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Abstract The generic Vopěnka principle, we prove, is relatively consistent with the
ordinals being non-Mahlo. Similarly, the generic Vopěnka scheme is relatively consis-
tent with the ordinals being definably non-Mahlo. Indeed, the generic Vopěnka scheme
is relatively consistent with the existence of a�2-definable class containing no regular
cardinals. In such a model, there can be no �2-reflecting cardinals and hence also no
remarkable cardinals. This latter fact answers negatively a question of Bagaria, Gitman
and Schindler.
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1 Introduction

The Vopěnka principle is the assertion that for every proper class of first-order struc-
tures in a fixed language, one of the structures embeds elementarily into another. This
principle can be formalized as a single second-order statement in Gödel-Bernays set-
theory GBC, and it has a variety of useful equivalent characterizations. For example,
the Vopěnka principle holds precisely when for every class A, the universe has an
A-extendible cardinal, and it is also equivalent to the assertion that for every class A,
there is a stationary proper class of A-extendible cardinals (see [8, Theorem 6]). In
particular, the Vopěnka principle implies that ORD isMahlo: every class club contains
a regular cardinal and indeed, an extendible cardinal and more.

To define these terms, recall that a cardinal κ is extendible, if for every λ > κ ,
there is an ordinal θ and an elementary embedding j : Vλ → Vθ with critical point κ .
It turns out that, in light of the Kunen inconsistency, this weak form of extendibility
is equivalent to a stronger form, where one insists also that λ < j (κ); but there is a
subtle issue about this that will come up later in our treatment of the virtual forms of
these axioms, where the virtual weak and virtual strong forms are no longer equivalent.
Relativizing to a class parameter, a cardinal κ is A-extendible for a class A, if for every
λ > κ , there is an elementary embedding

j : 〈Vλ,∈, A ∩ Vλ〉 → 〈Vθ ,∈, A ∩ Vθ 〉

with critical point κ , and again one may equivalently insist also that λ < j (κ); see
[[11], definition 6.7]. Every such A-extendible cardinal is therefore extendible and
hence inaccessible,measurable, supercompact andmore. These are amongst the largest
large cardinals.

In the first-order ZFC context, set theorists commonly consider a first-order version
of the Vopěnka principle, which we call the Vopěnka scheme, the scheme making the
Vopěnka assertion of each definable class separately, allowing parameters.1 That is, the
Vopěnka scheme asserts, of every formula ϕ, that for any parameter p, if { x | ϕ(x, p) }
is a proper class of first-order structures in a common language, then one of those
structures elementarily embeds into another.

TheVopěnka scheme is naturally stratified by the assertionsVP(�n), for the particu-
lar natural numbers n in the meta-theory, where VP(�n) makes the Vopěnka assertion
for all �n-definable classes. Using the definable �n-truth predicate, each assertion
VP(�n) can be expressed as a single first-order statement in the language of set the-
ory.

Hamkins [8] proved that the Vopěnka principle is not provably equivalent to the
Vopěnka scheme, if consistent, although they are equiconsistent over GBC and further-
more, the Vopěnka principle is conservative over the Vopěnka scheme for first-order
assertions. That is, over GBC the two versions of the Vopěnka principle have exactly
the same consequences in the first-order language of set theory.

1 Henceforth in this article, when we say ‘definable class,’ we shall always mean that parameters are
allowed, unless otherwise specifically mentioned.
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In this article, we are concerned with the virtual forms of the Vopěnka principles.
The main idea of virtualization, due Schindler, is to weaken statements asserting the
existence of elementary embeddings between some set-sized first-order structures
to the assertion that such embeddings can be found in a forcing extension of the
universe. Schindler’s remarkable cardinals, for example, instantiate the virtualized
form of supercompactness via theMagidor characterization of supercompactness [10].
This virtualization program has now been undertaken with various large cardinals,
leading to fruitful new insights (see [3,7]). The notion of virtual large cardinals differs
significantly from the conceptually related notion of generic large cardinals that has
a much longer history (see, for instance, [5]). A generic version of a large cardinal
notion asserts that a forcing extension V [G] has embeddings j : V → M of the type
characterizing the original notion, so that the targetmodelM is (in all interesting cases)
not contained in V . Generic large cardinals generally have consistency strength in the
neighborhood of their actual counterparts, but can themselves be very small, as for
exampleω1. In contrast, the embeddingswitnessing virtual large cardinals are between
set-sized structures from V . The virtual large cardinals are actual large cardinals,
usually at least weakly compact, but compatible with V = L , and consequently much
weaker than their actual counterparts [7].

Carrying out the virtualization idea with the Vopěnka principles, we define the
generic Vopěnka principle to be the second-order assertion in GBC that for every
proper class of first-order structures in a common language, one of the structures
admits, in some forcing extension of the universe, an elementary embedding into
another. That is, the structures themselves are in the class in the ground model, but
youmay have to go to the forcing extension in order to find the elementary embedding.

Similarly, the generic Vopěnka scheme, introduced in [3], is the assertion (in ZFC or
GBC) that for every first-order definable proper class of first-order structures in a com-
mon language, one of the structures admits, in some forcing extension, an elementary
embedding into another.

On the basis of their work in [3], Bagaria, Gitman and Schindler had asked the
following question:

Question 1 If the generic Vopěnka scheme holds, then must there be a proper class
of remarkable cardinals?

There seemed good reason to expect an affirmative answer, even assuming only
gVP(�2), based on strong analogies with the non-generic case. Specifically, in the
non-generic context Bagaria had proved that VP(�2) was equivalent to the existence
of a proper class of supercompact cardinals, while in the virtual context, Bagaria,
Gitman and Schindler proved that the generic form gVP(�2) was equiconsistent with
a proper class of remarkable cardinals, the virtual formof supercompactness. Similarly,
higher up, in the non-generic context Bagaria had proved that VP(�n+2) is equivalent
to the existence of a proper class of C (n)-extendible cardinals, while in the virtual
context, Bagaria, Gitman and Schindler proved that the generic form gVP(�n+2) is
equiconsistent with a proper class of virtually C (n)-extendible cardinals.

But further, they achieved direct implications,with an interesting bifurcation feature
that specifically suggested an affirmative answer to Question 1. Namely, what they
showed at the �2-level is that if there is a proper class of remarkable cardinals, then
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gVP(�2) holds, and conversely if gVP(�2) holds, then there is either a proper class
of remarkable cardinals or a proper class of virtually rank-into-rank cardinals. And
similarly, higher up, if there is a proper class of virtuallyC (n)-extendible cardinals, then
gVP(�n+2) holds, and conversely, if gVP(�n+2) holds, then either there is a proper
class of virtually C (n)-extendible cardinals or there is a proper class of virtually rank-
into-rank cardinals. So in each case, the converse direction achieves a disjunction with
the target cardinal and the virtually rank-into-rank cardinals. But since the consistency
strength of the virtually rank-into-rank cardinals is strictly stronger than the generic
Vopěnka principle itself, one can conclude on consistency-strength grounds that it isn’t
always relevant, and for this reason, it seemed natural to inquire whether this second
possibility in the bifurcation could simply be removed. That is, it seemed natural to
expect an affirmative answer to Question 1, even assuming only gVP(�2), since such
an answer would resolve the bifurcation issue and make a tighter analogy with the
corresponding results in the non-generic/non-virtual case.

In this article, however, we shall answer the question negatively. The details of
our argument seem to suggest that a robust analogy with the non-generic/non-virtual
principles is achieved not with the virtual C (n)-cardinals, but with a weakening of
that property that drops the requirement that λ < j (κ), as explained in Theorem 9.
Indeed, Theorem 9 seems to offer an illuminating resolution of the bifurcation aspect
of the results wementioned from [3], because it provides outright virtual large-cardinal
equivalents of the stratified generic Vopěnka principles. Because the resulting virtual
large cardinals are not necessarily remarkable, however, our main Theorem shows that
it is relatively consistent with even the full generic Vopěnka principle that there are no
�2-reflecting cardinals and therefore no remarkable cardinals.

Main Theorem:

(1) It is relatively consistent that GBC and the generic Vopěnka principle holds, yet
ORD is not Mahlo.

(2) It is relatively consistent that ZFC and the generic Vopěnka scheme holds, yet
ORD is not definably Mahlo, and not even �2-Mahlo. In such a model, there can
be no �2-reflecting cardinals and therefore also no remarkable cardinals.

These Theorems are proved as Theorems 11 and 12. The theorems are proved under
the assumption that 0	 exists, although this assumption can be weakened.

2 Virtual embeddings

In our main result, we shall make use of some absoluteness properties concerning
virtual embeddings, and so let us review those ideas now. The following folklore
results, which have appeared in a number of articles involving virtual large cardinals
(possibly earliest in [9]), are central.

Lemma 2 (Absoluteness lemma) Suppose that M is a countable first-order structure
and j : M → N is an elementary embedding. If W is a transitive (set or class)
model of (some sufficiently large fragment of) ZFC such that M is countable in W and
N ∈ W, then for any finite subset of M, the model W has an elementary embedding
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j∗ : M → N, which agrees with j on that subset. Moreover, if both M and N are
transitive ∈-structures and j has a critical point, we can additionally assume that
crit( j∗) = crit( j).

The proof is an elementary tree-of-attempts argument and can be found in [7]. As a
consequence, we can say a little something more about which kind of forcing exten-
sions one needs to look in to find the embeddings: if there is an elementary embedding
j : M → N in some forcing extension, then there is one in any forcing extension in
which M has become countable.

Lemma 3 If M and N are first-order structures in a common language and there is
an elementary embedding j : M → N in some set-forcing extension, then there is
such an embedding j∗ : M → N in any forcing extension in which M has become
countable. Further, one can arrange that j∗ agrees with j on any prescribed finite set
of values and that, if appropriate, j and j∗ have the same critical point.

To prove the lemma, note that if a forcing extension V [G] has an elementary
embedding j : M → N , then we can go to a further extension V [G][H ] by any
forcing collapsing M to become countable, and apply the absoluteness lemma in that
extension, with the class W being the desired extension of V in which M has become
countable. So there is such a j∗ in that extension with the required similarities to j .

There is also an interesting game-theoretic characterization of when virtual embed-
dings exist, which makes no reference to forcing. Specifically, given first-order
structures M and N in a common language, we define the associated two-player game
G(M, N ) in which player I plays elements from M and player II plays corresponding
elements from N . Player II wins if at every stage of play, the moves constitute a finite
partial isomorphism of M to N . In other words, the type of the first n moves of player
I in M is equal to the type of the first n moves of player II in N . This gameG(M, N ) is
closed for player II and therefore determined by the Gale-Stewart theorem. So one of
the players has a winning strategy. The characterization is provided by the following
lemma.

Lemma 4 ([3]) Suppose M and N are first-order structures. The following are equiv-
alent.

(1) In some set-forcing extension there is an elementary embedding j : M → N.
(2) Player II has a winning strategy in the game G(M, N ).

One can prove this lemma simply by observing that the winner of any open game
is absolute, since the recursive definition of the ordinal game values for the various
positions in the game tree is defined identically in the two models. Since player II can
clearly win in the forcing extension, where there is an actual elementary embedding,
it follows that she must also have a winning strategy in the ground model.

Let us illustrate the easy power of these absoluteness results with the following
application.

Proposition 5 Assume 0	 exists. Then:

(1) The constructible universe L, equipped with only its definable classes, is a model
of the generic Vopěnka principle.
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(2) In L there are numerous virtual rank-into-rank embeddings j : V L
θ → V L

θ , where
θ is far above the supremum of the critical sequence.

Proof For statement (1), consider any class A that is definable (from parameters) in
L . Let j : L → L be an indiscernibility embedding with critical point κ above rank
of the parameters used to define A, which must then take A to A. For any θ above κ

that is closed under j , it follows that j � Lθ : 〈Lθ ,∈, A ∩ Lθ 〉 → 〈Lθ ,∈, A ∩ Lθ 〉 is
an elementary embedding with critical point κ . It follows by the previous results that
there is a virtual embedding like that in a forcing extension of L , and so κ is virtually
A-extendible in L . Thus, the generic Vopěnka principle holds there.

For statement (2), similarly, let j : L → L shift a sequence of Silver indiscernibles
down low and fix all other Silver indiscernibles. If λ < θ are Silver indiscernibles
above the critical sequence, then j � Lθ : Lθ → Lθ is an elementary embedding in V
with fixed point λ above the critical sequence. By the absoluteness lemma, therefore,
there must be such embeddings in a forcing extension of L . �	

The proof shows that every Silver indiscernible is virtually A-extendible in L for
every definable class A, and furthermore, is the critical point of virtual rank-into-rank
embeddings with targets as high as desired and fixed points as high above the critical
sequence as desired.

One doesn’t need the full strength of 0	, however, to get a model of the generic
Vopěnka principle or to get virtual rank-into-rank embeddings, and the argument above
shows that 0	 has a strictly higher consistency strength than a virtual rank-into-rank
cardinal, since one can simply chop off the universe at any Silver indiscernible and
reflect these assertions, gaining a transitive model of the latter theories. For example,
if κ is virtually rank-into-rank in L , and θ > κ is a Silver indiscernible, then Lθ is a
transitive model of ZFC with a virtually rank-into-rank cardinal. So the consistency
strength of 0	 is strictly stronger than necessary.

3 Large cardinal characterizations of the generic Vopěnka principle and
scheme

Although our main theorem will use only the direct definition of the generic Vopěnka
principle, let us sketch a richer background context for this principle by providing
a large cardinal characterization of it. When working with the second-order generic
Vopěnka principle our background theory is assumed to be GBC.

Definition 6 A cardinal κ is (weakly) virtually A-extendible, for a class A, if for every
ordinal λ > κ there is an ordinal θ such that in a set-forcing extension, there is an
elementary embedding

j : 〈Vλ,∈, A ∩ Vλ〉 → 〈Vθ ,∈, A ∩ Vθ 〉 ,

with critical point κ .

In contrast, we define that κ is (strongly) virtually A-extendible, if we may also
insist that λ < j (κ) in the embedding mentioned above. Although in the non-virtual
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context mentioned in the introduction of this article, the weak and strong forms of
A-extendibility coincide, nevertheless it turns out that as a consequence of the main
theorem, the weak and strong forms of virtual A-extendibility are not the same. Fur-
thermore, our main theorem shows that it turns out to be the weak form that is relevant
for the generic Vopěnka principle, and consequently, our article is concerned princi-
pally with the weak form of virtual A-extendibility.

Theorem 7 The generic Vopěnka principle holds if and only if for every class A, there
are a proper class of (weakly) virtually A-extendible cardinals.

Proof We basically follow the argument of [8, Theorem 6], which gives the non-
generic/non-virtual analogue of this characterization, except that (i) the embeddings
here all live in a forcing extension; (ii) there is no requirement here that λ < j (κ) for
the embeddings and so this argument uses only the weak form of virtual extendibility;
and (iii) we do not get here a stationary proper class of virtually A-extendible cardinals
(and we cannot in light of Corollary 14).

For the forward implication, assume that the generic Vopěnka principle holds and
fix some class A and an ordinal γ . We will argue that there is a (weakly) virtually
A-extendible cardinal above γ . We claim first that for all sufficiently large λ, there
is an ordinal θ > λ and a virtual elementary embedding j : 〈Vλ,∈, A ∩ Vλ〉 →
〈Vθ ,∈, A ∩ Vθ 〉 with critical point above γ . If not, let M be the proper class of all
structures

〈
Vλ,∈, A ∩ Vλ, α̌

〉
α≤γ

, where we have added a constant symbol α̌ for every
ordinal α ≤ γ , for which there is no θ with the desired virtual embedding. Adding the
constants is equivalent to requiring the critical point above γ . By the generic Vopěnka
principle, there is an elementary embedding in some forcing extension between two
of these structures j : 〈

Vλ,∈, A ∩ Vλ, α̌
〉
α≤γ

→ 〈
Vθ ,∈, A ∩ Vθ , α̌

〉
α≤γ

, with λ < θ ,
contrary to the inclusion of the former structure inM, thereby establishing our claim.
So we may fix an ordinal λ0 such that for all λ ≥ λ0, there is an ordinal θ > λ and
a virtual elementary embedding j : 〈Vλ,∈, A ∩ Vλ〉 → 〈Vθ ,∈, A ∩ Vθ 〉 with critical
point above γ . For singular λ, we may assume without loss that j has a critical point
below λ, by considering j � Vλ for an embedding j on Vλ+1, which must move λ, but
cannot have λ as its critical point. So we have a critical point κ above γ and less than
λ, although different λ could have different such critical points. Nevertheless, the map
λ �→ κ , choosing the smallest suchκ that can be forced to be the critical point of such an
embedding, is a definable pressing-down function. It follows that there is an unbounded
class ofλ all giving rise to the samecardinalκ .2 Thus, this constant valueκ is the critical
point of virtual elementary embeddings j : 〈Vλ,∈, A ∩ Vλ〉 → 〈Vθ ,∈, A ∩ Vθ 〉 for
unboundedly many ordinals λ. By restricting these embeddings, it follows that κ is
the critical point of such virtual embeddings for every λ > κ , and so κ is a (weakly)
virtually A-extendible cardinal above γ .

Conversely, suppose that every class A has a proper class of (weakly) virtually
A-extendible cardinals, and suppose that M is a class of first-order structures in a

2 This weak version of the class Fodor’s lemma, where one wants merely that the function is constant on an
unbounded class, is easily provable in GBC. The full class Fodor’s lemma, in contrast, where the function is
constant on a sationary class, is not provable even in KM, but it is provable if one assumes the class choice
principle CC. See [6].
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common language. Let κ be a virtual M-extendible cardinal above the size of the
common language. Let λ be the κ th ordinal above κ for which there is an element
M ∈ M of rank λ. Since κ is virtually M-extendible, there is an ordinal θ and a
virtual elementary embedding j : 〈Vλ+1,∈,M ∩ Vλ+1〉 → 〈Vθ+1,∈,M ∩ Vθ+1〉
with critical point κ . By elementarity, it follows that j (M) ∈ M has rank j (λ), which
is the j (κ)th ordinal above j (κ) that is the rank of an element of M. In particular,
λ < j (λ) and consequently M = j (M). Meanwhile, since the language is fixed
pointwise by j , it follows that j � M : M → j (M) is an elementary embedding
between distinct elements of M, thus verifying this instance of the generic Vopěnka
principle. �	

Essentially identical arguments establish the scheme-theoretic version, where we
assume that the classes A and M are definable.

Theorem 8 The generic Vopěnka scheme is equivalent overZFC to the scheme assert-
ing of every definable class A that there is a proper class of virtually A-extendible
cardinals.

As we have mentioned, there is a subtle but critical difference from the corre-
sponding results for the non-generic non-virtual forms [8, Theorems 6,7]. Namely,
in the non-generic non-virtual forms, the Vopěnka principle is equivalent both to the
assertion merely that every class A has at least one A-extendible cardinal and also to
the assertion that every class A has a stationary proper class of A-extendible cardi-
nals; and similarly the Vopěnka scheme is equivalent to the corresponding assertions
about definable classes A. Those implications, however, rely on the strong form of
A-extendibility, and that is fine because as we have mentioned, in the non-generic con-
text the weak and strong forms of extendibility are equivalent. In our generic/virtual
context here, however, the equivalence breaks down, and the generic Vopěnka princi-
ple entitles one only to the weak form of virtual extendibility, and not the strong form.
Indeed, in Corollary 14 we prove that it is relatively consistent with GBC that every
class A admits a proper class of weakly virtually A-extendible cardinals, but no class
A admits even a single strongly virtually A-extendible cardinal.

The equivalence of the weak and strong forms of A-extendibility in the non-generic
context relies fundamentally on an appeal to the Kunen inconsistency, as in [8, The-
orem 6]. In the generic/virtual case, however, there is no virtual form of the Kunen
inconsistency, for one can have virtual Reinhardt cardinals, embeddings of the form
j : Vλ+2 → Vλ+2, but where the embedding is added by forcing, as in Observation 5,
and this prevents one from making the analogue of the argument leading to λ < j (κ)

and hence from the weak form to the strong form or from individual A-extendible
cardinals to stationary proper classes of them. The main result of this paper shows that
this issue is inherent, since we prove that it is relatively consistent with the generic
Vopěnka principle that ORD is not Mahlo. In such a model, there can be no stationary
proper class of virtually extendible or virtually A-extendible cardinals, since there is
not even a stationary proper class of regular cardinals.

By paying careful attention to the precise complexity of the definitions of the
various classes, we may next present a stratified version of Theorem 8. Let us say that
a cardinal κ is (�n)-extendible, if it is A-extendible, where A is the�n-truth predicate.
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(Kindly note the difference in notation from the �n-extendible cardinals, used in [4]
with a different meaning.) Similarly, we say that κ is weakly or strongly virtually
(�n)-extendible, if it is respectively weakly or strongly virtually A-extendible for that
class.

Theorem 9 For n ≥ 1, the following are equivalent as schemes over ZFC.

(1) The generic Vopěnka scheme holds for �n+1-definable classes.
(2) The generic Vopěnka scheme holds for �n+2-definable classes.
(3) For every �n-definable class A, there is a proper class of (weakly) virtually A-

extendible cardinals.
(4) There is a proper class of (weakly) virtually (�n)-extendible cardinals.
(5) There is a proper class of cardinals κ , such that for every �n-correct cardinal λ

above κ , there is a�n-correct cardinal θ > λ and a virtual elementary embedding
j : Vλ → Vθ with critical point κ .

Proof We should like to emphasize that for none of the embeddings here do we insist
that λ < j (κ); we are using the weak forms only.

(1 → 2) Assume that the generic Vopěnka scheme holds for �n+1-definable
classes and that M is a �n+2 definable class of structures, defined by x ∈ M ⇐⇒
∃y ψ(x, y, p), whereψ is�n+1 and p is a fixed parameter. For each structure x ∈ M,
let Yx be the set of minimal-rank y witnessing that x ∈ M by the defining property,
and form a new structure x+ by adding Yx to x as a new point, if necessary, and
interpreting it as a new constant symbol. LetN be the class of structures x+ obtained
in this way. This class is �n+1-definable and any embedding of structures inN gives
rise to an embedding of the corresponding structures inM, as desired.

(2 → 3) Argue as in Theorem 7. Assume that A is a �n-definable class, and fix
any γ . First, the collection of structures

〈
Vλ,∈, A ∩ Vλ, α̌

〉
α≤γ

that have no virtual

embedding to some
〈
Vθ ,∈, A ∩ Vθ , α̌

〉
α≤γ

is �n+1-definable, and so we get a virtual
embedding from one of them to another, with critical point above γ . So for all suffi-
ciently large λ, there are such embeddings with some critical point, and we may apply
the weak class Fodor lemma to find a single κ that works unboundedly often.

(3 → 4) This is immediate, since the �n-truth predicate is �n-definable.
(4 → 5) If κ is (weakly) virtually (�n)-extendible and λ is �n-correct, then we get

j : 〈Vλ,∈, A ∩ Vλ〉 → 〈Vθ ,∈, A ∩ Vθ 〉 with critical point κ , where A is the �n-truth
predicate. Since Vλ can verify that A ∩ Vλ agrees with �n-truth in Vλ, this will also
be true for Vθ , and so θ must also be �n-correct, as desired.

(5 → 1) Suppose that M is a �n+1-definable class of first-order structures in
a common language, defined so that x ∈ M ⇐⇒ ∀z ϕ(x, z, a), where ϕ has
complexity �n . Let κ be as in statement (5) and larger than the size of the language
used for structures inM. Letm bemuch larger than n and let λ > κ be any�m-correct
ordinal. So it is also �n-correct. By our assumption on κ , there is a virtual elementary
embedding j : Vλ → Vθ with critical point κ , where θ is �n-correct. Let M ∈ M
be any structure with rank amongst the κ th rank to occur for structures inM. This is
observed correctly in Vλ. By the elementarity of the embedding, Vθ thinks that j (M) is
inMVθ , although Vθ may be wrong about this class. Since Vθ is �n-correct, however,
it is correct about ϕ, and from this it follows that M ∩ Vθ ⊆ MVθ . In particular,
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Vθ knows M ∈ MVθ . Meanwhile, since j (M) has the j (κ)th rank, it is not hard to
see that M = j (M), and since the critical point of j is above the language of M , it
follows that j � M : M → j (M) is an elementary embedding. By the absoluteness
Lemma 2, there will be such an embedding in any forcing extension collapsing M to
be countable. So Vθ thinks that there is a virtual embedding between two elements of
MVθ . By the elementarity of j , it follows that Vλ must also think this is true. But by
the choice of λ, we know that Vλ is right about this. So we have verified this instance
of the generic Vopěnka scheme. �	

The equivalencies proved in Theorem 9 can be seen as uniformizing some of the
results of [3]. To avoid the bifurcation there into the two cases, such as getting from
gVP(�2) either a proper class of remarkable cardinals or a proper class of virtual rank-
into-rank cardinals, what was needed was to drop the requirement that λ < j (κ) for
the embeddings, and then one gets a pure equivalence as above. The generic Vopěnka
principle simply doesn’t entitle one to embeddings j with the stronger property that
λ < j (κ).

4 A model of the generic Vopěnka principle in which the ordinals are not
Mahlo

We shall now construct a model of GBC plus the generic Vopěnka principle in which
the ordinals are not Mahlo. The main idea will be to adapt Hamkins’s observation that
one can easily separate the Vopěnka principle from the Vopěnka scheme.

Theorem 10 ([8]) If the Vopěnka scheme holds, then there is a class-forcing extension
V [C] where it continues to hold, yet, in which the Vopěnka principle fails and ORD
is not Mahlo, although it remains definably Mahlo.

The class forcing P is simply the standard forcing to kill ORD is Mahlo, the forcing
to add a class clubC avoiding the regular cardinals. Conditions inP are closed bounded
sets containing no regular cardinals, ordered by end-extension. Over the GBC model
in which it is defined, this forcing is ≤γ -distributive for every ordinal γ , because in
fact the collection of conditions that reach above γ is a ≤γ -closed dense subclass of
the forcing. Consequently, forcing with P over the model in which it is defined adds
no new sets and preserves GBC. For these reasons, this forcing is amongst the nicest
kind of class forcing that there is: over any GBC model, this forcing is definable;
it has a definable forcing relation; it adds no new sets; and it preserves GBC. Since
the generic class C itself witnesses that ORD is not Mahlo in the extension V [C], it
follows that the Vopěnka principle must fail there, but because the forcing adds no new
sets, it preserves the Vopěnka scheme and consequently also the definable Mahloness
of ORD.

We shall adapt the method here in order to prove that the generic Vopěnka scheme
is also relatively consistent with the non-Mahloness of ORD.

Theorem 11 Assume 0# exists in V . Then there is a class-forcing notion P definable
in the constructible universe L, such that in any L-generic extension L[C] by this
forcing, GBC and the generic Vopěnka principle hold, yet ORD is not Mahlo.
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Proof To begin, assume 0	 exists, and let P be the class-forcing notion, as defined
in L , to add a class club C avoiding the regular cardinals. In L , this forcing is ≤γ -
distributive for every ordinal γ , and as we mentioned earlier, using this forcing over
L adds no new sets; it has a definable forcing relation; and it preserves GBC. We view
L[C] as a GBC model having the classes that are definable from C , or in other words,
definable in the structure 〈L ,∈,C〉. Since C is a class club containing no regular
cardinals, it follows that L[C] thinks that ORD is not Mahlo.

Our use of class forcing is a bit unusual here, because although we assume 0	 exists,
we do not force over V , but rather only over L . We make the 0	 assumption only in
order to establish a certain density property for the forcing P in L , in order to know
that it will succeed when used to force over L . Indeed, while the forcing P is very nice
for forcing over L , meanwhile it is much less nice to force with P over V—this will
definitely destroy GBC. The reason is that because of 0	, the full model V already has
a class club of L-regular cardinals, but these two class clubs cannot intersect. So if
C is V -generic for P, then in V [C] we would be able to define a countable sequence
cofinal in the ordinals, violatingGBC.This is not a problem for our argument, however,
because we shall make no reference to forcing over V and we shall never form the
extension V [C]. Instead, our desired model is L[C], which is a model of GBC, whose
first-order part (namely the collection of sets) is L .

What remains is to prove that the generic Vopěnka principle holds in L[C]. For
this, we make a density argument in the following lemma scheme. Since P is definable
in L , for any ordinal θ , we may consider the analogue of the forcing P

Lθ as defined
inside Lθ . A set of ordinals c is Lθ -generic for PLθ if it meets all dense sets of PLθ

definable over Lθ , in the sense that every such dense set contains an initial segment
of c.

Lemma 11.1 Consider any ordinal δ and suppose n is a particular natural number
of the meta-theory. Let Dδ,n be the collection of conditions c ∈ P for which there is
an ordinal θ such that

(1) Lθ ≺�n L,
(2) c ∩ θ is Lθ -generic for PLθ , and
(3) in some forcing extension of L, there is an elementary embedding

j : 〈Lθ ,∈, c ∩ θ〉 → 〈Lθ ,∈, c ∩ θ〉

with critical point above δ.

Then Dδ,n is a definable dense subclass of P in L.

Proof Fix any ordinal δ and any particularmeta-theoretic natural number n (the lemma
is a scheme as n changes). We want to show Dδ,n is dense in P. Since the class Dδ,n

gets smaller as n increases, we may imagine without loss that n is very large. Fix
any condition d ∈ P. We shall find c̄ ∈ Dδ,n extending d. Let κ0 be any uncountable
cardinal of V above δ and the supremum of d. Next, let

κ0 < κ1 < · · · < κn < · · · < κω < κω+1
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be the next ω + 2 many successive Silver indiscernibles. Let θ be the least ordinal
above κω such that Lθ ≺ Lκω+1 . Note that because κω+1 is a Silver indiscernible, this
will imply Lθ ≺ L , and in particular, Lθ ≺�n L . The ordinal θ has cofinality ω in L
and is a limit cardinal there, and so we may find an ω-sequence of L-cardinals

θ0 < θ1 < · · · < θn < · · ·

cofinal in θ in L . We shall now construct c ⊆ θ end-extending d that is Lθ -generic
for PLθ .

For each k ∈ ω, let Dk be the intersection of all open dense subclasses of PLθ that
are �k-definable in Lθ using parameters in Lθk . That is, we limit both the complexity
of the definition and the space of parameters. Since �k-truth is definable, the model
Lθ has uniform definable access to its �k-definable classes. And since there are only
θk many parameters involved, the model Lθ may therefore enumerate its�k-definable
classes with parameters in Lθk in a single θk-sequence. Since the forcing PLθ is ≤θk-
distributive, it follows that Dk is an open dense subclass of PLθ .

The classes Dk provide a countable collection of dense subclasses that suffice for
Lθ -genericity, since any subclass of PLθ that is definable in Lθ will be contained in
some Dk . By the usual diagonalization procedure, therefore, we may build a set c ⊆ θ

extending d by successively extending it so as to meet each Dk in turn. It follows that
c ⊆ θ is Lθ -generic for PLθ . Since this diagonalization construction can be carried
out inside L , we may find such Lθ -generic sets c in L . Henceforth, let c be the L-least
such Lθ -generic set for PLθ extending d. Note that c is definable in L from parameters
d, κω, and κω+1.

Let j : L → L be the elementary embedding generated by a shift of the indis-
cernibles κn , so that j (κn) = κn+1 for n ∈ ω, and fixing all other indiscernibles. Since
we chose κ0 to be an uncountable cardinal of V , it follows that it is a limit of smaller
indiscernibles, which generate Lκ0 . It follows that the critical point of j is precisely
κ0 and in particular, j (d) = d. Since κω and κω+1 are fixed by j , it follows similarly
that j (θ) = θ . Since c was defined by those fixed points, it also follows that j (c) = c.
Thus, the restriction of j to Lθ gives an elementary embedding

j : 〈Lθ ,∈, c〉 → 〈Lθ ,∈, c〉.

By the absoluteness Lemma 2, it follows that in some forcing extension of L , there is
an elementary embedding

j∗ : 〈Lθ ,∈, c〉 → 〈Lθ ,∈, c〉

with critical point κ0. Finally, let c̄ = c ∪ {θ} be the closure of this set, and observe
that this is a condition in P precisely because θ is singular in L . We have therefore
verified all the necessary requirements to conclude that c̄ ∈ Dδ,n , and since c̄ extends
d, we have therefore proved that this class is dense, establishing Lemma 11.1. �	

Using the lemma, we shall now complete the proof of Theorem 11. Fix any proper
class M in L[C] of first-order structures in a common language L. Since we have
included only the C-definable classes in L[C], we may assume that M is defined by
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some �m-formula ψ(x, a,C) with class parameter C and set parameter a ∈ L . Let δ
be above the rank of the languageL and the parameter a, and let n be much larger than
m. By the lemma, there is some ordinal θ such that the corresponding initial segment
of C is in Dδ,n . So there is, in some forcing extension of L , an elementary embedding

j : 〈Lθ ,∈,C ∩ θ〉 → 〈Lθ ,∈,C ∩ θ〉

with critical point κ above δ.
We claim next that 〈Lθ ,∈,C ∩θ〉 ≺�m 〈L ,∈,C〉. To see this, suppose that 〈Lθ ,∈,

C ∩ θ〉 |� ϕ(b) for some �m-formula ϕ(x). This must be forced over Lθ by some
condition c, an initial segment of C ∩ θ . By the choice of n as much larger than m,
what we had meant was that it should be large enough to express this forcing relation,
and so since Lθ ≺�n L it follows that c forces ϕ(b) also over L . So 〈L ,∈,C〉 |� ϕ(b),
as desired.

It follows that the definition of the class M is absolute to 〈Lθ ,∈,C ∩ θ〉. Let M
be the κ th element of M in the L-order. It follows that j (M) is the j (κ)th element,
which is identified correctly by Lθ , and consequently M = j (M). The restriction
j � M : M → j (M) is an elementary embedding between distinct elements of M,
and so we have verified this instance of the generic Vopěnka principle in L[C], as
desired, completing the proof of Theorem 11. �	

It was convenient to use 0	 in the previous argument, in order to know that Dδ,n is
dense in P, but it is natural to inquire whether this use can be weakened or eliminated.
We shall discuss this in Sect. 6.

5 A model of the generic Vopěnka scheme in which the ordinals are not
�2-Mahlo

We should now like to sharpen the result of the previous section by performing further
forcing so as to make the class clubC definable, in fact�2-definable, while preserving
the generic Vopěnka scheme. The result will be a model of GBC plus the generic
Vopěnka scheme inwhich there are no�2-reflecting cardinals (inaccessible�2-correct
cardinals). Consequently, there will also be no remarkable cardinals.

Theorem 12 Assume 0# exists in V . Then there is a definable class-forcing notion
in L, such that in the corresponding L-generic extension, GBC holds, the generic
Vopěnka scheme holds, but ORD is not definably Mahlo. Indeed, in this model there
is a �2-definable class club avoiding the regular cardinals.

Proof The forcingwill be a two-step iteration, although this forcing can also be viewed
as a single-step class forcing. First, we force with P as in Sect. 4 to add a class club C
avoiding the regular cardinals of L . We proved in Theorem 11, under the assumption
that 0	 exists, an assumption we also have here, that the generic Vopěnka principle
holds in L[C], but the ordinals are not Mahlo there. Next, we force over L[C] with
the forcing Q that codes the class C into the continuum pattern. Specifically, Q is
the ORD-length Easton product forcing, as defined in L[C], which forces violations
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of the GCH exactly at the successor cardinals of the elements of C . This forcing is
very mild in terms of class forcing. It is definable; it factors in the Easton manner at
every element of C into the product of small forcing and highly closed forcing; it is
therefore progressively closed; and consequently, the forcing Q preserves GBC and
has a definable forcing relation satisfying the forcing theorems.

The two-step iteration P∗Q̇ can be viewed as a one-step non-iterative class forcing,
simply by viewing the conditions as pairs (d, q), where d is a closed bounded set in
L avoiding the L-regular cardinals, and q is a condition in the corresponding Easton-
support product forcing to code d into the GCH pattern. This is dense in the iteration
forcing, consisting of pairs (d, q̇) where d ∈ P and q̇ is a P-name for a condition in
Q̇, because the P forcing adds no new sets and so one may simply strengthen the first
coordinate so as to decide the value of q̇ in the second coordinate. Further, if q̇ is any
P-name for a condition in Q̇, then there is a set-sized maximal antichain of conditions
d ∈ P that decide the value of q̇ as q̌ for some q ∈ L . Thus, any name for the
iteration forcing can be transformed to a name for the non-iterative combined forcing
we mentioned, and therefore the two versions of the forcing give rise to the same
forcing extensions. So we needn’t think of it as an iteration at all, and the combined
forcing inherits the nice properties of P and Q and will preserve GBC and have a
definable forcing relation satisfying the forcing theorem and so on.

Having added the generic class clubC , letG ⊆ Q be L[C]-generic, andwe consider
the forcing extension L[C][G]. This is a GBC model, whose sets are those added by
the Q forcing and whose classes are those definable from the generic classes C and
G. But actually, since ultimately we aim merely to construct a ZFC model, let us use
the notation L[G] to refer only to the first-order part of this model, having only the
sets and not the classes. That is, we take

L[G] = { τG | τ is a Q-name in L }

to consist of the interpretations via G of the Q-names in L . This is a model of ZFC,
since it is the first-order part of a model of GBC.

The coding forcingQ ensures that the successor cardinals of the elements of C can
be identified in a�2 manner in the extension L[G], and so the class C is�2-definable
in L[G]. Thus, in L[G] we have a parameter-free �2-definable class club avoiding
the regular cardinals. So ORD is definitely not Mahlo there, and not even �2-Mahlo.

It remains to argue that L[G] satisfies the generic Vopěnka scheme. Let Qθ be the
factor of Q consisting of the forcing only on the coordinates below θ , that is, with
conditions having support contained in θ . Note that if C ∩ θ is unbounded in θ , but θ
is singular, then because of the nature of the Easton support, the forcing Q will have
conditions with support unbounded in θ . In particular, Qθ also has such conditions,
and so we cannot view Qθ as class forcing over the structure 〈Lθ ,∈,C ∩ θ〉. That
structure simply doesn’t include all the conditions of Qθ . Nevertheless, since C ∩ θ

is a set in L , it follows that Qθ is a forcing notion in L . If G ⊆ Q is L-generic, let us
denote by Gθ the restriction of G to Qθ .

Lemma 12.1 Suppose that δ is an ordinal and n is a particular natural number of the
meta-theory. Then there is an ordinal θ for which
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(1) Lθ ≺�n L,
(2) C ∩ θ is generic for dense subsets of PLθ that are �n-definable in Lθ ,
(3) Gθ ∩ Q

Lθ [C∩θ] is generic for dense subsets of QLθ [C∩θ] that are �n-definable in
Lθ [C ∩ θ ], and

(4) in a forcing extension of L[G], there is an elementary embedding j : Lθ [Gθ ] →
Lθ [Gθ ] with critical point above δ.

Proof This is a lemma scheme, taken as n varies. But since the statement becomes
harder as n increases, we may assume without loss that n is very large. Fix n and
any ordinal δ. Let us explain a little further about what we mean in statements (3)
and (4). The forcing notion Qθ is the factor of Q at coordinates up to θ , but since
θ is singular, this allows for conditions with unbounded support. The forcing notion
Q

Lθ [C∩θ], in contrast, is defined just asQ, except internally to Lθ [C∩θ ], whichmeans
that we now take only the bounded-support conditions. Since G is fully L[C]-generic
for Q, it follows easily that Gθ ⊆ Qθ is fully L[C ∩ θ ]-generic for Qθ . What we
are claiming in statement (3), however, is something a bit more, namely, that for this
particular θ , the bounded-support fragment of Gθ , meaning Gθ ∩Q

Lθ [C∩θ], is generic
for dense subsets of QLθ [C∩θ] that are �n-definable in Lθ [C ∩ θ ]. In statement (4),
the structure Lθ [Gθ ] can therefore be viewed either as the extension arising from the
bounded-support forcing, or as V L[G]

θ , since it is not difficult to see that these are the
same (for n ≥ 1), since every new set is added by a stage.

To prove the lemma, since the statement of the lemma is expressible in the forcing
language using the canonical names for the generic filters, it suffices to show that no
condition forces the negation of the statement.3 Fix any condition (d, r) ∈ P ∗ Q in
our class forcing.

We proceed at first as in Lemma 11.1. Let κ0 be an uncountable cardinal of V above
the ranks of d and r and also above δ. Let

κ0 < κ1 < · · · < κn < · · · < κω < κω+1

be the next ω + 2 many successive Silver indiscernibles.
Let d+ = d ∪ {κω + 1}, which jumps over all the κn’s and is a condition in P. To

find θ , suppose temporarily that d+ agrees with C and r ∈ G (if this is not the case,
replace themwith generic filters that do have this property). In the extension L[C][G],
we have ZFC in the language with predicates for C and G. And C is certainly generic
for �n-definable subclasses of P and G is generic for dense subclasses of Q that are
�n-definable in L[C]. By the reflection theorem, therefore, there must be an ordinal
θ of cofinality ω reflecting these facts to θ , so that Lθ ≺�n L and C ∩ θ is �n-generic
and G ∩ Q

L[C∩θ] is �n-generic for QLθ [C∩θ] over Lθ [C ∩ θ ]. So there must be a
condition (c, q) extending (d+, r) and forcing that C ∩ θ and Ġθ are like this. Note
that no part of c or q above θ can matter for this property, and so we may assume
sup(c) = θ and q ∈ Qθ as defined from c.

3 Note that if we had stated in the lemma that Lθ ≺ L , which is what we shall achieve in the proof, using
the 0	 assumption, then the statement of the lemma would not be expressible in L in the forcing language,
since L cannot express the property Lθ ≺ L . It shall be enough for our purpose, however, to require only
Lθ ≺�n L and state the lemma as a scheme over natural numbers n in the meta-theory.
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Now, throw away the previous actual C and G, and let θ be the least ordinal with
cofinality ω for which κω < θ < κω+1 and there is a condition (c, q) in the forcing
P ∗ Q̇ forcing the properties we have mentioned. And let (c, q) be the L-least such
condition extending (d+, r). So these conditions are definable from the parameters
(d, r), κω, and κω+1.

In V , let j : L → L be the elementary embedding generated by shifting the
indiscernibles κn , so that j (κn) = κn+1 for all n ∈ ω, but all other indiscernibles are
fixed. Since κ0 is an uncountable cardinal of V , it follows as before that the critical
point of j is exactly κ0, and so j fixes both d and r . Since it also fixes κω and κω+1, it
follows by the definability considerations that it fixes θ , c and q.

Consider now just the forcing Qθ defined by c in L . We claim that in a suitable
forcing extension of V , we will be able to find an L-generic filter Hθ ⊆ Qθ with
q ∈ Hθ , such that j lifts to

j : L[Hθ ] → L[Hθ ]

and such that j (Hθ ) = Hθ . To begin with this, note that since c is empty on the interval
[κ0, κω), it follows that Qθ is trivial on this interval. So the coding forcing Qθ factors
as very small forcing Qsmall

θ to code c below κ0, followed by the coding forcing Qtail
θ ,

which is above κω. So we have

Qθ
∼= Q

tail
θ × Q

small
θ ,

whereQtail
θ is ≤κω-closed in L andQsmall

θ has size less than κ0 in L . We may similarly
factor the condition q as q = qsmall × q tail.

We claim that in order for a filter H ⊆ Q
tail
θ to be L-generic, it suffices for H

to meet all the open dense subsets of this forcing that are definable in L using only
indiscernible parameters not smaller than κω. To see this, suppose D ⊆ Q

tail
θ is an

arbitrary open dense subset of the forcing in L . Since every set in L is definable from
the Silver indiscernibles, there is a formula ϕ and indiscernible parameters �κsmall, �κtail,
such that

p ∈ D ↔ ϕ(p, �κsmall, �κtail),

where �κsmall are below κω and �κtail are not. Let

D�α = {p ∈ Q
tail
θ | ϕ(p, �α, �κtail)},

where we allow arbitrary parameters �α in place of �κsmall. Let D̄ be the intersection of
all D�α that happen to be open and dense in Q

tail
θ , ranging over all �α < κω. Since the

forcing Q
tail
θ is ≤κω-closed, it follows that D̄ is dense open. But furthermore, by its

nature, D̄ is definable from �κtail, which are Silver indiscernibles not less than κω. If a
filter meets D̄, then it also meets D, since D̄ ⊆ D.

Notice furthermore that if a condition p ∈ Q
tail
θ is definable from indiscernible

parameters other than the κn’s and a dense set D is definable from non-κn indiscernible
parameters, then the L-least element in D extending pwill also be definable from such
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parameters. Moreover, any such condition is a fixed point j (p) = p, since j fixes all
indiscernibles except the κn .

Let’s go now to a forcing extensionV [K ] by collapsing θ+ to become countable.We
shall argue that in V [K ] we can construct the desired filter H tail

θ . The extension V [K ]
sees that there are only countably many subsets ofQtail

θ in L , and it can observe which
of them are open and dense and definable in L using only indiscernibles not less than
κω. If 〈Dn | n < ω〉 is the enumeration of these, then let q0 be the L-least condition
in D0 extending q tail. Similarly, let qn+1 be the L-least extension of qn in Dn+1.
Thus, if H tail

θ is the filter generated by the conditions qn , it will be L-generic for Qtail
θ

and contain the condition q tail. Further, since each qn is definable from indiscernibles
below κω and above, it follows by the observation of the previous paragraph that
j (qn) = qn for each n. Thus, j " H tail

θ = H tail
θ and so we fulfill the lifting criterion

for the embedding j : L → L , which now lifts to j : L[H tail
θ ] → L[H tail

θ ], with
j (H tail

θ ) = H tail
θ .

And if H small
θ is any further L[H tail

θ ]-generic filter forQsmall
θ , then since this forcing

is below the critical point of j it also lifts easily to j : L[Hθ ] → L[Hθ ], where
Hθ = H small

θ × H tail
θ ⊆ Qθ , with j (Hθ ) = Hθ . We may assume qsmall ∈ H small

θ

and therefore q ∈ Hθ . So in a forcing extension of V , we have found the kind of
embedding we claimed.

It follows by the absoluteness Lemma 2 that in a forcing extension of L , there is an
L-generic filter Hθ ⊆ Qθ containing the condition q and an elementary embedding
j∗ : Lθ [Hθ ] → Lθ [Hθ ] with critical point above δ. We also have Lθ ≺ L . Now
we can extend c and Hθ fully to L-generic filters C and H for the forcing P ∗ Q̇. So
finally, because (c, q) ∈ C ∗ H , we have that C ∩ θ is �n-generic for PLθ over Lθ

and Hθ ∩ Q
Lθ [C∩θ] is �n-generic over Lθ [C ∩ θ ].

Sincewe have attained precisely the properties stated in the lemma, but for a generic
filter containing the original condition (d, r), our argument shows that (d, r) could
not have forced that this situation does not happen. And so Lemma 12.1 is proved. �	

We now continue with the proof of Theorem 12. In order to prove that the generic
Vopěnka scheme holds in L[G], suppose thatM = { x | ψ(x, a) } is a definable class
of first-order structures in a common language in L[G], defined by the �m-formula
ψ with parameter a. Let n be much larger than m, and let δ be large enough so that
the common language of the structures inM and the parameter a have rank less than
δ. By Lemma 12.1, there is an ordinal θ such that Lθ ≺�n L , with C ∩ θ being
�n-generic for PLθ over Lθ and G ∩ Q

Lθ [C∩θ] being �n-generic for QLθ [C∩θ] over
Lθ [C ∩ θ ], and such that, in some forcing extension of L , there is an embedding
j : Lθ [Gθ ] → Lθ [Gθ ] with critical point above δ.
Since n is much larger than m, it follows by the definability of the forcing relation

thatM is absolute to Lθ [Gθ ]. Let M be a structure inM of the κ th rank occurring in
this class. So j (M) is inM of the j (κ)th rank, and so M = j (M). Since the common
language of the structures in M is fixed by j , it follows that j � M : M → j (M) is
an elementary embedding. So we have witnessed the existence of a virtual elementary
embedding between distinct structures inM, and thereby verified this instance of the
generic Vopěnka scheme in L[G], as desired. This completes the proof of Theorem 12.

�	
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Corollary 13 If 0	 exists, then there is a class-forcing extension L[G] of the con-
structible universe in which the generic Vopěnka principle holds, but there are no
�2-reflecting cardinals and hence no remarkable cardinals.

Proof Consider the model L[G] constructed in Theorem 12. In that model, we have
the generic Vopěnka principle, yet there is a parameter-free �2-definable class club C
containing no regular cardinals. Since the definition ofC uses no parameters, it follows
that if κ were �2-reflecting, then C ∩ κ would be unbounded in κ and consequently
κ ∈ C , contrary to the assumption that there are no regular cardinals inC . So there can
be no �2-reflecting cardinals. And since every remarkable cardinal is �2-reflecting,
it follows similarly that there can be no remarkable cardinals in L[G]. �	

This provides the negative answer to Question 1.

Corollary 14 It is relatively consistent withGBC that every class A admits a (weakly)
virtually A-extendible cardinal (and so the generic Vopěnka principle holds), but no
class A admits a (strongly) virtually A-extendible cardinal.

Proof If κ is (strongly) virtually extendible, then κ is clearly �2-reflecting, since the
targets j (κ) can be chosen as high in V as desired, thereby capturing any witness of
a �2 assertion. In this case, κ would be �2-reflecting, contrary to the existence of
a parameter-free �2-definable club containing no regular cardinals in the model of
Theorem 12. �	

6 Can we weaken or eliminate the 0� assumption?

In our main theorem, we had assumed the existence of 0	 in V in order to attain
the generic Vopěnka principle and scheme in a class-forcing extension L[G] of the
constructible universe, in which the ordinals were not �2-Mahlo. In our model, there
was a parameter-free �2-definable class club C containing no regular cardinals. It
follows that there can be no �2-reflecting cardinals and therefore also no remarkable
cardinals, since every remarkable cardinal is �2-reflecting.

It is natural to inquire whether our use of 0	 can beweakened or eliminated. Perhaps
it is natural for one to hope to prove that if the generic Vopěnka principle holds in
L , then it continues to hold in our forcing extension L[G]. Doing so would not only
improve the theorem, by weakening the hypotheses, but it would also address the
possibly unnecessary meta-mathematical aspect of the argument, whereby we assume
0	 in V , but then force over L .

But alas, if these hypotheses are consistent, then thatwill not be possible. The reason
is that the generic Vopěnka principle, if consistent, has a strictly weaker consistency
strength than the theory we obtain in L[G], namely, the generic Vopěnka principle plus
ORD is not �2-Mahlo, which implies that there are no �2-reflecting cardinals and
therefore no remarkable cardinals. By the bifurcation result of Bagaria, Gitman and
Schindler [3], since there are no remarkable cardinals in our model, then there must
be a proper class of virtually rank-into-rank cardinals, and the consistency strength of
this is strictly higher than the generic Vopěnka principle itself (but less than 0	).
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We find it quite reasonable to expect to prove our theorem starting from a model
with a suitable proper class of virtually rank-into-rank cardinals, replacing our indis-
cernibility embeddings with those virtual rank-into-rank embeddings. We leave the
details of this to another project.

Meanwhile, it is easy to see that the existence of 0	 has a strictly higher consistency
strength than is necessary for our conclusion, wherewe have the generic Vopěnka prin-
ciple with a �2-definable class club. The reason is that our conclusion is expressible
in the first-order language of set theory and therefore reflects to the initial segments
of L , cut off at any Silver indiscernible ordinal. So under 0	, we are able to construct
transitive models of our target theory, and so 0	 is strictly stronger than necessary.

7 Tying up a loose end

We’d like to conclude our paper by tying up a certain loose end, by proving that
some various large cardinals properties that have been considered in the literature in
connection with the Vopěnka scheme are actually equivalent.

Recall that a cardinal κ is �n-correct, if Vκ ≺�n V . Let C (n) be the class of �n-
correct cardinals. Bagaria [1] proved that VP(�n+2) holds precisely when there is a
proper class of C (n)-extendible cardinals, where a cardinal κ is C (n)-extendible (in
Bagaria’s sense), if for every λ > κ , there is an elementary embedding j : Vλ → Vθ

with critical point κ and λ < j (κ) ∈ C (n). It is easy to see that every extendible
cardinal κ is C (1)-extendible, because the j (κ) of an extendibility embedding j is
inaccessible.

An observant reader will have noticed, however, that there is a possible collision in
the terminology, since we have two possibly different conceptions of what it means to
be C (n)-extendible. Namely, on the one hand, we have the notion of C (n)-extendible
in the sense of Bagaria, which we just defined in the previous paragraph. On the other
hand, we have the notion of C (n)-extendible in the sense defined in the introduction
of this article, that is, A-extendible when A happens to be the class C (n). There is also
another concept of relative extendibility, due toBagaria, namely, κ isC (n)+-extendible,
if for every λ ∈ C (n) above κ there is θ ∈ C (n) and an elementary embedding
j : Vλ → Vθ with critical point κ and λ < j (κ). Bagaria proved that the least C (n)-
extendible cardinal is alsoC (n)+-extendible [1]. And recall from Sect. 3 our definition
that κ is (�n)-extendible, if it is A-extendible when A is the �n-truth predicate.

We shall now happily prove that all these notions coincide, and so there is actually
no collision in the terminology after all!

Theorem 15 The following are equivalent for any cardinal κ and any particular finite
n ≥ 1.

(1) κ is C (n)-extendible in the sense of Bagaria, so that for every λ > κ , there is an
elementary embedding j : Vλ → Vθ with critical point κ and λ < j (κ) ∈ C (n).

(2) κ is C (n)-extendible, that is, A-extendible where A is the class C (n), so that
for every λ there is an elementary embedding j : 〈

Vλ,∈,C (n) ∩ Vλ

〉 →〈
Vθ ,∈,C (n) ∩ Vθ

〉
with critical point κ and λ < j (κ).

(3) κ is A-extendible for every �n-definable class A, allowing parameters in Vκ .
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(4) κ is (�n)-extendible, that is, A-extendible where A is a �n-truth predicate.
(5) κ is C (n)+-extendible in the sense of Bagaria, so that for every λ ∈ C (n) above κ ,

there is an elementary embedding j : Vλ → Vθ for some θ ∈ C (n) with critical
point κ and λ < j (κ).

Proof This is a theorem scheme, a separate theorem for each finite natural number n
in the meta-theory.

(5 → 4) If j : Vλ → Vθ for λ, θ ∈ C (n), then both Vλ and Vθ are correct about
�n-truth, and so j is elementary in the language with a predicate for�n-truth. In other
words, κ is (�n)-extendible.

(4 → 3) If j : Vλ → Vθ is elementary with respect to the predicate for �n-truth,
then it is also elementary with respect to any �n-definable class, allowing parameters
in Vκ , since that class A is definable from the �n-truth predicate.

(3 → 2) Immediate, since C (n) is �n-definable, and being elementary for the
complement of a predicate is the same as being elementary for the predicate itself.

(2 → 1) If κ is C (n)-extendible in the sense stated, then in particular, κ must be a
limit point of C (n) and hence also an element of C (n). So if j : 〈

Vλ,∈,C (n) ∩ Vλ

〉 →〈
Vθ ,∈,C (n) ∩ Vθ

〉
has critical point κ , it follows that j (κ) ∈ C (n), as needed for

Bagaria’s notion.
(1 → 5) Assume that κ is C (n)-extendible in the sense of Bagaria, and consider

any λ ∈ C (n) above κ . Since any �2(C (n))-assertion reflects below κ , it follows that
κ ∈ C (n+2). Let λ̄ ∈ C (n+2) be larger than λ. By the extendibility assumption, we
get an elementary embedding j : Vλ̄ → Vθ̄ for some θ̄ with critical point κ and
λ̄ < j (κ) ∈ C (n). It follows that Vθ̄ is correct about C

(n) below j (κ), although it may
be possibly wrong about C (n) above j (κ). Let θ = j (λ), so that j � Vλ : Vλ → Vθ is
an elementary embedding, and furthermore j � Vλ ∈ Vθ̄ . Sinceλ ∈ C (n) and Vλ̄ knows
this, it follows that θ = j (λ) is in (C (n))Vθ̄ , even though Vθ̄ may disagree with V about
C (n). So Vθ̄ thinks that “there is θ ∈ C (n) and an elementary embedding h from Vλ

to Vθ , with critical point κ and λ < h(κ).” Since the class C (n) is �n-definable, this
is a �n+1-expressible statement about κ and λ, which is true in Vθ̄ . Since Vλ̄ knows
that κ ∈ C (n+2), it follows that Vθ̄ thinks that j (κ) is in C (n+2)—although it could be
wrong about this—and so the �n+1 statement about κ and λ reflects from Vθ̄ to Vj (κ).
So Vj (κ) thinks there is an ordinal θ ′ ∈ C (n) and elementary embedding h : Vλ → Vθ ′
with critical point κ and λ < h(κ). Since Vj (κ) is right about C (n), this verifies that κ
is C (n)+-extendible in V , as desired. �	

Bagaria and Andrew Brooke-Taylor had previously shown that every C (n)-
extendible cardinal is either C (n)+-extendible or a limit of C (n)+-extendibles [2].
We found out after submitting the paper that Tsaprounis had independently shown
that every C (n)-extendible cardinal is C (n)+-extendible [12].
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