � Ri (b0, . . . , br−1) ⇔ (u0(b0), . . . , u0(br−1)) ∈ u0

(
RB

i

)

⇔ (u(b0)0, . . . , u(br−1)0) ∈ u(b0)i+1

⇔ H � θi (u(b0), . . . , u(br−1)).

Since B was an arbitrary member of K, by compactness, there are an elementary
extension H′ of H and an injection F : A → H ′ such that for all i < n, r = ari(Ri ),
for all a0, . . . , ar−1 ∈ A,

A � Ri (a0, . . . , ar−1) ⇔ H′ � θi (F(a0), . . . , F(ar−1)).

It follows that TK � Tfs. ��
Corollary 4.3 Let TA = Th(N,+, ·, 0, 1), often called “true arithmetic”. Since Tfs is
interpretable in TA, it follows that T � TA for every T ∈ T.

Proof In general, we know that for any T1, T2 ∈ T, if T1 is interpretable in T2, then
T1 � T2. The corollary then follows immediately from Theorem 4.2 and the fact that
Tfs and TA are bi-interpretable [12]. ��

Examining the proof of Corollary 2.18 and the proof of Proposition 2.19 gives
another example of a theory T ∗ that belongs to the �-maximal class. However, T ∗
does not interpret Tfs or TA, showing that there are theories in the top class that are
not bi-interpretable.

Definition 4.4 Following the proof of Corollary 2.18, let S be the set of functions
s : ω → ω of finite support. For each s ∈ S, let sig(Ls) be the signature with relation
symbols R(s(i))

i for each i ∈ supp(s), and let Ks be the set of all algebraically trivial
Fraïssé classes of finiteLs-structures. Then, let T ∗ be the theory TS constructed from
S = {TK : K ∈ Ks, s ∈ S} as in the proof of Proposition 2.19.

Fact 4.5 T � T ∗ for every T ∈ T, so in particular, Tfs, TA � T ∗. However T ∗ does
not interpret Tfs or TA.

Proof For the first part of the claim, we notice that for every algebraically trivial
Fraïssé class K, TK � T ∗ by construction. For non-interpretability, just notice that
any reduct of T ∗ to finitely many of its sorts is ℵ0-categorical, but obviously Tfs is not
ℵ0-categorical (use compactness to add an infinite “set”). ��

4.2 Hypergraphs

In this subsection, we explore hypergraphs, showing that the Fraïssé class of r -
hypergraphs is indecomposable (i.e., corresponds to an irreducible dividing-line). We
show that adding a generic order or prohibiting cliques of a fixed size does not alter
the corresponding dividing-line. We also show that these hypergraph classes form a
strict chain. We begin the discussion with the definition of the relevant algebraically
trivial Fraïssé classes, Hr , Hr ,k , and H∗

r .
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Definition 4.6 Let 2 ≤ r < ω, and letLr be the language whose signature is a single
r -ary relation symbol R.

• Hr is the class of all finite r -hypergraphs—i.e., finite models of the two sentences

∀x

⎛

⎝R(x) →
∧

i< j

xi �= x j

⎞

⎠ , ∀x

⎛

⎝R(x) →
∧

σ∈Sym(r)

R(xσ(0), . . . , xσ(r−1))

⎞

⎠ .

• For k > r , Hr ,k is the sub-class consisting of those A ∈ Hr that exclude Kk(r),
the complete r -hypergraph on k vertices. So, Hr ,k is the class of finite models of
the previous two sentences and the sentence

∀x0, . . . , xk−1

⎛

⎝
∧

i< j

xi �= x j →
∨

i0<···<ir−1<k

¬R(xi0 , . . . , xir−1)

⎞

⎠ .

One easily verifies that all Hr ’s and Hr ,k’s are algebraically trivial Fraïssé classes.
Now, let L ∗

r be the expansion of Lr with new unary predicate symbols
U0, . . . , Ur−1, and let H∗

r be the set of models of the first two sentences and the
sentences

∀x
∨

i<r

⎛

⎝Ui (x) ∧
∧

j �=i

¬U j (x)

⎞

⎠ ,

∀x0 . . . xr−1

⎛

⎝R(x) →
∨

σ∈Sym(r)

∧

i<r

Uσ(i)(xi )

⎞

⎠ .

Again, it is not hard to see that H∗
r is, again, an algebraically trivial Fraïssé class.

We make a few observations about the relationship between these Fraïssé classes.

Observation 4.7 Let 2 ≤ r < k < ω, and let A<,B< be the generic models of
H<

r ,k , H
<
r , respectively, and A = A<�Lr , B = B<�Lr . Then, there are embeddings

A → B and A< → B<. It follows that CHr ⊆ CHr ,k and CH<
r

⊆ CH<
r ,k

whenever
2 ≤ r < k < ω.

It is not difficult to check the following observation (see, for example, [6]).

Observation 4.8 For every 2 ≤ r < ω, CH∗
r

= CHr .

As promised, we show that the Fraïssé class of hypergraphs of a fixed arity is
indecomposable. Since this is an algebraically trivial Fraïssé class, it corresponds to
an irreducible dividing-line (by Theorem 2.17).

Proposition 4.9 For every 2 ≤ r < ω, Hr is indecomposable.
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Proof Let (K0, . . . ,Kn−1) be a factorization of Hr . Let A be the generic model of
Hr , and for each i < n, letAi be the generic model ofKi . Let B be the generic model
of �iKi , and let u : A → B be an injection such that for all k and all a, a′ ∈ Ak ,
qftpA(a) = qftpA(a′) ⇔ tpB(ua) = tpB(ua′). We make three observations:

• If k < r and a, a′ ∈ Ak are both non-repeating, then qftpA(a) = qftpA(a′).
• If a ∈ Ar is non-repeating, then qftpA(a) = qftpA(aσ(0), . . . , aσ(r−1)) for any

σ ∈ Sym(r).
• For any k and any a ∈ Ak , qftpA(a) = ⋃

I∈( k
≤r)

qftpA(a�I ).

(We can collapse repeating instances and only deal with non-repeating tuples from
A.) Let a ∈ RA and a′ ∈ Ar\RA non-repeating, and for each i < n, let
θi (x0, . . . , xr−1) = tpB(ua)�Li . Then for some i0 < n, ¬θi0 ∈ tpB(ua′). From
this, we see that θi0 witnesses THr � TKi0

. ��
We now establish the fact that hypergraphs form a strict chain (Corollary 4.13).

In Lemma 4.10, we show that classes defined from hypergraphs form a decreasing
chain and, in Lemma 4.11, we establish that this chain is strict. Together, these yield
Theorem 4.12 and Corollary 4.13. In particular, this shows that there are infinitely
many irreducible dividing-lines, as noted in Corollary 4.14.

Lemma 4.10 For all 2 ≤ r1 < r2 < ω, CHr2
⊆ CHr1

.

Proof For i = 1, 2, let Ai be the generic model of Hri . Consider the Lr2 -formula

θ(x0y0, . . . , xr1−1yr1−1) = R(x0, . . . , xr1−1, y0)

where |yt | = r2 − r1 for all t < r1 − 1. For any B1 ∈ Hr1 , construct anLr2 -structure
B2 as follows:

• As a set, B2 = B1 ∪ {c} for some c where |c| = r2 − r1 and c ∩ B1 = ∅.
• RB2 is {(b0, . . . , br1−1, c) : (b0, . . . , br1−1) ∈ RB1}, closed under symmetry.
• Consider the injection u : B1 → Br2−r1+1

2 given by u(b) = (b, c).

Then, for all b0, . . . , br1−1 ∈ B1,

B1 � R(b0, . . . , br1−1) ⇔ B2 � θ(u(b0), . . . , u(br1−1)).

By compactness, we get an injection u : A1 → Ar2−r1+1
2 such that, for all

a0, . . . , ar−1 ∈ A1

A1 � R(a0, . . . , ar1−1) ⇔ A2 � θ(u(a0), . . . , u(ar1−1)).

Therefore, THr1
� THr2

, so CHr2
⊆ CHr1

. ��

Lemma 4.11 If 2 ≤ r1 < r2 < ω, then CHr1
� CHr2

.
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Proof For i = 1, 2, let Ai be the generic model of Hri . Towards a contradiction,
suppose CHr1

⊆ CHr2
, (i.e., THr2

� THr1
)—that is, there are 0 < m < ω, an injection

u : A2 → Am
1 , and a quantifier-free formula θ(x0, . . . , xr2−1) such that |xi | = m for

each i < r2, and for all a0, . . . , ar2−1 in A2,

A2 � R(a0, . . . , ar2−1) ⇔ A1 � θ(u(a0), . . . , u(ar2−1))

where R is the single r2-ary relation symbol of the language Hr2 . Since r1 < r2, we

may choose a number N < ω such that
(Nm

r1

)
<

(N
r2

)
—so that 2(

Nm
r1

)
< 2(

N
r2
). Now, let

B0, . . . , Bk−1 (where k = 2(
N
r2
)) be an enumeration of N -element substructures ofA2

up to isomorphism—that is, an enumeration of all r2-hypergraphs on N vertices. For
each i < k, let Bu

i be the r2-hypergraph with universe u(Bi ) ⊂ Am
1 and interpretation

RBu
i = θ(A1) ∩ u(Bi )

m . Then we find that

2(
N
r2
) ≤ ∣

∣
{

Bu
i : i < k

}
/ ∼= ∣

∣ ≤ 2(
Nm
r1

)
< 2(

N
r2
)

which is impossible. Thus CHr1
� CHr2

, as claimed. ��
Theorem 4.12 For all 2 ≤ r1 < r2 < ω, CHr2

� CHr1
.

Proof By Lemmas 4.10 and 4.11. ��
Corollary 4.13 CH2 � CH3 � · · · � CHr � · · · . Thus, there is a strict nested chain of
irreducible dividing-lines.

Corollary 4.14 If F denotes the family of all irreducible dividing-lines, then ℵ0 ≤∣
∣F

∣
∣ ≤ 2ℵ0 .

Proof Combine Corollaries 2.18 and 4.13 ��
Now that we have established that the CHr ’s form a strictly decreasing chain, one

might wonder what the intersection of these classes looks like. It turns out that there is
a theory that characterizes the intersection of all classes corresponding to hypergraphs,⋂

2≤r<ω CHr . We build this theory in the obvious manner, by disjointly “gluing”
together the generic hypergraphs of each arity.

Definition 4.15 Let L be the language with, for each 2 ≤ r < ω, a sort Hr and an
r -ary relation Rr on Hr . Let M be the L -structure such that Hr (M) is the generic
model of Hr for each 2 ≤ r < ω, and let Thyp = Th(M).

Observation 4.16 Let T ∈ T. The following are equivalent:

1. Thyp � T ;
2. T ∈ ⋂

2≤r<ω CHr .

We return our attention to exploring the relationship between Hr , Hr ,k , H<
r , and

H<
r ,k , culminating in Theorem 4.20, which states that they all correspond to the same

irreducible dividing line.
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Observation 4.17 For every 2 ≤ r < k < ω, Hr and Hr ,k code orders because THr

and THr ,k both have the order property. Hence, CHr = CH<
r
and CHr ,k = CH<

r ,k
.

Next, we show that prohibiting a k-clique has no effect on the corresponding divid-
ing line.

Lemma 4.18 Let 2 ≤ r < k < ω. Then there is a quantifier-free formula
θ(x0, . . . , xr−1), |xi | = k − 1 such that for every B ∈ Hr , there are C ∈ Hr ,k

and an injection u : B → Ck−1 such that for all b0, . . . , br−1 ∈ B,

B � R(b0, . . . , br−1) ⇔ C � θ(u(b0), . . . , u(br−1)).

Proof Let θ(x0, . . . , xr−1) =
∧

inj. s : r → k−1

R(xs(0),0, . . . , xs(r−1),r−1).

Given B ∈ Hr , we define C ∈ Hr as follows:

• C = B × {0, 1, . . . , k − 2} as a set.
• RC =

{
(
(b0, i0), . . . , (br−1, ir−1)

) : (b0, . . . , br−1) ∈ RB,

i0, . . . , ir−1 < k − 1 pairwise distinct

}

We claim that C is Kk(r)-free, where Kk(r) is the complete r -hypergraph on
{0, 1, . . . , k−1}. Towards a contradiction, suppose X ∈ (C

k

)
is such thatC�X ∼= Kk(r).

Let (b0, i0), . . . , (bk−1, ik−1) be pairwise distinct elements of X . By the pigeon-
hole principle, there are s < t < k such that is = it . Selecting pairwise distinct
j0, . . . , jr−3 ∈ k\{s, t} arbitrarily, we have

(
(b j0 , i j0), . . . , (b jr−3 , i jr−3), (bs, is), (bt , it )

) ∈ RC

because C�X is complete. But this contradicts the definition of RC . Thus, C is Kk(r)-
free as claimed.

Finally, we define u : B → Ck−1 by setting u(b) = (
(b, 0), . . . , (b, k − 2)

)
. For

b0, . . . , br−1 ∈ B, we see that for every injection s : r → k−1

(b0, . . . , br−1) ∈ RB ⇔ (
(b0, s(0)), (b1, s(1)), . . . , (br−1, s(r − 1))

) ∈ RC

so

(b0, . . . , br−1) ∈ RB ⇔ C � θ(u(b0), . . . , u(br−1))

as desired. ��
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Corollary 4.19 Let 2 ≤ r < k < ω. Then there are a quantifier-free formula
θ(x0, . . . , xr−1) (|xi | = k − 1) and an injection u : Ar → Ak−1

r ,k such that for
all b0, . . . , br−1 ∈ B,

Ar � R(b0, . . . , br−1) ⇔ Ar ,k � θ(u(b0), . . . , u(br−1)).

It follows that CHr ,k ⊆ CHr .

By combining these ideas, we get the desired theorem, showing that the irreducible
dividing-line corresponding to the class of all finite r -hypergraphs is also characterized
by any one of the other classes of (ordered) r -hypergraphs mentioned above.

Theorem 4.20 CHr = CH<
r

= CHr ,k = CH<
r ,k

whenever 2 ≤ r < k < ω.

Proof Clearly Hr ,k ⊆ Hr , so CHr ⊆ CHr ,k . By the previous corollary, we conclude
CHr = CHr ,k . The remainder of the theorem follows by Observation 4.17. ��
Remark 4.21 FromTheorem 4.20, we learn that the class/dividing-line C = {unsimple
theories} is not irreducible in the sense of this paper. To see this, suppose C were
irreducible—say C = CK for some indecomposable algebraically trivial Fraïssé class
K. Since TH2,3 , the theory of the Henson graph, is in C (see, for example, [8,14]), we
find that TK � TH2,3 � TH2 , so TH2 ∈ C—i.e., TH2 is unsimple. But TH2 is the theory
of the random graph, which certainly is simple—a contradiction.

4.3 Societies

Theorem 4.20 tells us that, given any k > r ≥ 2, the class of theories corresponding
to the algebraically trivial Fraïssé class of finite (ordered) r -hypergraphs (omitting
k-cliques) coincide. What happens if we have more than one hyperedge relation, each
acting independently? Do we get a new dividing-line? As it turns out, we get nothing
new; adding new hyperedge relations of smaller or equal arity does not change the
corresponding dividing-line. We begin by formally defining the notion of a society,
which captures the idea of having multiple independent hyperedge relations.

Definition 4.22 Let L be a finite relational language in which all relation symbols
have arity ≥ 2. For each R(n) ∈ sig(L ), let ϕR be the sentence

∀x

⎛

⎝R(x) →
∧

i< j<n

xi �= x j

⎞

⎠ ∧ ∀x

⎛

⎝R(x) →
∧

σ∈Sym(n)

R(xσ(0), . . . , xσ(n−1))

⎞

⎠

and let �L be the set of sentences {ϕR : R ∈ sig(L )}. Following [22], we write SL
for the class ofL -societies—that class of all finite models of�L . (One easily verifies
that SL is an algebraically trivial Fraïssé class.)

Observation 4.23 Let L be a finite relational language in which all relation symbols
have arity ≥ 2, and let r be the maximum arity among relation symbols in L ; then
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THr � TSL . To see this, just fix a relation R ∈ sig(L ) of arity r—then the reduct of
the generic model A of SL to the signature {R} actually is the generic model of the
class Hr of r -hypergraphs.

In the following theorem, we show that the converse is also true; i.e., the dividing-
line corresponding to a class of societies is the same as the class of r -hypergraphs,
where r is the largest arity in the language. This conclusion is formally stated in
Corollary 4.25.

Theorem 4.24 Let L be a finite relational language in which all relation symbols
have arity ≥ 2, and let r = ari(L ). Then TSL � THr .

Proof We assume that the signature of Hr is {R(r)}. Let m = ∑
Q∈sig(L ) ari(Q),

and let (IQ)Q∈sig(L ) be a partition of m such that for each Q(n) ∈ sig(L ), we have
IQ = {i0(Q) < · · · < in−1(Q)} and an enumeration j0(Q) < · · · < jm−n−1(Q) of
m\IQ . For each Q ∈ sig(L ) of arity n, let

θQ(x0, . . . , xn−1) = R(x0,i0(Q), . . . , xn−1,in−1(Q), x0, j0(Q), . . . , x0, jr−n−1(Q)).

Given C ∈ SL , we define BC ∈ Hr as follows:

• BC = C × m
• For Q(n) ∈ sig(L ), we define the intermediate relation RC

Q to be the symmetric
closure of

{
((c0, i0(Q)), . . . , (cn−1, in−1(Q)), (c0, j0(Q)),

. . . , (c0, jr−n−1(Q))) : (c0, . . . , cn−1) ∈ QC
}

Then we define RBC = ⋃
Q∈sig(L ) RC

Q .

We define u : C → Bm
C by u(c) = (

(c, 0), . . . , (c, m − 1)
)
. Let Q(n) ∈ sig(L ) and

c0, . . . , cn−1 ∈ C be given. Firstly, we have

C � Q(c0, . . . , cn−1)

⇒ BC � R((c0, i0(Q)), . . . , (cn−1, in−1(Q)), (c0, j0(Q)), . . . , (c0, jr−n−1(Q)))

⇔ BC � θQ(u(c0), . . . , u(cn−1))

Now, we claim that if

BC � R((c0, i0(Q)), . . . , (cn−1, in−1(Q)), (c0, j0(Q)), . . . , (c0, jr−n−1(Q))),

then (c0, . . . , cn−1) is in QC . If not, then for some Q(n1)
1 ∈ sig(L ) different from Q,

we have

(
(c0, i0(Q)), . . . , (cn1−1, in1−1(Q)), (c0, j0(Q)), . . . , (c0, jr−n1−1(Q))

) ∈ RC
Q1

.
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Since QC
1 contains only non-repeating tuples, it must then be that IQ1 ⊆ IQ—

contradicting the fact that (IQ)Q∈sig(L ) is partition of m. Thus, (c0, . . . , cn−1) is
in QC , and we have proven that

C � Q(c0, . . . , cn−1) ⇔ BC � θQ(u(c0), . . . , u(cn−1)).

As C ∈ SL was arbitrary, we have shown that TSL � THr . ��
Corollary 4.25 Let L be a finite relational language in which all relation symbols
have arity ≥ 2. Then, CSL = CHari(L )

.

Proof By Observation 4.23 and Theorem 4.24. ��
As we shall see in the following subsection, CHr+1 is exactly equal to the theories

that have r -IP. One might hope that, by studying societies in general, one might find
a whole zoo of generalizations of the independence property, akin to r -IP. However,
Corollary 4.25 says that no such thing seems to exist. Adding more relation symbols
(i.e., considering more formulas) does nothing to alter the positive local complexity of
the theory. In some sense, the r -IP’s are the only generalizations of the independence
property of this type.

4.4 Multi-partite multi-concept classes

In this subsection, we show that the irreducible dividing-line corresponding to (r +1)-
hypergraphs is precisely the same as r -IP, the r -independence property. We begin by
discussing p-partite concept classes, which is a generalization of (standard) concept
classes used to study the independence property.

Definition 4.26 If W is a set, then S ⊆m W means that S is a multi-set all of whose
elements are members of W , each with finite multiplicity.

Definition 4.27 For 0 < p < ω, Lp is the (p + 1)-sorted language (with sorts
S0, S1, . . . , Sp) and just one relation symbol R ⊆ S0 × S1 × · · · × Sp. The Fraïssé
class Fin(Lp) of all finiteLp-structures is also known as the class of (p + 1)-partite
(p + 1)-hypergraphs.

Definition 4.28 For 0 < p < ω, a finite p-partite concept class is a multi-set C ⊆m

P(X1 × · · · × X p).
Given a finite p-partite concept classC ⊆m P(X1×· · ·× X p) (multi-set of subsets

of X1 × · · · × X p), we define an Lp-structure BC with S0(BC ) = C , Si (BC ) = Xi

for each i = 1, . . . , p, and

RBC = {
(S, x1, . . . , x p) : (x1, . . . , x p) ∈ S ∈ C

}
.

Let Jp be the isomorphism-closure of

{BC : C is a finite p-partite concept class} .
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Observation 4.29 For every 0 < p < ω, Jp = Fin(Lp) and H∗
p+1 = ˜Fin(Lp) (in

the notation of Sect. 2.5).

We define the r -independence property (r -IP), which generalizes the usual inde-
pendence property. Then, in Proposition 4.31, we show that this exactly equals the
dividing-line corresponding to (r + 1)-hypergraphs.

Definition 4.30 Let T ∈ T, and let M � T be ℵ1-saturated. We say that T has the
r-independence property (r -IP) if there is a formula ϕ(x0, . . . , xr−1; y) ∈ LT such
that there are a0,i , . . . , ar−1,i in M (i < ω) such that for any finite X ⊂ ωr , there is
some bX inM such that for all (i0, . . . , in−1) ∈ ωr ,

M � ϕ(a0,i0 , . . . , ar−1,ir−1; bX ) ⇔ (i0, . . . , ir−1) ∈ X .

Let IPr = {T ∈ T : T has r -IP} . Note that the usual independence property is 1-IP.

Proposition 4.31 ([6]) IPr = CHr+1 .

Proof Let T ∈ T. If T ∈ CHr+1 is witnessed by F : A → M (where M � T )
and ϕ(x0, . . . , xr−1, xr ) ∈ LT , then it is easy to see that ϕ witnesses the fact that T
has the r -independence property. Conversely, if T has r -IP, then there are a formula
ϕ(x0, . . . , xr−1; y) ∈ LT , (a0,i , . . . , ar−1,i )i<ω and (bX )X⊂finωr in some M � T
witnessing this. Then, ifB is the generic model of Jr , we have injections ui : Si (B) →
M (i ≤ r ) such that for all b0 ∈ S0(B), . . . , br ∈ Sr (B), B � R(b0, . . . , br ) ⇔ M �
ϕ(u0(b0), . . . , ur (br )). By Theorem 2.29, it follows that T ∈ CJ̃r

= CH∗
r+1

= CHr+1 .
��

Combining this with Corollary 4.13, we see that the r -independence property forms
a strictly decreasing chain of irreducible dividing-lines.

Corollary 4.32 Every IPr (2 ≤ r < ω) is an irreducible dividing-line, and

IP = IP1 � IP2 � · · · � IPr � · · · .

The fact that these are strict was already well-known (e.g., [6]). However, that
each is an irreducible dividing-line is an interesting fact, providing evidence that
our definition of irreducible is the “right” one. Indeed, irreducibility really should
encompass all known positive local dividing-lines.

5 Open questions

When looking at Sect. 3, one notices that, if K is an algebraically trivial indecom-
posable Fraïssé class and TK is unstable, then CK is characterized by a collapse of
indiscernibles when K< is a Ramsey class. So a natural question arises:

Open Question 5.1 Let K be an algebraically trivial indecomposable Fraïssé class
such that TK is unstable and |S1(TK)| = 1. When is K< a Ramsey class? Is there a
model-theoretic characterization of this?
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Also in that section, one notices a difference between our general result for collapse-
of-indiscernibles (Theorem 3.15) and the specific results found in the literature (e.g.,
[6,7,23]).

Open Question 5.2 Suppose K is an algebraically trivial indecomposable Fraïssé
class such that K< is a Ramsey class. Can one find a specific reduct T0 of TK such
that a theory T lies outside of CK if and only if every K<-indiscernible in T collapses
to T0?

We would like to better understand the quasi-ordering � and the irreducible
dividing-lines it generates. For example, deciding which classes K are equivalent
vis-à-vis the class CK seems to be an interesting project. Which are equivalent to the
trivial dividing-line?

Open Question 5.3 Suppose K is an indecomposable algebraically trivial Fraïssé
class such that |S1(TK)| = 1 and TK is stable. Then, do we have CK = T? If not, can
we characterize which K yield the trivial dividing line?

(Obviously, if K= is the Fraïssé class of finite pure sets (in the empty signature);
then CK= = T.)

Another question revolves around the number of irreducible dividing lines. By
Corollary 4.14, we know there are between ℵ0 and 2ℵ0 such, but can we get a better
estimate?

Open Question 5.4 Is the set of irreducible dividing-lines countable?

During the first attempt at categorizing irreducibility for classes of theories, we
replaced “completeness” with “countable completeness” in Definition 2.14. Although
the proof of Lemma 2.27 seems to require at least “(2ℵ0)+-completeness”, is this
actually necessary?

Open Question 5.5 Let C ⊂ T be a prime filter class. Is C complete if and only if C is
countably-complete (i.e., every descending �-chain (Tn)n<ω of members of C, there
is some T ∈ C such that T � Tn for all n < ω)?

Notice that � relates any sort of one theory to any sort of another (which is why,
in Proposition 3.12, we find that CMOk = CLO for all k > 0). What would happen
if one restricted the sorts under consideration? For example, could one recover a
generalized collapse-of-indiscernible result on sorts (or partial types) akin to the one
for op-dimension in [7]? This may be related to examining the witness number from
Observation 2.12. We hope to explore this (and the other questions in this section) in
future papers.
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